Чем отличается синхронный двигатель от асинхронного для чайников кратко, простыми словами, сравнение по конструкции и принципу действия
Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).
СОДЕРЖАНИЕ:
Отличие – кратко простыми словами
Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вами электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.
В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.
У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.
Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.
У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.
Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.
Синхронный двигатель (СД)
Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.
Устройство
Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.
В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.
Конструктивно СД делятся на два типа по полюсам:
- Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
- Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.
Конструктивно роторы бывают разными устройством и по конструкции.
В частности, магниты бывают:
- Наружной установки.
- Встроенные.
Статор условно состоит из двух компонентов:
- Кожух.
- Сердечник с проводами.
Обмотка статорного механизма бывает двух видов:
- Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
- Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.
Форма электродвижущей силы электрического синхронного мотора бывает в виде:
- Трапеции. Характерна для устройств с явно выраженным полюсом.
- Синусоиды. Формируется за счет скоса наконечников на полюсах.
Если говорить в целом, синхронный мотор состоит из следующих элементов:
- узел с подшипниками;
- сердечник;
- втулка;
- магниты;
- якорь с обмоткой;
- втулка;
- «тарелка» из стали.
Принцип работы
Сначала к обмоткам возбуждения подводится постоянный ток. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.
Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.
Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.
С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.
Сфера применения
Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.
Эта особенность расширяет сферу его применения:
- энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
- машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
- прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.
Читайте также:
Преимущества и недостатки
После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.
Плюсы:
- Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
- Высокий КПД, достигающий 97-98%.
- Повышенная надежность, объясняемая большим воздушным зазором.
- Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
- Низкая чувствительность к изменению напряжения в сети.
Минусы:
- Более сложная конструкция и, соответственно, высокая стоимость изготовления.
- Трудности с пуском, ведь для этого нужные специальные устройства: возбудитель, выпрямитель.
- Потребность в источнике постоянного тока.
- Применение только для механизмов, которым не нужно менять частоту вращения.
Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.
СД2-85/37-6У3, 500кВт, 1000об/мин, 6000ВАсинхронный двигатель (АД)
Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.
Конструктивные особенности
Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.
Рассмотрим, из чего состоит асинхронный двигатель:
- сердечник;
- вентилятор с корпусом;
- подшипник;
- коробка с клеммами;
- тройная обмотка;
- контактные кольца.
С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.
Читайте также:
Принцип действия
В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.
Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.
Простыми словами, принцип действия можно разложить на несколько составляющих:
- При подаче напряжения в статоре создается магнитное поле.
- В роторе появляется ток, взаимодействующий с ЭДС статора.
- Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.
Сфера применения
Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.
Они часто применяются в бытовой аппаратуре:
- стиральных машинках;
- вентиляторе;
- вытяжке;
- бетономешалках;
- газонокосилках и т. д.
Также применяются они и в производстве, где подключаются к 3-фазной сети.
К этой категории относятся следующие механизмы:
- компрессоры;
- вентиляция;
- насосы;
- задвижки автоматического типа;
- краны и лебедки;
- станки для обработки дерева и т. д.
Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.
Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.
Трехфазный АИР 315S2 660В 160кВт 3000об/минПреимущества и недостатки
Преимущества:
- Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
- Более низкая стоимость, по сравнению с синхронным аналогом.
- Возможность прямого пуска.
- Низкое потребление энергии, что делает двигатель более экономичным.
- Высокая степень надежности, благодаря упрощенной конструкции.
- Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
- Возможность применения при подключении к одной фазе.
- Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
- Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.
Недостатки:
- Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
- Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
- Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
- Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
- Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
- Трудности регулирования устройств, которые приводятся в движение «синхронниками».
- Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
- При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
- Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.
Сравнение синхронного и асинхронного двигателей
В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.
Выделим базовые моменты:
- Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
- Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
- В «синхроннике» предусмотрена обмотка возбуждения.
- Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
- У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
- «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
- СД нуждается в дополнительном источнике тока.
- «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
- Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.
Про реактивную мощность
Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.
Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.
Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.
Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.
Читайте также:
Греется электродвигатель: причины неисправности у электромоторов на 220 и трехфазных на 380 вольт
Какой лучше
При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.
В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.
Чем отличается синхронный двигатель от асинхронного: описание разницы для чайников
Чтобы механические установки на производстве функционировали эффективно, важно приобрести подходящий двигатель. В основе устройства, преобразующего электрическую энергию в механическую, два элемента: статор – фиксированный, ротор – совершающий вращательные движения. Асинхронные устройства более распространенные, но это не значит, что синхронные хуже. Чтобы выбрать прибор, нужно знать, чем отличается синхронный тип двигателя от асинхронного.
Содержание
Чем отличается синхронный двигатель от асинхронного
Если просто посмотреть на оба типа двигателя, разницу между ними заметить сложно. Единственное визуальное отличие асинхронного устройства – большее количество ребер в системе охлаждения. А различаются электродвигатели схемой роторов.
Краткая история создания
Первым ученым, сумевшим перевести электричество в энергию вращения, был в 1821 году англичанин Майкл Фарадей. Через год физик Питер Барлоу создал униполярный двигатель – устройство, так и не примененное на практике, но позволившее понять, как заряженный проводник ведет себя в магнитном поле.
С самого начала создания электродвигателей изобретатели старались сделать устройство не с круговым, а с возвратно-поступательным движением внутри магнитного поля. Автором первого настоящего электродвигателя стал русский физик Борис Якоби. В 1834 году ученый создал работающее устройство, основанное на вращении якоря в магнитном поле.
Никола Тесла и Галилео Феррарис разработали технологию вращающегося поля. В 1870-ом появился асинхронный двигатель. Еще Тесла изобрел бесколлекторный тип двигателя, разработал схемы электростанций, работающих на 2-фазных электродвигателях переменного тока. В 1888 году был выпущен 3-фазный двигатель, разработанный немецким инженером Михаилом Доливо-Добровольским. Этот ученый исследовал разные виды соединений фаз и эффективность применения напряжения тока разной величины, разработал 3-фазные трансформаторы.
Конструктивные особенности
Асинхронные и синхронные двигатели внешне почти аналогичны. Основа обоих устройств – составленный из катушек статор и двигающийся ротор. Катушки лежат в пазах из стальных пластин сердечника. Они располагаются друг против друга под углом 120 °. Такая конструкция обеспечивает вращение магнитного поля при прохождении тока, которое заставляет двигаться ротор.
В конструкции ротора заключается основная разница, ею определяется быстрота вращения. Синхронный ротор – постоянный магнит. Он создает стабильное поле, связанное с вращающимся полем статора. В асинхронном устройстве в роторных пазах находятся короткозамкнутые пластины. Существуют также фазные роторы с кольцеобразными контактами, они замыкаются после раскручивания.
Частота оборотов ротора соотносится с периодичностью вращения статорного магнитного поля неодинаково. Значение, равное для синхронного устройства, неравное для асинхронного. Во втором случае ротор постоянно тормозит относительно вращательной скорости статорного поля, причем торможение соответствует значению скольжения.
Принцип работы двигателя
В асинхронном двигателе линии статорного магнитного поля, проходя по замкнутому роторному контуру, производят электрическую движущую силу. То есть формируют свое поле. Взаимодействующие поля с равной полярностью создают вращающий момент ротора. Когда вращательные скорости магнитных полей выравниваются, в роторе прекращается формирование движущей силы. Итогом становится устремление вращающего момента к нулю. Когда частота движения ротора начинает тормозить относительно интенсивности вращения статорного поля, электрическая движущая сила снова вырабатывается.
Мнение эксперта
Карнаух Екатерина Владимировна
Закончила Национальный университет кораблестроения, специальность “Экономика предприятия”
В синхронном двигателе, когда ротор раскрутится до частоты вращения статорного поля, на полюсные катушки по щеточно-коммуникационному углу идет постоянное напряжение. Оно формирует в них стабильное магнитное поле. Из-за взаимного притяжения магнитных полюсов ротор вращается с синхронной частотой. Раскручиваться ротор может посредством дополнительного двигателя либо асинхронно при короткозамкнутом типе обмотки.
Сфера использования
Стабильная частота вращения обеспечивает широкое применение синхронного электродвигателя. Он становится:
- источником сохранения напряжения в энергетике, стабилизации сети в аварийных случаях;
- вращательным элементом сильных вентиляторов, компрессорных установок;
- функциональной частью генераторов на электростанциях;
- источником стабильной работы насосов;
- движущим механизмом машиностроительных агрегатов.
Асинхронный двигатель – преимущественно бытовая машина, благодаря простой конструкции и эксплуатационным характеристикам. Для производственных целей используют 3-фазные электродвигатели. Асинхронные устройства ставят в:
- бытовые и производственные вентиляторы, вытяжную и насосную технику;
- стиральные машины;
- автоматические задвижки;
- садовую и строительную технику;
- столярные станки;
- электрический транспорт, лифты.
Реактивная мощность
Реактивная мощность негативно влияет на энергетическую систему. Значительное количество неактивного тока провоцирует возрастание расхода энергии, падение напряжения. А еще реактивность повышает нагрузку на линию электропередачи, в итоге приходится увеличивать сечение проводки. Поэтому специалисты по энергетике стараются компенсировать реактивную мощность.
Синхронный двигатель производит и сразу же расходует реактивную мощность. Ее значение определяется током в обмотке. В режиме полной нагрузки синхронное устройство не забирает мощность из сети, ток в обмотке статора предельно низкий.
Асинхронные двигатели – активные поглотители реактивной мощности. Они забирают до 40 % неактивного тока.
Стоимость
Асинхронные двигатели обходятся дешевле благодаря упрощенной конструкции. Поэтому и применяются более широко.
Плюсы и минусы двигателей
Рассмотрим преимущества и недостатки обоих типов двигателей, чтобы проще было сделать выбор.
Электродвигатель | Плюсы | Минусы |
синхронный | высокая мощность; невосприимчивость к колебаниям напряжения в сети; независимость частоты вращения от нагрузки; значительный КПД | необходим вспомогательный источник поступления постоянного тока; невозможность использования при частых запусках и остановках; сложный пуск ротора |
асинхронный | длительный эксплуатационный срок; стабильная работа при частых включениях и выключениях; универсальность эксплуатации; невысокая стоимость; функциональность без применения преобразователей | слабый пусковой момент; значительная величина пускового тока; проблематичная регулировка скорости; чувствительность к скачкам напряжения; изменение скорости вращения при повышении нагрузки |
Какой агрегат лучше?
Говорить, какой электродвигатель лучше, некорректно. Каждый подходит для определенных условий.
Синхронные устройства менее распространены, считаются промышленными, так как использовать их сложнее. Они требуют наличия вспомогательного источника тока и механизма, обеспечивающего пусковой момент. А еще синхронные электродвигатели быстрее изнашиваются, особенно быстро выходят из строя кольцеобразные контакты. Их высокая стоимость делает невыгодным использование в бытовых условиях. А вот в промышленности синхронные машины незаменимы, благодаря широкой вариативности коэффициента мощностей и стойкости к колебаниям напряжения.
Асинхронные двигатели более распространены. Они привлекательны простой конструкцией, эксплуатационным удобством, надежностью.
Сравнительная таблица
Сравним оба типа двигателя по основным параметрам.
Синхронный | Асинхронный | |
частота вращения ротора и магнитного поля | одинаковая | неодинаковая |
конструкция | сложная | упрощенная |
функциональная мощность | от 100 кВт | менее 100 кВт |
чувствительность к скачкам напряжения | нет | да |
работа при частых включениях и выключениях | нет | да |
стоимость | высокая | относительно невысокая |
Итог – кратко простыми словами
Для чайников скажем просто: синхронные двигатели – для производства, асинхронные – для быта. Вторые долговечные, при умеренной нагрузке служат долго, следить за их состоянием не нужно.
А вот синхронные устройства требуют контроля износа. Если не заменить истертые детали, двигатель выйдет из строя, а то еще хуже – станет причиной возгорания.
Разница между синхронными и асинхронными двигателями
2022-11-25 15:59:15
Электродвигатели представляют собой машины, преобразующие электрическую энергию в механическую для выполнения производственных операций. В двигателях есть постоянный и переменный токи. Двигатели переменного тока делятся на два типа: синхронные двигатели и асинхронные двигатели. Несмотря на то, что оба они являются двигателями переменного тока, они сильно отличаются друг от друга. Что такое синхронный двигатель?
Двигатель, работающий с синхронной скоростью, называется синхронным двигателем. Синхронный двигатель преобразует электрическую энергию в механическую. Когда синхронный двигатель включается в сеть переменного тока, обмотка статора создает вращающееся магнитное поле. Конструкция ротора позволяет ему генерировать собственное магнитное поле за счет использования постоянных магнитов или внешнего источника питания постоянного тока через токосъемные кольца.
Что такое асинхронный двигатель?
Асинхронные двигатели также известны как асинхронные двигатели . В отличие от синхронных двигателей, ротор асинхронного двигателя не синхронизирован со скоростью вращающегося магнитного поля. На самом деле скорость вращения ротора асинхронного двигателя меньше скорости вращающегося магнитного поля. В асинхронных двигателях используются два типа роторов: роторы с короткозамкнутым ротором и роторы с обмоткой. Когда используется короткозамкнутый ротор, двигатель имеет только один источник входной мощности, поэтому двигатель называется двигателем с одинарным возбуждением. Когда в асинхронном двигателе используется фазный ротор, двигатель имеет два источника питания и поэтому называется двигателем с двойным возбуждением.
Различия между синхронными и асинхронными двигателями
- Скорость синхронного двигателя зависит от входной частоты сети и количества полюсов на статоре, и он будет работать с постоянной скоростью на заданной частоте. Однако скорость асинхронного двигателя зависит от механической нагрузки, сопротивления цепи ротора и скорости торможения двигателя, и его скорость уменьшается по мере увеличения нагрузки.
- Синхронные двигатели не запускаются самостоятельно и требуют внешнего метода запуска, в то время как асинхронные двигатели могут запускаться самостоятельно.
- На крутящий момент синхронного двигателя не влияют колебания напряжения, как на асинхронный двигатель.
- Напряжение питания синхронного двигателя не влияет на его скорость и крутящий момент, но в асинхронном двигателе при изменении напряжения питания можно изменить его крутящий момент и скорость. Синхронные двигатели
- подходят для машин, работающих на низких скоростях ниже 300 об/мин. Асинхронные двигатели подходят для машин, работающих на высоких скоростях, обычно более 600 об/мин.
- Синхронные двигатели имеют более высокие капитальные затраты, чем асинхронные двигатели.
- Синхронные серводвигатели переменного тока могут работать на очень низких скоростях благодаря использованию электронных преобразователей, которые производят очень низкие частоты.
Применение синхронных и асинхронных двигателей
Применение синхронных двигателей
Синхронные двигатели используются на электростанциях и подстанциях, подключенных к шинам для улучшения коэффициента мощности, а также в оборудовании, требующем постоянной скорости, таком как вентиляторы, воздуходувки, центробежные насосы, компрессоры, поршневые насосы, бумажные фабрики и другие приводы.
Применение асинхронных двигателей
В настоящее время большинство двигателей в обществе представляют собой асинхронные двигатели, которые широко используются в нефтяной, текстильной и бумажной промышленности. Кроме того, воздуходувки, насосы, компрессоры, конвейеры, подъемники и тяжелые краны, токарные станки и другое оборудование также используют асинхронные двигатели.
Заключение
Таким образом, синхронные и асинхронные двигатели различаются во многих аспектах, что приводит к различным областям их применения. Как правило, синхронные двигатели в основном используются для работы на низких скоростях, тогда как асинхронные двигатели могут использоваться для большинства вращающихся или движущихся машин.
Синхронный или асинхронный электродвигатель для катера
Синхронный или асинхронный двигатель? Асинхронный двигатель Термин «асинхронный» появился из-за того, что скорость двигателя не определяется точно частотой тока, протекающего через его статор.
Асинхронный двигатель является наиболее широко используемым в промышленности из-за его стоимости производства, простоты обслуживания и хорошей адаптации к изменению скорости.
Однако имеет относительно низкую эффективность.
Синхронный двигательВ этих двигателях соотношение между частотой вращения двигателя и частотой напряжения является постоянным. С регулируемым крутящим моментом он просто потребляет ток, необходимый для обеспечения желаемого крутящего момента при заданных оборотах. Его эффективность значительно повышается.
Механическое или электронное переключение? Механическое переключение: ЩеточныйПростые по конструкции щеточные двигатели создают необходимое переменное поле с помощью фрикционных контактов. Преимущество их в том, что они недороги, но износ щетки требует регулярного обслуживания. Кроме того, трение вызывает падение эффективности.
Электронное переключениеПеременное поле создается электронной схемой преобразователя частоты. Эти системы очень эффективны и не требуют обслуживания. Эта высокая технология стоит дороже, но теперь доступна для широкой публики.
Возбуждение электромагнитным или постоянным магнитом? Электромагнитное возбуждениеВозбуждение создается катушкой. Недорогие, эти двигатели используются для недорогих приложений.
Возбуждение от постоянного магнитаВозбуждение создается катушкой. Недорогие, эти двигатели используются для недорогих приложений.
Все двигатели, которые мы предлагаем, являются синхронными двигателями с электронной коммутацией и постоянными магнитами .
@
Есть вопросы?
Свяжитесь с нами
Мощность двигателя определяется по формуле P = UI (напряжение, умноженное на интенсивность)
Чтобы увеличить мощность, мы можем вмешиваться в 2 фактора до определенных пределов
Пределы повышения напряжения
Правила запрещают использование напряжения выше 50 вольт на борту прогулочного катера, потому что той опасности, которую он представляет. На моторизацию это правило не распространяется. Поэтому мы могли бы рассмотреть, как это делают некоторые производители, увеличение напряжения до нескольких сотен вольт, чтобы иметь большую мощность. В этом случае для установки и всех работ на борту необходимо вызвать квалифицированного и специализированного электрика. Следите за тем, чтобы система всегда была в идеальном состоянии. Это кажется возможным для лодки, которая мало плавает и возвращается в порт каждую ночь, но нецелесообразно для более интенсивного использования во время круиза или путешествия.
Пределы увеличения тока
Увеличение тока вызывает увеличение поперечного сечения кабеля в зависимости от расстояния (закон Ома). Это может привести к дополнительному весу и трудностям при установке (жесткость кабелей). Кроме того, за пределами 500 ампер становится трудно найти доступные электронные компоненты.
48-вольтовые двигатели имеют мощность около 15/20 кВт. Вы можете получить больше, объединив несколько двигателей мощностью 10/15/20 кВт, как это делает OCEANVOLT для AXC40, но это может быть сложно.