Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Биполярный транзистор

Биполярный транзистор — трёхвыводный полупроводниковый прибор. Каджый вывод подключен к своему слою полупроводника. 

Ключевой режим работы транзистора

В автомобильной электронике это самый распространённый режим работы транзистора. В этом режиме транзисторы управляют исполнительными механизмами. Схема включения транзистора в ключевом режиме транзистора n-p-n структуры показана на рисунке

База транзистора – вход. Эмиттер – источник земли. Коллектор – выход. 

Если на базу не подавать никакого напряжения, то сопротивление между выводами эмиттер-коллектор будет очень высоким. То есть ключ будет разомкнут.

Если на базу подать напряжение, то через переход база-эмиттер потечёт ток, создавая ток базы. Этот ток базы насыщает переход и сопротивление между выводами коллектор-эмиттер резко падает. Тоесть ключ открывается.

Переход база-эмиттер ведёт себя как обычный диод. Это означает что какое бы напряжение мы не подавали на базу, на базе напряжение будет всегда 0,6 вольта. По этому если мы подадим на базу 12 вольт и не ограничим ток, то наш транзистор сгорит. Для ограничения тока базы в базу ставят последовательно сопротивление. Номинал этого сопротивления будет задавать значение тока текущего через базу. Слишком большой ток будет зря нагревать транзистор, слишком маленький не позволит транзистору пропустить через выводы коллектор-эмиттер нужный ток.

Какой ток базы должен быть?

Биполярный транзистор это токовый прибор и он имеет параметр коэффициент усиления по току. Этот параметр показывает во сколько раз транзистор сможет пропустить ток через выводы коллектор-эмиттер по отношению к току базы. Тоесть при коэффициенте усиления 100, чтобы транзистор пропустил через коллектор-эмиттер ток в 100ма. Нужно чтобы через базу протекал ток минимум 100ма/100 = 1ма. При токе меньшем 1 ма, транзистор не откроется, при большем токе будет бесполезный нагрев. При превышении максимально допустимого тока базы, транзистор сгорит.

Примечание:
Ток базы всегда выбирается больше чем нужно (с запасом), так как коэффициент усиления по току зависит от температуры. И если мы хотим чтобы наш ключ работал во всём диапазоне температур, мы должны учесть уменьшение этого коэффициента.

Ещё одна полезная особенность транзистора, это то, что напряжение на коллекторе может быть выше чем на базе. Оно ограничивается только характеристиками самого транзистора. 

Повторим основные характеристики транзистора которые нам нужны

  1. Коэффициент усиления по току
  2. Максимально допустимый ток коллектор-эмиттер
  3. Максимальное напряжение коллектор-эмиттер.

По этим характеристикам вы можете подобрать замену если вы знаете название заменяемого транзистора и знаете его характеристики. Все три параметра должны быть такими же или больше. Больший ток, Большее напряжение и больший коэффициент усиления по току. Обратите внимание чтобы тип биполярного транзистора (pnp или npn или Дарлингтона) был таким же.

 

Пример расчета схемы

Исходные данные.

Нам нужно управлять автомобильной лампочкой. Напряжение лампочки 12 Вольт, ток потребления 200ма.

Управляем мы ключом от микропроцессора у которого выход 5 вольт.

  1. Выбираем транзистор по максимальному напряжению коллетор-эмиттер
  2. Транзистор должен иметь максимальный ток коллектор-эмиттер более чем 200ма. 
  3. Расчитываем ток базы.
  4. Расчитываем токоограничивающий резистор, не забывая, что напряжение будет на 0,6 вольта ниже.

 

Примечание:
Если базу транзистора никуда не подключить, то он будет закрыт, но в реальных условиях существуют наводки напряжения. И в базе может появиться ток, хотя напряжение на базу никто не подавал, и транзистор может открыться. Для исключения этого, между землёй и базой транзистора ставят сопротивление. Его выбирают большим, чтобы оно не отбирало от базы ток, и в тоже время наводка напряжения которая появляется уходит мимо базы в землю.

 

Как правильно подобрать замену транзистора для ключа если неизвестен его тип?

  1. Выбираем транзистор по максимальному напряжению коллектор-эмиттер
  2. Транзистор должен иметь максимальный ток коллектор-эмиттер более чем 200ма. 
  3. Определяем ток базы по напряжению подаваемому на базу и резистору который установлен в плате.
  4. Вычисляем 

Что такое транзистор, виды транзисторов и их обозначение

Транзисторы — полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний. Наиболее распространены так называемые биполярные транзисторы.

Их основа — пластинка монокристаллического полупроводника (чаще всего кремния или германия), в которой с помощью особых технологических приемов созданы, как минимум, три области с разной электропроводностью: эмиттер, база и коллектор.

Электропроводность эмиттера и коллектора всегда одинаковая (р или п), базы — противоположная (п или р). Иными словами, биполярный транзистор (далее просто транзистор) содержит два р-п перехода: один из них соединяет базу с эмиттером (эмиттерный переход), другой — с коллектором (коллекторный переход).

На схемах транзисторы обозначают, как показано на рис. 1,а. Здесь короткая черточка с линией-выводом от середины символизирует базу, две наклонные линии, проведенные к ней под углом 60°, — эмиттер и коллектор.

 Рис. 1. Внешний вид транзисторов, обозначение транзисторов на принципиальных схемах.

Об электропроводности базы судят по символу эмиттера: если его стрелка направлена к базе (рис. 1,а), то это означает, эмиттер имеет электропроводность типа р, а база — типа п; если же стрелка направлена в противоположную сторону (рис. 1,6), электропроводность эмиттера и базы — обратная (соответственно пир).

Поскольку, как уже отмечалось, электропроводность коллектора та же, что и эмиттера, стрелку на символе коллектора не изображают. Знать электропроводность эмиттера, базы и коллектора необходимо для того, чтобы правильно подключить транзистор к источнику питания. В справочниках эту информацию приводят в виде структурной формулы.

Транзистор, база которого имеет проводимость типа п, обозначают формулой p-n-p, а транзистор с базой, имеющей электропроводность типа P, — формулой n-p-n. В первом случае на базу и коллектор следует подавать отрицательное (по отношению к эмиттеру) напряжение, во втором — положительное.

Для наглядности условное обозначение транзистора обычно помещают в кружок, символизирующий его корпус. Корпус нередко изготовляют из металла и соединяют с одним из выводов транзистора. На схемах это показывают точкой в месте пересечения лиши-вывода с символом корпуса (у транзистора, изображенного на рис. 1,в, с корпусом соединен вывод коллектора).

Если же корпус снабжен отдельным выводом, линию-вывод допускается присоединять к кружку без точки (рис. 1,г). С целью повышения информативности схем рядом с позиционным обозначением транзистора обычно указывают его тип.

Линии-выводы, идущие от символов эмиттера и коллектора, проводят в одном из двух направлений: перпендикулярно или параллельно линии-выводу базы (рис. 1,д). Излом этой линии допускается лишь на некотором расстоянии от символа корпуса (рис. 1,е).

Транзистор может иметь несколько эмиттерных областей (эмиттеров). В этом случае символы эмиттеров обычно изображают с одной стороны символа базы, а кружок-корпус заменяют овалом (рис. 1,ж).

В некоторых случаях ГОСТ 2.730—73 допускает изображать транзисторы и без символа корпуса, например при изображении бескорпуоных транзисторов ИЛ|Ц когда на схеме необходимо показать транзисторы, входящие в так называемые транзисторные сборки или матрицы (их выпускают в тех же корпусах, что и интегральные микросхемы).

 Рис. 2. Транзисторные сборки.

Поскольку буквенный код VT предусмотрен для обозначения транзисторов, выполненных в виде самостоятельных приборов, транзисторы сборок обозначают одним из следующих способов: либо используют код VT и присваивают им порядковые номера наряду с другими транзисторами (в этом случае на поле схемы помещают такую, например, запись: VT1—VT4 К1НТ251), либо берут код аналоговых микросхем DA и указывают принадлежность транзисторов к матрице в позиционном обозначении (рис. 2,а).

У выводов таких транзисторов, как правило, приводят условные номера, присвоенные выводам корпуса, в котором выполнена сборка. Без символа корпуса изображают на схемах и транзисторы аналоговых и цифровых микросхем (для примера на рис. 1,6 показаны транзисторы структуры n-p-n с тремя и четырьмя эмиттерами).

Условные графические обозначения некоторых разновидностей биполярных транзисторов получают введением в основной символ специальных знаков. Так, чтобы изобразить лавинный транзистор, между символами эмиттера и коллектора помещают знак эффекта лавинного пробоя (рис. 3,а). При повороте условного обозначения положение этого знака должно оставаться неизменным.

 Рис. 3. Лавинный транзистор.

Иначе построено обозначение так называемого однопереходного транзистора. У него один р-п переход, но два вывода базы. Символ эмиттера в обозначении этого транзистора проводят к середине символа базы (рис. 3,6). Об электропроводности базы судят по символу эмиттера (все сказанное ранее о транзисторах с двумя р-п переходами полностью применимо и к однрпереход-ному транзистору).

На обозначение однопереходного транзистора похоже условное обозначение довольно большой группы транзисторов с р-п переходом, получивших название полевых. Основа такого транзистора — созданный в полупроводнике и снабженный двумя выводами (исток и сток) канал с электропроводностью n-или p-типа.

Сопротивлением канала управляет третий электрод — затвор, соединенный с его средней частью р-п переходом. Канал полевого транзистора изображают так же, как и базу биполярного транзистора, но помещают в средней части кружка-корпуса , символы истока и стока присоединяют к нему с одной стороны, затвора — с другой.

Чтобы не вводить каких-либо знаков для различения символов истока и стока, затвор изображают на продолжении линии истока. Электропроводность канала указывают стрелкой на символе затвора.

В условном обозначении полевого транзистора с изолированным затворам (его изображают в виде черточки, параллельной символу канала, с выводом на продолжении линии истока) электропроводность канала показывают стрелкой, помещенной между символами истока и стока: если она направлена к символу канала, то это значит, что изображен транзистор с каналом п-типа, а если в противоположную сторону, — с каналом р-типа (рис. 4,а, б).

Рис. 4. Изображение полевых транзисторов на принципиальных схемах.

Аналогично указывают тип электропроводности канала и при наличии вывода от кристалла-подложки (рис. 4,в), а также при изображении полевого транзистора с так называемым индуцированным каналом, символ которого — три короткие штриха (рис. 4,г, д). Если подложка соединена с одним из электродов (обычно с истоком), это соединение показывают внутри символа без точки (рис. 4, е).

В палевом транзисторе может быть несколько затворов. Изображают их в этом случае короткими черточками, причем линию-вывод первого затвора обязательно помещают на продолжении линии истока (рис. 4,ж).

Линии-выводы полевого транзистора допускается изгибать лишь на некотором расстоянии от символа корпуса (рис. 4,з), который может быть соединен с одним из электродов или иметь самостоятельный вывод (рис. 4,ы).

Из транзисторов, управляемых внешними факторами, в настоящее время находят применение фототранзисторы. В качестве примера на рис. 5 показаны условные обозначения фототранзжггоров с выводом базы и без него.

Наряду с другими полупроводниковыми приборами, действие которых основано на фотоэлектрическом эффекте, фототранзисторы могут входить в состав оптронов. Обозначение фототранзистора в этом случае вместе с символом излучателя света (обычно светодиода) заключают в объединяющий их символ корпуса, а знак фотоэффекта заменяют знаком оптической связи — двумя параллельными стрелками.

Рис. 5. Изображение на принципиальных схемах фототранзисторов.

Для примера на рис. 5,а изображена одна из оптопар сдвоенного оптрона К249КП1, о чем говорит позиционное обозначение U1.1. Аналогично строят условное графическое обозначение оптрона с составным транзистором (рис. 5,6).

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Что такое транзистор – простым языком

Транзистор – это электронный компонент, который управляет высоким током с помощью низкого. Транзистор еще можно назвать полупроводниковым триодом. Это второе название пришло к нему от его «родителя» – электровакуумного триода, одной из разновидностей так называемых «ламп».

Из чего состоит транзистор?

Видимая часть транзистора состоит из корпуса и трех «ножек»-выводов (однако существуют и разновидности транзисторов, у которых количество выводов больше трех). Корпус транзистора изготовляют из керамики, металлических сплавов или пластмассы. Заглядывая наперед, отметим, что существует два вида транзисторов – биполярный и полевой.

Внутри корпуса биполярного транзистора размещается три слоя полупроводника, два из которых расположены по краям и имеют одинаковый тип проводимости (p либо n), это – коллектор и эмиттер. Третий слой расположен между первыми двумя и отличается типом проводимости от своих соседей. Это – база.

Расположение полупроводников определяет тип транзистора: p-n-p либо n-p-n. На каждый из полупроводников нанесен металлический слой. С помощью этого слоя и проволочных связей полупроводники соединены с выводами транзистора. Однако не стоит забывать, что расположение выводов транзистора может меняться, в зависимости от модели транзистора.

На изображении – биполярный транзистор n-p-n типа.

Полевой транзистор также имеет в своем арсенале полупроводники, но их расположение, количество и принцип работы отличается от биполярных транзисторов и зависит от вида полевого транзистора.

Где используются транзисторы?

Транзисторы используются в большинстве электронных схем. Это может быть как простой генератор частоты, так и материнская плата компьютера.

Заглянем под крышку усилителя – и тут транзисторы. Они аккуратно разместились на схеме радиоприемника, чтобы преобразовать радиосигнал в аналоговый. Если нужно собрать электронный стабилизатор или ключ – не обойдетесь без транзисторов.

Существует ряд сверхмощных транзисторов. Они могут работать с нагрузкой до 1.5 кВт и применяют их в промышленной сфере. Рабочая температура таких транзисторов может достигать 200-300 градусов Цельсия. Для их охлаждения используют радиаторы теплоотвода.

Группа транзисторов, в совокупности с дополнительными элементами, может совершать ряд логических операций и представляет собой своего рода процессор. Собственно, процессор на основе полупроводника и является группой транзисторов. Они заключены в общий корпус и связаны там между собой таким образом, как если бы располагались на монтажной плате. В мощных процессорах, благодаря миниатюрности кристаллов полупроводника, может быть заключено до нескольких десятков миллионов транзисторов.

Принцип работы транзистора

В биполярных транзисторах управление током коллектора происходит путем изменения управляющего тока базы. Ток, которым нужно управлять, направлен по цепи – «эмиттер-коллектор». Однако, в состоянии покоя транзистора этот ток не может проходить между ними. Это вызвано сопротивлением эмиттерного перехода, которое возникает в результате взаимодействия слоёв полупроводника. Но стоит подать на базу транзистора незначительный ток, и сопротивление между эмиттером и коллектором упадет, тем самым даст возможность проходить току через эмиттер и коллектор, усиливая выходной сигнал. Изменяя ток базы, можно изменять ток на выходе транзистора.

В полевых транзисторах такое управление осуществляется благодаря созданию поперечного электрического поля, которое создается напряжением, приложенным к затвору относительно истока. Это значительно уменьшает энергопотребление транзистора, так как сопротивление затвора велико, и для создания поля не нужно постоянно поддерживать управляющий ток. Если бы не полевой транзистор, мы меняли бы батарейки в пульте от телевизора в разы чаще, чем обычно.

Таким образом, транзисторы можно сравнить с водопроводным краном, где подача и слив воды – это эмиттер\исток и коллектор\сток транзистора, а рукоять вентиля – это его база\затвор.

Разновидности, обозначение транзисторов

На большинстве схем транзисторы могут обозначаться буквами «VT», «Q», «T», «ПТ», «ПП». К буквам может применяться приписка в виде цифры, например «VT 4», которая указывает номер детали на схеме. Или модель транзистора целиком, например «T KT-315Б».
Транзисторы делятся на два вида: биполярный и полевой.

Схематическое обозначение биполярного транзистора:

Как видно на рисунке, обозначение транзисторов разных типов отличается направлением стрелки эмиттера. Транзисторы n-p-n типа обозначаются со стрелкой эмиттера, направленной от базы. В случае p-n-p типа, стрелка будет направлена в сторону базы транзистора. На многих схемах эмиттер, коллектор и база отмечены буквами латинского языка: эмиттер – «E», база – «B» коллектор – «C».

Типовая схема подключения биполярных транзисторов:

Рекомендовано практически во всех схемах с биполярным транзистором давать дополнительное сопротивление ко входам коллектора и базы. Это продлит срок службы транзистора и стабилизирует его работу.

Обозначений полевых транзисторов есть больше, чем биполярных. Основные представлены на изображениях ниже.

Как вы видите, выводы транзистора обозначены буквами «З»-затвор, «С»-сток, «И»-исток. Функцию базы выполняет затвор, а коллектор и эмиттер, это – сток и исток, соответственно. Как биполярные транзисторы делятся на n-p-n и p-n-p, так полевые делятся на:

  • с управляющим p-n переходом с каналом n-типа;
  • с изолированным затвором с индуцированным каналом n-типа;
  • с изолированным затвором со встроенным каналом n-типа;
  • с управляющим p-n переходом с каналом p-типа;
  • с изолированным затвором с индуцированным каналом p-типа;
  • с изолированным затвором со встроенным каналом p-типа.

Некоторые транзисторы с управляющим p-n-переходом предоставляют доступ к каналу с помощью четвертой «ножки»-вывода либо используется сам корпус транзистора.

На изображениях ниже – схемы включения полевых транзисторов:

С управляющим p-n-переходом с общим истоком

С управляющим p-n-переходом с общим стоком

С управляющим p-n-переходом с общим затвором

Маркировка транзисторов

Маркировка транзистора наносится на корпус, иногда нужно также обращать внимание на длину выводов. Современная маркировка транзисторов зависит от производителя. По причине этого, рекомендовано изучать спецификации от производителей, чтобы корректно читать маркировку.

Маркировка бывает цветовая, кодовая и смешанная. Есть случаи нестандартной маркировки, где могут использоваться различного рода символы.

Вольт амперная характеристика

На двух графиках представлены вольт амперные характеристики отдельно для биполярных и полевых транзисторов.

Биполярные транзисторы:

Полевые транзисторы:

Как устроен транзистор кратко

Любое электронное устройство состоит из радиоэлементов. Они могут быть пассивными, не требующими источника питания, и активными, работа которых возможна только при подаче напряжения. Активными элементами называют полупроводники. Одним из важнейших полупроводниковых приборов является транзистор. Этот радиоэлемент пришёл на смену ламповым приборам и полностью изменил схемотехнику устройств. Вся микроэлектроника и работа любой микросхемы базируется именно на нём.

Общие сведения

Название «транзистор» произошло от слияния двух английских слов: transfer — переносимый, и resistor — сопротивление. В общепринятом понятии это полупроводниковый элемент с тремя выводами. В нём величина тока на двух выводах зависит от третьего, при изменении на котором тока или напряжения происходит управление значением тока выходной цепи. Вариацией тока управляются биполярные приборы, а напряжением — полевые.

Первые разработки транзистора были начаты в XX веке. В Германии учёный Юлий Эдгар Лилиенфельд описал принцип работы транзистора, а уже в 1934 году физиком Оскаром Хейл был зарегистрирован прибор, названный позже транзистором. Такое устройство работало на электростатическом эффекте поля.

Физики Уильям Шокли, Уолтер Браттейн вместе с учёным Джоном Бардином в конце 40-х годов изготовили первый макет точечного транзистора. С открытием n-p перехода выпуск точечного транзистора прекратился, а вместо него начались разработки плоскостных устройств из германия. Официально представлен был действующий прототип транзистора в декабре 1947 года. В этот день появился первый биполярный транзистор. Летом 1948 года начались продаваться устройства, выполненные на транзисторной основе. С этого момента распространённые на тот момент электронные лампы (триоды) начали уходить в прошлое.

В середине 50-х годов первый плоскостной транзистор был выпущен в серию компанией Texas Instruments, в качестве материала для его изготовления послужил кремний. На тот момент при производстве радиоэлемента выходило много брака, но это не помешало технологическому развитию прибора. В 1953 году на транзисторах была изготовлена схема, использующаяся в слуховых аппаратах, а годом позже американские физики получили за своё открытие Нобелевскую премию.

Март 1959 года ознаменовался созданием первого кремниевого планарного прибора, его разработчиком был физик из Швейцарии Жан Эрни. Пара транзисторов была успешно размещена на одном кристалле кремния. С этого момента и началось развитие интегральной схемотехники. На сегодняшний день в одном кристалле размещается более миллиарда транзисторов. Например, на популярном 8-ядерном компьютерном процессоре Core i7−5960X их количество составляет 2,6 миллиарда штук.

Параллельно с усовершенствованиями биполярного транзистора в 60-х годах начались разработки прибора на основе соединения металла с полупроводником. Такой радиоэлемент получил название МОП (металл-оксид-полупроводник) транзистор, сегодня более известный под обозначением «мосфет».

Изначально понятие «транзистор» относилось к сопротивлению, величина которого управлялась напряжением, поскольку транзистор можно представить как некий резистор, регулируемый приложенным потенциалом на одном выводе. Для полевых транзисторов, сравнение с которыми более верно, — потенциалом на затворе, а для биполярных транзисторов — потенциалом на базе или током базы.

Электронно-дырочный переход

Основа работы прибора заключается в способности n-p перехода пропускать ток в одну сторону. При подаче напряжения на одном переходе возникает его прямое падение, а на другом обратное. Зона перехода с прямым напряжением обладает малым сопротивлением, а с обратным — большим. Между базой и эмиттером протекает небольшой ток управления. От значения этого тока изменяется сопротивление между коллектором и эмиттером. Биполярный прибор бывает двух типов:

Отличие заключается лишь в основных носителях заряда, т. е. направлении тока.

Если соединить два полупроводника разного типа между собой, то на границе соединения возникает область или, как принято называть, p-n переход. Тип проводимости зависит от атомного строения материала, а именно насколько прочны связи в материале. Атомы в полупроводнике располагаются в виде решётки, и сам по себе такой материал не является проводником. Но если в решётку добавить атомы другого материала, то физические свойства полупроводника изменяются. Примешанные атомы образовывают, в зависимости от своей природы, свободные электроны или дырки.

Образованные свободные электроны формируют отрицательный заряд, а дырки — положительный. В области перехода существует потенциальный барьер. Он образуется контактной разностью потенциалов, и его высота не превышает десятые доли вольта, препятствуя протеканию носителей заряда вглубь материала. Если переход находится под прямым напряжением, то величина потенциального барьера уменьшается, а величина проходящего через него тока увеличивается. При прикладывании обратного напряжения, величина барьера увеличивается и сопротивление барьера прохождению тока возрастает. Понимая работу p-n перехода, можно разобраться, как устроен транзистор.

Классификация устройств

В первую очередь такие приборы разделяются на одиночные и составные. Существуют и так называемые комплексные радиоэлементы. Они имеют три вывода и выполненны, как единое целое. Такие сборки содержат как однотипные, так и разные по своему типу транзисторы. Основное разделение приборов происходит по следующим признакам:

  1. Канальность. В зависимости от того, какие носители зарядов являются основными бывают p-типа и n-типа.
  2. Технологии изготовления. Выпускаются биполярными, полевыми, комбинированными.
  3. По типу полупроводника. В качестве материала для изготовления применяется кремний, германий и арсенид-галлия. В последнее время начали выпускаться транзисторы, использующие в качестве основы прозрачные полупроводники. Например, для построения дисплейных матриц. А также использующие в качестве материалов полимеры и углеродные нанотрубки.
  4. По рассеиваемой мощности. Разделяются на три типа: маломощные, средней мощности и мощные. Первые не превышают значения 0,1 Вт, вторые находятся в диапазоне 0,1−1 Вт, а к мощным относят все те, что превышают 1 Вт.
  5. По виду исполнению. Выделяют дискретные транзисторы, которые могут быть как корпусными, так и нет, и транзисторы, входящие в состав интегральных схем.

Общее определение для радиоэлемента можно сформулировать следующим образом: транзистор — это полупроводниковый элемент, предназначенный для преобразования электрических величин. Основное его применение заключается в усилении сигнала или работе в ключевом режиме.

Биполярный прибор

Принцип работы транзистора для «чайника» проще описать по аналогии с водопроводом. Сам элемент можно представить в виде вентиля. Кран небольшим поворотом позволяет регулировать поток воды (силу тока). Если немного повернуть рукоятку, вода потечёт по трубе (проводнику), если приоткрыть кран ещё сильнее, поток воды также увеличится. Таким образом, выход потока воды пропорционален её входу, умноженному на определённую величину. Этой величиной называется коэффициент усиления.

Биполярный транзистор имеет три вывода: эмиттер, база, коллектор. Эмиттер и коллектор имеют одинаковый тип проводимости, который отличный от базы. Дырочного типа транзисторы состоят из двух областей p -типа проводимости, и одной n -типа. Электронного типа наоборот. Каждая область имеет свой вывод.

При подаче на эмиттер сигнала нужной проводимости ток в области базы увеличивается. Основные носители заряда перемещаются в зону базы, что приводит к возрастанию тока и в обратной области подключения. Возникает объёмный заряд. Электрическое поле начинает втягивать в зону обратного подключения носители другого знака. В базе происходит частичная рекомбинация (уничтожение) зарядов противоположного знака, благодаря чему и возникает ток базы.

Эмиттером называют область прибора, служащую для передачи носителей заряда в базу. Коллектором называют зону, предназначенную для извлечения носителей заряда из базы. А база — это область для передачи эмиттером противоположной величины заряда. Основной характеристикой прибора является вольт-амперная характеристика, функция которой описывает зависимость между током и напряжением.

На схеме устройство подписывается латинскими буквами VT или Q. Выглядит как круг со стрелкой внутри, где стрелка указывает направление протекания тока. Для PNP (прямая проводимость) — стрелка внутрь, а NPN (обратная проводимость) — стрелка наружу. Для того чтобы сделать транзистор, используется германий или кремний. Отличаются эти материалы рабочей областью напряжения базового перехода. Для германиевых он лежит в диапазоне 0,1−0,4 В, а для кремниевых от 0,4 до 1,2 В. Обычно используется кремний.

Полевой транзистор

Отличие полевого транзистора от биполярного в том, что в нём за прохождение тока отвечает величина напряжения, приложенная к управляемому контакту.

Основное назначение мосфетов связывают с их хорошей скоростью переключения при весьма небольшой мощности, приложенной к выводу управления. Полевой элемент имеет три вывода: затвор, сток, исток. При работе мосфета с управляющим n-p переходом потенциал на затворе либо равен нулю (прибор открыт), или имеет определённое значение, превышающее ноль (прибор закрыт). Когда обратное напряжения достигает определённого уровня, то открывается запирающий слой, и устройство переходит в режим отсечки.

В мосфете с p-n переходом управляющим электродом (затвором) служит слой полупроводника, имеющий проводимость р-типа, а противоположной проводимости — канал n-типа.

Изображение его на схеме сходно биполярному устройству, только все линии выполняются прямыми, а стрелка внутри подчёркивает разновидность прибора. В основе принципа действия МОП приборов лежит эффект изменения проводимости полупроводника на границе области с диэлектриком при воздействии электрического поля. Полевые устройства в зависимости от управляемого p-n перехода могут быть:

  1. Со встроенным каналом. Работают в двух режимах: обеднения и обогащения. В первом режиме величина потенциала на затворе превышает значение на истоке, что приводит к снижению значения тока на нём. Если приложенный потенциал больше напряжения отсечки, то ток между выводами стока и истока отсутствует. При обогащении, наоборот, чем больше величина потенциала между выводами затвор-исток, тем больше ток стока.
  2. С индуцированным (наведённым) каналом. Для p-канального устройства при отсутствии потенциала на выводе затвор-исток ток стока близок к нулю. Такой тип работает только в режиме обогащения. При этом напряжение на выводах исток-затвор должно быть больше нуля. Когда это напряжение превысит значение порогового, то между стоком и истоком возникнет проводимость p-типа. Связано это с тем, что количество дырок под затвором увеличится. Это явление называется инверсией.

Каждый вид может иметь проводимость как p-типа, так и n-типа. В общем понимании принцип работы не зависит от проводимости, меняется только полярность источника напряжения.

Принцип действия для чайников

Транзистор — это сложный прибор, физические процессы проходящие в котором сложны для понимания начинающим радиолюбителям (чайникам). Как работает транзистор, можно объяснить следующим образом: транзистор — это электронный ключ, степень открывания которого зависит от уровня тока или напряжения, приложенного к его управляемому выводу (база или затвор).

Зачем нужен транзистор, можно описать в обобщённой форме. Например, база (затвор) прибора — это дверь. Она открывается внешним воздействием, т. е. напряжением той же полярности, что и коллектор (исток). Чем больше напряжение, тем дверь больше откроется. Перед дверью стоит очередь людей (носители заряда), которые хотят пробежать через неё (коллектор-эмиттер или исток-сток). Чем больше воздействие на дверь, тем больше она открыта, а значит, и больше пробежит людей.

Поэтому, представляя дверь в виде сопротивления перехода, можно сделать вывод: чем больше воздействие на базу (затвор), тем меньше сопротивление основным носителям заряда (людям) в случае прямой полярности. Если полярность поменяется (дверь закроется на замок), то никакого движения зарядов (людей) не будет.

Транзистором называется полупроводниковый прибор, предназначенный для усиления и генерирования электрических колебаний. Так что же такое транзистор? – Он представляет собой кристалл, помещенный в корпус, снабженный выводами. Кристалл изготовляют из полупроводникового материала. По своим электрическим свойствам полупроводники занимают некоторое промежуточное положение между проводниками и непроводниками тока (изоляторами).

Небольшой кристалл полупроводникового материала (полупроводника) после соответствующей технологической обработки становится способным менять свою электропроводность в очень широких пределах при подведении к нему слабых электрических колебаний и постоянного напряжения смещения.

Кристалл помещают в металлический или пластмассовый корпус и снабжают тремя выводами, жесткими или мягкими, присоединенными к соответствующим зонам кристалла. Металлический корпус иногда имеет собственный вывод, но чаща с корпусом соединяют один из трех электродов транзистора.

В настоящее время находят применение транзисторы двух видов — биполярные и полевые. Биполярные транзисторы появились первыми и получили наибольшее распространение. Поэтому обычно их называют просто транзисторами. Полевые транзисторы появились позже и пока используются реже биполярных.

Быполярные транзисторы

Биполярными транзисторы называют потому, что электрический ток в них образуют электрические заряды положительной и отрицательной полярности. Носители положительных зарядов принято называть дырками, отрицательные заряды переносятся электронами. В биполярном транзисторе используют кристалл из германия или кремния — основных полупроводниковых материалов, применяемых для изготовления транзисторов и диодов.

Поэтому и транзисторы называют одни кремниевыми, другие – германиевыми. Для обоих разновидностей биполярных транзисторов характерны свои особенности, которые обычно учитывают при проектировании устройств.

Для изготовления кристалла используют сверхчистый материал, в который добавляют специальные строго дозированные; примеси. Они и определяют появление в кристалле проводимости, обусловленной дырками (р-проводимость) или электронами (n-проводимость). Таким образом формируют один из электродов транзистора, называемый базой.

Если теперь в поверхность кристалла базы ввести тем или иным технологическим способом специальные примеси, изменяющие тип проводимости базы на обратную так, чтобы образовались близколежащие зоны n-р-n или р-n-р, и к каждой зоне подключить выводы, образуется транзистор.

Одну из крайних зон называют эмиттером, т. е. источником носителей заряда, а вторую — коллектором, собирателем этих носителей. Зона между эмиттером и коллектором называется базой. Выводам транзистора обычно присваивают названия, аналогичные его электродам.

Усилительные свойства транзистора проявляются в том, что если теперь к эмиттеру и базе приложить малое электрическое напряжение — входной сигнал, то в цепи коллектор — эмиттер потечет ток, по форме повторяющий входной ток входного сигнала между базой и эмиттером, но во много раз больший по значению.

Для нормальной работы транзистора в первую очередь необходимо подать на его электроды напряжение питания. При этом напряжение на базе относительно эмиттера (это напряжение часто называют напряжением смещения) должно быть равно нескольким десятым долям вольта, а на коллекторе относительно эмиттера — несколько вольт.

Включение в цепь n-р-n и р-n-р транзисторов отличается только полярностью напряжения на коллекторе и смещения. Кремниевые и германиевые транзисторы одной и той же структуры отличаются между собой лишь значением напряжения смещения. У кремниевых оно примерно на 0,45 В больше, чем у герма ниевых.

Рис. 1

На рис. 1 показаны условные графические обозначения транзисторов той и другой структуры, выполненных на основе германия и кремния, и типовое напряжение смещения. Электроды транзисторов обозначены первыми буквами слов: эмиттер — Э, база — Б, коллектор — К.

Напряжение смещения (или, как принято говорить, режим) показано относительно эмиттера, но на практике напряжение на электродах транзистора указывают относительно общего провода устройства. Общим проводом в устройстве и на схеме называют провод, гальванически соединенный с входом, выходом и часто с источником питания, т. е. общий для входа, выхода и источника питания.

Усилительные и другие свойства транзисторов характеризуются рядом электрических параметров, наиболее важные из которых рассмотрены ниже.

Статический коэффициент передачи тока базы h21Э показывает, во сколько раз ток коллектора биполярного транзистора больше тока его базы, вызвавшего этот ток. У большинства типов транзисторов численное значение этого коэффициента от экземпляра к экземпляру может изменяться от 20 до 200. Есть транзисторы и с меньшим значением — 10. 15, и с большим — до 50. 800 (такие называют транзисторами со сверхусилением).

Нередко считают, что хорошие результаты можно получить только с транзисторами, имеющими большое значение h21э. Однако практика показывает, что при умелом конструировании аппаратуры вполне можно обойтись транзисторами, имеющими h2lЭ, равный всего 12. 20. Примером этого может служить большинство конструкций, описанных в этой книге.

Частотными свойствами транзистора учитывается тот факт, что транзистор способен усиливать электрические сигналы с частотой, не превышающей определенного для каждого транзистора предела. Частоту, на которой транзистор теряет свои усилительные свойства, называют предельной частотой усиления транзистора.

Для того, чтобы транзистор мог обеспечить значительное усиление сигнала, необходимо, чтобы максимальная рабочая частота сигнала была по крайней мере в 10. 20 раз меньше предельной частоты fт транзистора. Например, для эффективного усиления сигналов низкой частоты (до 20 кГц) применяют низкочастотные транзисторы, предельная частота которых не менее 0,2. 0,4 МГц.

Для усиления сигналов радиостанций длинноволнового и средневолнового диапазонов волн (частота сигнала не выше 1,6 МГц) пригодны лишь высокочастотные транзисторы с предельной частотой не ниже 16. 30 МГц.

Максимальная допустимая рассеиваемая мощность — это наибольшая мощность, которую может рассеивать транзистор в течение длительного времени без опасности выхода из строя. В справочниках по транзисторам обычно указывают максимальную допустимую мощность коллектора Яктах, поскольку именно в цепи коллектор — эмиттер выделяется наибольшая мощность и действуют наибольшие ток и напряжение.

Базовый и коллекторный токи, протекая по кристаллу транзистора, разогревают его. Германиевый кристалл может нормально работать при температуре не более 80, а кремниевый — не более 120°С. Тепло, которое выделяется в кристалле, отводится в окружающую, среду через корпус транзистора, а также и через дополнительный теплоотвод (радиатор), которым дополнительно снабжают транзисторы большой мощности.

В зависимости от назначения выпускают транзисторы малой, средней и большой мощности. Маломощные используют главным образом для усиления и преобразования слабых сигналов низкой и высокой частот, мощные — в оконечных ступенях усиления и генерации электрических колебаний низкой и высокой частот.

Усилительные возможности ступени на биполярном транзисторе зависят не только от того, какой он мощности, а сколько от того, какой конкретно выбран транзистор, в каком режиме работы по переменному и постоянному току он работает (в частности, каковы ток коллектора и напряжение между коллектором и эмиттером), каково соотношение рабочей частоты сигнала и предельной частоты транзистора.

Что такое полевой транзистор

Полевой транзистор представляет собой полупроводниковый прибор, в котором управление током между двумя электродами, образованным направленным движением носителей заряда дырок или электронов, осуществляется электрическим полем, создаваемым напряжением на третьем электроде.

Электроды, между Которыми протекает управляемый ток, иоСят название истока и стока, причем истоком считают тот электрод, из которого выходят (истекают) носители заряда.

Третий, управляющий, электрод называют затвором. Токопроводящий участок полупроводникового материала между истоком и стоком принято называть каналом, отсюда еще одно название этих транзисторов — канальные. Под действием напряжения на затворе» относительно истока меняется сопротивление канала» а значит, и ток через него.

В зависимости от типа носителей заряда различают транзисторы с n-каналом или р-каналом. В n-канальных ток канала обусловлен направленным движением электронов, а р-канальных — дырок. В связи с этой особенностью полевых транзисторов их иногда называют также униполярными. Это название подчеркивает, что ток в них образуют носители только одного знака, что и отличает полевые транзисторы от биполярных.

Для изготовления полевых транзисторов используют главным образом кремний, что связано с особенностями технологии их производства.

Основные параметры полевых транзисторов

Крутизна входной характеристики S или проводимость прямой передачи тока Y21 указывает, на сколько миллиампер изменяется ток канала при изменении входного напряжения между затвором и истоком на 1 В. Поэтому значение крутизны входной характеристики определяется в мА/В, так же как и крутизна характеристики радиоламп.

Современные полевые транзисторы имеют крутизну от десятых долей до десятков и даже сотен миллиампер на вольт. Очевидно, что чем больше крутизна, тем большее усиление может дать полевой транзистор. Но большим значениям крутизны соответствует большой ток канала.

Поэтому-на практике обычно выбирают такой ток канала, при котором, о одной стороны, достигается требуемое усиление, а с другой — обеспечивается необходимая экономичность в расходе тока.

Частотные свойства полевого транзистора, так же как и биполярного, характеризуются значением предельной частоты. Полевые транзисторы тоже делят на низкочастотные, среднечастотные и высокочастотные, и также для получения большого усиления максимальная частота сигнала должна быть по крайней мере в 10. 20 раз меньше предельной частоты транзистора.

Максимальная допустимая постоянная рассеиваемая мощность полевого транзистора определяется точно так же, как и для биполярного. Промышленность выпускает полевые транзисторы малой, средней и большой мощности.

Для нормальной работы полевого транзистора на его электродах должно действовать постоянное напряжение начального смещения. Полярность напряжения смещения определяется типом канала (n или р), а значение этого напряжения — конкретным типом транзистора.

Здесь следует указать, что среди полевых транзисторов значительно больше разнообразие конструкций кристалла, чем среди биполярных. Наибольшее распространение в любительских конструкциях и в изделиях промышленного производства получили полевые транзисторы с так называемым встроенным каналом и р-n переходом.

Они неприхотливы в эксплуатации, работают в широких частотных пределах, обладают высоким входным сопротивлением, достигающим на низкой частоте нескольких мегаом, а на средней и высокой частотах — нескольких десятков или сотен килоом в зависимости от серии.

Для сравнения укажем, что биполярные транзисторы имеют значительно меньшее входное сопротивление, обычно близкое к 1. 2 кОм, и лишь ступени на составном транзисторе могут иметь большее входное сопротивление. В этом со-состоит большое преимущество полевых транзисторов перед биполярными.

На рис. 2 показаны условные обозначения полевых транзисторов со встроенным каналом и р-n переходом, а также указаны и типовые значения напряжения смещения. Выводы обозначены в соответствии с первыми буквами названий электродов.

Характерно, что для транзисторов с р-каналом напряжение на стоке относительно истока должно быть отрицательным, а на затворе относительно истока — положительным, а для транзистора с n-каналом — наоборот.

В промышленной аппаратуре и реже в радиолюбительской находят также применение полевые транзисторы с изолированным затвором. Такие транзисторы имеют еще более высокое входное сопротивление, могут работать на очень высоких частотах. Но у них есть существенный недостаток — низкая электрическая прочность изолированного затвора.

Для его пробоя и выхода транзистора из строя вполне достаточно даже слабого заряда статического электричества, который всегда есть на теле человека, на одежде, на инструменте.

По этой причине выводы полевых транзисторов с изолированным затвором при хранении следует связывать вместе мягкой голой проволокой, при монтаже транзисторов руки и инструменты нужно «заземлять», используют и другие защитные мероприятия.

Литература: Васильев В.А. Приемники начинающего радиолюбителя (МРБ 1072).

Электроника окружает нас всюду. Но практически никто не задумывается о том, как вся эта штука работает. На самом деле все довольно просто. Именно это мы и постараемся сегодня показать. А начнем с такого важного элемента, как транзистор. Расскажем, что это такое, что делает, и как работает транзистор.

Что такое транзистор?

Транзистор – полупроводниковый прибор, предназначенный для управления электрическим током.

Где применяются транзисторы? Да везде! Без транзисторов не обходится практически ни одна современная электрическая схема. Они повсеместно используются при производстве вычислительной техники, аудио- и видео-аппаратуры.

Времена, когда советские микросхемы были самыми большими в мире, прошли, и размер современных транзисторов очень мал. Так, самые маленькие из устройств имеют размер порядка нанометра!

Приставка нано- обозначает величину порядка десять в минус девятой степени.

Однако существуют и гигантские экземпляры, использующиеся преимущественно в областях энергетики и промышленности.

Транзисторы

Существуют разные типы транзисторов: биполярные и полярные, прямой и обратной проводимости. Тем не менее, в основе работы этих приборов лежит один и тот же принцип. Транзистор – прибор полупроводниковый. Как известно, в полупроводнике носителями заряда являются электроны или дырки.

Область с избытком электронов обозначается буквой n (negative), а область с дырочной проводимостью – p (positive).

Как работает транзистор?

Чтобы все было предельно ясно, рассмотрим работу биполярного транзистора (самый популярный вид).

Биполярный транзистор (далее – просто транзистор) представляет собой кристалл полупроводника (чаще всего используется кремний или германий), разделенный на три зоны с разной электропроводностью. Зоны называются соответственно коллектором, базой и эмиттером. Устройство транзистора и его схематическое изображение показаны на рисунке ни же

Биполярный транзистор

Разделяют транзисторы прямой и обратной проводимости. Транзисторы p-n-p называются транзисторами с прямой проводимостью, а транзисторы n-p-n – с обратной.

Транзисторы

Теперь о том, какие есть два режима работы транзисторов. Сама работа транзистора похожа на работу водопроводного крана или вентиля. Только вместо воды – электрический ток. Возможны два состояния транзистора – рабочее (транзистор открыт) и состояние покоя (транзистор закрыт).

Что это значит? Когда транзистор закрыт, через него не течет ток. В открытом состоянии, когда на базу подается малый управляющий ток, транзистор открывается, и большой ток начинает течь через эмиттер-коллектор.

Физические процессы в транзисторе

А теперь подробнее о том, почему все происходит именно так, то есть почему транзистор открывается и закрывается. Возьмем биполярный транзистор. Пусть это будет n-p-n транзистор.

Если подключить источник питания между коллектором и эмиттером, электроны коллектора начнут притягиваться к плюсу, однако тока между коллектором и эмиттером не будет. Этому мешает прослойка базы и сам слой эмиттера.

Транзистор закрыт

Если же подключить дополнительный источник между базой и эмиттером, электроны из n области эмиттера начнут проникать в область баз. В результате область базы обогатиться свободными электронами, часть из которых рекомбинирует с дырками, часть потечет к плюсу базы, а часть (большая часть) направится к коллектору.

Таким образом, транзистор получается открыт, и в нем течет ток эмиттер коллектор. Если напряжение на базе увеличить, увеличится и ток коллектор эмиттер. Причем, при малом изменении управляющего напряжения наблюдается значительный рост тока через коллектор-эмиттер. Именно на этом эффекте и основана работа транзисторов в усилителях.

Транзистор открыт

Вот вкратце и вся суть работы транзисторов. Нужно рассчитать усилитель мощности на биполярных транзисторах за одну ночь, или выполнить лабораторную работу по исследованию работы транзистора? Это не проблема даже для новичка, если воспользоваться помощью специалистов нашего студенческого сервиса.

Не стесняйтесь обращаться за профессиональной помощью в таких важных вопросах, как учеба! А теперь, когда у вас уже есть представление о транзисторах, предлагаем расслабиться и посмотреть клип группы Korn “Twisted transistor”! Например, вы решили купить отчет по практике, обращайтесь в Заочник.

Как работают транзисторы MOSFET | hardware

Мощные транзисторы MOSFET хорошо известны своей исключительной скоростью переключения при весьма малой мощности управления, которую нужно прикладывать к затвору. Основная причина в том, что затвор изолирован, поэтому требуется мощность только на перезаряд емкости затвор-исток, и в статическом режиме цепь затвора практически не потребляет тока. В этом отношении мощные MOSFET по своим характеристикам приближаются к “идеальному переключателю”. Основные недостатки, которые не дают MOSFET стать “идеальным”, это сопротивление открытого канала RDS(on), и значительная величина положительного температурного коэффициента (чем выше температура, тем выше сопротивление открытого канала). В этом апноуте обсуждаются эти и другие основные особенности высоковольтных N-канальных мощных MOSFET, и предоставляется полезная информация по выбору транзисторов и их применению (перевод статьи [1]).

Для того, чтобы было проще понять работу полевого N-канального транзистора MOSFET, его стоит сравнить с широко распространенным биполярным кремниевым транзистором структуры NPN. Электроды у биполярного транзистора называются база, коллектор, эмиттер, а у полевого транзистора затвор, сток, исток.

База выполняет те же функции, что и затвор, коллектор соответствует стоку, а эмиттер соответствует истоку.

Давайте рассмотрим простейшую схему включения транзистора NPN:

Когда входной ключ разомкнут, то через эмиттерный переход транзистора T1 ток не течет, и канал коллектор-эмиттер имеет высокое сопротивление. Говорят, что транзистор закрыт, через его канал коллектор-эмиттер ток практически не течет. Когда замыкается входной ключ, то от батарейки B1 через резистор R1 и эмиттерный переход транзистора течет открывающий ток. Когда транзистор открыт, то его сопротивление канала коллектор-эмиттер уменьшается, и почти все напряжение батареи B2 оказывается приложенным к нагрузке R3. Т. е. когда во входной цепи течет ток (через R1), то в выходной цепи тоже течет ток (через R3), но в выходной цепи ток и напряжение (т. е. действующая мощность) в несколько раз больше. Здесь как раз и проявляются усиливающие свойства транзистора – маленькая мощность на входе позволяет управлять большой мощностью на выходе.

А так будет в этой схеме работать транзистор MOSFET:

На первый взгляд все то же самое – когда на входе есть управляющая мощность, она также появляется и на выходе (обычно усиленная во много раз). В этом смысле биполярный транзистор и MOSFET-транзистор очень похожи. Но есть два самых важных различия:

• Биполярный транзистор управляется током, а полевой транзистор напряжением.

Примечание: отсюда, кстати и пошло название полевого транзистора: его канал управляется не током, а электрическим полем затвор-исток.

Это означает, что входное сопротивление биполярного транзистора мало, а входное сопротивление MOSFET-транзистора очень велико. Обратите внимание на входной ток биполярного транзистора – 0.3 мА, этот ток в основном определяется сопротивлением резистора R1. Причина проста: на входе у биполярного транзистора имеется эмиттерный переход, который по сути обыкновенный диод, смещенный в прямом направлении. Если ток через этот диод есть, то транзистор открывается, если нет, то закрывается. Открытый диод имеет малое сопротивление, и максимальное падение напряжения на нем составляет около 0.7V. Поэтому практически все напряжение B1 (если быть точным, то 3.7 – 0.7 = 3V) оказывается приложенным к резистору R1. Этот резистор играет роль ограничителя входного тока биполярного транзистора.

У полевого транзистора MOSFET в этом отношении все по-другому. Входной ток определяется главным образом сопротивлением резистора R2, поэтому входной ток очень мал. Практически все входное напряжение оказывается приложенным к R2 и к переходу затвор – исток полевого транзистора. Причина проста: затвор и исток изолированы друг от друга слоем оксида кремния, по сути это конденсатор, поэтому ток через затвор практически не течет.

По этой причине на низких частотах, когда входная емкость не шунтирует источник сигнала, полевой транзистор имеет гораздо большее усиление по мощности в сравнении с биполярным транзистором. И действительно, в нашем примере входная мощность у биполярного транзистора составляет 0.3 мА * 3.7V = 1.11 мВт, а у полевого транзистора входная мощность составит всего лишь 0.00366 мА * 3.7V = 0.0135 мВт, т. е. в 82 раза меньше! Это соотношение могло бы быть еще больше не в пользу биполярного транзистора, если увеличить сопротивление резистора R2.

• Падение напряжения на выходном канале у полевого транзистора намного меньше, чем у биполярного.

Для данного примера падение напряжения коллектор-эмиттер биполярного транзистора составит примерно 0.3V, а у полевого 0.1V и даже меньше. Обычно выходное сопротивление у полевого транзистора намного меньше, чем у биполярного.

В исходном состоянии, когда на затворе относительно истока нулевое положительное напряжение, сопротивление канала определяется количеством неосновных носителей в полупроводнике, и очень велико. Когда к затвору прикладывается положительное напряжение относительно истока, то появляется проводящий ток канал сток-исток. Поэтому MOSFET иногда называют полевым транзистором с индуцированным каналом.

[Структура мощного транзистора MOSFET]

На рис. 1 показан срез структуры N-канального транзистора MOSFET компании Advanced Power Technology (APT). (Здесь рассматриваются MOSFET только N-структуры, как самые популярные.) Положительное напряжение, приложенное от вывода истока (source) к выводу затвора (gate), заставляет электроны притянуться ближе к выводу затвора в области подложки. Если напряжение исток-затвор равно или больше определенного порогового напряжения, достаточного для накапливания нужного количества электронов для достижения инверсии слоя n-типа, то сформируется проводящий канал через подложку (говорят, что канал MOSFET расширен). Электроны могут перетекать в любом направлении через канал между стоком и истоком. Положительный (или прямой) ток стока втекает в сток, в то время как электроны перемещаются от истока к стоку. Прямой ток стока будет заблокирован, как только канал будет выключен, и предоставленное напряжение сток-исток будет прикладываться в обратном направлении к p-n переходу подложка-сток. В N-канальных MOSFET только электроны формируют проводимость, здесь нет никаких не основных носителей заряда. Скорость переключения канала ограничена только длительностью перезаряда паразитных емкостей между электродами MOSFET. Поэтому переключение может быть очень быстрым, приводя к низким потерям при переключении. Этот фактор делает мощные MOSFET такими эффективными для работы на высокой частоте переключения.

Рис. 1. Срез рабочей структуры транзистора MOSFET.

RDS(on). Основные составляющие, которые входят в сопротивление открытого канала RDS(on), включают сам канал, JFET (аккумулирующий слой), область дрейфа Rdrift, паразитные сопротивления (металлизация, соединительные провода, выводы корпуса). При напряжениях приблизительно выше 150V в сопротивлении открытого канала доминирует область дрейфа. Эффект RDS(on) относительно невелик на высоковольтных транзисторах MOSFET. Если посмотреть на рис. 2, удвоение тока канала увеличивает RDS(on) только на 6%.

Рис. 2. Зависимость RDS(on) от тока через канал.

Температура, с другой стороны, сильно влияет на RDS(on). Как можно увидеть на рис. 3, сопротивление приблизительно удваивается при возрастании температуры от 25°C до 125°C. Температурный коэффициент RDS(on) определяется наклоном кривой графика рис. 3, и он всегда положителен для большинства поставщиков транзисторов MOSFET. Большой положительный температурный коэффициент RDS(on) определяется потерями на соединении I2R, которые увеличиваются с ростом температуры.

Рис. 3. Зависимость RDS(on) от температуры.

Положительный температурный коэффициент RDS(on) очень полезен, когда нужно параллельно включать транзисторы MOSFET, поскольку это обеспечивает их температурную стабильность и равномерное распределение рассеиваемой мощности между транзисторами. Этим MOSFET выгодно отличаются от традиционных биполярных транзисторов. Но это не гарантирует, что параллельно соединенные транзисторы будут равномерно распределять между собой общий ток. Это широко распространенное заблуждение [2]. То, что действительно делает MOSFET простыми для параллельного включения – это их относительно малый разброс по параметрам между отдельными экземплярами в пределах серии, в частности по параметру RDS(on), в комбинации с более безопасными свойствами канала в контексте перегрузки по току, когда благодаря положительному температурному коэффициенту RDS(on) сопротивление канала растет при повышении температуры.

Для любого заданного размера кристалла RDS(on) также увеличивается с увеличением допустимого напряжения V(BR)DSS, как это показано на рис. 4.

Рис. 4. Зависимость нормализированного RDS(on) от V(BR)DSS.

Кривая нормализированного RDS(on) в зависимости от V(BR)DSS для Power MOS V и Power MOS 7 MOSFET показывает, что RDS(on) растет пропорционально квадрату V(BR)DSS. Эта нелинейная зависимость между RDS(on) и V(BR)DSS является побудительным стимулом для исследования технологий с целью уменьшить потери проводимости мощных транзисторов [3].

[Внутренние и паразитные элементы]

JFET. В структуре MOSFET Вы можете представить себе встроенный JFET, как это показано на рис. 1. JFET оказывает значительное влияние на RDS(on), и является частью нормального функционирования MOSFET.

Внутренний диод на подложке (Intrinsic body diode). Переход p-n между подложкой и стоком формирует внутренний диод, так называемый body diode (см. рис. 1), или паразитный диод. Обратный ток стока не может быть блокирован, потому что подложка замкнута на исток, предоставляя мощный путь для тока через body diode. Расширение канала транзистора (при положительном напряжении на затворе относительно истока) уменьшает потери на прохождение обратного тока стока, потому что электроны проходят через канал в дополнение к электронам и неосновным носителям, проходящим через  body diode.

Наличие внутреннего диода на подложке удобно в схемах, для которых требуется путь для обратного тока стока (часто называемого как ток свободного хода), таких как схемах мостов. Для таких схем предлагаются транзисторы FREDFET, имеющие улучшенные восстановительные характеристики (FREDFET это просто торговое имя компании Advanced Power Technology, используемое для выделения серий MOSFET с дополнительными шагами в производстве, направленными на ускорение восстановления intrinsic body diode). В FREDFET нет отдельного диода; это тот же MOSFET intrinsic body diode. Для управления временем жизни неосновных носителей во внутреннем диоде применяется либо облучение электронами (наиболее часто используемый вариант) или легирование платиной, что значительно уменьшает заряд обратно смещенного перехода и время восстановления.

Побочный эффект от обработки FREDFET – повышенный ток утечки, особенно на высоких температурах. Однако, если учесть, что MOSFET имеет очень малый начальный ток утечки, то добавленный через FREDFET ток утечки остается допустимым до температур перехода ниже 150°C. В зависимости от дозы облучения FREDFET может иметь RDS(on) больше, чем у соответствующего MOSFET. Прямое напряжение для паразитного диода для FREDFET также немного больше. Заряд затвора и скорость переключения у MOSFET и FREDFET идентичны. Поэтому термин MOSFET здесь будет использоваться всегда для обоих типов MOSFET и FREDFET, если специально не оговорено что-то другое.

Скорость восстановления для паразитного диода у MOSFET или даже у FREDFET намного хуже в сравнении со скоростью быстрого дискретного диода. В приложениях, где жесткие рабочие условия с температурой порядка 125°C, потери на включение из-за восстановления из обратного смещения примерно в 5 раз выше, чем у быстрых дискретных диодов. НА это есть 2 причины:

1. Рабочая область паразитного диода совпадает с рабочей областью MOSFET или FREDFET, и рабочая область у дискретного диода для той же функции намного меньше, поэтому у дискретного диода намного меньше заряд восстановления.

2. Паразитный диод MOSFET или даже FREDFET не оптимизирован под обратное восстановление, как это сделано для дискретного диода.

Как и любой стандартный кремниевый диод, у паразитного диода заряд восстановления и время зависит от температуры, di/dt (скорости изменения тока), и величины тока. Прямое напряжение паразитного диода, VSD, уменьшается с ростом температуры по коэффициенту примерно 2.5 mV/°C.

Паразитный биполярный транзистор. Разделенная на слои структура MOSFET также формирует паразитный биполярный транзистор (BJT) структуры NPN, и его включение на является частью нормального функционирования. Если BJT откроется и войдет в насыщение, то это может вызвать самоблокировку, при которой MOSFET не может быть выключен кроме как через внешний разрыв цепи тока стока. Высокая мощность рассеивания (например, при возникновении сквозного тока в плече моста) при самоблокировке может вывести MOSFET из строя.

База паразитного BJT замкнута на исток, чтобы предотвратить самоблокировку, и потому что напряжение пробоя (breakdown voltage) было бы значительно уменьшено (для того же самого значения RDS(on)), если бы база была оставлена плавающей. Существует теоретическая возможность самоблокировки при очень большой скорости dv/dt в момент выключения. Однако для современных стандартных мощных транзисторов очень трудно создать схему, где будет достигнута такое высокое dv/dt.

Есть риск включения паразитного BJT, если внутренний диод проводит, и затем выключается с чрезмерно высоким изменением dv/dt. Мощная коммутация dv/dt вызывает высокую плотность неосновных носителей заряда (положительные носители, или дырки) в подложке, что может создать напряжение на подложке, достаточное для включения паразитного BJT. По этой причине в даташите указано ограничение пиковой коммутации (восстановление встроенного диода) dv/dt. Пиковая коммутация dv/dt для FREDFET выше в сравнении с MOSFET, потому что у FREDFET снижено время жизни неосновных носителей заряда.

[На что влияет температура]

Скорость переключения. Температура практически не влияет на скорость переключения и потери, потому что (паразитные) емкости мало зависят от температуры. Однако ток обратного восстановления в диоде увеличивается с температурой, так что температурные эффекты внешнего диода (это может быть дискретный диод, или внутренний диод в MOSFET или FREDFET) влияют на потери включения мощных схем.

Пороговое напряжение, или напряжение отсечки (Threshold voltage). Напряжение отсечки затвора, обозначаемое как VGS(th), является важным стандартным параметром. Оно говорит, насколько много миллиампер через сток будет течь при пороговом напряжении на затворе, когда транзистор в основном выключен, но находится на пороге включения. У напряжения отсечки есть отрицательный температурный коэффициент; это означает, что напряжение отсечки уменьшается с ростом температуры. Температурный коэффициент влияет на время задержки включения и выключения, и следовательно влияет на выбор “мертвого времени” в мостовых схемах.

Переходная характеристика (Transfer characteristic). На рис. 5 показана переходная характеристика MOSFET-транзистора APT50M75B2LL.

Рис. 5. Пример переходной характеристики MOSFET.

Переходная характеристика зависит как от температуры, так и от тока стока. На рис. 5 при токе ниже 100 A напряжение затвор-исток имеет отрицательный температурный коэффициент (при заданном токе стока уменьшается напряжение затвор-исток при повышении температуры). При токе выше 100 A температурный коэффициент становится положительным. Температурный коэффициент напряжения затвор-исток и ток стока в том месте, где коэффициент меняет знак, важен для проектирования работы схем в линейном режиме [4].

Напряжение пробоя (Breakdown voltage). Напряжение пробоя имеет положительный температурный коэффициент, этот будет обсуждаться в секции Walkthrough.

Устойчивость к перегрузке по току (Short circuit capability). Возможность противостояния коротким замыканиям не всегда встречается в даташите. Причина понятна – MOSFET стандартной мощности не подходят для устойчивой работы в режиме перегрузки по току в сравнению с IGBT или другими транзисторами, работающими с высокой плотностью тока. Само собой разумеется, что MOSFET и FREDFET (в некотором смысле) устойчивы к перегрузке по току.

[Обзор параметров даташита. Максимальные предельные значения]

Назначение даташитов, предоставляемых APT, состоит в предоставлении соответствующей информации, которая полезна и удобна для выбора подходящего устройства в конкретном приложении. Предоставляются графики, чтобы можно было экстраполировать от одного набора рабочих условий к другому. Следует отметить, что графики предоставляют типичную производительность, но не минимумы или максимумы. Производительность также зависит кое в чем от схемы; различные тестовые схемы приведут к отличающимся результатам.

VDSS, напряжение сток-исток. Это оценка максимального напряжения сток-исток не вызывая лавинного пробоя (avalanche breakdown) с затвором, замкнутым на исток при температуре 25°C. В зависимости от температуры напряжение лавинного пробоя могло бы быть фактически меньше, чем параметр VDSS. См. описание V(BR)DSS в разделе “Статические электрические характеристики”.

VGS, напряжение затвор-исток. Это предельное напряжение между выводами затвора и истока. Назначение этого параметра – предотвратить повреждение изолирующего оксидного слоя затвора (например, от статического электричества). Фактическая устойчивость оксидной пленки затвора намного выше, чем заявленный параметр VGS, но он варьируется в зависимости от производственных процессов, так что если укладываться в предел VGS, то это гарантирует надежную работу приложения.

ID, непрерывный ток стока. ID определяет максимальный уровень продолжающегося постоянного тока, когда транзистор выходит из строя при максимальной температуре перехода TJ(max), для случая 25°C, и иногда для более высокой температуры. Он основан на термосопротивлении между корпусом и переходом RӨJC, и для случая температуры TC может быть вычислен по формуле:

Это выражение просто говорит о том, какая максимальная мощность может рассеиваться

при максимальной генерируемой теплоте из-за потерь в соединении I2D X RDS(on)@TJ(max), где RDS(on)@TJ (max) сопротивление открытого канала при максимальной температуре перехода. Отсюда можно вывести ID:

Обратите внимание, что в ID не входят никакие потери на переключение, и случай с температурой 25°C на практике встречается редко. По этой причине в приложениях, где MOSFET часто переключается, фактический коммутируемый ток обычно меньше половины ID @ TC = 25°C; обычно между 1/4 до 1/3.

Зависимость ID от TC. Этот график просто отражает формулу 2 для диапазона температур. Здесь также не учтены потери на переключение. На рис. 6 приведен пример такого графика. Обратите внимание, что в некоторых случаях выводы корпуса транзистора ограничивают максимально допустимый продолжительный ток (переключаемый ток может быть больше): 100 A для корпусов TO-247 и TO-264, 75 A для TO-220 и 220 A для SOT-227.

Рис. 6. Максимальный ток стока в зависимости от температуры.

IDM, импульсный ток стока. Этот параметр показывает, какой импульс тока может выдержать устройство. Этот ток может значительно превышать максимально допустимый постоянный ток. Назначение этого параметра IDM состоит в том, чтобы удержать рабочий омический регион в пределе выходных характеристик. Посмотрите на рис. 7:

Рис. 7. Выходная характеристика MOSFET.

На этом графике есть максимальный ток стока для соответствующего напряжения затвор-исток, когда транзистор MOSFET открыт. Если рабочая точка при данном напряжении затвор-исток переходит выше омического региона “колена” рис. 7, то любое дальнейшее увеличение тока через сток приведет к значительному увеличению напряжения сток-исток (транзистор переходит из режима насыщения в линейный режим) и последующей потере проводимости. Если мощность рассеивания станет слишком велика, и это будет продолжаться довольно долго, то устройство может выйти из строя. Параметр IDM нужен для того, чтобы установить рабочую точку ниже “колена” для типичных применений транзистора в ключевом режиме.

Нужно ограничить плотность тока, чтобы предотвратить опасный нагрев, что иначе может привести к необратимому перегоранию MOSFET.

Чтобы избежать проблем с превышением тока через соединительные провода иногда применяют плавкие предохранители. В случае перегрузки по току выгорят именно они вместо транзистора.

Относительно температурных ограничений на IDM, рост температуры зависит от длительности импульса тока, интервала времени между импульсами, интенсивности рассеивания тепла, сопротивления открытого канала RDS(on), а также и от формы и амплитуды импульса тока. Если просто удержаться в пределах IDM, то это еще не означает, что температура перехода не будет превышена. См. обсуждение переходного теплового сопротивления в разделе “Температурные и механические характеристики”, чтобы узнать способ оценки температуры перехода во время импульса тока.

PD, общая мощность рассеивания. Этот параметр определяет максимальную мощность, которую может рассеивать устройство, и он основан на максимально допустимой температуре перехода и термосопротивлении RӨJC для случая температуры 25°C.

Линейный коэффициент снижения мощности это просто инверсия RӨJC.

TJ, TSTG: рабочий и складской диапазон температур перехода. Этот параметр ограничивает допустимую температуру кристалла устройства во время работы и во время хранения. Установленные пределы гарантируют, что будут соблюдены гарантийные эксплуатационные сроки устройства. Работа в пределах этого диапазона может значительно увеличить срок службы.

EAS, лавинная энергия одиночного импульса. Если импульс напряжения (возникающий обычно из-за утечки и случайной индуктивности) не превышает напряжение пробоя, то не будет лавинного пробоя устройства, так что нет необходимости рассеивать энергию пробоя. Параметр максимальной лавинной энергии оценивает устройство в плане рассеивания мощности режима лавинного пробоя при переходных процессах с повышенным напряжением.

Все устройства, которые оценены по лавинной энергии, имеют параметр EAS. Лавинная энергия связана с параметром разблокированного индуктивного переключения (unclamped inductive switching, UIS). EAS показывает, сколько лавинной энергии устройство может поглотить. Условия для схемы тестирования Вы можете найти в документации по ссылкам, и EAS вычисляется по формуле:

Здесь L величина индуктивности, из которой поступает импульс тока iD, случайно поступающий в на закрытый переход транзистора через сток при тесте. Индуцируемое напряжение превышает напряжение пробоя MOSFET, что вызывает лавинный пробой. Лавинный пробой позволяет импульсу тока от индуктивности течь через MOSFET, даже если он закрыт. Энергия, запасенная в индуктивности, аналогична энергии, сохраненной в утечке и/или случайной индуктивности, и она должна быть рассеяна в MOSFET.

Когда транзисторы MOSFET соединены параллельно, это совершенно не означает, что у них одинаковое напряжение пробоя. Обычно пробьется только один транзистор, и только на него поступит вся энергия тока лавинного пробоя.

EAR, повторная лавинная энергия. Этот параметр стал “промышленным стандартом”, но он не имеет смысла без информации о частоте, других потерях и эффективности охлаждения. Рассеивание тепла (охлаждение) часто ограничивает значение повторной рассеиваемой энергии. Также трудно предсказать, сколько энергии находится в лавинном событии. То, о чем говорит EAR в действительности, означает, что устройство может выдерживать повторяющиеся лавинные пробои без какого-либо ограничения по частоте, если устройство не перегрето, что в принципе верно для любого устройства, которое может испытать лавинный пробой. Во время анализа проекта хорошей практикой является измерение температуры устройства или его радиатора во время работы – чтобы увидеть, что MOSFET не перегрет, особенно если возможны условия лавинного пробоя.

IAR, ток лавинного пробоя. Для некоторых устройств, которые могут выйти из строя во время лавинного пробоя, этот параметр дает лимит на максимальный ток пробоя. Так что это как бы “точный отпечаток” спецификаций лавинной энергии, показывающий реальные возможности устройства.

[Статические электрические характеристики]

V(BR)DSS, Drain-source breakdown voltage, напряжение пробоя сток-исток. Параметр V(BR)DSS (иногда его называют BVDSS) определяет максимальное напряжение сток-исток, при котором через канал сток-исток будет течь ток не больше допустимого при заданной температуре и нулевом напряжении между затвором и истоком. Фактически этот параметр соответствует напряжению лавинного пробоя канала сток-исток закрытого транзистора. 

Как показано на рис. 8, у параметра V(BR)DSS есть положительный температурный коэффициент. Таким образом, MOSFET может выдержать больше напряжение, если он нагрет, по сравнению с холодным состоянием. Фактически в охлажденном состоянии V(BR)DSS будет меньше, чем предельно допустимое напряжение сток-исток VDSS, указанное для температуры 25°C. В примере, показанном на рис. 8 при -50°C, напряжение V(BR)DSS будет составлять 90% от максимально допустимого VDSS, указанного для температуры 25°C. 

Рис. 8. Нормализованная зависимость напряжения пробоя от температуры. 

VGS(th), Gate threshold voltage, напряжение отсечки затвора. Это пороговое напряжение затвор-исток, при превышении которого транзистор начнет открываться. Т. е. при напряжении на затворе выше VGS(th) транзистор MOSFET начинает проводить ток через канал сток-исток. Для параметра VGS(th) также указываются условия проверки (ток стока, напряжение сток-исток и температура кристалла). Все транзисторы MOSFET допускают некоторый разброс порогового напряжения отсечки затвора от устройства к устройству, что вполне нормально. Таким образом, для VGS(th) указывается диапазон (минимум и максимум), в который должны попасть все устройства указанного типа. Как уже обсуждалось ранее в разделе “На что влияет температура”, VGS(th) имеет отрицательный температурный коэффициент. Это значит, что с увеличением нагрева MOSFET откроется при более низком напряжении затвор-исток. 

RDS(on), ON resistance, сопротивление в открытом состоянии. Этот параметр определяет сопротивление открытого канала сток-исток при указанном токе (обычно половина от тока ID), напряжении затвор-исток (обычно 10V) и температуре 25°C, если не указано что-либо другое. 

IDSS, Zero gate voltage drain current, ток утечки канала. Это ток, который может течь через закрытый канал сток-исток, когда напряжение на затвор-исток равно нулю. Поскольку ток утечки увеличивается с температурой, то IDSS указывается для комнатной температуры и для нагретого состояния. Потери мощности из-за тока утечки IDSS через канал сток-исток обычно незначительны. 

IGSS, Gate-source leakage current, ток утечки затвора. Это ток, который может через затвор при указанном напряжении затвор-исток. 

[Динамические характеристики

Рис. 9 показывает месторасположения внутренних емкостей транзистора MOSFET. Величина этих емкостей определяется структурой MOSFET, используемыми материалами и приложенными напряжениями. Эти емкости не зависят от температуры, так что температура не влияет на скорость переключения MOSFET (за исключением незначительного эффекта, связанного с пороговым напряжением, которое зависит от температуры). 

Рис. 9. Паразитные емкости транзистора MOSFET в структуре кристалла. 

Емкости Cgs и Cgd меняются в зависимости от приложенного к ним напряжений, потому что они затрагивают обедненные слои в устройстве [8]. Однако на Cgs намного меньше меняется напряжение в сравнении с Cgd, так что емкость Cgs изменяется меньше. Изменение Cgd при изменении напряжения сток-затвор может быть больше, потому что напряжение может меняться в 100 раз или больше. 

На рис. 10 показаны внутренние емкости MOSFET с точки зрения схемотехники. Емкости затвор-сток и затвор-исток могут повлиять на схему управления, и вызвать нежелательные эффекты при быстрых переключениях в мостовых схемах. 

Рис. 10. Паразитные емкости транзистора MOSFET в рабочей схеме. 

Если кратко, то чем меньше Cgd, тем будет меньше влияние на схему управления при перепаде напряжения при включении транзистора. Также емкости Cgs и Cgd формируют емкостный делитель напряжения, и при большом соотношении Cgs к Cgd желательно защитить схему управления от паразитных помех от перепадов напряжения, возникающих при переключении. Это соотношение, умноженное на пороговое напряжение, определяет качество защиты схемы управления от переключений в выходной цепи, и силовые транзисторы MOSFET компании APT лидируют в индустрии по этому показателю. 

Ciss, Input capacitance, входная емкость. Это емкости, измеренная между выводами затвора истока, когда по переменному напряжению сток замкнут на исток. Ciss состоит из параллельно соединенных емкостей Cgd (емкость затвор-сток) и Cgs (емкость затвор-исток): 

Входная емкость должна быть заряжена до порогового напряжения перед тем, как транзистор начнет открываться, и разряжена до напряжения общего провода перед тем, как транзистор выключится. Таким образом, сопротивление управляющей схемы и емкость Ciss образуют интегрирующую цепь, которая напрямую влияет на задержки включения и выключения. 

Coss — Output capacitance, выходная емкость. Это емкость, измеренная между стоком и истоком, когда затвор замкнут по переменному току на сток. Coss состоит из параллельно соединенных емкостей Cds (емкость сток-исток) и Cgd (емкость затвор-сток):

Для приложений с мягким переключением параметр Coss важен, потому что влияет на резонанс схемы. 

Crss, Reverse transfer capacitance, обратная переходная емкость. Это емкость, измеренная между стоком и затвором, когда исток соединен с землей. Обратная переходная емкость эквивалентна емкости затвор-сток. 

Обратная переходная емкость часто упоминается как емкость Миллера. Это один из главных параметров, влияющих на время нарастания и спада напряжения во время переключения. Он также влияет на эффекты времени задержки выключения. 

На рис. 11 показан пример зависимости типичных значений емкости от напряжения сток-исток. 

Рис. 11. Зависимость емкости от напряжения. 

Емкости уменьшаются при увеличении напряжения сток-исток, особенно это влияет на выходную и обратную переходную емкости.

Qgs, Qgd и Qg, Gate charge, заряд затвора. Значения заряда отражают заряд, сохраненный на внутренних емкостях, описанных ранее. Заряд затвора используется для разработки схемы управления, поскольку нужно учитывать изменения емкости при изменении напряжения на переходах переключения [9, 10].

На рис. 12 показано, что Qgs заряжается от начала координат до первого перегиба и далее заряжается до второго перегиба кривой (этот заряд известен как заряд Миллера), и Qg является зарядом от начала координат до точки, где VGS равно указанному управляющему напряжению затвора. 

Рис. 12. VGS как функция заряда затвора. 

Заряд затвора незначительно изменяется с током стока и напряжением сток-исток, но не зависит от температуры. Для этого параметра указываются условия тестирования. График заряда затвора, обычно приведенный в даташите, показывает кривые заряда затвора для фиксированного тока стока и различных напряжений сток-исток. Напряжение горизонтального участка VGS(pl), “плато”, показанное на рис. 12, незначительно увеличивается с ростом тока (и соответственно уменьшается при снижении тока). Напряжение  также имеет прямо пропорциональную зависимость от порогового напряжения, так что изменения порогового напряжения коррелирует и изменением напряжения плато. 

[Резистивные параметры времени переключения (данные resistive switching)]

Эти параметры имеются в даташите по чисто историческим причинам. 

td(on), Turn-on delay time, время задержки включения. Это время от момента, когда напряжение затвор-исток на 10% превысит напряжение отсечки затвора до момента времени, когда ток стока вырастет больше 10% от указанного выходного тока. Это показывает задержку начала поступления тока в нагрузку.

td(off), Turn-off delay Time, время задержки выключения. Это время от момента, когда напряжение затвор-исток упадет ниже 90% напряжения отсечки затвора до момента, когда ток стока упадет ниже 90% от указанного выходного тока. Это показывает задержку отключения тока в нагрузке.

tr, Rise time, время нарастания. Это время, за которое ток стока вырастет от 10% до 90% (значение тока указывается).

tf, Fall time, время спада. Это время, за которое ток стока спадет от 90% до 10% (значение тока указывается). 

[Энергии переключения в индуктивностях

Из-за того, что данные resistive switching трудно использовать для предсказания потерь на переключение в реальных рабочих условиях мощных преобразователей, компания Advanced Power Technology включает во многие даташиты транзисторов MOSFET и FREDFET данные энергии переключения в индуктивностях. Это предоставляет разработчику ключевых блоков питания удобный способ сравнения быстродействия транзисторов MOSFET или FREDFET с другими транзисторами, даже если они выполнены по другой технологии наподобие IGBT. Поэтому можно использовать для разработки самый подходящий по качеству мощный транзистор. 

На рис. 13 показана схема тестирования переключения транзистора с учетом потерь в индуктивностях. Это импульсный тест, где применяется очень короткий по длительности цикл открытого состояния транзистора, так что энергия, запасенная в индуктивности, успеет рассеяться намного раньше поступления последующих импульсов, и саморазогрев можно не учитывать. Температура транзистора и фиксирующего диода во время теста регулируется принудительно от внешнего термостата. 

Рис. 13. Схема тестирования потерь на индуктивности.

В таблице динамических характеристик указываются следующие условия тестирования: VDD на рис. 13, ток теста, напряжение управления для затвора, сопротивление затвора и температура кристалла. Обратите внимание, то сопротивление затвора может включать сопротивление выхода микросхемы драйвера. Поскольку время переключения и энергии меняются с температурой (главным образом из-за диода в тестовой схеме), то данные предоставляются как для комнатной температуры, так и для разогретого состояния диода и тестируемого транзистора. Также предоставляется график зависимости между временем переключения и энергиями тока стока, и сопротивлением затвора. Определения времени задержки (включения) и времени нарастания и спада тока совпадают с аналогичными временами для данных resistive switching. 

Фактические формы сигнала при переключениях используются в даташите для определения различных измеренных параметров. Рис. 14 показывает форму сигнала включения и определения, связанные с ним. Энергия переключения может быть масштабирована напрямую для изменений между напряжением в приложении и энергией при тестовом напряжении, указанном в даташите. Так что, к примеру, если тесты в даташите были проведены при напряжении 330V, и в приложении применяется напряжение 400, то для масштабирования нужно просто умножить энергию переключения из даташита на коэффициент 400/330. 

Рис. 14. Формы сигналов включения и соответствующие определения. 

Времена переключения и энергии очень зависят от других компонентов и случайных (паразитных) индуктивностей в схеме. Диод сильно влияет на энергию включения. Паразитная индуктивность, включенная последовательно с истоком, является частью пути возвратного управляющего тока, и поэтому значительно влияет на времена переключения и энергии. Таким образом, время переключения и значения энергии, представленные в даташите, могут отличаться от того, что наблюдается в реальном приложении силового узла блока питания или ключа управления мотором. 

Eon, Turn-on switching energy with diode, энергия включения с диодом. Это зафиксированная индуктивная энергия включения, которая включает индуктивный коммутирующий реверсивный ток восстановления диода в тестируемом транзисторе, и она учитывает потери при включении. Обратите внимание, что транзисторы FREDFET в схемах мостов получают жесткие условия переключения, где паразитный диод сложно коммутируется, и энергия включения примерно в 5 раз выше, чем если бы использовался дискретный диод с быстрым восстановлением, наподобие того как показано в схеме рис. 13. 

Энергия включения является интегралом результата от тока стока и напряжения сток-исток на интервале от момента, когда ток стока вырастет больше 5% или 10% от тестового тока, то момента, когда напряжение спадет ниже 5% от тестового напряжения, как это показано на рис. 14. 

Eoff, Turn-off switching energy, энергия выключения. Это параметр, характеризующий фиксацию потерь на индуктивности при выключении. На рис. 13 показана схема тестирования, и рис. 15 показывает форму сигнала и определения. Eoff является интегралом результата от тока стока и напряжением сток-исток на интервале времени от момента, когда напряжение затвор-исток упадет ниже 90% до момента, когда ток стока станет нулевым. Это соответствует измерениям энергии выключения по JEDEC-стандарту 24-1. 

Рис. 15. Формы сигналов выключения и соответствующие определения. 

[Температурные и механические характеристики]

RƟJC, Junction to case thermal resistance, тепловое сопротивления между подложкой и корпусом. Этот параметр характеризует эффективность передачи тепла от кристалла к внешнему корпусу транзистора. Выделяющееся тепло является результатом потерь мощности в самом транзисторе. Обратите внимание, что тесты компании APT показывают температуры пластмассы, совпадающую с металлической частью корпуса дискретного компонента. 

Максимальное значение RƟJC включает допуск, учитывающий погрешности изменения для обычного процесса производства. Из-за улучшений производственного процесса в индустрии есть тенденция сокращения разницы между максимальным значением RƟJC и его реальным значением. 

ZƟJC, Junction to case transient thermal impedance, переходной термический импеданс между подложкой и корпусом. Этот параметр учитывает теплоемкость устройства, так что он может использоваться для оценки мгновенных температур из-за потерь мощности. 

В условиях проведения теста на термоимпеданс на тестируемый транзистор прикладываются импульсы мощности различной длительности, и при этом ждут спада температуры между каждым импульсом. Это дает измерение переходного термосопротивления для “одиночного импульса”. Из этого строится модель резистор-емкость (RC) по кривой изменения температуры. Рис. 16 показывает такую RC-модель переходного термосопротивления. Некоторые даташиты могут показывать конденсаторы и резисторы, включенные параллельно, но это будет ошибкой. Конденсаторы “заземлены”, как это показано на рис 16, и значения компонента остаются такими же. Нет никакого физического значения для промежуточных узлов в модели. Разное количество пар резистор-конденсатор используется просто для того, чтобы создать хорошую подгонку к фактическим измененным данным термосопротивления. 

Рис. 16. RC-модель переходного термосопротивления. 

Чтобы симулировать возрастание температуры с помощью RC-модели, Вы прикладываете источник тока с магнитудой, соответствующей рассеиваемой мощности в MOSFET. Таким образом, Вы можете использовать систему PSPICE или другой программный симулятор электронных схем, чтобы применить ввод произвольных потерь мощности. Из этого Вы можете оценить повышение температуры участка подложка-корпус как напряжение на ступеньках лестницы, установив ZEXT в ноль, как это показано на рис. 16. Вы можете расширить модель, чтобы включить теплоотвод, добавив дополнительные конденсаторы и/или резисторы. 

Переходное термосопротивление в виде семейства кривых, опубликованное в даташите, это просто симуляция прямоугольного импульса, основанная на RC-модели термосопротивления. Рис. 17 показывает пример. Вы можете использовать семейство кривых для оценки пикового нарастания температуры для прямоугольных импульсов мощности, которые являются обычными в источниках питания. Однако из за того, что минимальная длительность импульса 10 мкс, график имеет значение только для частот ниже 100 кГц. На более высоких частотах Вы будете просто использовать термосопротивление RƟJC.

Рис. 17. Семейство кривых термосопротивления.

[Пример анализа даташита]

Предположим, что в реальном приложении ключевого блока питания Вы хотите применить жесткое переключение тока 15A на частоте 200 кГц при напряжении 400V, при средней скважности 35%. Напряжение управления затвора 15V, и сопротивление цепи управления затвора составляет 15Ω для включения и 5Ω для выключения. Также предположим, что Вы хотите позволить максимальную температуру перехода 112°C, с удержанием температуры корпуса транзистора 75°C. С транзистором, рассчитанным на 500V, есть запас только в 100V между напряжением в приложении и VDSS. С учетом скачков напряжения на шине питания 400V узкий запас по напряжению все равно достаточен, потому что у транзистора MOSFET есть эффект лавинного пробоя, который дает “безопасную цепь”. Это конфигурация с продолжительной проводимостью, так что быстро восстанавливающийся диод FREDFET не нужен, MOSFET будет работать достаточно хорошо. Такой транзистор Вам следует выбрать? 

Поскольку это приложение с довольно высокой частотой переключения, то лучшим выбором будет серия Power MOS 7. Посмотрим на транзистор APT50M75B2LL. Его расчетный ток 57A, что больше чем в 3 раза переключаемого тока – хорошая стартовая точка, учитывая высокую частоту и жесткое переключение. Давайте оценим потери проводимости, потери переключения, и посмотрим, будет ли тепло рассеиваться достаточно быстро. Общая мощность, которую можно рассеять: 

При 112°C сопротивление RDS(on) примерно в 1.8 раз больше, чем при комнатной температуре (см. рис. 3). Так что потери на проводимость составят: 

Pconduction = (1.8*0.075Ω * 15A) * 15A = 30.4 Вт 

Для оценки потерь на включение мы можем посмотреть на график зависимости потерь переключения от тока при температуре 125°C, показанный на рис. 18. Даже при том, что наше приложение требует максимальную температуру перехода 112°C, этот график будет достаточно точен, потому что энергия переключения MOSFET не чувствительна к температуре, за исключением изменений температуры, связанных с диодом в схеме. Поэтому не будет больших изменений при переходе от 112°C к 125°C. В любом случае, наша оценка будет консервативной. 

Рис. 18. Индуктивные потери переключения. 

По рис. 18 на токе 15A значение Eon будет около 300 μJ, и Eoff около 100 μJ. Значения были измерены при 330V, а в нашем приложении на шине питания 400V. Так что мы можем просто сделать масштабирование энергий переключения по напряжению:

Данные на рис. 18 были также измерены при сопротивлении затвора 5Ω, и мы будем использовать 15Ω при включении. Поэтому мы можем использовать график зависимости энергии переключения от данных сопротивления затвора, показанный на рис. 19, чтобы снова сделать масштабирование энергии. 

Рис. 19. Зависимость энергии переключения от сопротивления затвора. 

Даже при том, что тестовый ток на рис. 19 больше, чем в нашем приложении, разумно учесть соотношение в изменении энергии переключения между рис. 19 и нашим случаем. От 5Ω до 15Ω значение Eon поменяется с коэффициентом около 1.2 (1500μJ / 1250μJ, см. рис. 19). Применим это с данным, скорректированным по напряжению, которые мы видим на рис. 18, и получим Eon = 1.2*364μJ = 437μJ. 

Потери на переключение составят: 

Pswitch = fswitch – ( Eon + Eoff) = 200kHz – (437μJ +121μJ) = 112 Вт

Pconduction + Pswitch = 142.4 Вт, что дает возможность сохранить температуру перехода ниже 112°C в случае корпуса, охлажденного до 75°C. Так что APT50M70B2LL будет удовлетворять требованиям этого примера применения. Такая же техника может использоваться для менее мощных транзисторов MOSFET. На практике потери часто больше всего бывают на переключении. Чтобы поместить транзистор на радиатор и поддерживать температуру корпуса 75°C вероятно потребуется керамическая прокладка (для электрической изоляции) между корпусом и теплоемким радиатором. Преимущество MOSFET состоит в том, что могут применяться демпферы и/или техники резонанса для уменьшения потерь на переключение, причем с транзисторами MOSFET не нужно беспокоиться о влиянии на переключение эффектов зависимости от напряжения или температуры.

[UPD160207. Figure-of-merit]

Для оценки транзисторов FET применяют так называемый показатель качества, Figure of merit (FOM) [11]. Он учитывает одновременно потери на включенном транзисторе и потери на переключение. Обычно FOM вычисляется как произведение сопротивления канала сток-исток открытого транзистора R(DS)ON на заряд затвора QG. QG это заряд, который надо поместить на затвор транзистора MOSFET, чтобы он полностью открылся. С точки зрения рационального дизайна трудно одновременно снизить оба параметра, так что они хороши для оценки качества разработки ключа на полевом транзисторе.

Конечно, сравнение имеет смысл делать только в неком стандартном наборе условий. Это означает, что не только напряжение между затвором и истоком VGS поставляет заряд, также и напряжение сток-исток VDS влияет на сопротивление R(DS). (Это означает, что не просто канал полностью открыт, а то, что сопротивление R(DS) изменяется вверх и вниз.) Усложненный анализ учитывает, что R(DS)ON немного меняется с током стока, так что при сравнении переключающихся транзисторов рабочий ток стока ID также должен быть определен.

Иногда Вы увидите незначительно отличающийся показатель качества FOM: FOMSW, который будет произведением от which R(DS)ON и Q. Он характеризует заряд переключения, который немного меньше QG.

[Ссылки]

1. Power MOSFET tutorial site:eetimes.com.
2. R. Severns, E. Oxner; “Parallel Operation of Power MOSFETs”, technical article TA 84-5, Siliconix Inc. 
3. J. Dodge; “Latest Technology PT IGBTs vs. Power MOSFETs”, application note, Advanced Power Technology.
4. R. Frey, D. Grafham – APT, T. Mackewicz – TDIDynaload; “New 500V Linear MOSFETs for a 120 kW Active Load”, application note APT0002, Advanced Power Technology.
5. Реле и транзисторы: как они работают в качестве электронных переключателей.
6. JFET site:wikipedia.org.
7. Bipolar junction transistor site:wikipedia.org.
8. N. Mohan, T. Undeland, W. Robbins; “Power Electronics ” Converters Applications, and Design”, text book published by Wiley.
9. K. Dierberger, “Gate Drive Design for Large Die MOSFETs”, application note APT9302, Advanced Power Technology.
10. R. McArthur, “Making Use of Gate Charge Information in MOSFET and IGBT Datasheets”, application note APT0103, Advanced Power Technology.
11. Оценка качества транзисторов MOSFET.

Введение в электронику. Транзисторы

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Транзисторы

Транзистор входит в целую группу деталей, которую называют полупроводниковые приборы. Кроме транзистора, в нее входят диоды, стабилитроны и другие детали. В каждой из них использован полупроводниковый материал (полупроводник). Что это такое? Все существующие вещества можно условно поделить на три большие группы. Одни из них – медь, железо, алюминий и прочие металлы – хорошо проводят электрический ток. Это проводники. Древесина, фарфор, пластмасса совсем не проводят тока. Они – непроводники, изоляторы (диэлектрики).
Полупроводники же занимают промежуточное положение между проводниками и диэлектриками. Такие материалы проводят ток только при определенных условиях.

Из полупроводниковых приборов транзистор чаще всего применяется в радиоэлектронике, особенно биполярный. Первые такие транзисторы были изготовлены на основе германия. В настоящее время их изготавливают в основном из кремния и арсенида галлия. У биполярного транзистора три вывода: база (б), эмитер (е) и коллектор (к). Назначение выводов называют цоколевкой или в народе – расПИНовкой (от английского PIN – вывод). Цоколевку транзисторов можно найти в специальной справочной литературе.

Транзистор – усилительный прибор. Условно его можно сравнить с таким известным Вам устройством, как рупор. Довольно произнести что-нибудь перед узким отверстием рупора, направив широкое отверстие в сторону приятеля, который стоит за несколько десятков метров, и голос, усиленный рупором, будет ему хорошо слышан. Если воспринять узкое отверстие как вход рупора-усилителя, а широкий – как выход, то можно сказать, что исходный сигнал в несколько раз более сильный от входных. Это и есть показатель усилительной способности рупора, его коэффициент усиления. Некоторые разновидности транзисторов и их обозначение на принципиальной схеме представлены на Рис. 1.

Если пропустить через участок база-эмитер слабый ток, он будет усилен транзистором в десятки и даже в сотни раз. Усиленный ток потечет через участок коллектор-эмитер2. В зависимости от наибольшего тока, что можно пропускать через коллектор, транзисторы разделяют на маломощные, средней и большой мощности. Кроме того, эти полупроводниковые приборы могут быть структуры р-п-р или n-p-n (на английском). Так различаются транзисторы с разным расположением пластов полупроводниковых материалов3 (если в диоде два пласта материалов, то здесь их три) . Тем не менее, не думайте, что транзисторы разной структуры имеют и разное усиление. Это совсем не обязательно. Усилительная способность транзистора определяется его так называемым статическим коэффициентом передачи тока. Для некоторых конструкций этот коэффициент важный, и его указывают в описании.
Статический коэффициент передачи тока транзистора указывает во сколько раз больший ток по участку коллектор-эмиттер способен пропустить транзистор по отношению к току база-эмиттер. Для некоторых схем этот параметр очень важен. В отечественной схемотехнике он обозначается как h31э, в зарубежной как hFE.
Приведу пример: допустим, hFE = 500, и через переход база-эмиттер проходит ток 0.1mA, тогда транзистор пропустит максимум через себя 50mA. Если в электрической цепи за транзистором стоит деталь, потребляющая 30mA, то у транзистора будет запас, и он передаст именно 30mA, но если стоит деталь, потребляющая больше 50mA (например, 80mA), то ей будет доступно всего 50mA.
В электронных конструкциях может встретится еще одна разновидность транзистора – полевой. У него чаще всего три вывода, но называют их по-другому: затвор (как база), исток (эмитер), сток (коллектор). Некоторые полевые транзисторы в металлическом корпусе имеют четыре вывода – затвор, исток, сток и корпус. Последний вывод, как Вы уже догадались, соединен с корпусом транзистора. Подбирать эти транзисторы по усилительной способности не нужно, а вот проверять исправность особенно не нового транзистора рекомендуется, т.к. “полевики” выходят из строя при самых непредвиденных обстоятельствах. В частности полевые транзисторы очень чувствительны к статическому электричеству, поэтому их рекомендуется проверять, предварительно организовав заземление. Для снятие статики достаточно коснуться рукой батареи отопления или любых заземленных предметов. При хранении полевых транзисторов, особенно маломощных, их выводы должны быть замкнуты между собой. Полевые транзисторы, благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания компьютеров, мониторов, телевизоров и другой радиоэлектронной аппаратуры.



Транзисторы бывают и однопереходные. У этой детали две базы и один эмиттер. В отличии от биполярных и полевых транзисторов однопереходные представляет собой прибор с отрицательным сопротивлением. Это означает, что в определённых условиях входное напряжение или сигнал могут уменьшаться даже при возрастании выходного тока через нагрузку. Когда однопереходном транзистор находится во включённом состоянии, выключить его можно только разомкнув цепь, либо сняв входное напряжение.

По диапазону рабочих частот транзисторы делятся на низкочастотные, среднечастотные и высокочастотные.

По мощности различают транзисторы малой, средней и большой мощности. Чем мощнее транзистор – тем больше его внешний вид. Такие транзисторы имеют отверстия для крепления на радиатор – кусочек алюминия, который рассеивает тепло полупроводника, выделяемое во время его работы.

Среди транзисторов присутствуют фотоэлементы. Фототранзистор отличается от классического варианта тем, что область базы доступна для светового облучения, за счёт чего появляется возможность управлять усилением электрического тока с помощью оптического излучения. Применяют два варианта включения фототранзисторов: диодное — с использованием только двух выводов (эмиттера и коллектора) и транзисторное — с использованием трех выводов, когда на вход подают не только световой, но и электрический сигналы.


Перейти к следующей статье: Тиристоры



Как ограничить ток базы в транзисторе, когда ток коллектора неизвестен?

В следующей схеме я пытаюсь заменить кнопку на транзисторе:

смоделировать эту схему – схема, созданная с использованием CircuitLab

На схеме SW1 – это кнопка, которая открывает и закрывает лоток привода CDROM, V1 – это источник питания 5 В, а CDROM – плата управления для привода.

Я хочу управлять работой лотка с помощью Arduino, подключенного к базе NPN-транзистора с коллектором, подключенным к V1, и эмиттером к P1. Транзистор, который я собираюсь использовать, – это TIP120 (я знаю, что это излишне для этой операции, но это то, что я лежу без дела).

Проблема, с которой я столкнулся, заключается в том, что я не знаю, как рассчитать значение резистора, ограничивающего ток, которое необходимо между выводом arduino и основанием транзистора, чтобы предотвратить отвод транзистором слишком большого тока с вывода, повреждающий вывод.

Согласно всей документации, которую я читаю (один пример http://www.zen22142.zen.co.uk/Design/bjtsw.htm ), необходимо знать ток, который будет протекать через транзистор, когда он включен.

Но в моем случае я знаю только напряжение на двух клеммах коммутатора. Я понятия не имею, что находится между P1 и P2 (то есть внутри платы управления CDROM), и не знаю, сколько тока потребляется, когда переключатель замкнут.

Как рассчитать безопасное значение резистора для базового резистора в подобных случаях?

Энди ака

Я в замешательстве, и, вероятно, виноват реалистично сидр, но если вы можете показать, что, по вашему мнению, может помочь, то все остроумие. Кстати, почти наверняка Arduino не сможет подать достаточный ток, чтобы повредить область базового излучателя TIP120.


проезжий

@ Andyaka Повредить его, булавка, т.е. Ардуино.


Джо Хасс

Использование NPN-транзистора в качестве переключателя на стороне высокого уровня (между источником питания и нагрузкой) является плохой идеей, когда напряжение питания составляет всего 5 В. Если транзистор действительно управляет двигателем напрямую, следует использовать транзистор PNP или PMOS. Если P1 является входом логического уровня для микроконтроллера, то Arduino должен иметь возможность управлять им напрямую. Попробуйте подключить резистор 1 кОм последовательно с переключателем … если он все еще работает, вам не нужен транзистор.

Что такое транзистор? Определение, символ, клеммы и условия эксплуатации

Определение: Транзистор – это полупроводниковый прибор, который передает слабый сигнал от цепи с низким сопротивлением к цепи с высоким сопротивлением. Слова trans означают свойство передачи , а istor означают свойство сопротивления , предлагаемое соединениям. Другими словами, это переключающее устройство, которое регулирует и усиливает электрический сигнал, например напряжение или ток.

Транзистор состоит из двух PN диодов, соединенных спина к спине. Он имеет три вывода: эмиттер, базу и коллектор. Основа – это средняя часть, состоящая из тонких слоев. Правая часть диода называется эмиттерным диодом, а левая часть – коллекторно-базовым диодом. Эти имена даны по общему выводу транзистора. Эмиттерный переход транзистора подключен к прямому смещению, а переход коллектор-база подключен к обратному смещению, что обеспечивает высокое сопротивление.

Обозначения транзисторов

Существует два типа транзисторов, а именно транзистор NPN и транзистор PNP. Транзистор, который имеет два блока из полупроводникового материала n-типа и один блок из полупроводникового материала P-типа, известен как транзистор NPN. Точно так же, если материал имеет один слой материала N-типа и два слоя материала P-типа, то он называется транзистором PNP. Символ NPN и PNP показан на рисунке ниже.

Стрелка в символе указывает направление протекания обычного тока в эмиттере с прямым смещением, приложенным к переходу эмиттер-база.Единственная разница между транзисторами NPN и PNP заключается в направлении тока.

Клеммы транзистора

Транзистор имеет три вывода: эмиттер, коллектор и базу. Клеммы диода подробно описаны ниже.

Эмиттер – Секция, которая снабжает большую часть основного носителя заряда, называется эмиттером. Эмиттер всегда подключен с прямым смещением относительно базы, так что он подает основной носитель заряда на базу.Переход эмиттер-база вводит большое количество основных носителей заряда в базу, потому что она сильно легирована и имеет умеренный размер.

Коллектор – Секция, которая собирает большую часть основного носителя заряда, подаваемого эмиттером, называется коллектором. Коллектор-база всегда имеет обратное смещение. Его основная функция заключается в удалении большинства зарядов из соединения с базой. Коллекторная часть транзистора умеренно легирована, но больше по размеру, так что она может собирать большую часть носителей заряда, подаваемых эмиттером.

База – Средняя часть транзистора известна как база. База образует две цепи: входную цепь с эмиттером и выходную цепь с коллектором. Цепь эмиттер-база смещена в прямом направлении и обеспечивает низкое сопротивление цепи. Коллектор-база имеет обратное смещение и обеспечивает более высокое сопротивление цепи. База транзистора слегка легирована и очень тонкая, из-за чего основной носитель заряда подается на базу.

Работа транзистора

Обычно для изготовления транзисторов используется кремний из-за их высокого напряжения, большего тока и меньшей температурной чувствительности. Часть эмиттер-база, смещенная в прямом направлении, составляет базовый ток, протекающий через базовую область. Величина базового тока очень мала. Ток базы заставляет электроны перемещаться в область коллектора или создавать дыру в области базы.

База транзистора очень тонкая и слегка легированная, из-за чего в ней меньше электронов по сравнению с эмиттером.Несколько электронов эмиттера объединяются с отверстием в базовой области, а оставшиеся электроны перемещаются к области коллектора и составляют ток коллектора. Таким образом, можно сказать, что большой ток коллектора достигается за счет изменения базовой области.

Условия эксплуатации транзистора

Когда эмиттерный переход находится в прямом смещении, а коллекторный переход находится в обратном смещении, то говорят, что он находится в активной области. Транзистор имеет два перехода, которые могут быть смещены по-разному.Различная рабочая проводимость транзистора показана в таблице ниже.

Состояние Эмиттерный переход (EB) Коллекторный переход (CB) Область действия
FR С прямым смещением С обратным смещением Активным
FF Прямое смещение Прямое смещение Насыщенность
RR Обратное смещение Обратное смещение Отсечка
RF с обратным смещением с прямым смещением с обратным смещением

FR – В этом случае переход эмиттер-база подключен с прямым смещением, а переход коллектор-база подключен с обратным смещением.Транзистор находится в активной области, и ток коллектора зависит от тока эмиттера. Транзистор, который работает в этой области, используется для усиления.

FF – В этом состоянии оба перехода находятся в прямом смещении. Транзистор находится в состоянии насыщения, и ток коллектора перестает зависеть от тока базы. Транзисторы действуют как замкнутый переключатель.

RR Оба тока имеют обратное смещение. Эмиттер не подает основной носитель заряда на базу, и ток носителей не собирается коллектором.Таким образом, транзисторы действуют как замкнутый переключатель.

RF – Переход эмиттер-база находится в обратном смещении, а переход коллектор-база остается в прямом смещении. Поскольку коллектор слабо легирован по сравнению с эмиттерным переходом, он не подает основной носитель заряда на базу. Таким образом достигается плохая работа транзистора.

Embedded Adventures – Учебники – Транзисторы

Основная идея транзистора зародилась еще в 1947 году, и это изобретение вызвало революцию в области полупроводников, которая проложила путь способ интеграции электроники.

Громоздкая упаковка, необходимая для электронных ламп стал на много порядков меньше с транзистором. Люди начали удивляйтесь небольшому размеру транзисторов и калькуляторов, которые начали появляться в конце 50-х гг. Компьютеры, которые в раннем 50-е теперь имеют карманный размер и обладают еще большей вычислительной мощностью.

Биполярный переходной транзистор – это в основном два соединенных сигнальных диода. вместе в одном куске полупроводникового материала так, чтобы два анода (или катода) имеют общую полупроводниковую область.Этот регион представляет собой тонкий средний слой транзистора, который представляет собой слаболегированный P-тип или N-тип полупроводниковый материал. Между тремя слоями есть два соединения, и Вот почему устройство называется биполярным транзистором. Есть три терминала на биполярный транзистор: база, которая является средним слоем; коллектор, который является внешний слой, который обычно смещен в обратном направлении относительно основания; и эмиттер, внешний слой, который обычно смещен вперед по отношению к основанию.

Биполярные транзисторы это устройства регулирования тока, которые контролируют количество протекающего тока через них пропорционально величине тока смещения, приложенного к их терминал среднего уровня (база).

Транзистор можно использовать как ток усилитель, регулятор напряжения, переключатель и многие другие функции.

Там представляют собой два основных типа конструкции биполярных транзисторов, PNP и NPN, которые в основном описывает физическое устройство P-типа и N-типа полупроводниковые материалы, из которых они изготовлены.Поскольку составы два типа противоположны, отсюда следует, что соображения смещения для типа NPN транзистора противоположны типу PNP.

Если подключены два диода подряд в цепи, не будет никаких особых характеристик, когда приложены напряжения смещения. Поскольку один диод смещен в прямом направлении, а другой с обратным смещением диод с обратным смещением практически не имеет ток, протекающий через него. Читатель может задаться вопросом, почему усиленные токи через диод с обратным смещением в транзисторе, в то время как другой диод с прямым смещением (диод база-эмиттер).

Есть в основном два причины, по которым это явление проявляется в одном, а не в другом. Во-первых, база область сделана очень тонкой, поэтому два внешних слоя могут проводить ток прямо насквозь, как будто среднего слоя не было. Большинство перевозчиков в область коллектора может прострелить насквозь, прежде чем у них появится возможность рекомбинировать с противоположным основным носителем в среднем слое.

Вторая причина – факт что область эмиттера очень сильно легирована, в то время как коллектор и база области слегка легированы.Это создает ситуацию, подобную управлению клапаном. вода через трубу с высоким давлением на одном конце (подача воды). А небольшое давление на клапан может контролировать большое количество воды, протекающей через труба. Таким же образом небольшое изменение базового тока может привести к значительному увеличению большее изменение тока коллектора. Если базовый ток падает до нуля или прямое смещенное напряжение снимается, ток коллектора перестанет поток.

Тип транзистора NPN рассматривается здесь, хотя то же самое относится и к типу PNP, за исключением противоположные напряжения и токи.

Материал P зажат между двумя слои материала N. Поскольку база-эмиттер становится смещенной вперед, как диода, очень большое количество основных носителей (электронов) от излучатель вводится в базу, при этом очень малый количество основных носителей (дырок) из базы вводится в эмиттер. Введенные в базу носители на самом деле являются неосновными носителями в база, из-за противоположного типа полупроводника.

Ток эмиттера на самом деле равняется сумме токов коллектора и базы как для NPN, так и для PNP транзисторы. Удивительно, что только небольшой процент (возможно, около 1%) базовый ток, даже если он смещен в прямом направлении вместе с эмиттером. Большинство нынешних вместо этого протекает через область коллектора, хотя переход коллектор-база имеет обратное смещение. Это явление усиления транзистора, где небольшое изменение тока база-эмиттер может привести к гораздо большему изменению ток коллектор-эмиттер.Так что очень мало электронов, попадающих в базу из области излучателя выйдет через базовый терминал. Еще небольшой процент рекомбинирует с дырок (основных носителей) в базовой области, аналогично характеристикам диода.

Подавляющее большинство электроны эмиттера диффундируют прямо через тонкое основание в коллектор через область истощения базы-коллектора.

Эта область истощения генерирует электрическое поле, пропорциональное напряжению питания коллектора.Этот электрическое поле обычно блокирует поток дырок (основных носителей заряда), которые присутствует в базовом регионе. Но теперь с избытком электронов они могут ускоряться непосредственно через это поле, потому что оно оказывает противоположное влияние на электроны. После прохождения электронов из основного материала P-типа в материал коллектора N-типа, они могут свободно течь в качестве основных носителей опять таки. Поэтому, когда электроны входят через эмиттер, они выходят из устройства. через коллектор в гораздо большей степени, чем у базы.

переход база-коллектор слегка легирован с обеих сторон для увеличения амплификации, а также для поддержания более широкой области делеции и относительно высокое обратное напряжение пробоя. Это позволяет значительно увеличить подачу коллектора. напряжение, даже до сотен вольт.

Как биполярный Транзистор представляет собой трехконтактное устройство, в основном есть три возможных способа для подключения его к электронной схеме, при этом одна клемма является общей для как вход, так и выход:

Конфигурация с общим эмиттером используется в основном как усилитель или переключатель, и это, безусловно, наиболее широко используемая конфигурация из-за ее гибкость и высокий выигрыш.Этот метод отличается низким входным сопротивлением, высокое выходное сопротивление, фазовый сдвиг на 180 градусов, контролируемое напряжение и ток усиление наряду с высоким усилением мощности. Общий эмиттер конфигурация усилителя обеспечивает самый высокий коэффициент усиления по току и мощности из всех три конфигурации биполярных транзисторов.

Конфигурация Common-Base характеризуется низким входным сопротивлением, высоким выходным сопротивлением, высоким напряжением усиление и отсутствие текущего усиления. В этой конфигурации базовое соединение является общим как для входного сигнала, так и для выходной сигнал, при этом входной сигнал применяется между базой и эмиттерные клеммы.Этот метод используется очень редко.

Конфигурация с общим коллектором характеризуется высокой потребляемой мощностью. полное сопротивление, низкий выходной импеданс, отсутствие усиления по напряжению и высокое усиление по току. В подключение к коллектору является общим как для входного, так и для выходного сигнала через блок питания. Этот тип обычно используется в повторителях напряжения или эмиттерах. Следящие схемы.

На схеме на этой странице три вывода каждого типа транзистора обозначены как Эмиттер (E), База (B) и Коллектор (C) соответственно.Конструкция и обозначения схем для биполярных PNP и NPN транзисторы обозначены стрелкой в ​​символе схемы, всегда показывающей направление «условного протекания тока» между выводами.

Типы транзисторов – переходные транзисторы и полевые транзисторы

В этом руководстве мы узнаем о классификации и различных типах транзисторов. Транзистор стал важным компонентом современной электроники, и мы не можем представить мир без транзисторов.

Введение

Транзистор – это полупроводниковое устройство, которое используется для усиления сигналов, а также в схемах переключения. Обычно транзистор изготавливается из твердого материала, который содержит три вывода, такие как эмиттер (E), база (B) и коллектор (C) для соединения с другими компонентами схемы. Некоторые транзисторы также содержат четвертый вывод, то есть подложку (S). Транзистор – один из активных компонентов.

Со времени изобретения первого транзистора до наших дней транзисторы классифицируются на различные типы в зависимости от конструкции или работы, они поясняются с помощью древовидной диаграммы, как показано ниже.

НАЗАД НАЗАД

Древовидная схема транзисторов

Классификацию транзисторов можно понять, просмотрев приведенную выше древовидную диаграмму. Транзисторы в основном делятся на два типа; это биполярные переходные транзисторы (BJT) и полевые транзисторы (FET). BJT снова подразделяются на транзисторы NPN и PNP. Полевые транзисторы подразделяются на JFET и MOSFET.

Junction FET-транзисторы подразделяются на N-канальный JFET и P-канальный JFET в зависимости от их функции.MOSFET-транзисторы подразделяются на режим истощения и режим улучшения. Опять же, транзисторы режима обеднения и улучшения подразделяются на N-канальный JFET и P-канал.

В настоящее время электронные лампы заменяются транзисторами, потому что транзисторы имеют больше преимуществ по сравнению с электронными лампами. Транзисторы имеют небольшие размеры, для работы требуется низкое напряжение, а также низкое рассеивание мощности. По этим причинам транзистор используется во многих приложениях, таких как усилители, схемы переключения, генераторы, а также почти во всех электронных схемах.

НАЗАД НАЗАД

Типы транзисторов

Транзистор – это правильное расположение различных полупроводниковых материалов. Общие полупроводниковые материалы, используемые для транзисторов, – это кремний, германий и арсенид галлия. В основном транзисторы классифицируются в зависимости от их конструкции. У каждого типа транзисторов есть свои особенности, достоинства и недостатки.

Некоторые транзисторы предназначены в первую очередь для целей переключения, другие – для целей усиления, а некоторые транзисторы предназначены как для усиления, так и для целей переключения.В зависимости от структуры транзисторы делятся на BJT и FET.

НАЗАД НАЗАД

Переходные транзисторы Переходный транзистор

обычно называют биполярным переходным транзистором (BJT). Транзисторы BJT имеют три вывода: эмиттер (E), база (B), коллектор (C). Само название указывает на то, что он имеет два перехода между полупроводниками p-типа и n-типа. Транзисторы BJT подразделяются на транзисторы NPN и PNP в зависимости от конструкции.

В отличие от полевых транзисторов, биполярные транзисторы являются устройствами с регулируемым током. Если через базу BJT-транзистора протекает небольшое количество тока, это вызывает протекание большого тока от эмиттера к коллектору. Биполярные транзисторы имеют низкий входной импеданс, что приводит к протеканию через транзистор большого тока.

BJT-транзисторы – это только транзисторы, которые включаются входным током, подаваемым на базу. Транзисторы с биполярным переходом могут работать в трех регионах, их

  • Область отсечки: Здесь транзистор находится в состоянии «ВЫКЛ» i.е ток, протекающий через транзистор, равен нулю.
  • Активная область: Здесь транзистор действует как усилитель.
  • Область насыщения: Здесь транзистор полностью включен, а также работает как замкнутый переключатель.

НАЗАД В начало

Транзистор NPN

NPN – это один из двух типов биполярных переходных транзисторов (BJT). Транзистор NPN состоит из двух полупроводниковых материалов n-типа, разделенных тонким слоем полупроводника p-типа.Здесь основными носителями заряда являются электроны, а неосновными носителями заряда являются дырки. Прохождение электронов от эмиттера к коллектору формирует ток, протекающий в транзисторе через вывод базы.

Небольшой ток на клемме базы вызывает протекание большого тока от эмиттера к коллектору. В настоящее время обычно используемым биполярным транзистором является транзистор NPN, потому что подвижность электронов больше подвижности дырок. Стандартное уравнение для токов, протекающих в транзисторе:

I E = I B + I C

Обозначения и структура NPN-транзисторов приведены ниже.

НАЗАД НАЗАД

Транзистор PNP

PNP – это еще один тип биполярных переходных транзисторов (BJT). Транзисторы PNP содержат два полупроводниковых материала p-типа и разделены тонким слоем полупроводника n-типа. Основными носителями заряда в транзисторах PNP являются дырки, а электроны – неосновные носители заряда. Стрелка на выводе эмиттера транзистора указывает протекание обычного тока. В транзисторе PNP ток течет от эмиттера к коллектору.

Транзистор PNP включен, когда клемма базы переведена в низкий уровень относительно эмиттера. Символ и структура транзистора PNP показаны ниже.

НАЗАД НАЗАД

FET (полевой транзистор)

Полевой транзистор (FET) – другой тип транзисторов. Обычно полевые транзисторы имеют три вывода: затвор (G), сток (D) и исток (S). Полевые транзисторы подразделяются на полевые транзисторы с переходным эффектом (JFET) и полевые транзисторы с изолированным затвором (IG-FET) или полевые МОП-транзисторы.Для соединений в схеме мы также рассматриваем четвертую клемму, называемую базой или подложкой. Транзисторы FET контролируют размер и форму канала между истоком и стоком, который создается под действием приложенного напряжения. Транзисторы FET являются однополярными транзисторами, потому что они выполняют одноканальную работу, тогда как транзисторы BJT являются транзисторами с биполярным переходом. Транзисторы FET имеют более высокое усиление по току, чем транзисторы BJT.

НАЗАД НАЗАД

JFET (переходно-полевой транзистор)

Junction-Field-Effect Transistor (JFET) – это самый ранний и простой тип полевых транзисторов.Эти полевые транзисторы используются в качестве переключателей, усилителей и резисторов. Этот транзистор представляет собой устройство, управляемое напряжением. Ему не нужен ток смещения. Напряжение, приложенное между затвором и истоком, управляет потоком электрического тока между истоком и стоком транзистора. Транзисторы JFET доступны как в N-канальном, так и в P-канальном исполнении.

НАЗАД НАЗАД

N-канальный JFET

В N-канальном JFET ток протекает за счет электронов. Когда между затвором и истоком подается напряжение, между истоком и стоком образуется канал для протекания тока.Этот канал называется N-каналом. В настоящее время N-канальный JFET-транзистор является наиболее предпочтительным типом, чем P-канальный JFET. Обозначения для N-канального JFET-транзистора приведены ниже.

НАЗАД НАЗАД

П-канальный полевой транзистор

В этом транзисторе JFET ток протекает из-за дыр. Канал между истоком и стоком называется P-каналом. Обозначения для P-канальных JFET-транзисторов приведены ниже. Здесь стрелки указывают направление тока.

НАЗАД НАЗАД

МОП-транзистор

Полевой транзистор металл-оксид-полупроводник (MOSFET) является наиболее полезным типом среди всех транзисторов. Само название указывает на то, что он содержит металлический зажим для ворот. МОП-транзистор имеет четыре вывода: сток, исток, затвор и корпус или подложку (B). MOSFET имеет много преимуществ перед BJT и JFET, в основном он предлагает высокий входной импеданс и низкий выходной импеданс. Он используется в схемах с низким энергопотреблением, в основном, в технологиях проектирования микросхем.

MOSFET-транзисторы доступны в вариантах с истощением и расширением. Кроме того, типы истощения и улучшения подразделяются на типы с N-каналом и P-каналом.

НАЗАД НАЗАД

N-канальный полевой МОП-транзистор

MOSFET, имеющий N-канальную область между истоком и стоком, называется N-канальным MOSFET. Здесь выводы истока и затвора сильно легированы материалами n-типа, а подложка легирована полупроводниковым материалом p-типа. Здесь ток между истоком и стоком происходит из-за электронов.Напряжение затвора контролирует протекание тока в цепи. MOSFET с N-каналом является наиболее предпочтительным, чем MOSFET с P-каналом, поскольку подвижность электронов выше подвижности дырок. Обозначения для N-канальных MOSFET-транзисторов приведены ниже.

НАЗАД НАЗАД

МОП-транзистор с каналом P

МОП-транзистор, имеющий область P-канала между истоком и стоком, называется MOSFET-транзистором с P-каналом. Здесь выводы истока и стока сильно легированы материалом P-типа, а подложка легирована материалом N-типа.Ток между истоком и стоком обусловлен концентрацией дырок. Приложенное напряжение на затворе будет управлять потоком тока через область канала. Обозначения для P-канальных MOSFET-транзисторов в режимах истощения и расширения приведены ниже.

НАЗАД НАЗАД

Транзисторы на основе функции Транзисторы

также классифицируются в зависимости от функций, которые означают, что делают транзисторы. Ниже описаны различные типы транзисторов в зависимости от их функции.

НАЗАД НАЗАД

Транзисторы малой мощности

Основная функция малосигнальных транзисторов заключается в усилении слабых сигналов, даже если эти транзисторы используются для переключения. Малосигнальные транзисторы доступны на рынке в виде транзисторов NPN и PNP. Мы можем видеть некоторое значение на корпусе малосигнального транзистора, это значение указывает на hFE транзистора.

В зависимости от этого значения hFE мы можем понять способность транзистора усиливать сигнал.Значения hFE находятся в диапазоне от 10 до 500. Значение тока коллектора этих транзисторов составляет от 80 до 600 мА. Этот тип транзисторов работает в диапазоне частот от 1 до 300 МГц. Само название транзистора указывает на то, что эти транзисторы усиливают слабые сигналы, которые используют небольшие напряжения и токи, такие как несколько милливольт и миллиампер тока.

 Ссылка на ресурс: learningaboutelectronics.com/images/Small-signal-transistor.png 

Малосигнальные транзисторы используются почти во всех типах электронного оборудования, а также эти транзисторы используются в нескольких приложениях, некоторые из них являются переключателями ВКЛ или ВЫКЛ для общего использования, драйвером светодиодного диода, драйвером реле, функцией отключения звука, схемами таймера, инфракрасным диодный усилитель, цепи питания смещения и т. д.

НАЗАД НАЗАД

Малые переключающие транзисторы

Малые переключающие транзисторы – это транзисторы, которые в основном используются для переключения, а затем используются для усиления. Как и малосигнальные транзисторы, небольшие переключающие транзисторы также доступны в форме NPN и PNP, и этот тип транзисторов также имеет значения hFE. Диапазон значений hFE для этих транзисторов составляет от 10 до 200. При значении hFE 200 транзисторы не являются хорошими усилителями, хотя они действуют как лучшие переключатели.Значения тока коллектора колеблются от 10 до 1000 мА. Эти транзисторы используются в основном в коммутационных устройствах.

 Ссылка на ресурс: learningaboutelectronics.com/images/Small-switching-transistor.png 

НАЗАД НАЗАД

Силовые транзисторы

Транзисторы, которые используются в усилителях мощности и источниках питания, называются «усилителями мощности». Коллекторный вывод этого транзистора подключен к основанию металлического устройства, и эта структура действует как теплоотвод, который рассеивает избыточную мощность для приложений.

Эти типы транзисторов доступны в виде транзисторов NPN, PNP и Дарлингтона. Здесь значения тока коллектора колеблются от 1 до 100А. Диапазон рабочих частот от 1 до 100 МГц. Значения мощности этих транзисторов находятся в диапазоне от 10 до 300 Вт. Само название транзистора указывает на то, что силовые транзисторы используются в приложениях, где требуются высокая мощность, высокое напряжение и большой ток.

 Ссылка на ресурс: learningaboutelectronics.com/images/Power-transistors.png 

НАЗАД НАЗАД

Высокочастотные транзисторы

Высокочастотные транзисторы используются для небольших сигналов, которые работают на высоких частотах, и они используются в приложениях для высокоскоростной коммутации. Высокочастотные транзисторы также называют РЧ-транзисторами. Эти транзисторы имеют максимальные значения частоты около 2000 МГц. Значение тока коллектора (IC) колеблется от 10 до 600 мА. Эти типы транзисторов также доступны в форме NPN и PNP.Они в основном используются в приложениях с высокочастотными сигналами, а также эти транзисторы должны быть включены или выключены только на высоких скоростях. Эти транзисторы используются в схемах генераторов и усилителей HF, VHF, UHF, CATV и MATV.

 Ссылка на ресурс: learningabouelectronics.com/images/High-frequency-transistors.jpg 

НАЗАД НАЗАД

Фототранзистор

Фототранзисторы – это транзисторы, которые работают в зависимости от света, что означает, что эти транзисторы светочувствительны.Обычный фототранзистор представляет собой не что иное, как биполярный транзистор, который содержит светочувствительную область вместо клеммы базы. Фототранзисторы имеют только 2 вывода вместо обычных 3 выводов. Транзистор работает в зависимости от света. Когда светочувствительная область темна, тогда в транзисторе не течет ток, т.е. транзистор находится в выключенном состоянии.

 Ссылка на ресурс: learningaboutelectronics.com/images/Phototransistors.jpg 

Когда светочувствительная область подвергается воздействию света, на выводе базы генерируется небольшой ток, который вызывает протекание большого тока от коллектора к эмиттеру.Фототранзисторы доступны как в типах транзисторов BJT, так и на полевых транзисторах. Они называются фото-BJT и фото-FET.

В отличие от фото-BJT, фото-полевые транзисторы генерируют ток затвора с помощью света, который контролирует ток между выводами стока и истока. Фото-полевые транзисторы более чувствительны к свету, чем фото-полевые транзисторы. Символы фото-BJT и фото-полевых транзисторов показаны выше.

НАЗАД НАЗАД

Однопереходные транзисторы:

 Ссылка на ресурс: Learningaboutelectronics.com / images / Unijunction-transistor.png 

Однопереходные транзисторы используются только как переключатели с электрическим управлением. Эти транзисторы не содержат усилительных характеристик из-за своей конструкции. Обычно это трехпроводные транзисторы. Теперь мы видим работу однопереходного транзистора. Если нет разницы потенциалов между эмиттером и одним из выводов базы (B1 или B2), то между B1 и B2 протекает небольшой ток.

Если на вывод эмиттера подается достаточное количество напряжения, то на выводе эмиттера генерируется большой ток, который добавляется к небольшому току между B1 и B2, что вызывает протекание большого тока в транзисторе.Здесь ток эмиттера является основным источником тока для полного тока в транзисторе. Ток между выводами B1 и B2 очень мал, по этой причине эти транзисторы не подходят для целей усиления.

НАЗАД НАЗАД

ПРЕДЫДУЩИЙ – ВВЕДЕНИЕ ТРАНЗИСТОРОВ

СЛЕДУЮЩИЙ – ТРАНЗИСТОР NPN

Биполярный переходной транзистор (BJT)

Биполярный переходный транзистор (BJT) (Внешняя ссылка в Википедии)

Биполярный переходный транзистор (BJT) имеет три терминала, подключенных к трем. легированные полупроводниковые области.В NPN-транзисторе тонкий и слегка легированный База P-типа зажата между сильно легированным эмиттером N-типа и другой коллектор N-типа ; в то время как в транзисторе PNP тонкий и слаболегированный N-тип основание зажато между сильно легированным P-типом Эмиттер и коллектор П-типа . В дальнейшем мы будем рассматривать только NPN BJT.

На многих схемах транзисторных цепей (особенно при наличии большое количество транзисторов в схеме) кружок в условном обозначении транзистор отсутствует.На рисунках ниже показано сечение двух Транзисторы NPN. Обратите внимание, что хотя и коллектор, и эмиттер Транзисторы изготовлены из полупроводникового материала N-типа, полностью разная геометрия и поэтому не подлежат замене местами.

Все ранее рассмотренные компоненты (резистор, конденсатор, катушка индуктивности и диод) имеют два вывода (вывода) и поэтому могут характеризоваться единственное соотношение между протекающим током и напряжением через два отведения.Иначе транзистор – это трехконтактный компонент, которую можно рассматривать как двухпортовую сеть с входным портом и выходной порт, каждый из которых образован двумя из трех терминалов и характеризуется соотношением входных и выходных токов и напряжений.

В зависимости от того, какая из трех клемм используется в качестве общей клеммы, существует может быть три возможных конфигурации для двухпортовой сети, образованной транзистор:

  • Общий эмиттер (CE),
  • Общая база (CB),
  • Коллектор общий (СС).

  • Конфигурация Common-Base (CB)

    Конфигурацию CB можно рассматривать как схему с 2 портами. Вход Порт образован эмиттером и базой, выходной порт образован коллектор и база. Применяются два напряжения и соответственно к эмиттеру и коллектору, относительно общая база, так что соединение BE смещено вперед, в то время как Переход CB имеет обратное смещение.

    Полярность и направление, связанные с PN-переходы между E и B такие же, как и связанные с диод, полярность напряжения: положительный на P, отрицательный на N, ток направление: от P до N, но и направление связаны с PN-переходом между базой и коллектором. определяется противоположным образом.

    Поведение NPN-транзистора определяется двумя его PN-переходами:

    • PN-переход база-эмиттер (BE) с прямым смещением позволяет основные носители заряда, электроны, в эмиттере N-типа, чтобы идти через PN-переход, чтобы добраться до базы P-типа, образуя эмиттерный ток.
    • Поскольку основание тонкое и слегка легированное, только небольшое количество электроны из эмиттера (например, 1%) объединяются с большинство носителей, отверстия, в основании P-типа для формирования основания Текущий .Процент зависит от легирования и геометрии материала.
    • Большая часть электронов из эмиттера (например, 99%), теперь неосновные носители в базе P-типа, могут пройти через обратный смещенный PN-переход коллектор-база для прихода к коллектору N-типа формирование коллекторного тока .

    Коэффициент усиления по току или коэффициент передачи тока этой цепи выключателя, обозначается, определяется как отношение между током коллектора рассматривается как выход, а ток эмиттера рассматривается как Вход:

    д.грамм. (8)
    т.е.

    Соотношения между током и напряжением как на входе и выходные порты описываются следующими входами и выходами характеристики.

    • Входные характеристики:

      Входной ток является функцией, а также входного напряжение, которое намного преобладает:

      (10)
      Обратите внимание, что это мало влияет на. Здесь и связанный с PN-переходом эмиттер-база удовлетворяют соотношению для диода:
      (11)
      Напряжение на смещенном в прямом направлении PN-переходе можно приблизительно определить к .
    • Выходные характеристики:

      Выходной ток зависит от выходного напряжения. а также входной ток, который намного преобладает:

      (12)
      As, т.е. переход CB обратный предвзято, ток зависит только от. Когда , ток, вызванный пересечением неосновных носителей заряда PN-переход. Это похоже на диод ток-напряжение. характеристики, показанные ранее, за исключением того, что обе оси перевернуты ( полярность и направление противоположно определены).Когда увеличивается, является соответственно увеличился. Однако, поскольку выше не вызывает больше электронов из эмиттера, на это мало влияет.

      Обратите внимание, что когда PN-переход между базой и коллектором не смещен (закорочен), все равно ненулевой коллектор ток, образованный электронами, выходящими из эмиттера, через оба PN-перехода, чтобы сформировать ток замкнутого контура.

  • Конфигурация с общим эмиттером (CE)

    Два напряжения и приложены соответственно к базе и коллектор по отношению к общему эмиттеру.Обычно , т.е. переход BE смещен вперед, в то время как CB переход имеет обратное смещение, как и конфигурация CB. Напряжения конфигураций CB и CE связаны между собой:

    или (13)

    Конфигурацию CE можно рассматривать как схему с 2 портами. Вход Порт образован эмиттером и базой, выходной порт образован коллектор и эмиттер. Текущее усиление цепи CE, обозначенное по, определяется как отношение между током коллектора рассматривается как выход, а базовый ток – как вход:

    (14)
    Например, если , тогда .

    Эти два параметра и связаны любым из следующий:

    (15)

    Соотношения между током и напряжением как на входе и выходные порты описываются следующими входами и выходами характеристики.

Соотношение между входным и выходным токами CB и CE конфигурации приведены ниже:

(18)
  • Общая база:



  • Общий эмиттер:



Коллекторные характеристики с общей базой (CB) и с общим эмиттером (CE) конфигурации имеют следующие отличия:

  • В цепи выключателя немного меньше, а в цепи CE намного больше, чем.
  • В цепи выключателя, когда; в то время как в цепи CE когда (как имеет подавляющий эффект).
  • Увеличено немного увеличится но больше сильно увеличить , тем самым вызывая больше значительно увеличился.
  • в CB является функцией двух переменных и, но первое гораздо более значимо, чем второе. в CE является функцией двух переменных и, но первое гораздо более значимо, чем второе.
  • в CB является функцией двух переменных и.Когда маленький, его небольшое увеличение вызовет значительное увеличение из . Но его дальнейшее увеличение не вызовет значительных изменений в должном до насыщения (все доступные носители заряда движутся со скоростью насыщения прибыть в коллектор C), в основном определяется.
  • в CE является функцией двух переменных и. Когда мал ( ), его небольшое увеличение вызовет значительное увеличение. Но когда , его дальнейшее увеличение не вызовет больших изменений из-за насыщения (весь доступный заряд носители движутся со скоростью насыщения и достигают коллектора C), в основном определяется.

Различные параметры транзистора изменяются в зависимости от температуры. Например, увеличивается вместе с температурой.

транзисторов – мир современных электронов | ОРЕЛ

Добро пожаловать в мир современной электроники! У нас есть самопосадочные ракетные корабли, дроны, которые доставят посылки к вашему порогу за считанные минуты, и вездеходы, прочесывающие самые дальние уголки нашей галактики. Без знаменитого транзистора ни одно из этих современных чудес никогда не было бы возможным! Миллионы этих транзисторов втиснуты в микропроцессор, питающий ваш компьютер, но что, черт возьми, они там делают?

Давай узнаем.

Просто прославленный коммутатор?

Транзистор сравнивают с простым переключателем, но не обманывайтесь; это гораздо больше. Транзистор выполняет две важные задачи, в том числе:

Усиливающий ток

Транзистор может взять небольшой ток и превратить его в огромный! Подумайте о слуховых аппаратах; они содержат миниатюрный микрофон, который улавливает звук из повседневной среды, который затем поглощается транзистором и превращается в мощный звук, который может слышать больное человеческое ухо.Мой дедушка передает привет, Транзистор.

Ой, как далеко продвинулся слуховой аппарат благодаря транзистору. (Источник изображения)

Ток переключения

Транзисторы

также работают как мощный переключатель, позволяя току течь только при соблюдении определенных условий. Когда току разрешено протекать, это создает состояние «включено» или 1. Когда ток не может протекать, транзистор находится в состоянии «выключено», или 0. Эта двоичная система единиц и нулей формирует строительные блоки нашего мира современной электроники.

Эта знаменитая сцена из «Матрицы» обретает новую жизнь, когда вы понимаете, как это происходит с помощью транзисторов! (Источник изображения)

Как заставить транзистор работать

Если сложить два диода, то получится транзистор! Транзисторы имеют три вывода, каждый из которых выполняет свои собственные специализированные функции. В демонстрационных целях мы сосредоточимся на транзисторе NPN. Мы объясним более подробно ниже.

  • База. База отвечает за контроль того, может ли ток течь через транзистор при подаче питания.Вы можете думать о нем как о привратнике.
  • Коллектор. Когда на базу подается питание, ток коллектора может течь по направлению к эмиттеру.
  • Эмиттер. Эмиттер принимает электрический ток, который может послать коллектор, для использования в других частях вашей цепи.

Простая схема, показывающая, как база позволяет току течь от эмиттера к коллектору. (Источник изображения)

Небольшое количество электрического тока, которое получает база, открывает ток от коллектора, чтобы выпустить его (больший) ток.Сбрасывает весь накопленный ток на эмиттер, запитывая другие части вашей цепи.

Но если убрать источник тока с базы, то между коллектором и эмиттером не будет протекать ток. Этот процесс как управления током, так и его усиления между базой и эмиттером – вот что делает транзистор поистине уникальным компонентом.

Другой легированный компонент

Как и его младший брат диод, транзистор представляет собой еще один полупроводниковый компонент, сделанный из кремния.Что такое полупроводник? Это материал, который находится где-то посередине между проводником (материалом, через который любит течь электричество) и изолятором (материалом, которого избегает электричество). Похоже на нерешительность, правда?

Полупроводники бывают разных форм и размеров в промышленных формах, как эта интегральная схема. (Источник изображения)

Добавляя примеси в полупроводники, известные как легирование, мы можем добиться уникального поведения этих материалов.Например:

  • Создание кремния N-типа. Допирование кремния химическим элементом мышьяком, фосфором или сурьмой даст нашему кремнию дополнительные электроны, позволяя ему проводить электрический ток. Это создает кремний n-типа.
  • Создание кремния P-типа. Допирование кремния химическими элементами бором, галлием или алюминием лишает кремний свободных электронов, притягивая внешние электроны. Это создает кремний p-типа.
  • Создание транзисторов. Когда вы соединяете эти два типа кремния, рождаются транзисторы! Они объединены в «кремниевый сэндвич», который позволяет току течь интересными способами.

Теперь у нас есть сырые ингредиенты для транзистора, кремний n-типа и кремний p-типа, но как они вместе образуют этот компонент? Есть два способа построить транзистор:

Транзисторы NPN

Эти транзисторы создаются при соединении трех слоев кремния, включая два кремния n-типа и один кремний p-типа.N-типы служат коллектором и эмиттером, а p-тип – базой. Все это вместе формирует так называемый NPN-транзистор. В этих транзисторах электроны переходят от эмиттера к коллектору после получения разрешения от базы.

Транзисторы PNP

Эти транзисторы рождаются, когда вы объединяете вместе еще три слоя кремния, только в другой комбинации. В данном случае мы имеем два силикона p-типа и один кремний n-типа.Эта комбинация создает эффект, обратный NPN-транзистору, где вместо того, чтобы посылать ток на эмиттер, коллектор посылает положительно заряженные «дыры» на коллектор. Вы можете думать об этих дырах как о пустых пространствах, в которых нет электронов.

Простой способ визуализировать, как кремний сложен вместе в транзисторе.

Типы транзисторов

, которые вы встретите

Во время своего путешествия в мир электроники вы обязательно столкнетесь с двумя основными типами транзисторов – биполярным переходным транзистором (BJT) и полевым транзистором (FET).Давайте посмотрим на каждый:

Биполярный переходной транзистор (BJT)

Это транзистор, о котором мы говорили во всех наших примерах. Он поставляется в двух версиях, NPN и PNP, и имеет три клеммы, базу, эмиттер и коллектор. Вам знаком схематический символ ниже? Если диод пришел в голову, значит вы уже близко! Три клеммы соединительных транзисторов будут помечены стрелкой, показывающей, в каком направлении будет течь ток.

Транзисторы NPN и PNP, обратите внимание, как стрелка показывает поток тока для каждого из них.

В транзисторе NPN все, что вам нужно, – это приложить к базе напряжение около 0,7 В, чтобы получить огромный скачок тока, протекающего через коллектор к эмиттеру. Это включит транзистор, создав двоичную единицу.

Полевой транзистор (FET)

Полевой транзистор появился на свет после BJT, и, хотя у него три вывода, они названы немного по-другому.У вас есть затвор , который похож на базу, исток , который аналогичен коллектору, и, наконец, сток , который похож на эмиттер. Этот тип транзистора также включает слои кремния n-типа и p-типа, но они покрыты слоями металлов и ионов кислорода, что дало этому транзистору уникальное название MOSFET (полевой транзистор на основе оксида металла и полупроводника). Это полный рот!

Два типа полевых транзисторов, n-канальный и p-канальный.(Источник изображения)

В транзисторах этого типа подключение положительного напряжения к затвору позволяет электронам проходить через очень тонкий канал между истоком и стоком. И хотя этот процесс визуально отличается, это тот же основной принцип: небольшое количество тока позволяет протекать большему источнику тока.

Эго и рождение транзистора

Это изобретение возникло в недрах Bell Laboratories в Нью-Джерси тремя физиками, Джоном Бардином, Уолтером Браттейном и Уильямом Шокли.Команда была собрана под руководством Шокли для разработки замены ненадежной вакуумной лампе, которая использовалась для усиления сигналов в телефонной системе США.

С этим трио дела идут плохо.

Три блестящих физика работают над заменой вакуумной лампы. (Источник изображения)

Во-первых, и Бардин, и Браттейн ушли работать самостоятельно, создав то, что мы теперь знаем как первый транзистор с точечным контактом, 16 декабря 1947 года.Они намеренно исключили Шокли из всего процесса, и, возможно, по уважительной причине, поскольку он, как сообщается, был немного придурком.

Конечно, Шокли был расстроен тем, что его оставили в стороне, так что же он сделал? Он заперся в гостиничном номере на несколько дней с карандашом и бумагой, а позже изложил теорию известного теперь переходного транзистора, который был гораздо более технологичен, чем точечный транзистор.

Шокей – 1, Бардин и Браттейн – 0.

Не очень гламурный первый транзистор, созданный на пластине германия.(Источник изображения)

В конце концов, все трое этих джентльменов получили признание за изобретение транзистора. Шокли даже основал свою собственную компанию по производству полупроводников, Shockley Semiconductor Laboratory, и после серьезной ссоры с некоторыми из его сотрудников, Intel и Fairchild Semiconductor родились после компании Шокли.

Bell Labs и не только

С момента своего создания в Bell Labs транзистор имеет дикая и безумная история.Промышленные транзисторы использовались в качестве усилителей, и именно в 1952 году стали доступны первые транзисторные слуховые аппараты. Но это не совсем помогло производителям и потребителям, которые по-прежнему считали технологию электронных ламп единственным вариантом усиления.

Обратите внимание на разницу в размерах! Первый транзисторный слуховой аппарат (вверху) и ламповый слуховой аппарат (внизу). (Источник изображения)

Это восприятие вскоре изменилось, когда в радио появились транзисторы.Звуки можно было послать через микрофон, превратить в электрическую цепь и усилить с помощью транзистора, чтобы произвести довольно удивительные звуки в таком маленьком корпусе.

Настоящим гвоздем в гроб для электронных ламп стал карманный радиоприемник, разработанный Texas Instruments в 1954 году и получивший название Regency TR-1. Этому миниатюрному радиоприемнику требовалось несколько новых деталей, чтобы поместиться в такой небольшой корпус, включая тщательно спроектированные динамики, конденсаторы и, конечно же, транзисторы.

Благо вся эта инженерия?

Texas Instruments доказала, что транзисторы могут быть массовыми и экономичными.И такие компании, как Emerson, General Electric и Raytheon, наконец, начали серьезно относиться к транзисторам.

Первое в мире карманное радио на транзисторе. (Источник изображения)

1954 ознаменовал замену кремния в качестве предпочтительного материала для производства транзисторов, который оказался более надежным и менее дорогим в производстве, чем транзисторы на основе германия. Развитие продолжалось в течение 60-х годов, и в 1970-х годах появился первый полевой МОП-транзистор, основанный на успехе переходного транзистора Уильяма Шокли.

Что ждет транзисторы в будущем?

Что ж, это еще предстоит выяснить. В настоящее время ученые работают над первым в мире молекулярным транзистором, состоящим из одной молекулы бензола. Этот тип транзисторов не выделяет столько тепла, сколько наши современные кремниевые транзисторы.

Мы также пытаемся заменить кремний графеном, который может переносить электроны намного быстрее, чем кремний. Единственное зависание? Мы до сих пор не можем придумать, как надежно производить графен.Если мы сможем заставить его работать по разумной цене, графен сделает наши компьютерные процессоры в 1000 раз быстрее, чем кремний.

Роль транзисторов в вычислительной технике

Давайте вернемся в настоящее, чтобы понять, как транзисторы полностью изменили компьютеры в двух областях – логике и памяти.

Транзисторы и логика

Соединив множество транзисторов вместе, вы можете создать нечто, называемое логическим вентилем. Это позволяет вам сравнивать входящие токи и отправлять разные выходы в зависимости от вашей запрограммированной логики.

Эти логические элементы позволяют компьютеру принимать решения с помощью булевой алгебры. Если вы пробовали программировать, они должны быть вам знакомы, включая логические значения, такие как AND, OR, NOT и т. Д. Объединение всей этой логики вместе – вот что заставляет наше компьютерное программное обеспечение работать, предоставляя серию инструкций для наших компьютеров. .

Транзисторы и память Транзисторы

также используются для питания всей памяти в наших компьютерах. Подключив логические вентили по определенному шаблону, вы можете создать выходные соединения, которые обратятся к входным соединениям.Это создает своего рода схему, при которой транзисторы будут оставаться включенными даже после того, как их базовый ток будет снят, оставляя транзистор в так называемом стабильном состоянии: включено или выключено. Умножьте это на миллионы или миллиарды транзисторов со стабильным состоянием, и вскоре вы обнаружите, что постоянно включаются и выключаются транзисторы, которые могут хранить данные как в единицах, так и в виде нулей.

Они идут меньше, но где они остановятся, никто не знает!

Появившись только около 70 лет назад, транзисторы были чертовски быстры, выросли с десятков до сотен, а теперь даже миллионов и миллиардов транзисторов в наших повседневных вычислительных устройствах! Эти полупроводниковые компоненты завершают наш взгляд на увлекательный мир активных компонентов, которые играют динамическую роль в развитии наших электронных разработок.

Можем ли мы продолжать использовать все больше и больше транзисторов в наших интегральных схемах, как гласит закон Мура? Мы начинаем достигать физических пределов кремния и электронов. Похоже, пора вложить деньги в исследования и разработки графена и фотонов. Мир современной электроники ждет!

Знаете ли вы, что Autodesk EAGLE предлагает массу бесплатных библиотек транзисторов, готовых к использованию? Попробуйте Autodesk EAGLE бесплатно сегодня, чтобы начать работу!

Тест транзисторов

для определения клемм, типа и состояния

Как выполнить тест транзистора для определения клемм, типа (NPN или PNP) и состояния (хорошее или плохое)

Как мы знаем, транзистор является наиболее часто используемым компонентом в любом проекте, схеме или устройстве, но вы не можете использовать его до испытания транзистора.Самая важная задача в любом проекте или построении схемы – это знать « Как выполнить тест транзистора ». Этот тест транзистора поможет вам в идентификации терминала , NPN / PNP и Хорошие / поврежденные транзисторы .

Этот тест применим только для транзисторов BJT . Итак, перед любым тестом транзистора нам нужно узнать о структуре BJT.

Транзистор (БЮТ)

BJT (Bipolar Junction Transistor) – это трехконтактный полупроводниковый прибор.Он состоит из двух переходных диодов P-N , соединенных вместе, образующих три слоя, известных как Base, Emitter & Collector .

Существует два типа транзисторов в зависимости от полярности слоев.

НПН

В этом BJT Base , то есть P-легированный слой , зажат между N-легированными слоями , известными как Collector & Emitter .

Разница между коллектором и эмиттером состоит в том, что эмиттером является сильно легированный слой .

NPN соответствует двум диодам, соединенным вместе клеммой анода, как показано на рисунке ниже.

Также читайте: Разница между силовым трансформатором и распределительным трансформатором

PNP

PNP-транзистор состоит из легированного N слоя ( Base ), зажатого между P-легированными слоями, известными как Collector & Emitter .

Транзистор

PNP соответствует двум диодам, катодный вывод этих двух диодов сплавляется вместе, как показано на рисунке ниже.

Также прочтите: Как проверить реле?

В этом тесте транзисторов используется функция проверки диодов мультиметра. Итак, для этого теста транзистора вам нужно знать о тесте диода .

режим проверки диодов:

Прямое смещение P-N переход: мультиметр считывает напряжение и подает звуковой сигнал.

Соединение P-N с обратным смещением: мультиметр показывает OL (превышение предела)

Идентификация терминала

Первым шагом в тесте транзистора является идентификация выводов (база , эмиттер и коллектор ) транзистора.

Для начала нужно обозначить выводы транзистора номерами 1,2,3 . Для этого возьмите транзистор плоской стороной к себе и начните с левой стороны, как показано на рисунке ниже.

Читайте также: Тиристор | Его работа, типы и применение

Идентификация базового терминала
  • Перевести мультиметр в режим проверки диодов .
  • Поместите черный (общий) зонд и красный зонд на любые две клеммы одновременно.
  • Проверьте все возможные комбинации клемм, например, 1-2 , 1-3 , 2-1 , 2-3 , 3-1 , 3-2 .
  • Две из этих комбинаций должны пройти проверку диодов (показания показывают напряжение 0,5–0,8 В ), общая клемма в этих двух комбинациях является клеммой Base .
  • Предположим, 2-1 и 2-3 комбинаций проходят проверку диодов, тогда 2 является базовым выводом.

Идентификация излучателя и коллектора

После успешной идентификации базового терминала два терминала ( 1 и 3 ) остаются неизвестными. если вы идентифицируете второй терминал, впоследствии вы также узнаете и третий терминал.

  • Установите мультиметр в режим проверки диодов .
  • Запишите показания напряжения клеммы базы с обеих клемм 1 и 3 по очереди.
  • Клемма, имеющая на более высокое напряжение между ними, – это Эмиттер .
  • Терминал с более низким напряжением по сравнению с другим Коллектор .

В этом примере предположим, что показание напряжения 2-1 = 0,6 В и 2-3 Показание напряжения = 0,7 В

  • Итак, Эмиттер – это клемма 3, а Коллектор – это клемма 1.

Также прочтите: Как проверить диод и методы тестирования диодов, светодиодов и стабилитронов

Тип: NPN или PNP

Следующим шагом в тесте транзистора является определение типа датчика: NPN или PNP .

Этот шаг зависит от результатов вышеуказанного теста транзистора.

Тест NPN
  • Перевести мультиметр в режим проверки диодов .
  • Поместите датчик Red (положительный) на клемму Base и черную клемму (общий или отрицательный) на Emitter и Collector по очереди.
  • Если они проходят проверку диодов, это означает, что переходы имеют прямое смещение и это транзистор NPN .

Если вы не знаете терминалы.

  • Установите мультиметр в режим проверки диодов .
  • Проверьте все шесть комбинаций клемм для проверки диодов.
  • Обратите внимание на двух комбинаций, , у которых тест диодов положительный (мультиметр издает звуковой сигнал или показывает напряжение).
  • Если общая клемма в этих двух комбинациях подключена к красному щупу мультиметра, это транзистор NPN .
Тест PNP Тест транзистора

PNP немного отличается от теста транзистора NPN .

  • Переведите мультиметр в режим проверки диодов .
  • Соедините датчик Black (общий) с Base и датчик Red с эмиттером и коллектором по очереди.
  • Если обе эти комбинации проходят проверку диодов, транзистор PNP .

Если вы не знаете терминалы.

  • Проверьте все (шесть) возможных комбинаций клемм для проверки диода .
  • Обратите внимание на две комбинации , которые проходят проверку диодов.
  • Если общая клемма в этих двух комбинациях подключена к Black или общему щупу мультиметра, используется транзистор PNP .

Проверка транзистора (исправна или повреждена)

Этот тест транзистора помогает нам определить, является ли транзистор исправным или поврежденным .

Установите мультиметр в режим проверки диодов и проверьте все возможные комбинации для проверки диодов. Запишите показания для каждой комбинации.

Если транзистор удовлетворяет показаниям, приведенным в таблице ниже, это хорошо .

Если показания не совпадают с приведенной выше таблицей, транзистор поврежден и его необходимо заменить .

Вы также можете прочитать:

Представляем фототранзистор | УЧИТЬСЯ.PARALLAX.COM

Транзистор похож на клапан, который регулирует количество электрического тока, проходящего через два из трех его выводов. Третий терминал контролирует, сколько тока проходит через два других. В зависимости от типа транзистора потоком тока можно управлять с помощью напряжения, тока или, в случае фототранзистора, с помощью света.

На приведенном ниже рисунке показана схема и часть чертежа фототранзистора в вашем Robotics Shield Kit.Яркость света, падающего на вывод базы (B) фототранзистора, определяет, какой ток он будет пропускать на вывод коллектора (C) и выходить через вывод эмиттера (E). Чем ярче свет, тем больше ток; менее яркий свет приводит к меньшему току.

Фототранзистор немного похож на светодиод. У этих двух устройств есть два сходства. Во-первых, если вы подключите фототранзистор в цепи в обратном направлении, он не будет работать правильно.Во-вторых, он также имеет два контакта разной длины и плоское пятно на пластиковом корпусе для идентификации его клемм. Более длинный из двух контактов указывает на вывод коллектора фототранзистора. Более короткий штырь обозначает эмиттер, и он подключается ближе к плоской точке на прозрачном пластиковом корпусе фототранзистора.

Световые волны

В океане вы можете измерить расстояние между пиками двух соседних волн в футах или метрах. В случае света, который также распространяется волнами, расстояние между соседними пиками измеряется в нанометрах (нм), что составляет миллиардные доли метра.На рисунке ниже показаны длины волн знакомых нам цветов света, а также некоторые из них, которые человеческий глаз не может обнаружить, например ультрафиолетовый и инфракрасный.

Фототранзистор в комплекте Robotics Shield Kit наиболее чувствителен к длинам волн 850 нм, которые находятся в инфракрасном диапазоне. Инфракрасный свет не виден человеческому глазу, но многие различные источники света излучают его значительное количество, включая галогенные лампы и лампы накаливания, и особенно солнце.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *