Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Солнечная батарея — Википедия

Солнечная батарея — объединение фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 года, в США был запущен спутник с использованием солнечных батарей — «Авангард-1». 15 мая 1958 года в СССР также был запущен спутник с использованием солнечных батарей — «Спутник-3».

Использование

Портативная электроника

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили

На крыше автомобиля Prius, 2008

Для подзарядки электромобилей.

Авиация

Одним из проектов по созданию самолета, использующего исключительно энергию солнца, является Solar Impulse.

Энергообеспечение зданий

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование

[1].

В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.[2]

Энергообеспечение населённых пунктов

Солнечно-ветровая энергоустановка

Дорожное покрытие

В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей.

В 2016 году министр экологии и энергетики Франции Сеголен Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается, что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учета отопления)[3]

[неавторитетный источник?] .

В феврале 2017 года в нормандской деревне французским правительством была открыта дорога из солнечных батарей. Километровый участок дороги оборудован 2880 солнечными панелями. Такое дорожное покрытие обеспечит электроэнергией уличные фонари деревни Tourouvre-au-Perche. Панели каждый год будут вырабатывать 280 мегаватт час электроэнергии. Строительство отрезка дороги обошлось в 5 миллионов евро.[4]

Использование в космосе

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Использование в медицине

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство[5].

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт

[6] на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D[7][8]). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[9] быть менее 100 Вт/м²[источник не указан 1118 дней]. С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %[источник не указан 1118 дней]. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях[10][неавторитетный источник?
]
.

Фотоэлементы и модули делятся в зависимости от типа и бывают: монокристалические, поликристалические, аморфные (гибкие, пленочные).[11]

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %[12]. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %[13]. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд[14].

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния

[15].

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4×4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %[16], а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 % [17][неавторитетный источник?]. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46 %[18][неавторитетный источник?][19].

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца[20].

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200—300 нм) светом (то есть электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85 %

[21][22].

Также, в 2018 году, с открытием флексо-фотовольтаического эффекта, обнаружена возможность увеличения КПД фотоэлементов[23]., а также за счёт продления жизни горячих носителей (электронов) теоретический предел их эффективности поднялся с 34 сразу до 66 процентов[24].

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях[25][неавторитетный источник?]
ТипКоэффициент фотоэлектрического преобразования, %
Кремниевые24,7
Si (кристаллический)
Si (поликристаллический)
Si (тонкопленочная передача)
Si (тонкопленочный субмодуль)10,4
III-V
GaAs (кристаллический)25,1
GaAs (тонкопленочный)24,5
GaAs (поликристаллический)18,2
InP (кристаллический)21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент)19,9
CIGS (субмодуль)16,6
CdTe (фотоэлемент)16,5
Аморфный/Нанокристаллический кремний
Si (аморфный)9,5
Si (нанокристаллический)10,1
Фотохимические
На базе органических красителей10,4
На базе органических красителей (субмодуль)7,9
Органические
Органический полимер5,15
Многослойные
GaInP/GaAs/Ge32,0
GaInP/GaAs30,3
GaAs/CIS (тонкопленочный)25,8
a-Si/mc-Si (тонкий субмодуль)11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. В облачную погоду при отсутствии прямых солнечных лучей крайне неэффективными становятся панели, в которых используются линзы для концентрирования излучения, так как исчезает эффект линзы.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Недостатки солнечной электроэнергетики

  • Необходимость использования больших площадей;
  • Солнечная электростанция не работает ночью и недостаточно эффективно работает в вечерних сумерках, в то время как пик электропотребления приходится именно на вечерние часы;
  • Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д.[26]

Cолнечные электростанции подвергаются критике из-за высоких издержек.

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры порядка 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость нелинейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей[27].

Производство солнечных модулей

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определённое количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована[28].

Пятерка крупнейших производителей

Крупнейшие производители фотоэлектрических элементов (по суммарной мощности) в 2016 году.[29]

  1. Jinko Solar[en]
  2. Trina Solar
  3. Hanwha QCELLS
  4. Canadian Solar
  5. JA Solar

См. также

Примечания

  1. ↑ Spain requires new buildings use solar power
  2. ↑ Арендаторам домов с солнечными батареями будет выплачиваться дотация, Germania.one.
  3. ↑ Франция построит 1000 км дорог с солнечными батареями
  4. ↑ Во Франции открыли первую дорогу из солнечных панелей, theUK.one.
  5. ↑ ТАСС: Наука — Ученые Южной Кореи создали подкожную солнечную батарею
  6. ↑ «Solar Spectra: Air Mass Zero»
  7. ↑ «Solar Photovoltaic Technologies»
  8. ↑ «Reference Solar Spectral Irradiance: Air Mass 1.5»
  9. ↑ По материалам: www.ecomuseum.kz
  10. ↑ «Конкурентоспособность энергетики» // Photon Consulting
  11. ↑ Виды солнечных батарей.
  12. ↑ Австралийцы установили новый рекорд КПД солнечных батарей (рус.). Membrana. Membrana (28 августа 2009). Проверено 6 марта 2011. Архивировано 25 июня 2012 года.
  13. ↑ На рынок выходят солнечные батареи с рекордным КПД (рус.). Membrana. Membrana (25 ноября 2010). Проверено 6 марта 2011. Архивировано 25 июня 2012 года.
  14. ↑ Solar Junction Breaks Concentrated Solar World Record with 43,5 % Efficiency
  15. ↑ Как сконцентрировать солнечный свет без концентраторов
  16. ↑ Sharp разработала концентрирующий фотоэлемент с кпд 44,4 %
  17. ↑ Новый рекорд КПД фотоэлемента: 44,7 %
  18. ↑ УЧЁНЫЕ ИЗ ИНСТИТУТА СОЛНЕЧНЫХ ЭНЕРГОСИСТЕМ ФРАУНГОФЕРА РАЗРАБОТАЛИ СОЛНЕЧНЫЕ БАТАРЕИ С КПД 46 % И ЭТО НОВЫЙ МИРОВОЙ РЕКОРД
  19. ↑ New world record for solar cell efficiency at 46 % — Fraunhofer ISE
  20. ↑ All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region
  21. Б. Берланд. Фотоэлементы уходят за горизонт: Оптические ректенны солнечных батарей (англ.). Национальная лаборатория возобновляемых источников энергии США (2003). Проверено 4 апреля 2015.
  22. Краснок А Е, Максимов И С, Денисюк А И, Белов П А, Мирошниченко А Е, Симовский К Р, Кившарь Ю С. Оптические наноантенны // Успехи физических наук. — 2013. — Т. 183, № 6. — С. 561–589. — DOI:10.3367/UFNr.0183.201306a.0561.
  23. Александр Дубов. Физики выдавили из солнечных батарей дополнительную энергию. nplus1.ru. Проверено 25 апреля 2018.
  24. Александр Дубов. Химики продлили жизнь горячим электронам в перовскитных батареях. nplus1.ru. Проверено 20 июня 2018.
  25. ↑ Максимальные значения КПД фотоэлементов и модулей, достигнутые в лабораторных условиях  (недоступная ссылка — история). Nitol Solar Limited. Архивировано 17 июля 2008 года.
  26. Лапаева Ольга Федоровна. Трансформация энергетического сектора экономики при переходе к энергосберегающим технологиям и возобновляемым источникам энергии (рус.) // Вестник Оренбургского государственного университета. — 2010. — Вып. 13 (119).
  27. David Szondy. Stanford researchers develop self-cooling solar cells. (англ.). gizmag.com (25 July 2014). Проверено 6 июня 2016.
  28. ↑ Производство фотоэлектрического солнечного модуля. Архивировано 25 июня 2012 года.
  29. ↑ Bloomberg New Energy Finance Tier 1 module maker list, Q2 2016

Ссылки

Солнечная батарея — Википедия

Солнечная батарея — объединение фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 года, в США был запущен спутник с использованием солнечных батарей — «Авангард-1». 15 мая 1958 года в СССР также был запущен спутник с использованием солнечных батарей — «Спутник-3».

Использование

Портативная электроника

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили

На крыше автомобиля Prius, 2008

Для подзарядки электромобилей.

Авиация

Одним из проектов по созданию самолета, использующего исключительно энергию солнца, является Solar Impulse.

Энергообеспечение зданий

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование[1].

В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.[2]

Энергообеспечение населённых пунктов

Солнечно-ветровая энергоустановка

Дорожное покрытие

В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей.

В 2016 году министр экологии и энергетики Франции Сеголен Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается, что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учета отопления)[3]

[неавторитетный источник?] .

В феврале 2017 года в нормандской деревне французским правительством была открыта дорога из солнечных батарей. Километровый участок дороги оборудован 2880 солнечными панелями. Такое дорожное покрытие обеспечит электроэнергией уличные фонари деревни Tourouvre-au-Perche. Панели каждый год будут вырабатывать 280 мегаватт час электроэнергии. Строительство отрезка дороги обошлось в 5 миллионов евро.[4]

Использование в космосе

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Использование в медицине

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство[5].

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт[6] на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D[7][8]). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[9] быть менее 100 Вт/м²[источник не указан 1118 дней]. С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %[источник не указан 1118 дней]. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях[10][неавторитетный источник?].

Фотоэлементы и модули делятся в зависимости от типа и бывают: монокристалические, поликристалические, аморфные (гибкие, пленочные).[11]

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %[12]. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %[13]. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд[14].

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния[15].

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4×4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %[16], а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 % [17][неавторитетный источник?]. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46 %[18][неавторитетный источник?][19].

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца[20].

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200—300 нм) светом (то есть электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85 %[21][22].

Также, в 2018 году, с открытием флексо-фотовольтаического эффекта, обнаружена возможность увеличения КПД фотоэлементов[23]., а также за счёт продления жизни горячих носителей (электронов) теоретический предел их эффективности поднялся с 34 сразу до 66 процентов[24].

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях[25][неавторитетный источник?]
ТипКоэффициент фотоэлектрического преобразования, %
Кремниевые24,7
Si (кристаллический)
Si (поликристаллический)
Si (тонкопленочная передача)
Si (тонкопленочный субмодуль)10,4
III-V
GaAs (кристаллический)25,1
GaAs (тонкопленочный)24,5
GaAs (поликристаллический)18,2
InP (кристаллический)21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент)19,9
CIGS (субмодуль)16,6
CdTe (фотоэлемент)16,5
Аморфный/Нанокристаллический кремний
Si (аморфный)9,5
Si (нанокристаллический)10,1
Фотохимические
На базе органических красителей10,4
На базе органических красителей (субмодуль)7,9
Органические
Органический полимер5,15
Многослойные
GaInP/GaAs/Ge32,0
GaInP/GaAs30,3
GaAs/CIS (тонкопленочный)25,8
a-Si/mc-Si (тонкий субмодуль)11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. В облачную погоду при отсутствии прямых солнечных лучей крайне неэффективными становятся панели, в которых используются линзы для концентрирования излучения, так как исчезает эффект линзы.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Недостатки солнечной электроэнергетики

  • Необходимость использования больших площадей;
  • Солнечная электростанция не работает ночью и недостаточно эффективно работает в вечерних сумерках, в то время как пик электропотребления приходится именно на вечерние часы;
  • Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д.[26]

Cолнечные электростанции подвергаются критике из-за высоких издержек.

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры порядка 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость нелинейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей[27].

Производство солнечных модулей

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определённое количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована[28].

Пятерка крупнейших производителей

Крупнейшие производители фотоэлектрических элементов (по суммарной мощности) в 2016 году.[29]

  1. Jinko Solar[en]
  2. Trina Solar
  3. Hanwha QCELLS
  4. Canadian Solar
  5. JA Solar

См. также

Примечания

  1. ↑ Spain requires new buildings use solar power
  2. ↑ Арендаторам домов с солнечными батареями будет выплачиваться дотация, Germania.one.
  3. ↑ Франция построит 1000 км дорог с солнечными батареями
  4. ↑ Во Франции открыли первую дорогу из солнечных панелей, theUK.one.
  5. ↑ ТАСС: Наука — Ученые Южной Кореи создали подкожную солнечную батарею
  6. ↑ «Solar Spectra: Air Mass Zero»
  7. ↑ «Solar Photovoltaic Technologies»
  8. ↑ «Reference Solar Spectral Irradiance: Air Mass 1.5»
  9. ↑ По материалам: www.ecomuseum.kz
  10. ↑ «Конкурентоспособность энергетики» // Photon Consulting
  11. ↑ Виды солнечных батарей.
  12. ↑ Австралийцы установили новый рекорд КПД солнечных батарей (рус.). Membrana. Membrana (28 августа 2009). Проверено 6 марта 2011. Архивировано 25 июня 2012 года.
  13. ↑ На рынок выходят солнечные батареи с рекордным КПД (рус.). Membrana. Membrana (25 ноября 2010). Проверено 6 марта 2011. Архивировано 25 июня 2012 года.
  14. ↑ Solar Junction Breaks Concentrated Solar World Record with 43,5 % Efficiency
  15. ↑ Как сконцентрировать солнечный свет без концентраторов
  16. ↑ Sharp разработала концентрирующий фотоэлемент с кпд 44,4 %
  17. ↑ Новый рекорд КПД фотоэлемента: 44,7 %
  18. ↑ УЧЁНЫЕ ИЗ ИНСТИТУТА СОЛНЕЧНЫХ ЭНЕРГОСИСТЕМ ФРАУНГОФЕРА РАЗРАБОТАЛИ СОЛНЕЧНЫЕ БАТАРЕИ С КПД 46 % И ЭТО НОВЫЙ МИРОВОЙ РЕКОРД
  19. ↑ New world record for solar cell efficiency at 46 % — Fraunhofer ISE
  20. ↑ All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region
  21. Б. Берланд. Фотоэлементы уходят за горизонт: Оптические ректенны солнечных батарей (англ.). Национальная лаборатория возобновляемых источников энергии США (2003). Проверено 4 апреля 2015.
  22. Краснок А Е, Максимов И С, Денисюк А И, Белов П А, Мирошниченко А Е, Симовский К Р, Кившарь Ю С. Оптические наноантенны // Успехи физических наук. — 2013. — Т. 183, № 6. — С. 561–589. — DOI:10.3367/UFNr.0183.201306a.0561.
  23. Александр Дубов. Физики выдавили из солнечных батарей дополнительную энергию. nplus1.ru. Проверено 25 апреля 2018.
  24. Александр Дубов. Химики продлили жизнь горячим электронам в перовскитных батареях. nplus1.ru. Проверено 20 июня 2018.
  25. ↑ Максимальные значения КПД фотоэлементов и модулей, достигнутые в лабораторных условиях  (недоступная ссылка — история). Nitol Solar Limited. Архивировано 17 июля 2008 года.
  26. Лапаева Ольга Федоровна. Трансформация энергетического сектора экономики при переходе к энергосберегающим технологиям и возобновляемым источникам энергии (рус.) // Вестник Оренбургского государственного университета. — 2010. — Вып. 13 (119).
  27. David Szondy. Stanford researchers develop self-cooling solar cells. (англ.). gizmag.com (25 July 2014). Проверено 6 июня 2016.
  28. ↑ Производство фотоэлектрического солнечного модуля. Архивировано 25 июня 2012 года.
  29. ↑ Bloomberg New Energy Finance Tier 1 module maker list, Q2 2016

Ссылки

Солнечная батарея – это… Что такое Солнечная батарея?

Солнечная батарея — бытовой термин, используемый в разговорной речи или ненаучной прессе. Обычно под термином «солнечная батарея» или «солнечная панель» подразумевается несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток.

В отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя, солнечная батарея производит непосредственно электричество. Однако для производства электричества из солнечной энергии используются и солнечные коллекторы: собранную тепловую энергию можно использовать и для вырабатывания электричества. Крупные солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и др. машин (паровой, газотурбинной, термоэлектрической и др.), называются Гелиоэлектростанции (ГЕЭС).

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается быстрыми темпами в самых разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

Использование

Микроэлектроника

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили

На крыше автомобиля Prius, 2008

Для подзарядки электромобилей.

Энергообеспечение зданий

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, очень широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года должны быть оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование [1].

В Нидерландах запущен проект по созданию оконного стекла «Smart Energy Glass» с функциональностью фотоэлемента (см. сайт проекта  (англ.) ).

Энергообеспечение населённых пунктов

Солнечно-ветровая энергоустановка

Использование в космосе

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт[2] на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D [3], [4]). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[5] быть менее 100 Вт/м². С помощью наиболее распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.[6]

Сообщается, что в отдельных лабораториях получены солнечные элементы с эффективностью 43 %[7]. В январе 2011 года ожидается поступление на рынок солнечных элементов с эффективностью 39%[8].

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях[9]
ТипКоэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический)24,7
Si (поликристаллический)20,3
Si (тонкопленочная передача)16,6
Si (тонкопленочный субмодуль)10,4
III-V
GaAs (кристаллический)25,1
GaAs (тонкопленочный)24,5
GaAs (поликристаллический)18,2
InP (кристаллический)21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент)19,9
CIGS (субмодуль)16,6
CdTe (фотоэлемент)16,5
Аморфный/Нанокристаллический кремний
Si (аморфный)9,5
Si (нанокристаллический)10,1
Фотохимические
На базе органических красителей10,4
На базе органических красителей (субмодуль)7,9
Органические
Органический полимер5,15
Многослойные
GaInP/GaAs/Ge32,0
GaInP/GaAs30,3
GaAs/CIS (тонкопленочный)25,8
a-Si/mc-Si (тонкий субмодуль)11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество PV элементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.[10]

Топ десять

Крупнейшие производители фотоэлектрических элементов (по суммарной мощности) в 2010 году.[11]

  1. Suntech Power (англ.)русск.
  2. First Solar (англ.)русск.
  3. Sharp Solar (англ.)русск.
  4. Yingli (англ.)русск.
  5. Trina Solar (англ.)русск.
  6. Canadian Solar (англ.)русск.
  7. Hanwha Solarone (англ.)русск.
  8. SunPower (англ.)русск.
  9. Renewable Energy Corporation (англ.)русск.
  10. SolarWorld

Производство в России

Заводы производящие солнечные батареи[источник не указан 646 дней]:

  1. ООО «Хевел» (Новочебоксарск)[12]
  2. «Телеком-СТВ» (Зеленоград)
  3. «Солнечный ветер» (Краснодар)[13]
  4. ОАО «НПП «Квант» (Москва)[14][15]
  5. ОАО «Рязанский завод металлокерамических приборов»
  6. ЗАО “Термотрон-завод” (Брянск)
  7. ОАО «Сатурн» Краснодар[16]

См. также

Ссылки

Примечания

  1. Spain requires new buildings use solar power
  2. «Solar Spectra: Air Mass Zero»
  3. «Solar Photovoltaic Technologies»
  4. «Reference Solar Spectral Irradiance: Air Mass 1.5»
  5. По материалам: www.ecomuseum.kz
  6. «Конкурентоспособность энергетики» // Photon Consulting
  7. Австралийцы установили новый рекорд КПД солнечных батарей  (рус.). Membrana. Membrana (28 августа 2009). Архивировано из первоисточника 25 июня 2012. Проверено 6 марта 2011.
  8. На рынок выходят солнечные батареи с рекордным КПД  (рус.). Membrana. Membrana (25 ноября 2010). Архивировано из первоисточника 25 июня 2012. Проверено 6 марта 2011.
  9. http://www.nitolsolar.com/rutechnologies/
  10. Производство фотоэлектрического солнечного модуля. Архивировано из первоисточника 25 июня 2012.
  11. PVinsights announces worldwide 2010 top 10 ranking of PV module makers
  12. ООО «Хевел». Архивировано из первоисточника 25 июня 2012.
  13. Солнечный ветер. Архивировано из первоисточника 25 июня 2012.
  14. Официальный сайт предприятия
  15. «Солнечные» крылья. Сюжет телестудии Роскосмоса февраль 2012 г.
  16. ОАО «Сатурн» Краснодар. Архивировано из первоисточника 25 июня 2012.
Есть более полная статья

Полимерные солнечные батареи — Википедия

Полимерные солнечные батареи — разновидность солнечных батарей, которые производят электричество из солнечного света. Берет своё начало с 1992 года, когда впервые были опубликованы данные о переносе заряда с полупроводникового полимера на акцептор.[1] Относительно новая технология, активно исследуемая в университетах, национальных лабораториях и нескольких компаниях по всему миру. Демонстрируются устройства-прототипы с эффективностью конверсии энергии 11,5 %.[2]

Функциональный прототип производства Beletric OPV

Устройство полимерной солнечной батареи

Полимерные солнечные батареи обычно представляют собой послойно наложенные друг на друга тонкие пленки из полимерных материалов, выполянющие различные функции.[3] В зависимости от субстрата, толщина одной батареи может быть от 500 нанометров.[4] Так, на прозрачную полимерную основу (субстрат), покрытую проводящим слоем оксида индия-олова, служащую электродом, наносят фотоактивный слой, состоящий из электрон-акцептора и электрон-донора.[5]

Есть два типа фотоактивных слоев:

Поверх фотоактивного слоя располагается металлический электрод, кальциевый, алюминиевый или серебряный, в зависимости от архитектуры батареи. В современных образцах между фотоактивных слоем и электродами помещают дополнительные слои: электрон-проводящие или дырко-проводящие, или соответственно электрон-блокирующие и дырко-блокирующие. Расположение этих слоев относительно фотоактивного слоя определяется архитектурой батареи.[8]

Архитектура батареи бывает двух типов: прямая (стандартная) или обратная (перевернутая). В перевернутой, как следует из названия, электрические заряды экстрагируются противоположными электродами. Так, исследования показали, что у батарей стандартной архитектуры эффективность выше, чем у перевернутых, однако стабильность ниже.

Полимерная солнечная батарея стандартной архитектуры

Низкая стабильность обусловлена тем фактом, что в стандартных батареях в качестве электрода используется кальций, который быстро окисляется на воздухе до кальция оксида, который имеет худшую проводимость. В свою очередь, обратная архитектура позволяет использовать в качестве электродов серебро и золото, более устойчивые к окислению.[9]

Для улучшения экстракции электронов в перевернутых батареях часто используют прозрачные проводящие оксиды, такие как титана оксид и цинка оксид, часто в виде наночастиц или наноструктурированных пленок. В последнее время больше внимания уделяется исследованиям других слоев, способных улучшать экстракцию электронов, в том числе полимерных.

Для улучшения экстракции дырок применяются прозрачные проводящие полимеры, например смесь поли(3,4-этилендиокситиофена) и полистиролсульфоната (PEDOT:PSS) или другие проводящие оксиды с более подходящими для этого электронными уровнями, такие как ванадия оксид, молибдена оксид. В последнее время все больший интерес вызывают полупроводники на основе графена и графена оксида.

Физические процессы в полимерных батареях

Поглощение света

В полимерных солнечных батареях фотоактивный слой состоит из двух типов материалов: донора и акцептора. При попадании света на поверхность батареи, донор (обычно сопряженный полимер) поглощает фотон света. Длина волны (т.е. энергия) этого фотона зависит напрямую от химической структуры донора и его организации в пленке слоя (например, кристалличности). Поглощенная энергия фотона возбуждает электрон из основного состояния в возбужденное состояние, или из верхней занятой молекулярной орбитали (англ. HOMO) до низшей свободной молекулярной орбитали (англ. LUMO).[10]

Экситон

Полученная в результате такого возбуждения квазичастица называется экситон Френкеля и состоит из дырки (то есть отсутствия электрона, положительного заряда) и возбужденного электрона (отрицательного заряда).[11] Экситон не имеет заряда и не может служить носителем, однако может перемещаться по сопряженной системе донора. В зависимости от спинового состояния экситоны могут быть синглетными и триплетными. Срок жизни синглетного экситона составляет наносекунды, а триплетного около милисекунды или больше. При определенных условиях синглетный экситон может перейти в триплет.[12]

Экситон перемещается в системе донора не далее 5-20 нм, в зависимости от вида полимера. Далее он имеет две возможности:

  • Диссоциировать и разделиться на отдельные положительный и отрицательный заряды, если экситон встретит на своем пути акцептор;
  • Распасться с излучением поглощенной энергии (путём фосфоресценции или люминесценции, в зависимости от типа экситона), если ближайшая молекула донора расположена за пределами возможной длины перемещения экситона.

Для полимерных солнечных батарей последний путь представляет собой потерю эффективности: важны только экситоны, которые могут диссоциировать. Энергия сопряжения дырки и электрона в экситоне в полимерных системах очень высока, около 0,5-1 эВ и поэтому при комнатной температуре термодинамической составляющей недостаточно, чтобы разделить экситон на заряды.[13] Поэтому для разделения экситона важны два аспекта: отсутствие порядка в системе (англ. disorder) и присутствие второго компонента, акцептора.

Низшая свободная молекулярная орбиталь акцептора должна иметь меньшую энергию, чтобы инициировать диссоциацию экситона и облегчить переход электрона на молекулы акцептора. Так, диссоциация экситона происходит на границе двух фаз: донора и акцептора, поэтому эффективность диссоциации экситонов намного выше в системах со смешанными фазами.[14] Качество границ двух фаз, так называемого интерфейса, во многом определяет эффективность батареи, в особенности силу генерируемого тока. При диссоциации экситона, электрон переходит на акцептор, а дырка остается в фазе донора.

Комплекс переноса заряда

Однако, после диссоциации дырка и электрон не являются отдельными зарядами. Они пребывают на границе раздела фаз в связанном состоянии в виде так называемого переходного комплекса или комплекса переноса заряда (англ. charge transfer complex), состоящий из электрона и дырки, все еще связанных между собой, но с меньшей энергией, чем в экситоне.[15] Такой комплекс может или разделиться окончательно под действием внутреннего поля (определяемого разницей в энергетических уровнях донора и акцептора) или же рекомбинировать (объединиться в электрон на основном уровне без выделения энергии путём излучения).[16] Подобная рекомбинация называется сдвоенной (geminate), потому что оба рекомбинирующих партнера имеют общее происхождение (из одного и того же экситона).

Транспорт электронов

Если же электрону и дырке удалось разделиться, то они перемещаются до электродов, где экстрагируются соответствующими электродами. Электрон перемещается по фазе акцептора до катода, а дырка – по фазе донора до анода. Если на своем пути отдельные заряды встречают противоположный заряд, который не попал к электроду по каким-то причинам, то они также рекомбинируют.[17] Такая рекомбинация называется не-сдвоенная, потому что рекомбинирующие электрон и дырка имеют различное происхождения (из разных экситонов). Рекомбинация зарядов является одним из факторов, ограничивающих эффективность солнечных батарей, так как рекомбинированные заряды не могут быть экстрагированы.[18]

Поскольку для успешного транспорта зарядов каждая фаза должна быть непрерывной во всем фотоактивном слое, чтобы заряд беспрепятственно добрался до электродов, наилучшая экстракция наблюдается в батареях, где слой акцептора нанесен на слой донора без перемешивания. Однако для диссоциации экситонов такой подход неэффективен из-за маленькой границы раздела фаз.

Так, оптимальная морфология фотоактивного слоя представляет собой компромисс между транспортом электронов и диссоциацией экситонов на границе фаз. Оптимальная морфология слоя зависит от большого числа факторов: химической структуры донора и акцептора, их термических свойств, температуры и растворителя, а также метода получения слоя.[19][20][21]

Сравнение с кремниевыми батареями

В сравнении с устройствами, основанными на кремниевой технологии, полимерные солнечные батареи легки (что важно для автономных датчиков малых размеров), доступны, недороги в производстве, гибки, оказывают незначительное влияние на окружающую среду, однако энергетический выход едва достигает одной четверти обычных кремниевых солнечных батарей.[22][23] Полимерные солнечные батареи также страдают значительным эффектом деградации: их эффективность снижается под воздействием окружающей среды. Хорошие защитные покрытия до сих пор не разработаны.

Открытым вопросом остаётся степень коммерческой конкуренции с кремниевыми солнечными батареями. Несмотря на то, что полимерные ячейки относительно дёшевы в производстве, индустрия кремниевых солнечных батарей имеет важное промышленное преимущество, будучи способной использовать кремниевую инфраструктуру, развитую для компьютерной индустрии. Однако, производители солнечных батарей находятся в невыгодном положении, поскольку вынуждены конкурировать с более крупной компьютерной индустрией в снабжении высококачественным кремнием.

Эффективность остаётся проблемой для этого типа технологии. Традиционные кремниевые батареи достигают эффективности 20 % и более. Наивысшая эффективность достигнута для солнечных батарей, используемых для питания космических спутников. Такие батареи демонстрируют эффективность до 40 %, что, соответственно, в два раза выше, чем имеют «наземные» батареи.

Другие солнечные батареи третьего поколения

См. также

Ссылки

  1. ↑ N.S. Sariciftci, L. Smilowitz, A.J. Heeger,F. Wudl, Photoinduced Electron Transfer from Conducting Polymers onto Buckminsterfullerene, Science 258, (1992) 1474
  2. ↑ NREL Таблица эффективности солнечных батарей Архивировано 19 июля 2015 года.
  3. ↑ Polymer-Solar-Cells
  4. ↑ Scientists develop ultra-thin solar cells
  5. ↑ The layer stack
  6. ↑ Yu, G.; Pakbaz, K.; Heeger, A. J. Appl. Phys. Lett. 1994, 64 (25), 3422–3424.
  7. ↑ Мир современных материалов – Перспективная альтернатива: полимерные солнечные батареи
  8. ↑ Litzov I., Brabec C.Development of Efficient and Stable Inverted Bulk Heterojunction (BHJ) Solar Cells Using Different Metal Oxide Interfaces. Materials 2013, 6, 5796-5820
  9. ↑ Electrodes
  10. ↑ How do polymer solar cells work
  11. ↑ Улавливание лучей: органические солнечные батареи делают прыжок вперед
  12. ↑ Энергию можно передавать с помощью триплетных экситонов
  13. ↑ Экситон
  14. ↑ Ориентация молекул определяет эффективность органических солнечных батарей
  15. ↑ M. C.; Sariciftci, N. S. Prog. Polym. Sci. 2013, 38 (12), 1929–1940. Open Access
  16. ↑ 11.3. Генерация и рекомбинация в полупроводниках и диэлектриках
  17. ↑ Генерация носителей заряда.
  18. ↑ Процессы рекомбинации неравновесных носителей тока в полупроводниках
  19. ↑ Более эффективные солнечные батареи
  20. ↑ Органические солнечные батареи
  21. ↑ Раскрыт секрет повышения эффективности солнечных элементов
  22. ↑ Полимерные солнечные батареи
  23. ↑ Разбираемся в многообразии видов солнечных панелей

Солнечная батарея — Википедия. Что такое Солнечная батарея

Солнечная батарея — объединение фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 года, в США был запущен спутник с использованием солнечных батарей — «Авангард-1». 15 мая 1958 года в СССР также был запущен спутник с использованием солнечных батарей — «Спутник-3».

Использование

Портативная электроника

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили

На крыше автомобиля Prius, 2008

Для подзарядки электромобилей.

Авиация

Одним из проектов по созданию самолета, использующего исключительно энергию солнца, является Solar Impulse.

Энергообеспечение зданий

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование[1].

В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.[2]

Энергообеспечение населённых пунктов

Солнечно-ветровая энергоустановка

Дорожное покрытие

В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей.

В 2016 году министр экологии и энергетики Франции Сеголен Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается, что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учета отопления)[3]

[неавторитетный источник?] .

В феврале 2017 года в нормандской деревне французским правительством была открыта дорога из солнечных батарей. Километровый участок дороги оборудован 2880 солнечными панелями. Такое дорожное покрытие обеспечит электроэнергией уличные фонари деревни Tourouvre-au-Perche. Панели каждый год будут вырабатывать 280 мегаватт час электроэнергии. Строительство отрезка дороги обошлось в 5 миллионов евро.[4]

Использование в космосе

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Использование в медицине

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство[5].

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт[6] на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D[7][8]). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[9] быть менее 100 Вт/м²[источник не указан 1113 дней]. С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %[источник не указан 1113 дней]. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях[10][неавторитетный источник?].

Фотоэлементы и модули делятся в зависимости от типа и бывают: монокристалические, поликристалические, аморфные (гибкие, пленочные).[11]

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %[12]. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %[13]. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд[14].

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния[15].

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4×4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %[16], а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 % [17][неавторитетный источник?]. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46 %[18][неавторитетный источник?][19].

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца[20].

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200—300 нм) светом (то есть электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85 %[21][22].

Также, в 2018 году, с открытием флексо-фотовольтаического эффекта, обнаружена возможность увеличения КПД фотоэлементов[23]., а также за счёт продления жизни горячих носителей (электронов) теоретический предел их эффективности поднялся с 34 сразу до 66 процентов[24].

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях[25][неавторитетный источник?]
ТипКоэффициент фотоэлектрического преобразования, %
Кремниевые24,7
Si (кристаллический)
Si (поликристаллический)
Si (тонкопленочная передача)
Si (тонкопленочный субмодуль)10,4
III-V
GaAs (кристаллический)25,1
GaAs (тонкопленочный)24,5
GaAs (поликристаллический)18,2
InP (кристаллический)21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент)19,9
CIGS (субмодуль)16,6
CdTe (фотоэлемент)16,5
Аморфный/Нанокристаллический кремний
Si (аморфный)9,5
Si (нанокристаллический)10,1
Фотохимические
На базе органических красителей10,4
На базе органических красителей (субмодуль)7,9
Органические
Органический полимер5,15
Многослойные
GaInP/GaAs/Ge32,0
GaInP/GaAs30,3
GaAs/CIS (тонкопленочный)25,8
a-Si/mc-Si (тонкий субмодуль)11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. В облачную погоду при отсутствии прямых солнечных лучей крайне неэффективными становятся панели, в которых используются линзы для концентрирования излучения, так как исчезает эффект линзы.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Недостатки солнечной электроэнергетики

  • Необходимость использования больших площадей;
  • Солнечная электростанция не работает ночью и недостаточно эффективно работает в вечерних сумерках, в то время как пик электропотребления приходится именно на вечерние часы;
  • Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д.[26]

Cолнечные электростанции подвергаются критике из-за высоких издержек.

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры порядка 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость нелинейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей[27].

Производство солнечных модулей

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определённое количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована[28].

Пятерка крупнейших производителей

Крупнейшие производители фотоэлектрических элементов (по суммарной мощности) в 2016 году.[29]

  1. Jinko Solar[en]
  2. Trina Solar
  3. Hanwha QCELLS
  4. Canadian Solar
  5. JA Solar

См. также

Примечания

  1. ↑ Spain requires new buildings use solar power
  2. ↑ Арендаторам домов с солнечными батареями будет выплачиваться дотация, Germania.one.
  3. ↑ Франция построит 1000 км дорог с солнечными батареями
  4. ↑ Во Франции открыли первую дорогу из солнечных панелей, theUK.one.
  5. ↑ ТАСС: Наука — Ученые Южной Кореи создали подкожную солнечную батарею
  6. ↑ «Solar Spectra: Air Mass Zero»
  7. ↑ «Solar Photovoltaic Technologies»
  8. ↑ «Reference Solar Spectral Irradiance: Air Mass 1.5»
  9. ↑ По материалам: www.ecomuseum.kz
  10. ↑ «Конкурентоспособность энергетики» // Photon Consulting
  11. ↑ Виды солнечных батарей.
  12. ↑ Австралийцы установили новый рекорд КПД солнечных батарей (рус.). Membrana. Membrana (28 августа 2009). Проверено 6 марта 2011. Архивировано 25 июня 2012 года.
  13. ↑ На рынок выходят солнечные батареи с рекордным КПД (рус.). Membrana. Membrana (25 ноября 2010). Проверено 6 марта 2011. Архивировано 25 июня 2012 года.
  14. ↑ Solar Junction Breaks Concentrated Solar World Record with 43,5 % Efficiency
  15. ↑ Как сконцентрировать солнечный свет без концентраторов
  16. ↑ Sharp разработала концентрирующий фотоэлемент с кпд 44,4 %
  17. ↑ Новый рекорд КПД фотоэлемента: 44,7 %
  18. ↑ УЧЁНЫЕ ИЗ ИНСТИТУТА СОЛНЕЧНЫХ ЭНЕРГОСИСТЕМ ФРАУНГОФЕРА РАЗРАБОТАЛИ СОЛНЕЧНЫЕ БАТАРЕИ С КПД 46 % И ЭТО НОВЫЙ МИРОВОЙ РЕКОРД
  19. ↑ New world record for solar cell efficiency at 46 % — Fraunhofer ISE
  20. ↑ All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region
  21. Б. Берланд. Фотоэлементы уходят за горизонт: Оптические ректенны солнечных батарей (англ.). Национальная лаборатория возобновляемых источников энергии США (2003). Проверено 4 апреля 2015.
  22. Краснок А Е, Максимов И С, Денисюк А И, Белов П А, Мирошниченко А Е, Симовский К Р, Кившарь Ю С. Оптические наноантенны // Успехи физических наук. — 2013. — Т. 183, № 6. — С. 561–589. — DOI:10.3367/UFNr.0183.201306a.0561.
  23. Александр Дубов. Физики выдавили из солнечных батарей дополнительную энергию. nplus1.ru. Проверено 25 апреля 2018.
  24. Александр Дубов. Химики продлили жизнь горячим электронам в перовскитных батареях. nplus1.ru. Проверено 20 июня 2018.
  25. ↑ Максимальные значения КПД фотоэлементов и модулей, достигнутые в лабораторных условиях  (недоступная ссылка — история). Nitol Solar Limited. Архивировано 17 июля 2008 года.
  26. Лапаева Ольга Федоровна. Трансформация энергетического сектора экономики при переходе к энергосберегающим технологиям и возобновляемым источникам энергии (рус.) // Вестник Оренбургского государственного университета. — 2010. — Вып. 13 (119).
  27. David Szondy. Stanford researchers develop self-cooling solar cells. (англ.). gizmag.com (25 July 2014). Проверено 6 июня 2016.
  28. ↑ Производство фотоэлектрического солнечного модуля. Архивировано 25 июня 2012 года.
  29. ↑ Bloomberg New Energy Finance Tier 1 module maker list, Q2 2016

Ссылки

Как устроены и работают солнечные батареи

Солнечная энергетика становится все более популярной во всем мире. Вместе с коллегами из специализированного портала Elektrik мы разбирались, как устроена солнечная батарея, из чего она состоит и куда отправляется получаемая энергия.

В наше время практически каждый может собрать и получить в свое распоряжение свой независимый источник электроэнергии на солнечных батареях (в научной литературе они называются фотоэлектрическими панелями).

Дорогостоящее оборудование со временем компенсируется возможностью получать бесплатную электроэнергию. Важно, что солнечные батареи – это экологически чистый источник энергии. За последние годы цены на фотоэлектрические панели упали в десятки раз и они продолжают снижаться, что говорит о больших перспективах при их использовании.

В классическом виде такой источник электроэнергии будет состоять из следующих частей: непосредственно, солнечной батареи (генератора постоянного тока), аккумулятора с устройством контроля заряда и инвертора, который преобразует постоянный ток в переменный.

Солнечные батареи состоят из набора солнечных элементов (фотоэлектрических преобразователей), которые непосредственно преобразуют солнечную энергию в электрическую.

Большинство солнечных элементов производят из кремния, который имеет довольно высокую стоимость. Этот факт определят высокую стоимость электрической энергии, которая получается при использовании солнечных батарей.

Распространены два вида фотоэлектрических преобразователей: сделанные из монокристаллического и поликристаллического кремния. Они отличаются технологией производства. Первые имеют кпд до 17,5%, а вторые – 15%.

Наиболее важным техническим параметром солнечной батареи, которая оказывает основное влияние на экономичность всей установки, является ее полезная мощность. Она определяется напряжением и выходным током. Эти параметры зависят от интенсивности солнечного света, попадающего на батарею.

Электродвижущая сила отдельных солнечных элементов не зависит от их площади и снижается при нагревании батареи солнцем, примерно на 0,4% на 1 гр. С. Выходной ток зависит от интенсивности солнечного излучения и размера солнечных элементов. Чем ярче солнечный свет, тем больший ток генерируется солнечными элементами. Зарядный ток и отдаваемая мощность в пасмурную погоду резко снижается. Это происходит за счет уменьшения отдаваемой батареей тока.

Если освещенная солнцем батарея замкнута на какую либо нагрузку с сопротивлением Rн, то в цепи появляется электрический ток I, величина которого определяется качеством фотоэлектрического преобразователя, интенсивностью освещения и сопротивлением нагрузки. Мощность Pн, которая выделяется в нагрузке определяется произведением Pн = IнUн, где Uн напряжение на зажимах батареи.

Наибольшая мощность выделяется в нагрузке при некотором оптимальном ее сопротивлении Rопт, которое соответствует наибольшему коэффициенту полезного действия (кпд) преобразования световой энергии в электрическую. Для каждого преобразователя имеется свое значение Rопт, которая зависит от качества, размера рабочей поверхности и степени освещенности.

Солнечная батарея состоит из отдельных солнечных элементов, которые соединяются последовательно и параллельно для того, чтобы увеличить выходные параметры (ток, напряжение и мощность). При последовательном соединении элементов увеличивается выходное напряжение, при параллельном – выходной ток.

Для того, чтобы увеличить и ток и напряжение комбинируют два этих способа соединения. Кроме того, при таком способе соединения выход из строя одного из солнечных элементов не приводит в выходу из строя всей цепочки, т.е. повышает надежность работы всей батареи.

Таким образом, солнечная батарея состоит из параллельно-последовательно соединенных солнечных элементов. Величина максимально возможного тока отдаваемого батареей прямо пропорциональна числу параллельно включенных, а электродвижущая сила – последовательно включенных солнечных элементов. Так, комбинируя типы соединения, собирают батарею с требуемыми параметрами.

Солнечные элементы батареи шунтируются диодами. Обычно их 4 – по одному, на каждую ¼ часть батареи. Диоды предохраняют от выхода из строя части батареи, которые по какой-то причине оказались затемненными, т. е. если в какой-то момент времени свет на них не попадает.

Батарея при этом временно генерирует на 25% меньшую выходную мощность, чем при нормальном освещении солнцем всей поверхности батареи.

При отсутствии диодов эти солнечные элементы будут перегреваться и выходить из строя, так как они на время затемнения превращаются в потребителей тока (аккумуляторы разряжаются через солнечные элементы), а при использовании диодов они шунтируются и ток через них не идет.

Получаемая электрическая энергия накапливается в аккумуляторах, а затем отдается в нагрузку. Аккумуляторы – химические источники тока. Заряд аккумулятора происходит тогда, когда к нему приложен потенциал, который больше напряжения аккумулятора.

Число последовательно и параллельно соединенных солнечных элементов должно быть таким, чтобы рабочее напряжение подводимое к аккумуляторам с учетом падения напряжения в зарядной цепи немного превышало напряжение аккумуляторов, а нагрузочный ток батареи обеспечивал требуемую величину зарядного тока.

Например, для зарядки свинцовой аккумуляторной батареи 12 В необходимо иметь солнечную батарею состоящую из 36 элементов.

При слабом солнечном свете заряд аккумуляторной батареи уменьшается и батарея отдает электрическую энергию электроприемнику, т.е. аккумуляторные батареи постоянно работают в режиме разряда и подзаряда.

Это процесс контролируется специальным контроллером. При циклическом заряде требуется постоянное напряжение или постоянный ток заряда.

При хорошей освещенности аккумуляторная батарея быстро заряжается до 90% своей номинальной емкости, а затем с меньшей скоростью заряда до полной емкости. Переключение на меньшую скорость заряда производится контроллером зарядного устройства.

Наиболее эффективно использование специальных аккумуляторов – гелевых (в батарее в качестве электролита применяется серная кислота) и свинцовыех батарей, которые сделанны по AGM-технологии. Этим батареям не нужны специальные условия для установки и не требуется обслуживание. Паспортный срок службы таких батарей – 10 – 12 лет при глубине разряда не более 20%. Аккумуляторные батареи никогда не должны разряжаться ниже этого значения, иначе их срок службы резко сокращается!

Аккумулятор подсоединяется к солнечной батарее через контроллер, который контролирует ее заряд. При заряде батареи на полную мощность к солнечной батареи подключается резистор, который поглощает избыточную мощность.

Для того чтобы преобразовать постоянное напряжение от аккумуляторной батареи в переменное напряжение, которой можно использовать для питания большинства электроприемников совместно с солнечной батарей можно использовать специальные устройства – инверторы.

Без использования инвертора от солнечной батареи можно питать электроприемники, работающие на постоянном напряжении, в т.ч. различную портативную технику, энергосберегающие источники света, например, те же светодиодные лампы.

Автор текста: Андрей Повный. Текст впервые опубликован на сайте Electrik.info. Перепечатано с согласия редакции.

Солнечные батареи Википедия

Солнечная батарея — объединение фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История[ | ]

В 1842 году Александр Эдмон Беккерель открыл эффект преобразования света в электричество. Чарльз Фриттс (англ. Charles Fritts) начал использовать селен для превращения света в электричество. Первые прототипы солнечных батарей были созданы итальянским фотохимиком Джакомо Луиджи Чамичаном.

25 марта 1948 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 10 лет, 17 марта 1958 года, в США был запущен спутник с использованием солнечных батарей — «Авангард-1». 15 мая 1958 года в СССР также был запущен спутник с использованием солнечных батарей — «Спутник-3».

Использование[ | ]

Портативная эл

Солнечная панель – Простая английская Википедия, бесплатная энциклопедия

Схематический символ солнечной панели

Панели солнечных батарей получают энергию солнца для использования людьми. Есть два типа солнечных панелей: те, которые собирают тепло (тепловые), и те, которые производят электричество (фотоэлектрические). Тепло от солнечных батарей часто используется для отопления помещений и горячего водоснабжения.

Солнечные панели собирают возобновляемую энергию. В 20-м веке некоторые использовали солнечное тепло для производства пара, чтобы паровая машина вращала генератор.В настоящее время производство электричества из солнечного света обходится дешевле. Это твердотельный способ производства электроэнергии, что означает отсутствие движущихся частей.

Домашние солнечные панели часто устанавливают на крышах домов. Коммерческие или промышленные установки часто устанавливаются на трекерах, установленных на земле. Трекеры направляют панель на солнце, когда солнце движется по небу. Фотоэлектрические панели также широко используются в космосе, где они являются одним из немногих доступных источников энергии.

Солнечные панели для тепла обычно изготавливаются из коробки с прозрачным окном сверху.Трубы проходят через коробку. Трубы и коробка обычно окрашиваются в черный цвет, потому что черный поглощает больше тепла, чем другие цвета. Трубы заполнены жидким теплоносителем, например водой или маслом. Насос перекачивает жидкость, которая нагревается под воздействием солнечных лучей. Когда горячая жидкость покидает панель, она попадает в теплообменник, который передает тепло воде или воздуху. После того, как охлаждающая жидкость покидает теплообменник, она снова закачивается в панель для сбора тепла.

Фотоэлектрические солнечные панели рассчитаны на срок службы около тридцати лет.Пока что большинство солнечных панелей, первоначально созданных в 1980-х годах, еще не достигли конца расчетного срока службы. Однако многие из солнечных панелей с истекшим сроком годности классифицируются как опасные отходы. Использованные солнечные панели, которые не считались опасными, могут быть переработаны для создания новых солнечных панелей. Более 90% солнечных панелей подлежат переработке для создания новых солнечных панелей или металлолома. Сначала панели ломаются, удаляя металлические рамы и стеклянную пластину, оставляя группу солнечных элементов зажатой между смолой этиленвинилацетата (EVA) и задней пленкой.Чтобы добраться до самих солнечных элементов, необходимо удалить смолу и подложку. [1] [2]

Десять основных применений солнечных панелей включают:

  • тепло для дома
  • силовые насосы
  • Зарядка аккумулятора внутреннего и внешнего освещения в солнечный день для использования в ночное время.
  • питает ваш дом, кемпер, хижину, сарай для инструментов или любое другое здание в этом отношении.
  • при обогреве бассейнов в солнечной системе водяного отопления используются солнечные панели для нагрева воды.Их можно поставить на крышу, чтобы они собирали солнечное тепло, а затем доставить в бассейн.
  • Солнечные батареи также используются в космических исследованиях и других видах транспорта. [3]

Солнечные панели стали намного дешевле в использовании по сравнению с нефтью, дизельным топливом и сжиженным природным газом в некоторых частях Азии. Солнечная энергия скоро станет основным источником энергии. За прошедшие годы было сделано много инноваций для улучшения солнечных панелей. Солнечные панели использовались для исследования космоса и разрабатываются для питания автомобилей.Наряду с этим ученые разрабатывают солнечные элементы из силикона, чтобы повысить его удобство. [4]

Солнечная черепица – это новый тип солнечных панелей, которые выглядят как обычная черепица из асфальта. Они используются там, где появление традиционных солнечных панелей может быть нежелательным, например, на крышах жилых домов. Солнечная черепица более дорогая и менее долговечная, чем обычные солнечные панели.

,

Панельная солнечная панель – Википедия, свободная энциклопедия

Módulos fotovoltaicos instalados sobre tejado
Dos paneles solares térmicos en un tejado
Dos tipos diferentes de paneles solares: fotovoltaicos (arriba) y térmicos (abajo) instalados sobre tejado.

Un Panel solar, placa solar или módulo solar es un dispositivo que capta la energía de la radiación solar para su aprovechamiento. El término comprende a los collectores solares, utilizados normalmente para producir agua caliente doméstica mediante energía solar térmica, y a los paneles fotovoltaicos, utilizados para generar electricidad mediante energía solar fotovoltaica.

Коллектор солнечной энергии [редактор]

Dos paneles solares térmicos en un tejado Generación de agua caliente con una instalación solar térmica de circuito cerrado.

Un calentador solar de agua usa la energía del sol para calentar un líquido, el cual transfiere el calor hacia un depósito acumulador de calor. En una casa hacia un aparato intercambiador de energía donde cede el calor y luego circa de vuelta hacia el panel para ser recalentado. Es una manera simple y efectiva de aprovechar la energía solar.

Панель солнечная fotovoltaico [редактировать]

Descripción [editar]

Los paneles fotovoltaicos o placas fotovoltaicas, están formados por numerosas celdas que convierten la luz en electricidad. Las celdas a veces son llamadas células fotovoltaicas. Estas celdas dependen del efecto fotovoltaico porque la energía lumínica производит позитивные и отрицательные продукты на полупроводниковых продуктах, производящих различные типы, производящие как un campo eléctrico capaz de generar una corriente.

Los materiales para celdas solares suelen ser silicio cristalino o arseniuro de galio. Los cristales de arseniuro de galio se fabrican especialmente para uso fotovoltaico, mientras que los cristales de silicio están disponibles en lingotes normalizados, más baratos, producidos mainmente para el consumo de la industrial microelectrónica. El silicio policristalino tiene una menor eficacia de converión, pero también menor coste.

Cuando se expone a luz solar directa, una celda de silicio de 6 cm de diámetro puede producir una corriente de alrededor 0,5 A и 0,5 V (эквивалентно 90 Вт / м², en un campo de normalmente 50-150 Вт / м², солнечная энергия и солнечная энергия).El arseniuro de galio es más eficaz que el silicio, pero también más costoso.

Las células de silicio más empleadas en los paneles fotovoltaicos se puede dividir en tres subcategorías:

  • Las células de silicio monocristalino están constituidas por un único cristal de silicio. Este tipo de células Presenta un color azul oscuro uniforme.
  • Las células de silicio policristalino (también llamado multicristalino) están constituidas por un concunto de cristales de silicio, lo que explica que su rendimiento sea algo inferior al de las células monocristalinas.Se caracterizan por un color azul más интенсивно.
  • Las células de silicio amorfo. Son menos eficientes que las células de silicio cristalino pero también más baratas. Este tipo de células es, por ejemplo, el que se emplea en aplicaciones solares como relojes o calcadoras.

Los lingotes cristalinos se cortan en discos finos como una oblea, pulidos para ellear posibles daños causados ​​por el corte. Se Introduction dopantes —impurezas añadidas para modificar las propiedades Concordoras — en las obleas, y se depositan Concordores metálicos en cada superficie: una fina rejilla en el lado donde da la luz solar y normalmente una hoja plana en el otro.Los paneles solares se construyen con estas celdas agrupadas en forma apropiada. Para protegerlos de daños, causados ​​por radiación o por el manejo de estos, en la superficie frontal se los cubre con una cubierta de vidrio y se pegan sobre un sustrato —el cual puede ser un panel rígido o una manta blanda—. Se hacen conexiones eléctricas en serie-paralelo para fijar el voltaje total de salida. El pegamento y el sustrato deben ser проводников térmicos, ya que las celdas se calientan al absber la energía infrarroja que no se convierte en electricidad.Debido a que el calentamiento de las celdas reduce la eficacia de operación es deseable minimizarlo. Los ensamblajes resultantes se llaman paneles solares.

Estructura [редактор]

Las estructuras para anclar los paneles solares son generalmente de aluminio con tornillería de acero inoxidable para assegurar una máxima ligereza y una mayor durabilidad en el tiempo. Las estructuras tienen medidas estándar para la superficie, orientación e inclinación —tanto en horizontal, como en vertical—.

La estructura suele estar compuesta de ángulos de aluminio, carril de fijación, triángulo, tornillos de anclaje (triángulo-ángulo), tornillo allen (generalmente de tuerca cuadrada, para la fijación del móza) y cuyas sizes dependen del espesor del módulo—. [1]

Uso de la energía [редактор]

Deben su aparición a la industry aeroespacial, y se han convertido en el medio más fiable de suministrar energía eléctrica a un satélite oa una sonda en las órbitas interiores del Sistema Solar, gracias a la mayor sinradiación sup. alta relación Potencia в песо.

En el ámbito terrestre, este tipo de energía se usa para alimentar innumerables aparatos autónomos, para abastecer refugios o casas aisladas de la red eléctrica y para producir electricidad a gran escala a través de redes de distribución. Debido a la creciente requirea de energías revables, la fabricación de células solares e instalaciones fotovoltaicas ha avanzado importantmente en los últimos años. [2] [3]

Operario instalando paneles solares sobre una estructura disñada al efecto.

Entre los años 2001 y 2012 se ha producido un crecimiento exponencial de la producción de energía fotovoltaica, doblándose aproximadamente cada dos años. [4] Si esta tendencia continúa, la energía fotovoltaica cubriría el 10% del consumo energético mundial en 2018, alcanzando una producción aproximada de 2200 TWh, [5] y podría llegar a proporidadecionar el 100% energéticas actuales en torno al año 2027. [6]

Experimentalmente también han sido usados ​​for dar energía a vehículos solares, por ejemplo en el World Solar Challenge Путешествие по Австралии или Каррера солнечная Атакама в Америке.Мучос Баркос [7] [8] y vehículos terrestres los usan para cargar sus baterías de forma autónoma, lejos de la red eléctrica.

Programas decentivos económicos, primero, y posteriormente sistemas de autoconsumo fotovoltaico y balance neto sin secondary, han apoyado la instalación de la fotovoltaica en un gran número de países, содействует эволюции газа, который может удалить газы. [9]

Панельные изделия [редакторы]

Фотовольтаико-ан-Кариньена, Испания.

Los diez mayores productores mundiales de paneles fotovoltaicos (por producción en MW) en 2015 fueron: [10]

  1. Trina Solar (Китай)
  2. Canadian Solar (Канада)
  3. Jinko Solar (Китай)
  4. JA Solar (Китай)
  5. Hanwha Q-Cells (Корея-дель-Сур)
  6. First Solar (EE. UU.)
  7. Инли (Китай)
  8. SFCE (Китай)
  9. ReneSola (EE. UU.)
  10. Sunpower (EE. UU.)

Instalaciones [редактор]

Potencia mundial instalada [редактор]
Potencia fotovoltaica mundial instalada hasta 2016, en gigavatios (GW), expresada por región. [11] [12]

Европа Азиатско-Pacífico Америка-дель-Норте-и-сюр Китай África y Oriente Medio

Resto del mundo

La Potencia de Un Módulo Solar Semide en W p ( Вт, пик , vatio pico), или больше, чем требуется: кВт , или MW , . Se trata de la Potencia eléctrica generada en condiciones estándares para la incidencia de luz.

Históricamente, Estados Unidos lideró la instalación de energy fotovoltaica desde sus inicios hasta 1996, cuando su capacity instalada alcanzaba los 77 MW, más que cualquier otro país hasta la fecha.En los años posteriores, fueron superados por Japón, que mantuvo el liderato hasta que a su vez Alemania la sobrepasó en 2005, manteniendo el liderato desde entonces. Год выпуска 2016, Alemania se aproximaba a los 40 GW instalados. [13] Sin embargo, por esas fechas China, uno de los países donde la fotovoltaica está Experimentando un crecimiento más vertiginoso super в Алемании, убедившись, что он вступит в мэра, производящего энергию, производящую энергию мира. [13] В случае умножения мощности при установке фактической мощности до 150 ГВт к 2020 году. [11] [14] [15]

Окончание 2015 года, эта оценка была установлена ​​в соответствии с требованиями мира и мощностью 230 ГВт. [16]

Grandes plantas [редактор]
Parque solar Lauingen Energy Park, de 25,7 MW en la Suabia Bávara, Alemania Solar park

En Europa y en el resto del mundo se han construido un gran número de centrales fotovoltaicas a gran escala. [17] A finales de 2016, las plantas fotovoltaicas más grandes del mundo eran, por este orden: [17]

Coste de paneles [редактор]

Solar park Evolución del Precio de las células fotovoltaicas de silicio cristalino (en $ / W p ) в период с 1977 г. по 2015 г. (информация: Bloomberg New Energy Finance)

El coste de los paneles fotovoltaicos se ha reducido de forma constante desde que se fabricaron las primeras células solares comerciales [18] y su coste medio de generación eléctrica ya es Competitivo con las fuentes de energía de Energía Conventionteles en un un unun geográficas, alcanzando la paridad de red. [19] [20]

Hasta 2005 г. – важная проблема с солнечными панелями, построенными на основе солнечного света, с установленными сроками 3 или 4 $ / Вт. El Precio del Silicio usado para la mayor parte de los paneles tuvo una breve tendencia al alza en 2008, lo que hizo que los fabricantes comenzaran a utilizar otros materiales y paneles de silicio más delgados para bajar los costes de producción. Debido aconomías de escala, los paneles solares se hacen menos costosos según se usen y fabriquen más.A medida que ha aumentado la producción, los Precios han continado bajando y todas las previsiones indican que lo seguirán haciendo en los próximos años.

El coste de las células solares de silicio cristalino ha Desdendido desde 76,67 $ / Вт p en 1977 hasta aproximadamente 0,36 $ / W p en 2014. [21] [22] Esta tendencia sigue la llamada «ley de Swanson», una predicción, подобный conocida Ley de Moore, que establece que los precios de los módulos solares descienden un 20% cada vez que se duplica la capacity de la industrial fotovoltaica. [23]

Reciclaje de paneles [editar]

La Mayor Parte de los paneles fotovoltaicos puede ser tratada. Gracias a las Innovaciones tecnológicas que se han desarrollado en los últimos anños, se puede recuperar hasta el 95% de ciertos materiales semiconductores y el vidrio, así como grandes cantidades de metales ferrosos y no ferrosos m utilizados. [24] Algunas empresas privadas [25] y organizationaciones sin fines de lucro, como por ejemplo PV CYCLE en la Unión Europea, están actualmente trabajando en las operaciones de recogida y reciclaje de paneles alútil de su vida ,

Dos de las soluciones de reciclaje más comunes son:

  • Paneles de silicio: Los marcos de aluminio y las cajas de conexión son desmantelados manualmente al comienzo del procso. El panel se tritura y las diferentes fracciones se separan – vidrio, plásticos y metales. Es posible recuperar más de 80% del peso Entrante y, por ejemplo, el cristal mixto extraído es fácilmente aceptado por la industry de la espuma de vidrio el aislamiento. Este processso puede ser realizado por los recicladores de vidrio plano ya que la morfología y composición de un panel fotovoltaico es аналогичное al cristal plano utilizado en la industry de la construcción y del automóvil.
  • Paneles de otros materiales: Hoy en día contamos con tecnologías específicas para el reciclaje de paneles fotovoltaicos que no contienen silicio, alguna técnicas utilizan baños químicos para separar los diferentes materiales semiconductores. Para los paneles de teluro de cadmio, el processso de reciclaje empieza por aplastar el módulo y, posteriormente, separar las diferentes partes. Этот процесс восстановления используется для восстановления и восстановления на 90% и на 95% полупроводниковых материалов. [26] En los últimos años, algunas empresas privadas han puesto en marcha instalaciones de reciclaje a escala comercial.

Desde 2010 se Celebra una conferencia anual en Europa que reúne a productores, recicladores evestigadores for debatir el futuro del reciclaje de módulos fotovoltaicos. En 2012 Tuvo lugar en Madrid. [27] [28]

Véase también [редактор]

Список литературы [редактор]

  1. ↑ «Ремонтные работы онлайн». Renewablesonline.es . Архив от 3 ноября 2015 года. Обратитесь к 3 ноября 2015 года.
  2. ↑ « Немецкий рынок фотоэлектрических систем » (английский). Solarbuzz.com . Consultado el 3 de junio de 2012.
  3. ↑ Буллис, Кевин (23 июня 2006 г.). « Крупномасштабная дешевая солнечная энергия » (английский). Technologyreview.com . Consultado el 3 de junio de 2012.
  4. ↑ Ропер, Л. Дэвид (24 декабря 2011 г.).« World Photovoltaic Energy » (английский). Consultado el 23 de febrero de 2013.
  5. ↑ Каминска, Изабелла (18 июня 2012 г.). «Экспоненциальный рост потребления солнечной энергии» (en inglés). Financial Times. Consultado el 17 de septiembre de 2012.
  6. ↑ Курцвейл, Рэй (21 февраля 2011 г.). «Изменение климата – не проблема, – говорит футуролог Рэй Курцвейл». Хранитель . Consultado el 17 de septiembre de 2012.
  7. ↑ «Добро пожаловать в SOLAR SPLASH» (английский).22 декабря 2005 г.
  8. ↑ «Frisian Nuon Solar Challenge» (английский). 22 декабря 2005 г.
  9. ↑ Сеть политики в области возобновляемых источников энергии для 21 века (REN21), Отчет о глобальном состоянии возобновляемых источников энергии за 2010 г., Париж, 2010 г., стр. 1–80.
  10. ↑ «Evolución y perspectivas para la energía solar fotovoltaica». Публико. 1 августа 2016 г. Консультируйтесь с 2 апреля 2016 г.
  11. a b «EPIA Global Market Outlook for Photovoltaics 2014-2018» (PDF) (en inglés).Archivado desde el original el 14 de julio de 2014. Consultado el 31 de mayo de 2016.
  12. ↑ «Цифры PVMA показывают, что в 2016 году было установлено 75 ГВт солнечных фотоэлектрических систем. » (en inglés). Журнал PV. 19 января 2017 года. Консультации по 22 января 2017 года.
  13. a b «La solar fotovoltaica vuelve a reventar su techo». Energías Renovables. 18 января 2016 года. Консультируйтесь с 19 января 2016 года.
  14. ↑ «Китай планирует потреблять 70 гигаватт солнечной энергии, чтобы сократить потребление угля».Bloomberg News. 16 мая 2014 года. Консультации от 3 мая 2015 года.
  15. ↑ «Национальное энергетическое управление Китая: 17,8 ГВт новых солнечных фотоэлектрических систем в 2015 году (рост ~ 20%)». CleanTechnica. 19 марта 2015 г.
  16. ↑ « GTM прогнозирует установку солнечных панелей мощностью 55 ГВт в 2015 году. » (английский). Чистая техника . 17 июня 2015 г. Consultado el 2 de enero de 2016.
  17. a b Ленардик, Денис (9 января 2016 г.).« Крупные фотоэлектрические электростанции, рейтинг 1 – 50 ». PV Ресурсы (английский язык). Consultado el 2 de abril de 2016.
  18. ↑ Суонсон Р. М. (2009). «Фотовольтаика Power Up». Наука 324 (5929): 891-2. PMID 19443773 . DOI: 10.1126 / science.1169616 .
  19. Перейти к началу страницы «Монитор паритета PV Grid – это проявление красного фотоэлектрического преобразователя, работающего над реализацией». solarsostenible.org . 9 ноября 2012 года. Архив от 5 октября 2013 года. Обратитесь к 3 ноября 2015 года.
  20. ↑ Альварес, Клементе (15 декабря 2011 г.). «Cuando las placas fotovoltaicas son más baratas que la red eléctrica». Эль Паис . Консультации от 3 ноября 2015 года.
  21. ↑ «Котировки цен». Archivado desde el original el 26 de junio de 2014. Consultado el 26 de junio de 2014.
  22. ↑ «Солнечная возвышенность: Альтернативная энергия больше не будет» (en inglés). Экономист . 2012. Consultado el 28 de diciembre de 2012.
  23. ↑ «Pricing Sunshine» (en inglés). Экономист . 2012. Consultado el 28 de diciembre de 2012.
  24. ↑ Лиза Крюгер. 1999. «Обзор программы сбора и переработки первых солнечных модулей» (pdf). Брукхейвенская национальная лаборатория с. 23. Consultado el agosto de 2012.
  25. ↑ Карстен Вамбах. 1999. «Схема добровольного возврата и промышленной переработки фотоэлектрических модулей» (pdf).Брукхейвенская национальная лаборатория с. 37. Consultado el agosto de 2012.
  26. ↑ Крюгер. 1999. с. 12-14
  27. ↑ «Первый прорыв в переработке солнечных фотоэлектрических модулей, говорят эксперты». Европейская ассоциация фотоэлектрической промышленности. Archivado desde el original el 11 de abril de 2013. Consultado el octubre de 2012.
  28. ↑ «3-я Международная конференция по переработке фотоэлектрических модулей». PV CYCLE. Archivado desde el original el 10 diciembre de 2012. Consultado el octubre de 2012.

Enlaces externos [редактировать]

,

солнечных панелей – Official Astroneer Wiki

Маленькие и средние солнечные панели, которые вы можете изготовить в своем рюкзаке (слева) и на принтере (справа).

Панели солнечных батарей – это элементы производства электроэнергии, которые вырабатывают постоянную мощность при воздействии прямого солнечного света. Выходная мощность зависит от того, какое солнечное устройство используется и на какой планете оно используется.

Маленькая солнечная панель в левом отсеке для виджетов рюкзака, ориентированная на солнце.

Маленькие солнечные панели изготавливаются в принтере вашего рюкзака из меди.Панель такого типа можно разместить в любом слоте для предметов, но в рюкзаке она будет производить энергию только при установке в один из слотов для виджетов (см. Изображение справа).

При воздействии света панель автоматически ориентируется на солнце (если это возможно) и вырабатывает мощность 0,5 Ед / с, или достаточно, чтобы заполнить одну полосу на маленькой батарее за 8 секунд.

Средние солнечные панели

изготавливаются из модуля малого принтера с использованием 1 куска меди и 1 куска Gla

.

Что такое солнечная панель? Как работает солнечная панель?

Солнечная энергия начинается с солнца. Солнечные панели (также известные как «фотоэлектрические панели») используются для преобразования солнечного света, который состоит из частиц энергии, называемых «фотонами», в электричество, которое можно использовать для питания электрических нагрузок.

Панели солнечных батарей

могут использоваться для самых разных целей, включая удаленные системы питания для кабин, телекоммуникационное оборудование, дистанционное зондирование и, конечно же, для производства электроэнергии в жилых и коммерческих солнечных электрических системах.

На этой странице мы обсудим историю, технологии и преимущества солнечных панелей. Мы узнаем, как работают солнечные панели, как они производятся, как они производят электричество и где вы можете купить солнечные панели.

Краткая история солнечных панелей

Edmond Becquerel discovered the photovoltaic effect.

История развития солнечной энергетики насчитывает более 100 лет. Раньше солнечная энергия использовалась в основном для производства пара, который затем можно было использовать для привода механизмов. Но только после открытия Эдмондом Беккерелем «фотоэлектрического эффекта», который позволил преобразовывать солнечную энергию в солнечную электрическую энергию.Затем открытие Беккереля привело к изобретению Чарльзом Фриттсом в 1893 году первого настоящего солнечного элемента, который был образован путем покрытия листов селена тонким слоем золота. И из этого скромного начала возникло устройство, которое мы знаем сегодня как солнечная панель .

Рассел Ол, американский изобретатель, работающий в Bell Laboratories, запатентовал первый в мире кремниевый солнечный элемент в 1941 году. Изобретение Ола привело к производству первой солнечной панели в 1954 году той же компанией.Солнечные панели нашли свое первое широкое применение в космических спутниках. Для большинства людей первая солнечная панель в их жизни, вероятно, была встроена в их новый калькулятор – примерно в 1970-х годах!

Сегодня солнечные панели и полные системы солнечных панелей используются для питания самых разных приложений. Да, солнечные панели в виде солнечных батарей все еще используются в калькуляторах. Однако они также используются для обеспечения солнечной энергией целых домов и коммерческих зданий, таких как штаб-квартира Google в Калифорнии.

Как работают солнечные панели?

Solar Photovoltaic Power System Diagram

Солнечные панели собирают чистую возобновляемую энергию в виде солнечного света и преобразуют этот свет в электричество, которое затем можно использовать для обеспечения энергией электрических нагрузок. Солнечные панели состоят из нескольких отдельных солнечных элементов, которые сами состоят из слоев кремния, фосфора (который обеспечивает отрицательный заряд) и бора (который обеспечивает положительный заряд). Солнечные панели поглощают фотоны и при этом инициируют электрический ток.Результирующая энергия, генерируемая фотонами, ударяющими по поверхности солнечной панели, позволяет электронам сбиваться с их атомных орбит и выпускаться в электрическое поле, создаваемое солнечными элементами, которые затем тянут эти свободные электроны в направленный ток. Весь этот процесс известен как фотоэлектрический эффект. В среднем доме имеется более чем достаточно площади на крыше для необходимого количества солнечных панелей для выработки солнечной электроэнергии, достаточной для удовлетворения всех его потребностей в электроэнергии. Избыточная выработка электроэнергии поступает в основную энергосистему, окупаясь за счет использования электроэнергии в ночное время.

В хорошо сбалансированной конфигурации с подключением к сети солнечная батарея вырабатывает энергию в течение дня, которая затем используется в доме ночью. Программы чистых измерений позволяют владельцам солнечных генераторов получать деньги, если их система производит больше электроэнергии, чем требуется в доме. В автономных солнечных приложениях необходимыми компонентами являются аккумуляторный блок, контроллер заряда и, в большинстве случаев, инвертор. Солнечная батарея отправляет электричество постоянного тока (DC) через контроллер заряда в аккумуляторную батарею.Затем мощность поступает из аккумуляторной батареи в инвертор, который преобразует постоянный ток в переменный ток (AC), который может использоваться для устройств, не работающих на постоянном токе. С помощью инвертора размеры панелей солнечных батарей могут быть изменены в соответствии с самыми высокими требованиями к электрической нагрузке. Переменный ток можно использовать для питания нагрузок в домах или коммерческих зданиях, транспортных средствах для отдыха и лодках, удаленных каютах, коттеджах или домах, удаленном управлении движением, телекоммуникационном оборудовании, мониторинге потока нефти и газа, RTU, SCADA и многом другом.

Преимущества солнечных панелей

Использование солнечных панелей – очень практичный способ производства электроэнергии для многих приложений. Очевидное – это автономная жизнь. Проживание вне сети означает проживание в месте, которое не обслуживается основной электрической сетью. Удаленные дома и коттеджи хорошо выигрывают от солнечных систем. Больше нет необходимости платить огромные сборы за установку опор электросети и прокладку кабелей от ближайшей точки доступа к основной сети. Солнечная электрическая система потенциально дешевле и может обеспечивать электроэнергию более трех десятилетий при правильном обслуживании.

Помимо того факта, что солнечные панели позволяют жить в автономном режиме, возможно, самое большое преимущество, которое вы получите от использования солнечной энергии, заключается в том, что это одновременно чистый и возобновляемый источник энергии. С наступлением глобального изменения климата стало более важным делать все возможное, чтобы уменьшить давление на нашу атмосферу, вызванное выбросами парниковых газов. Солнечные панели не имеют движущихся частей и не требуют значительного обслуживания. Они прочны и служат десятилетиями при надлежащем уходе.

И последнее, но не менее важное, из преимуществ солнечных панелей и солнечной энергии заключается в том, что после того, как система окупила свои первоначальные затраты на установку, электричество, которое она вырабатывает на оставшийся срок службы системы, который может составлять до 15- 20 лет в зависимости от качества системы, абсолютно бесплатно! Для владельцев солнечных энергосистем, подключенных к сети, преимущества начинаются с момента, когда система вводится в эксплуатацию, что потенциально устраняет ежемесячные счета за электричество или, и это лучшая часть, фактически приносит владельцу системы дополнительный доход от электрической компании.Как? Если вы потребляете меньше энергии, чем производит ваша солнечная электрическая система, эту избыточную мощность можно продать, иногда с наценкой, вашей электроэнергетической компании!

Есть много других применений и преимуществ использования солнечных панелей для выработки электроэнергии – их слишком много, чтобы перечислять здесь. Но просматривая наш веб-сайт, вы получите хорошее общее представление о том, насколько универсальной и удобной может быть солнечная энергия.

Сколько стоят солнечные панели?

Цены на солнечные панели существенно снизились за последние пару лет.Это здорово, потому что в сочетании с федеральным налоговым кредитом на инвестиции в солнечную энергетику в размере 30 долларов и другими применимыми льготами СЕЙЧАС – лучшее время для инвестиций в солнечную энергетическую систему. И учтите: солнечная энергетическая установка стоит примерно столько же, сколько автомобиль среднего размера!

Где я могу купить солнечные батареи?

Ну, прямо здесь, на этом сайте, конечно!

В число наших брендов солнечных панелей входят самые уважаемые производители солнечных панелей. Эти бренды включают, среди прочего, такие названия, как BP Solar, General Electric и Sharp.Мы предлагаем солнечные панели только высочайшего качества от производителей, зарекомендовавших себя в области производства солнечных панелей. Имея более 30 лет в бизнесе солнечных панелей, вы можете быть уверены, что на MrSolar.com мы знаем солнечные панели!

Сохранить

Сохранить

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *