Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Амперметр включают в цепь. Схемы включения измерительных приборов. Измерение значений постоянного тока

Амперметр – прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют; для увеличения предела измерений – снабжённый шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Комплектное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется «токоизмерительные клещи».

Как подключают амперметр в электрическую цепь

Слева амперметр подключен таким образом, чтобы через него проходил весь ток, протекающий через цепь; альтернативных путей нет. Это правильный способ подключения амперметра для измерения общего тока цепи, но это не единственный способ.

На схеме есть несколько точек в цепи, где амперметр может быть подключен для измерения. На этом изображении каждый амперметр также будет измерять общий ток схемы.

Теперь, когда мы знаем, как измерить общий ток через цепь, давайте посмотрим на измерение тока, проходящего через отдельные элементы. Ток перемещается по последовательному и параллельному элементам по-разному. В параллельном соединении ток разделяется между ветвями в например, для измерения только тока, проходящего через резистор 1, мы должны подключить амперметр последовательно с верхней ветвью параллельного контура. Это показано на левой стороне следующего изображения. Аналогично, размещение амперметра в нижняя ветвь будет измерять только ток, проходящий через резистор.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент).

С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки устанавливается при равенстве вращающего момента и момента пружины.

С правой стороны изображения видно, что параллельное подключение амперметра позволит току обходить резисторы, создавая еще одно короткое замыкание! В последовательном соединении то же количество тока проходит через каждый элемент. Чтобы увидеть это, давайте посмотрим на новую схему, как показано здесь. Таким образом, вам нужно всего лишь выполнить одно измерение с помощью амперметр, чтобы получить токи через каждый отдельный элемент в последовательном соединении. Амперметр – воздушный амперметр – это прибор, установленный последовательно с электрической нагрузкой, используемой для измерения количества тока, протекающего через нагрузку.

В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.

В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Единицей измерения является ампер. Амперметр используется для контроля работы электрической системы воздушного судна. Он также указывает, заряжается ли аккумулятор электрическим зарядом. Амперметры спроектированы с нулевой точкой в ​​центре лица и с отрицательной или положительной индикацией с обеих сторон. Когда указатель амперметра находится на плюсе, он показывает скорость зарядки аккумулятора. Минус-индикация означает, что из аккумулятора извлекается больше тока, чем при замене. Полномасштабное положительное отклонение указывает на неисправность регулятора.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах – через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано – чаще всего 75 мВ). При высоких напряжениях (выше 1000В) – в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока – магнитные усилители

Не все самолеты имеют амперметр

Произведение этих двух чтений называется кажущейся силой. На приведенной ниже диаграмме показано положение Амперметра в электрической системе воздушного судна.

Конструкция и принцип основных операций
Перемещение железа обычно используется для измерения переменного напряжения и токов. В подвижно-железных приборах подвижная система состоит из одной или нескольких частей мягкого железа особого типа, которые так поворачиваются, что на них воздействует ток, создаваемый током в катушке.

Существует два основных типа подвижно-железных приборов. Тип отталкивания Тип притяжения. . Ниже приводится краткое описание различных компонентов прибора с подвижным железом. Отклоняющий крутящий момент в любом приборе с подвижным железом обусловлен силами небольшого куска магнитомягкого «железа», который намагничивается катушкой, несущей. В отталкивающем типе подвижно-железный инструмент состоит из двух цилиндрических мягких железных лопаток, установленных в неподвижной токопроводящей катушке.

Амперметр. Измерение силы тока.

Измерение тока. Для измерения тока в цепи амперметр 2 (рис. 332, а) или миллиамперметр включают в электрическую цепь последовательно с приемником 3 электрической энергии.



Одна железная лопасть удерживается на раме катушки, а другая свободно вращается, неся вместе с ней указательный вал. Два утюга лежат в магнитном поле, создаваемом катушкой, которая состоит всего из нескольких оборотов, если прибор является амперметром или многими витками, если прибор является вольтметром.

Ток в катушке индуцирует намагничивание обеих лопаток, а отталкивание между одинаково намагниченными лопастями приводит к пропорциональному вращению. Только фиксированная катушка переносит ток нагрузки и сконструирована таким образом, чтобы выдерживать высокий переходный ток.

Для того чтобы включение амперметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, амперметры выполняют с малым внутренним сопротивлением. Поэтому практически сопротивление его можно считать равным нулю и пренебрегать вызываемым им падением напряжения. Амперметр можно включать в цепь только последовательно с нагрузкой. Если амперметр подключить непосредственно к источнику 1, то через катушку прибора пойдет очень большой ток (сопротивление амперметра мало) и она сгорит.

Измерение электрического напряжения и тока

Передвижные железные инструменты имеют весы, которые являются нелинейными и несколько переполнены в нижнем диапазоне калибровки.


Таким образом, высокое сопротивление порядка килообемов соединено последовательно с катушкой прибора.

Диапазоны амперметра и вольтметра
Для данного прибора с подвижным железом ампер-витки, необходимые для создания полномасштабного отклонения, являются постоянными. Один может изменить диапазон амперметров, предоставив шунтирующую катушку с движущейся катушкой. Диапазон колебания может изменяться, соединяя сопротивление последовательно с катушки. Следовательно, одна и та же спецификация обмотки катушки может использоваться для ряда диапазонов. Углерод из-за трения довольно мал, так как соотношение вращающего момента очень велико в движущихся инструментах катушки. Поверхности поля вызывают относительно низкие значения силы намагничивания, создаваемой катушкой. Ошибка из-за изменения температуры. . Аналоговые счетчики, устарели ли они?

Для расширения пределов измерения амперметров, предназначенных для работы в цепях постоянного тока, их включают в цепь параллельно шунту 4 (рис. 332,б). При этом через прибор проходит только часть I А измеряемого тока I, обратно пропорциональная его сопротивлению R А. Бо льшая часть I ш этого тока проходит через шунт. Прибор измеряет падение напряжения на шунте, зависящее от проходящего через шунт тока, т. е. используется в качестве милливольтметра. Шкала прибора градуируется в амперах. Зная сопротивления прибора R A и шунта R ш можно по току I А, фиксируемому прибором, определить измеряемый ток:

Аналоговый измеритель перемещает иглу по шкале. Аналоговые мультиметры с коммутируемым диапазоном очень дешевы, но новичкам трудно читать точно, особенно по шкалам сопротивления. Движение счетчика деликатно и падает, метр, вероятно, повредит его! У каждого типа счетчика есть свои преимущества. В качестве вольтметра цифровой измеритель обычно лучше, потому что его сопротивление намного выше, 1 МОм или 10 МОм, по сравнению с 200 Ом для аналогового мультиметра в аналогичном диапазоне.

Аналоговый мультиметр, используемый в качестве амперметра, имеет очень низкое сопротивление и очень чувствительный, с весом до 50 мкА. Более дорогие цифровые мультиметры могут быть равны или лучше этой производительности. Использование мультиметра для измерения усилителей, напряжения и Ом.

I = I А (R А +R ш)/R ш = I А n (105)

где n = I/I А = (R A + R ш)/R ш – коэффициент шунтирования. Его обычно выбирают равным или кратным 10. Сопротивление шунта, необходимое для измерения тока I, в n раз большего, чем ток прибора I А,

R ш = R A /(n-1) (106)

Конструктивно шунты либо монтируют в корпус прибора (шунты на токи до 50 А), либо устанавливают вне его и соединяют с прибором проводами. Если прибор предназначен для постоянной работы с шунтом, то шкала его градуируется сразу в значениях измеряемого тока с учетом коэффициента шунтирования и никаких расчетов для определения тока выполнять не требуется. В случае применения наружных (отдельных от приборов) шунтов на них указывают номинальный ток, на который они рассчитаны, и номинальное напряжение на зажимах (калиброванные шунты). Согласно стандартам это напряжение может быть равно 45, 75, 100 и 150 мВ. Шунты подбирают к приборам так, чтобы при номинальном напряжении на зажимах шунта стрелка прибора отклонялась на всю шкалу. Следовательно, номинальные напряжения прибора и шунта должны быть одинаковыми. Имеются также индивидуальные шунты, предназначенные для работы с определенным прибором. Шунты делят на пять классов точности (0,02; 0,05; 0,1; 0,2; 0,5). Обозначение класса соответствует допустимой погрешности в процентах.

Прежде чем подробно рассказывать о мультиметрах, вам важно иметь четкое представление о том, как счетчики подключены к схемам. Измерительные усилители. Подумайте об изменениях, которые вы должны были бы внести в практическую схему, чтобы включить амперметр. Для начала вам необходимо разбить цепь так, чтобы амперметр можно было подключить последовательно. Все ток, протекающий в цепи, должен проходить через амперметр.

Измерительное напряжение. На этот раз вам не нужно нарушать схему. Вольтметр подключен параллельно между двумя точками, где должно быть выполнено измерение. Поскольку вольтметр обеспечивает параллельный путь, он должен принимать как можно меньше тока.

Для того чтобы повышение температуры шунта при прохождении по нему тока не оказывало влияния на показания прибора, шунты изготовляют из материалов с большим удельным сопротивлением и малым температурным коэффициентом (константан, манганин, никелин и пр. ). Для уменьшения влияния температуры на показания амперметра последовательно с катушкой прибора в некоторых случаях включают добавочный резистор из констан-тана или другого подобного материала.

Какая техника измерения, по вашему мнению, будет более полезной? Фактически измерения напряжения используются гораздо чаще, чем текущие измерения. Обработка электронных сигналов обычно рассматривается в терминах напряжения. Дополнительным преимуществом является то, что измерение напряжения легче сделать. Исходная схема не нуждается в изменении. Часто измерительные датчики соединены просто, прикоснувшись к ним к интересующим точкам.

Измерение Ома. Омметр не работает с цепью, подключенной к источнику питания. Омметры работают, пропуская небольшой ток через компонент и измеряя производимое напряжение. Если вы попробуете это с компонентом, подключенным к цепи с источником питания, скорее всего, это приведет к повреждению счетчика. Большинство мультиметров имеют предохранитель для защиты от неправильного использования.

Измерение напряжения. Для измерения напряжения U, действующего между какими-либо двумя точками электрической цепи, вольтметр 2 (рис. 332, в) присоединяют к этим точкам, т. е. параллельно источнику 1 электрической энергии или приемнику 3.

Для того чтобы включение вольтметра не оказывало влияния на работу электрических установок и он не создавал больших потерь энергии, вольтметры выполняют с большим сопротивлением. Поэтому практически можно пренебрегать проходящим по вольтметру током.

Для измерения электрического тока через провод используется амперметр. Вы можете использовать его для измерения очень малых электрических токов или очень больших. Однако, если вы новичок, используйте его только для измерения малых токов. Большие электрические токи могут быть опасными.

Подключение амперметра для измерения тока занимает всего несколько минут или меньше. Однако иногда люди путаются и думают, что это слишком просто. Например, они могут просто подключить два датчика к проводу. Ключ к правильному подключению амперметра помнит, что соединение такое, что ток течет через амперметр, как если бы это был провод.

Для расширения пределов измерения вольтметров последовательно с обмоткой прибора включают добавочный резистор 4 (R д) (рис. 332,г). При этом на прибор приходится лишь часть U v измеряемого напряжения U, пропорциональная сопротивлению прибора R v .

Зная сопротивление добавочного резистора и вольтметра, можно по значению напряжения U v , фиксируемого вольтметром, определить напряжение, действующее в цепи:

Если ваша схема является аккумулятором, ток будет постоянным. Если вы подключите свою цепь к источнику питания, тип тока будет зависеть от вашего источника питания. Изучите калибровку амперметра. Когда ток течет через амперметр, игла на счетчике будет перемещаться по калиброванной шкале. Маркировка на шкале, на которую огибает иглу, будет соответствовать току, протекающему через ваш амперметр. Номер на крайнем правом конце счетчика соответствует максимальному показанию тока для определенного диапазона, для которого установлен амперметр.

U = (R v +R д )/R v * U v = nU v (107)

Величина n = U/U v =(R v +R д)/R v показывает, во сколько раз измеряемое напряжение U больше напряжения U v , приходящегося на прибор, т. е. во сколько раз увеличивается предел измерения напряжения вольтметром при применении добавочного резистора.

Сопротивление добавочного резистора, необходимое для измерения напряжения U, в п раз большего напряжения прибора Uv, определяется по формуле R д =(n- 1) R v .

Это максимальное число часто называют полномасштабным чтением. Установите переключатель мультипликатора диапазона на максимальное значение. Изучите различные диапазоны, которые имеет ваш амперметр. Один диапазон может быть для ампер, другого миллиампера и других микроампер. Однако помните, что разные амперметры будут иметь разные диапазоны, поэтому проверьте руководство пользователя. Установите переключатель мультипликатора диапазона в самый высокий диапазон. В этом случае выберите диапазон ампер.

И это потому, что амперы в тысячу раз больше, чем миллиамперы, а миллиамперы в тысячу раз больше, чем микроамперы. Определите полномасштабное показание для диапазона. Умножьте настройку на множитель диапазона на полномасштабное число на счетчике. Полномасштабным номером на счетчике является номер на счетчике, который находится на крайнем правом конце калиброванного шкалы. Это может быть 1, 2 или 5 или любое другое число. Затем умножьте полномасштабное число на значение множителя диапазона.

Добавочный резистор может встраиваться в прибор и одновременно использоваться для уменьшения влияния температуры окружающей среды на показания прибора. Для этой цели резистор выполняется из материала, имеющего малый температурный коэффициент, и его сопротивление значительно превышает сопротивление катушки, вследствие чего общее сопротивление прибора становится почти независимым от изменения температуры. По точности добавочные резисторы подразделяются на те же классы точности, что и шунты.

Делители напряжения. Для расширения пределов измерения вольтметров применяют также делители напряжения. Они позволяют уменьшить подлежащее измерению напряжение до значения, соответствующего номинальному напряжению данного вольтметра (предельного напряжения на его шкале). Отношение входного напряжения делителя U 1 к выходному U 2 (рис. 333, а) называется коэффициентом деления . При холостом ходе U 1 /U 2 = (R 1 +R 2)/R2 = 1 + R 1 /R 2 . В делителях напряжения это отношение может быть выбрано равным 10, 100, 500 и т. д. в зависимости от того, к каким

выводам делителя подключен вольтметр (рис. 333,б). Делитель напряжения вносит малую погрешность в измерения только в том случае, если сопротивление вольтметра R v достаточно велико (ток, проходящий через делитель, мал), а сопротивление источника, к которому подключен делитель, мало.

Измерительные трансформаторы. Для включения электроизмерительных приборов в цепи переменного тока служат измерительные трансформаторы, обеспечивающие безопасность обслуживающего персонала при выполнении электрических измерений в цепях высокого напряжения. Включение электроизмерительных приборов в эти цепи без таких трансформаторов запрещается правилами техники безопасности. Кроме того, измерительные трансформаторы расширяют пределы измерения приборов, т. е. позволяют измерять большие токи и напряжения с помощью несложных приборов, рассчитанных для измерения малых токов и напряжений.

Измерительные трансформаторы подразделяют на трансформаторы напряжения и трансформаторы тока. Трансформатор напряжения 1 (рис. 334, а) служит для подключения вольтметров и других приборов, которые должны реагировать на напряжение. Его выполняют, как обычный двухобмоточный понижающий трансформатор: первичную обмотку подключают к двум точкам, между которыми требуется измерить напряжение, а вторичную – к вольтметру 2.

На схемах измерительный трансформатор напряжения изображают как обычный трансформатор (на рис. 334, а показано в круге).

Так как сопротивление обмотки вольтметра, подключаемого к трансформатору напряжения, велико, трансформатор практически работает в режиме холостого хода, и можно с достаточной степенью точности считать, что напряжения U 1 и U 2 на первичной и вторичной обмотках будут прямо пропорциональны числу витков? 1 и? 2 обеих обмоток трансформатора, т. е.

U 1 /U 2 = ? 1 /? 2 = n (108)

Таким образом, подобрав соответствующее число витков? 1 и? 2 обмоток трансформатора, можно измерять высокие напряжения, подавая на электроизмерительный прибор небольшие напряжения.

Напряжение U 1 может быть определено умножением измеренного вторичного напряжения U 2 на коэффициент трансформации трансформатора n.

Вольтметры, предназначенные для постоянной работы с трансформаторами напряжения, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого напряжения могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один выэод его вторичной обмотки и стальной кожух трансформатора должны быть заземлены.

Трансформатор тока 3 (рис. 334,б) служит для подключения амперметров и других приборов, которые должны реагировать на протекающий по цепи переменный ток. Его выполняют в виде

обычного двухобмоточного повышающего трансформатора; первичную обмотку включают последовательно в цепь измеряемого тока, к вторичной обмотке подключают амперметр 4.

Схемное обозначение измерительных трансформаторов тока показано на рис. 334, б в круге.

Так как сопротивление обмотки амперметра, подключаемого к трансформатору тока, обычно мало, трансформатор практически работает в режиме короткого замыкания, и с достаточной степенью точности можно считать, что токи I 1 и I 2 , проходящие по его обмоткам, будут обратно пропорциональны числу витков? 1 и? 2 этих обмоток, т.е.

I 1 /I 2 = ? 1 /? 2 = n (109)

Следовательно, подобрав соответствующим образом число витков? 1 и? 2 обмоток трансформатора, можно измерять большие токи I 1 , пропуская через электроизмерительный прибор малые токи I 2 . Ток I 1 может быть при этом определен умножением измеренного вторичного тока I 2 на величину n.

Амперметры, предназначенные для постоянной работы совместно с трансформаторами тока, градуируют на заводе с учетом коэффициента трансформации, и значения измеряемого тока I 1 могут быть непосредственно отсчитаны по шкале прибора.

Для предотвращения опасности поражения обслуживающего персонала электрическим током в случае повреждения изоляции трансформатора один из зажимов вторичной обмотки и кожух трансформатора заземляют.

На э. п. с. применяют так называемые проходные трансформаторы тока (рис. 335). В таком трансформаторе магнитопровод 3 и вторичная обмотка 2 смонтированы на проходном изоляторе 4, служащем для ввода высокого напряжения в кузов, а роль первичной обмотки трансформатора выполняет медный стержень 1, проходящий внутри изолятора.

Условия работы трансформаторов тока отличаются от обычных. Например, размыкание вторичной обмотки трансформатора тока при включенной первичной обмотке недопустимо, так как это вызовет значительное увеличение магнитного потока и, как следствие, температуры сердечника и обмотки трансформатора, т. е. выход его из строя. Кроме того, в разомкнутой вторичной обмотке трансформатора может индуцироваться большая э. д. с, опасная для персонала, производящего измерения.

При включении приборов посредством измерительных трансформаторов возникают погрешности двух видов: погрешность в коэффициенте трансформации и угловая погрешность (при изменениях напряжения или тока отношенияU 1 /U 2 и I 1 /I 2 несколько изменяются и угол сдвига фаз между первичным и вторичным напряжениями и токами отклоняется от 180°). Эти погрешности возрастают при нагрузке трансформатора свыше номинальной. Угловая погрешность оказывает влияние на результаты измере-

ний приборами, показания которых зависят от угла сдвига фаз между напряжением и током (например, ваттметров, счетчиков электрической энергии и пр.). В зависимости от допускаемых погрешностей измерительные трансформаторы подразделяют по классам точности. Класс точности (0,2; 0,5; 1 и т. д.) соответствует наибольшей допускаемой погрешности в коэффициенте трансформации в процентах от его номинального значения.

Измерение постоянного и переменного тока амперметром (ампервольтметром)

Что такое амперметр

Амперметр – это измерительный прибор, который предназначен для измерения электрического тока в цепи. Название происходит от единицы измерения электрического тока – Ампер (А). Аппараты, используемые с целью измерения меньшего уровня тока в миллиамперах или микроамперах, называются миллиамперметрами или микроамперметрами.

Приборы для измерения силы тока

Если в каком-либо проводнике течет ток, то он характеризуется такой величиной, как «сила тока». Сила тока в свою очередь характеризуется количеством электронов, которые проходят через поперечное сечение проводника за единицу времени. Но мы все учились в школе и знаем, что электронов в проводнике миллиарды миллиардов и считать количество электронов было бы бессмысленно.

Поэтому ученые вывернулись из этой ситуации и придумали единицу измерения силы тока и назвали ее «Ампер», в честь французского физика-математика Андре Мари Ампера. Что же собой представляет 1 Ампер?

Если сила тока в проводнике равна 1 амперу, то за одну секунду через поперечное сечение провода проходит заряд, равный 1 Кулону. Или простым языком, все электроны в сумме должны давать заряд в 1 Кулон и они должны в течение одной секунды пройти через поперечное сечение проводника.

Шкала амперметра

Если учесть, что заряд одного электрона 1.6х10-19 , то можно узнать, сколько электронов в 1 Кулоне. А вот для того, чтобы измерять амперы, ученые придумали прибор и назвали его «амперметром».

Амперметр – прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в амперах, килоамперах, миллиамперах или микроамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно; для увеличения предела измерений – с шунтом или через трансформатор.

Амперметр – это прибор для измерения силы тока в электрической цепи. Любой амперметр рассчитан на измерение токов определенной величины. В электронике в основном оперируют микроАмперами (мкА), миллиАмперами (мА), а также Амперами (А). Следовательно, в зависимости от величины измеряемого тока приборы для измерения силы тока делятся на амперметры (PA1), миллиамперметры (PA2) и микроамперметры (PA3).

двойной вольметр-амперметр

Измерение значений переменного тока

Знать силу тока, проходящую через определенный участок цепи довольно важно. Это помогает рассчитать сечение кабеля и избежать перегрева токопроводящих жил. Эта статья поможет начинающим электрикам разобраться в нюансах работы и подключения измерительного прибора. Но сначала вспомним немного азов из школьной программы.

Как известно, амперметром называется измерительный прибор, позволяющий определить силу постоянного и переменного тока в электрической цепи. В зависимости от планируемой сферы применения, шкалу измерительного устройства градуируют в амперах, микро- или миллиамперах. Для измерений больших величин используется прибор, шкала которого разделена на килоамперы.

Схема цифрового амперметра

Сотые будут соответствовать четвертому дисплею, которого у нас нет, например «03», если мы ищем нуль сверху, ошибка будет больше, например «08». Повторение процесса три раза в лучшем случае должно быть идеальным.

Читайте также

АМПЕРМЕТР ДИАГНОСТИРУЕТ СИСТЕМУ ЗАЖИГАНИЯ

АМПЕРМЕТР ДИАГНОСТИРУЕТ СИСТЕМУ ЗАЖИГАНИЯ1. Если при прворачивании заводной рукояткой коленвала стрелка колеблется, значит цепь низкого напрячжения и контакты прерывателя в порядке.2. Если стрелка остается около нуля – замаслились контакты прерывателя или нарушилась

Амперметр

АмперметрАмперметр – прибор для измерения силы тока, широко применяется в энергетике, в различных отраслях промышленности, в службах сервиса по эксплуатации и ремонту бытовой электроаппаратуры и приборов. Амперметры были изобретены в середине XIX в. и сначала

Подключение амперметра

Чтобы снять точные замеры силы тока, прибор надо правильно подключить. Нужно правильно выбрать шунт: он должен быть немного ниже замеряемого тока. Для его крепления к амперметру используются расположенные на нем специальные гайки. Также обязательно надо отключить подачу тока на устройство.

Амперметр всегда подключается в цепь последовательно

Когда электронный или аналоговый прибор будет подключен в цепь с шунтом, важно проверить правильность полярностей. Это один из самых важных моментов. Только после этого подключается питание обесточенного прибора и проводятся замеры. Прибор, в зависимости от своего типа, показывает разные данные, и их точность напрямую зависит от того, по какому принципу работает амперметр.

Принцип действия амперметров разных категорий

Различные силы и крутящие моменты обязательны в измерении для таких измерительных приборов.

Отклоняющий крутящий момент (сила)

Дефект любого амперметра определяется комбинированным эффектом отклоняющего крутящего момента (силы), управляющего крутящего момента (силы) и демпфирующего момента (силы). Значение отклоняющего момента должно зависеть от измеряемого электрического сигнала; этот момент (сила) заставляет движение инструмента вращаться от его нулевого положения.

Управление крутящим моментом (силой)

Этот крутящий момент (сила) должен действовать в противоположном значении самого отклоняющего крутящего момента (силы). Таким образом движение достигнет равновесного или определенного положения, когда отклоняющий и управляющий крутящий моменты равны по величине. Обычно за обеспечение крутящего момента отвечают спиральные пружины или гравитация

Демпфирующий крутящий момент (демпфирующая сила)

Демпфирующая сила должна действовать в направлении, противоположном движению движущейся системы. Это приводит к тому, что движущаяся система достаточно быстро останавливается в отклоненном положении без каких-либо колебаний или очень малых колебаний. Это обеспечивается воздушным трением; фрикцией жидкости; вихревым током.

Следует отметить, что любая демпфирующая сила не должна влиять на прогиб в уже установленном режиме, который создаётся данной отклоняющей силой или крутящим моментом. Демпфирующая сила увеличивается с угловой скоростью движущейся системы, так что когда вращение быстрое, ее эффект является наибольшим и равен нулю, когда вращение системы аналогично равно нулю.

Существует несколько видов таких устройств. У каждого амперметра принцип работы отличается.

Амперметр PMMC

Тут проводник расположен между полюсом постоянного магнита. Когда ток проходит через катушку, происходят отклонения. Отклонение катушки зависит от величины тока, протекающего через нее. Устройство применяется только для измерения постоянного тока.

Амперметр с подвижной катушкой (MI)

Этот аппарат может измерять как переменный, так и постоянный ток. В этом типе амперметра катушка свободно перемещается между полюсами постоянного магнита. В то время, когда ток проходит через катушку, он начинает отклоняться под определенным углом. Отклонение катушки пропорционально току, проходящему через катушку.

Электродинамический амперметр

Это устройство аналогично применяется для измерения как переменного и постоянного тока. Точность прибора высокая по сравнению с приборами PMMC и MI. Калибровка амперметра одинакова как для переменного, так и для постоянного тока. Если постоянный ток калибрует прибор, то без повторной калибровки он используется для измерения переменного тока.

Выпрямительный амперметр

Прибор применяется для измерения переменного тока. Это устройство является выпрямительным, которое используется вместе с другими разновидностями. Оно преобразует направление тока и передает его PMMC.

Схемы многопредельных выпрямительных миллиамперметров с переключаемыми шунтами

Чтобы повысить стабильность сопротивления амперметра, в схему мостового типа вместо двух диодов надо включить постоянные резисторы сопротивлением приблизительно 100 или 1000 Ом. Во время включения резисторов R3 и R4, где общее сопротивление измерителя меньше зависит от электрического тока в его цепи и внешних температурных условий, начальный нелинейный участок шкалы значительно расширяется. Включая данные резисторы по схеме, а также выбирая сопротивления R3 = R4 = r в степени 20,5 (где r – прямое сопротивление диода) удаётся немного увеличить уровень напряжения в диодах. Это улучшает линейность шкалы. Использование как первой, так и второй схем, значительно снижает чувствительность амперметра.

Включение амперметра в цепь

Как подключить вольтметр

Существует два главных правила использования прибора:

  1. Подключать последовательно с элементом цепи, на котором необходимо измерить силу тока.
  2. Соблюдать полярность.


Схема включения амперметра в цепь

Амперметры со стрелкой – это приборы для измерения с ограниченным диапазоном. В случае превышения максимального значения шкалы при включении в цепь используют шунт.

Бесконтактное измерение тока

Для осуществления измерения силы тока без разрыва схемы существует специальный вид электрических амперметров под названием токовые клещи. Принцип действия основан на измерении магнитного поля, образующегося вокруг проводника с током. Данный эффект проявляется на переменном напряжении.

Измерение тока без разрыва цепи

Показания амперметра имеют меньшую точность по сравнению с приборами, подключаемыми последовательно.  При лабораторных измерения данный способ не используется, но в бытовых целях такой вид измерений достаточно удобен. Безопасность и простота работы с токовыми клещами намного выше, чем при использовании аналоговых приборов.

Принцип работы амперметра

Амперметры – приборы для измерения силы тока в электрических цепях. По принципу работы амперметры бывают – магнитоэлектрические, электромагнитные, термоэлектрические, электродинамические и другие.

Устройство, с помощью которого измеряют силу протекающего по цепи тока, называют амперметром. Поскольку значения, которые выдает прибор (сила тока), зависят от сопротивления элементов внутри амперметра, то оно должно быть очень низким.

Внутреннее устройство амперметра зависит от целей использования, вида тока и принципа работы.

Бывают амперметры, которые реагируют не на величину сопротивления проводника, а на излучаемое им тепло или магнитные волны.

Рейтинг лучших устройств

АВВ АМТD-2-R 2CSG213655R4011

Принцип устройства амперметра АВВ АМТD-2-R 2CSG213655R4011 таков, что он обладает высокой точностью. Прибор способен определять силу постоянного тока, а погрешность всего 0.5%. эксперты будут отмечать высокое качество изготовления, долговечность и надежность устройства. Цифровой прибор будет подключаться через шунт, и потребляемая мощность составляет 4 ВА. Компания-изготовитель предусмотрела горизонтальный тип ориентации, и это крайне важно учесть при установке амперметра (метод монтажа DIN 3.5 см). Измерительное устройство весит всего лишь 0.3 кг. Диапазон измерения токовой силы составляет от 5 до 600 А. Модель завоевывает первое место в обзоре. Профессиональные мастера по электрике нахваливают итальянский прибор благодаря качественному изготовлению, высокую точность, удобство использования. Недостатком устройства будет высокая стоимость.

Плюсы:

  • Высокое качество сборки.
  • Высокая точность.
  • Надежность.
  • Удобство в работе.

Рассмотрим еще один прибор.

АВВ АМТD-1 2СSМ320000R1011

Для того, чтобы производить замер силы переменного тока, прекрасно подойдет именно это устройство. Прибор тоже итальянский, и он обладает модульным исполнением, а подключение до сети проводится через DIN рейку. Определять токовую силу можно в широком диапазоне от 5 до 600 А. Эксперты смогли по достоинству оценить высокую измерительную точность (класс точности составляет 0.5%). Для удобства выполнения работы цифровые амперметры оснащены подсветкой для дисплея. Потери электроэнергии не более 2 Вт. Монтировать устройство можно и вертикально, и горизонтально. Вес всего 0.31 кг. Модель заняла второе место в обзоре. У отечественных производителей нет претензий к качеству создания, точности измерения и надежности устройства итальянского производства. Минусом можно назвать высокую стоимость.

Плюсы:

  • Высокая измерительная точность.
  • Большой диапазон измерений.
  • Подсветка на дисплее.
  • Высокое качество изготовления.

Рассмотрим, кто забрал «бронзу».

DigiТОР АМ-3м

Для того, чтобы измерять силу тока переменного типа в трехфазной сети отлично подойдет именно этот амперметр. На цифровом трехстрочном дисплее будут отражаться результаты на всех фазах. Эксперты по достоинству оценили демократичную стоимость и малый вес (0.15 кг) украинского приборы. Он будет уступать лидерам обзора лишь в диапазоне измерений, от 1 до 63 А, и в точности показаний (погрешность составляет 1.5%). В актив устройства можно заносить устойчивость к помехам и вибрации. Устройство устанавливаю в электрический щиток, размеры выреза должны быть аккурат 0.68*0.68 метров. Рабочий интервал температуры составляет от +5 до +50 градусов. Модель стала замыкающей призовой тройкой этого обзора. Российским потребителям устройство понравилось за простоту монтажа, весьма точные измерения и демократичную стоимость.

Плюсы:

  • Высокое качество сборки.
  • Устойчивость к помехам и вибрации.
  • Трехфазное подключение.
  • Малый вес.

Минусы:

  • Ограниченный измерительный интервал.

Четвертый измерительный прибор (амперметр) вам понравится не меньше.

ЕКF РRОхima АD-723

Трехфазный амперметр российского производства понравился экспертам за счет наличия сенсорной панели управления, а также цифрового дисплея. Посредством такого прибора можно измерит силу переменного тока, подключая его до сети через трансформатор. Энергетические приборы при работе составляют 6 ВА. В актив изделию можно заносить высокую степень точности (погрешность всего 0.5%), а также малый вес 0.23 кг и демократичная стоимость. Правда, изготовитель не продумал подсветку дисплея, а еще модель уступает лидерам в плане габаритов. В щите потребуется сделать нишу 0.72*0.72 метра. Устройства остановилось в шаге от призового пьедестала. Электрики довольны тем, что измерения очень точные, сборка высокого качества, а стоимость демократичная. Из минусов выделим громоздкость и полное отсутствие хотя бы какой-то подсветки.

Плюсы:

  • Трехфазное подключение.
  • Приемлемая стоимость.
  • Высокая степень точности.
  • Надежность.

Минусы:

  • Громоздкость.
  • Нет никакой подсветки.

Пятый прибор не менее интересный.

DigiТОР АVМ-1

В одно и то же время измерять токовую силу и напряжение в однофазной сети дает возможность амперметр-вольтметр. Прибор представляет собой продукт сотрудничества украинских разработчиков и изготовителя из России. Эксперты отметили конкурентоспособную стоимость, прекрасную измерительную точность (погрешность составляет 1%). Посредством этого устройства можно производить замеры тока в диапазоне от 1 до 63 А. Интервал напряжения переменного типа составляет от 40 до 400 В. Амперметр-вольтметр требуется для установки в отапливаемом помещении при температуре воздуха от +5 до +50 градусов (степень защиты от пыли и влаги составляет IР 20). Пользователям из Росси устройство понравилось за простоту подключения (будет занимать пару мест на рейке), сборку высокого качества и доступную стоимость. Но есть случаи попадания в торговую сеть изделий бракованного типа.

Плюсы:

  • Доступная стоимость.
  • Минимальная степень погрешности.
  • Простое подключение.
  • Два устройства в одном.

Минусы:

  • В магазины попадает бракованная продукция.

Рассмотрим предпоследнее устройство.

ЕКF РRОхimа АD-G31

Это электроизмерительный цифровой амперметр попал на 6-е место обзора благодаря высокой точности (погрешность составляет 0.5%). Изготовитель установил специальное устройство с микропроцессором, которое и будет обеспечивать скорость и точность результатов. Прибор можно подключать через особый трансформатор, который и будет ограничивать диапазон измерения силы переменного тока. Изделие обладает модульным исполнением с установкой на DIN рейку. Энергетические потери при работе составляет 6 Вт. Экспертам понравилось интуитивно понятное управление, а еще все кнопки расположены под дисплеем цифрового типа. Отечественные пользователи лестно отзываются о точности измерений, простоте установки и доступности в плане цены. К минусам отнесем отсутствие подсветки на дисплее, а также нестабильное сборочное качество.

Плюсы:

  • Удобство управления.
  • Демократичная стоимость.
  • Простота установки.
  • Точность измерений.

Минусы:

  • Отсутствие подсветки на дисплее.
  • Качество сборки хромает.

Рассмотрим последний экземпляр.

ТDМ SQ1102-0057

Теперь вы знаете, как выбрать амперметр, но прежде рассмотрим последний прибор. Именно на него сейчас самая низкая стоимость. Он требуется для измерения силы переменного тока в цепях однофазного типа. Эксперты обратили внимание на корпус прибора, который изготовлен из негорючего самозатухающего пластика. Электрическая безопасность подключения будет обеспечена защитными крышками на внешних подсоединенных зажимах. В актив устройству требуется занести высокую степень защиты от влаг и пыли IР 54. А вот в точности измерений (погрешность составляет 1.5%) и рабочем диапазоне от 5 до 200 А устройство уступает лидерам обзора. Люди отдают предпочтение стрелочным амперметрам по низкой цене, простоте применения, безопасность. Минусами прибора можно назвать невысокую точность и ограниченный измерительный диапазон.

Плюсы:

  • Безопасность.
  • Простота включения.
  • Надежность.
  • Низкая стоимость.

Минусы:

  • малый измерительный диапазон.
  • Не очень высокая точность.

Обратите внимание, что этот рейтинг носит исключительно субъективный характер, не является рекламой и не будет служить руководством к покупке. До этого требуется консультация со специалистом.

Сфера применения амперметров

Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии.

электротехнике – энергетике

автомобилестроении

точных науках

строительстве

электролабораториях

Но не только средние и крупные предприятия используют этот прибор: они востребованы и среди обычных людей. Практически любой опытный автоэлектрик имеет в арсенале подобное устройство, позволяющее проводить замеры показателей электропотребления приборов, узлов автомобилей и пр.

Расчет мощности электроприбора по потребляемому току

Зная величину тока, можно определить потребляемую мощность любого потребителя электрической энергии, будь то лампочка в автомобиле или кондиционер в квартире. Достаточно воспользоваться простым законом физики, который установили одновременно два ученых физика, независимо друг от друга. В 1841 году Джеймс Джоуль, а в 1842 году Эмиль Ленц. Этот закон и назвали в их честь – Закон Джоуля – Ленца.

где P – мощность, измеряется в ваттах и обозначается Вт; U – напряжение, измеряется в вольтах и обозначается буквой В; I – сила тока, измеряется в амперах и обозначается буквой А.

Рассмотрим, как посчитать потребляемую мощность на примере:
Вы измеряли ток потребления лампочки фары автомобиля, который составил 5 А, напряжение бортовой сети составляет 12 В. Значит, чтобы найти потребляемую мощность лампочкой нужно напряжение умножить на ток. P=12 В×5 А=60 Вт. Потребляемая лампочкой мощность составила 60 Вт.

Вам надо определить потребляемую мощность стиральной машины. Вы измеряли потребляемый ток, который составил 10 А, следовательно, мощность составит: 220 В×10 А=2,2 кВт. Как видите все очень просто.

ПВХ-изолента пламегасящая

В основе такой изоленты лежит мягкая плёнка ПВХ толщиной 0,10 мм. Используют пламегасящую ленту при ремонте проводов или автомобилей, или в других бытовых ситуациях. Изолента выдерживает ток высокого напряжения, что обеспечивает безопасность работы приборов.

Распределительными устройствами (РУ) называются конструкции, в которых смонтированы коммутационная, защитная, регулирующая, сигнальная аппаратура и электроизмерительные приборы. Они предназначены для управления электрическими цепями, их защиты и контроля. Степень насыщенности РУ оборудованием определяется их назначением и выполняемыми функциями.

Классификация РУ. По назначению РУ можно подразделить на: главные распределительные щиты (ГРЩ), аварийные распределительные щиты (АРЩ), пульты управления (ПУ), распределительные щиты (РЩ), щиты отдельных потребителей (ЩП), контрольные щиты (КЩ), специализированные щиты и щиты освещения (ЩО).

ГРЩ предназначены для управления, защиты, контроля и регулирования параметров электроэнергетической установки и распределения электроэнергии по судну в целом.

АРЩ выполняет ту же роль, что и ГРЩ, но для аварийных источников питания и потребителей, работающих в аварийном режиме.

ПУ предназначены для дистанционного контроля и управления работой генераторных агрегатов и ответственных потребителей.

РЩ служат для распределения электроэнергии в пределах определенного района судна или среди небольшой группы близких по назначению потребителей и получают питание от ГРЩ, АРЩ или от группового РЩ. Групповым РЩ называют распределительное устройство, служащее для питания нескольких РЩ и получающее питание непосредственно от ГРЩ или АРЩ.

Основное предназначение гофрированных труб из полиэтилена низкого давления – защитить провода и кабели от повреждений, вызванных внешним воздействием. Процесс замены повреждённого кабеля, закопанного в грунт на глубине 0,5 м, сопровождается колоссальными физическими, временными и материальными затратами.

Гофра важный элемент при выполнении скрытой проводки. Она значительно упрощают прокладку кабельных линий под землей и облегчают монтаж электропроводки внутри здания.

Когда решается, как осветить пространство, выбор может быть непростым. Очевидно, что светодиодные линейные светильники в моде, но с чего начать? Вариации осветительного оборудования кажутся бесконечными. Однако, выбор не так сложен – в этой статье рассмотрели ключевые моменты, которые следует знать и учитывать при покупке.

Электромагнитные амперметры и вольтметры

Показание электромагнитного измерительного механизма зависит от тока в его катушке, значения которого и наносятся на шкале амперметра. Катушка электромагнитного амперметра неподвижна вес ее не влияет на погрешность от трения, поэтому она может быть изготовлена из провода любого сечения и, следовательно, на любой номинальный ток. Щитовые амперметры изготовляются нашими заводами на номинальный ток до 300 а.

Рис. 7-15. Схема электродинамического миллиамперметра.

Электромагнитный вольтметр состоит из одноименного измерительного механизма на номинальный ток 20—30 ма и последовательно соединенного с ним добавочного сопротивления из манганина (рис. 7-10).Добавочное сопротивление — активное и несоизмеримо больше реактивного сопротивления катушки измерительного механизма, поэтому общее сопротивление вольтметра практически активное и мало зависит от рода тока и частоты. При постоянном сопротивлении вольтметра угол поворота подвижной части зависит не только от тока в катушке, но и пропорционального ему напряжения на зажимах вольтметра, значения которого и наносятся на шкале прибора.

Электромагнитные амперметры и вольтметры широко применяются в установках переменного тока технической частоты как щитовые, приборы классов точности 1,5—2,5. Наша промышленность наряду с техническими приборами выпускает также переносные амперметры и вольтметры для постоянного и переменного тока класса точности 0,5,

Влияние температуры на измерение тока

Амперметр — чувствительное устройство, на которое существенно влияет температура окружающей среды. Изменение температуры вызывает ошибку в показаниях. Вы можете использовать добавочное сопротивление (балластное сопротивление). Сопротивление с нулевым температурным коэффициентом называют добавочным сопротивлением (swamping resistance). Оно подключается последовательно с катушкой электроизмерительного прибора. Балластное сопротивление уменьшает влияние температуры на показания прибора.

Амперметр имеет встроенный предохранитель, который защищает его от скачков тока (неправильное подключение). Если через амперметр протекает значительный ток, предохранитель перегорит, тем самым разорвав электрическую цепь и сохранив измерительную систему прибора. Соответственно прибор нельзя будет использовать, пока не будет заменена плавкая вставка.

Процесс измерения

На практике амперметр используется гораздо реже, но иногда все-таки существует необходимость сделать замеры тока. Обычно такая процедура применяется для определения мощности электрического прибора, если нет соответствующих обозначений. Очень важно, что при измерении тока величина напряжения, приложенного к электрической цепи, не имеет значения. Замер прибором можно проводить, разорвав цепь в любом месте.

Источником может быть простая батарейка на 1,5 В, аккумулятор на 12 В или однофазная сеть 220 В. Перед началом измерений пользователи подготавливают оборудование, переводя ручки настройки в соответствующее начальное положение. Если примерное значение тока неизвестно, то переключатели устанавливаются на максимальное значение.

Когда все будет подготовлено, в одну из розеток подключается электрический прибор, а в другую провода амперметра. Если это бытовая сеть, то на измерительном устройстве следует выставить переменный ток и максимальное его значение. При измерении стрелочными приборами часто допускаются ошибки, так как сам процесс с ними проводить не очень удобно.

В этом случае гораздо удобнее использовать цифровые измерительные устройства. Очень популярны мультиметры M890G, в которых есть два диапазона для измерений как переменного, так и постоянного тока. Опытные электрики обычно примерно знают параметры электрической сети, поэтому они сразу устанавливают переключатели в нужное положение.

Если они не знают значения измеряемого тока, то устанавливают на мультиметре предельное значение равное 10 А. Далее, прибор перенастраивается на меньшее значение, соответствующее току сети.

Следует помнить, что переключение осуществляется при обесточивании проверяемой электрической цепи. Используя универсальный прибор, который выполняет задание вольтметра и амперметра, косвенно измеряют сопротивление подключенного прибора. Для этого дополнительно проводят расчеты, связанные с законом Ома.

Конструкционные особенности

Линейные светильники быстро стали популярным и востребованным решением для освещения помещений, поскольку это простая, но эффективная концепция, эстетически привлекательная, а также очень энергоэффективная. Светильник состоит из нескольких элементов. Во-первых, корпус, – алюминиевый профиль, в котором расположены световые элементы, сделанный из алюминия, экструдирированного через форму для формирования профиля правильного размера. Корпус покрывается порошковой краской – это стандартный или индивидуальный цвет (по шкале RAL).

Внутри алюминиевого корпуса монтируется радиатор, который рассеивает тепло, выделяемое светодиодами, сами платы светодиодов и драйвер (источник питания), регулирующий питание светодиодов. И последнее – экран или рассеиватель – это поликарбонатный элемент, который фиксируется на профиле и рассеивает свет, излучаемый диодами. 

Электродинамические амперметры

Можно применять не только для замеров силы постоянного тока, но и переменного. Из-за особенностей прибора, его можно применять в таких сетях, где частота достигает двухсот герц.

Электродинамический амперметр используется в основном как контрольный измеритель для проверки приборов.

Они сильно реагируют на сторонние магнитные поля и на перегрузки. Из-за этого в качестве измерителей используются редко.

Как должен храниться прибор?

Требования для хранения устройств для замера силы тока достаточно высоки, и чем точнее его измерительные способности, тем выше требования. От их соблюдения зависит срок службы и точность замеров. Поэтому важно поддерживать указанную в паспорте влажность и температуру в помещении, где хранится амперметр. Если он аналоговый, то недопустимы никакие механические воздействия, тряска, удары, падения. В случае с электрическими моделями все это незначительно. Рекомендуется каждые полгода проверять прибор в органах Госстандарта. И, конечно, самое важное – ознакомиться с правилами его эксплуатации и соблюдать их.

Как выбрать

  • Упаковка должна быть сухой, чистой и без повреждений.
  • Правильность написания названия продукции.
  • Обязательное наличие штрихкода (и/или QR-кода).
  • Все параметры и характеристики написаны на упаковке.
  • Наличие паспорта и/или инструкции.

Для того, чтобы не ошибиться в при покупке амперметра, очень важно знать о его параметрах и конструкции. В противном случае есть большой риск приобрести подделку.

Контроль тока заряда аккумуляторной батареи автомобиля

При использовании зарядного устройства существует необходимость замерять силу тока амперметром. Это позволяет контролировать процесс накопления энергии аккумулятором и избегать перезаряда с недозарядом. В результате срок службы АКБ значительно увеличивается.

После включения цепи амперметр покажет ток заряда. Точность измерений и прочие характеристики амперметра не столь важны для контроля передачи энергии. Погрешность измерения тоже не столь важна, так как следить необходимо за уменьшением показаний стрелки амперметра. Прибор, показывающий через несколько часов одно и тоже значение, говорит об полном заряде аккумулятора.

При работе множества аппаратуры возникает необходимость контроля силы тока. Стрелки амперметров или цифры на экране дискретного прибора показывают пользователю эту физическую величину. Производимые измерения необходимы как для поддержания рабочего состояния так и для сигнализации об возникновении аварийной ситуации.

( 1 оценка, среднее 5 из 5 )

Амперметры — Включение — Схема

Измерение величины тока производится амперметрами по одной из схем фиг. 67. Включение амперметра по схеме фиг. 67, а производится при постоянном токе небольшой величины и переменном токе также небольшой величины и низкого напряжения схема фиг. 67, 6 (вклю-  [c.373]

Ремонт стартера. Если есть сомнения в эффективности работы стартера, необходимо проверить его на стенде с включением по схеме согласно рис. 161. При проверке используются хорошо заряженная аккумуляторная батарея, вольтметр постоянного тока со шкалой 0—30 В, амперметр с шунтом до 100 А, тахометр и динамометр. Температура стартера должна быть 25 3 °С, а щетки хорошо притерты к коллектору.  [c.223]


На рис. 22 изображена схема первичной цепи аппарата батарейного зажигания, состоящей из аккумуляторной батареи 1, амперметра, первичной обмотки со сталЬным сердечником 2 и прерывателя 3 (конденсатор не включен в схему).  [c.37]

В последние годы стали отказываться от применения показывающего прибора, включенного по схеме амперметра, и не-  [c.286]

Читая схему, можно убедиться, что трехфазный асинхронный двигатель М питается от сети. Он соединен с источником питания через плавкие предохранители Р1, Р2, РЗ трехполюсным выключателем 81. Двигатель М соединен механической связью с генератором постоянного тока С, вырабатывающим ток, необходимый для проведения сварочных работ. Амперметр РА, включенный в цепь через шунт Я1, и вольтметр РУ позволяют производить контроль тока и напряжения в цепи сварочного аппарата.  [c.258]

Мультиметр — это прибор, предназначенный для измерения постоянных токов и напряжений, переменных напряжений и, часто, токов, а также сопротивлений. Устаревший и сравнительно простой мультиметр, по существу, представляет собой амперметр, который выполняет требуемые измерения при включении в схему, содержащую резисторы и источники электропитания. Во всех случаях в конце концов измеряется постоянный ток, приводящий в движение индукционные катушки амперметра. Типичный прибор содержит амперметр со шкалой 50 мкА, который часто характеризуется чувствительностью 20 000 Ом/В. Поэтому на шкале 3 В суммарное сопротивление в схеме с учетом сопротивления самого амперметра будет 60 000 Ом.  [c.83]

Дуговой разряд возбуждается с помощью генератора активизированной дуги переменного тока. Принципиальная электрическая схема генератора приведена на рис. 1. При включении кнопки /(9 напряжение на концах вторичной обмотки высоковольтного трансформатора 1 (3 кВ) оказывается больше пробивного напряжения вспомогательного разрядника 3. В результате его пробоя конденсатор 7 ( i 0,003 мкФ) разряжается на первичную катушку высокочастотного трансформатора 2. Со вторичной катушки этого трансформатора напряжение (30 кВ) высокой частоты попадает на электроды дуги. Промежуток 4 между ними периодически (с частотой 50—100 с ) пробивается — активизируется к прохождению через него переменного тока электрической сети. Сила тока в дуге регулируется реостатом 6 и контролируется амперметром 9. При выполнении задачи она устанавливается равной 4— 5 А.  [c.34]
Так как при сборке приборов используется недостаточно стабилизированный манганин, то в процессе работы показания приборов могут измениться. Особое значение это имеет в тех случаях, когда применяемое в приборе манганиновое сопротивление, включенное в последовательной схеме, велико по сравнению с общим сопротивлением прибора. В некоторых вольтметрах, где общее сопротивление прибора равно 3255 ом, сопротивление манганина 3250 ом, нестабильность вольтметров больше на 30 нестабильности аналогичной конструкции амперметров.  [c.105] Амперметры — Включение — Схема 373 Амплидины 388  [c.533]

Электрическая схема включения котла (рис. 18,а) имеет автоматический выключатель, служащий для защиты от перегрузок и коротких замыканий контактор для коммутации цепи подключения электродного котла трансформаторы тока и амперметры, предназначенные для контроля токов нагрузки электродного котла вольтметры для контроля напряжения питания.  [c.89]

Измерение тока и напряжения. Схемы непосредственного включения и через измерительные трансформаторы тока и напряжения. Амперметры и вольтметры различных систем.  [c.326]

Рис. 94. Принципиальная схема поляризованного дренажа (а), электрическая схема дренажа ПГД-200 (б) схема переключений реостата дренажа ПГД-200 (в) Вг — рубильник для включения дренажа Sj — тумблер аля включения амперметра Яр— предохранитель на 100 а А — амперметр М-42 на величину тока 300 а Pi — сигнальное реле типа У-1719380 Д1—Д20 — германиевые диоды Д-305 1—/ 1о — сопротивления по 0,05 ом fiu—Rao — сопротивление по 0,1 ом
Амперметры, включенные в цепь тяговых двигателей (схема справа внизу на стр. 147), позволяют осуществлять контроль тока в этой цепи (недопустимы токи, при которых сработают реле перегрузки) тока, при котором переходят в режим рекуперации тока в обмотках возбуждения тяговых двигателей при рекуперации. Необходимо поддерживать установленное соотношение между током реку-  [c.146]

Обычно на заряд от регулируемого источника подключается группа последовательно соединенных батарей (рис. 1.14, а) одной или близкой по величине емкости. Если зарядный агрегат обеспечивает большие токи, к нему можно подключить параллельно несколько групп батарей (рис. 1.14, б) с включенными последовательно в каждой группе реостатом и амперметром. Аналогичная схема включения применяется и при нерегулярном источнике тока.  [c.28]

Для проверки регулятора напряжения необходимо иметь следующие приборы вольтметр постоянного тока со щкалой до 20—30 б и ценой деления 0,1— 0,2 в амперметр постоянного тока со щкалой до 30 а (шкала двусторонняя с нулевым делением посредине) и ценой деления I а. Схема включения приборов для проверки регулятора напряжения приведена на рис. 167.  [c.252]

Приборы и приспособления контрольный стенд или (при отсутствии стенда) тиски амперметр с шунтом вольтметр тахометр. Электрическая схема включения стартера для проверки приведена на рис. 171.  [c.257]


Амперметр проверяют путем сравнения его показаний с показаниями эталонного амперметра. Схема включения приборов при проверке амперметра приведена на рис. 181.  [c.276]

Схема поста термической обработки с переносным пультом управления показана на рис. 5-19. Пульт управления включает 1) тумблер для включения в сеть и отключения источника питания 2) кнопки дистанционного регулирования рабочего тока вторичной цепи 3) амперметр для измерения величины рабочего тока вторичной цепи 4) милливольтметр для регистрации температуры нагреваемых стыков от центральной термопары печи.  [c.241]

На рис. 31 показана схема включения приборов и вспомогательных устройств при общей проверке и регулировке установки. Вольтметр постоянного тока Fi со шкалой О—3 в служит для контроля сигнального напряжения на входе блока управления. Амперметр Ai со шкалой О—1 а необходим для измерения тока в цепи  [c.81]

Для проверки реле защиты с реле-регулятора снимают крышку. Плюс 12-вольтовой аккумуляторной батареи через реостат и амперметр присоединяют к выводу реле-регулятора Ш, а минус батареи— к коллектору (корпусу) транзистора, как показано на рис. 85. Реостат должен быть при этом полностью введен. При этой схеме соединений ток батареи идет через основную обмотку реле защиты. Постепенно выводя реостат, увеличивают ток в основной обмотке реле защиты, пока последнее не включится. Момент включения реле защиты определяется на глаз. Включение реле должно происходить при силе тока 3,2—3,6 А.  [c.172]

Рис. 24. Схема включения амперметра и вольтметра
Проверка ограничителя тока производится при 3000 об/мин якоря генератора по той же схеме, что и регулятора напряжения, путем включения потребителей или уменьшения сопротивления реостата до тех пор, пока увеличение показаний амперметра не прекратится. Если предельное показание амперметра будет ниже 17 а или выше 19 а, необходимо довести ток до 18 а путем регулировки ограничиваемый ток повышается при усилении натяжения пружины якорька, понижается при ее ослаблении.  [c.112]

Сопротивление контактов в местах присоединения отрицательных питающих линий измеряется вольтметром с внутренним сопротивлением не менее 10 ком на 1 в и амперметром, включенным по схеме рис. 15. Сопротивление контакта определяется как разность между сопротивлением, вычисленным по показанию приборов, и расчетным сопротивлением соответствующего проводника, соединяющего отрицательную питающута линию с рельсовой нитью.  [c.98]

Измерительные приборы Ар2-г-Ар7, Ур2, УрЗ и сигнальные лампы реле перехода Лр1, Лр2 подключают к электрическим цепям тепловоза при помощи специального штепсельного разъема РзР, а остальные — непосредственно. Включение в схему амперметров Ар8—Ар12 не является обязательным, но в них может возникнуть необходимость (см. ниже настройку реле РП1, РП2 и РМТ). Амперметры для измерения токов тяговых электродвигателей и резисторов ослабления возбуждения (см. табл. 13) должны быть смонтированы на переносном щитке, который устанавливают на тепловозе перед обкаточными испытаниями в удобном для считывания показаний месте. Шунты включают в соответствующие силовые цепи.  [c.172]

Главная рукоятка контроллера машиниста ставится на нулевую позицию, пос.ле чего при помощи селективной рукоятки (наэлектровозах серии С — реверсивной рукоятки) устанавливается желаемое соединение тяговых двигателей, определяемое весом состава, величиной спуска и скоростью движения поезда. Затем главная рукоятка контроллера ставится на 1-ю позицию и после указания амперметров о включении на моторный режим тормозная рукоятка переводится на 1-ю тормозную позицию, где задерживается 3—4 сек., чтобы дать возможность сработать аппаратам. На время переключения схемы с моторного на тормозной режим гаснет индикаторная лампа, указывающая, что есть напряжение на зажимах тяговых двигателей. После этого тормозная рукоятка переводится на следующие позиции до тех пор, пока величина тока в цепи якорей не будет равна нулю. Величина гока в обмотках возбуждения двигателей при этом растёт. Далее главная рукоятка контроллера переводится на 16-ю позицию. Если при передвижении главной рукоятки в сторону 16-й по-  [c.541]

Принципиальная схема высокочастотной электромагнитной машины Lehr фирмы S hen k приведена на рис. 40. Колебательная система машины представляет собой якорь 7 (рис. 40, а), укрепленный на трубчатом упругом элементе 11, жестко соединенном со станиной 10. Испытуемый образец 5 закрепляют в захвате, расположенном на якоре и в захвате 3, находящемся на упруго.м элементе 2 динамометра. Динамометр жестко соединяют с колоколообразной инерционной массой /, которая опирается на пружины 13. Статическую нагрузку на испытуемый образец создают путем сжатия пружин 13 червячно-винтовыми механизмами 12. Параллельно пружинам 13 устанавливают несколько дополнительных пружин (не показаны на рис. 40, а), которые уравновешивают собственный вес массы 1. Переменная нагрузка возбуждается электромагнитной системой S, содержащей катушки / (рис. 40, б), питаемые переменным током от высокочастотного генератора 3, который приводится во вращение электродвигателем 4, и катушки 2, питаемые постоянным током. Последовательно с катушками 2 включен дроссель Др, увеличивающий сопротивление цепи переменному току и таким образом снижающий шунтирующее действие цепи подмагии-чивания на цепь возбуждения с катушками 1. Ток подмагничивания устанавливают реостатом R2 и измеряют амперметром А. Последовательно с ка-  [c.117]


Питание мотора / осуществляется по схеме Леонарда от специального генератора постоянного тока ДУ/ Г (динамо, управляющая работой головки), объединённого с мотором трёхфазного тока во вспомогательный моторгене-раторный агрегат. Независимая обмотка возбуждения генератора питается через ку-проксные выпрямители НКС-2 от напряжения на дуге. Возбуждение мотора I также зависит от напряжения на дуге. Такая схема включения обеспечивает плавное изменение скорости подачи электродной проволоки в зависимости от напряжения дуги. Мотор 2 — асинхронный, с постоянным числом оборотов — служит для возбуждения дуги в начале сварки и создания необходимого числа оборотов на выходном валу диференциала. Контроль за режимом сварки осуществляется по амперметру А и вольтметру V.  [c.339]

При расчете количества тепла, подводимого от калориметрического нагре1вателя, следует учесть, что при схеме включения измерительных приборов, показанной на рис. 9-3, амперметр измеряет суммарную силу тока, протекающего в цепи нагревателя и вольтметра. Поэтому сила тока, протекающего в цепи нагревателя, определяется как  [c.266]

Прибор имеет настольное оформление. Внутри его корпуса, на двух выдвижных панелях, смонтированы узлы электроизмерительной схемы, регулятор напряжения питания нагревателя и распределительная система водяного охлаждения. На лицевую панель прибора вынесены рукоятки управления, кнопки включения и выключения прибора, тумблер включения нагревателя, переключатели масштаба записи сигналов термопар и режима работы, контрольный манометр системы охлаждения и контрольные амперметр и вольтметр нагревательной цепи. В комплект прибора входит шеститочечный электронный потенциометр типа ЭПП-09.  [c.63]

Измерение силы тока в высокочастотных электрических цепях затруднено из-за токов утечек через паразитные емкости и изменений в режиме работы электроцепей, связанных с собствеиной индуктивиостью амперметра. На рис. 38 показаны два варианта включения амперметра в схему генератор – нагрузка .  [c.121]

Ответ. Обозначим на схеме паразитные [c.121]

Ваттметрический метод определения полных потерь на гистерезис и вихревые токи [36]. Ваттметрический метод основан на измерении потерь мощности в трансформаторе с разомкнутой вторичной цепью (т. е. не потребляющий мощности), причем в качестве сердечника трансформатора используется испытуемый материала (аппарат Эпштейна). Принципиальная схема установки представлена на рис. 17.68. В четыре секции трансформатора П], Пг набирается образец из пластин, которые образуют магнитную цепь. В цепь первичной намагничивающей катушки щ включен амперметр А и токовая обмотка ваттметра в цепь вторичной обмотки трансформатора включены вольтметр V и обмотка напряжения ваттметра —1 2. Полные потери на гистерезис и вихревые токи Рт. в равны Р . в = ( — E 2lR2]wl w2, где Р — показания ваттметра  [c.317]

Крутящий момент преобразуется в пропорциональный ему электрический сигнал. Тензодатчики включены в уравновешенный мост, питаемый от источника постоянного напряжения 15 в. К мосту может подключаться схема калибровки тен-зодатчиков с вольтметром и источником питания. Электрический хиг-нал от тензодатчиков подается на клеммы X самописца. На клеммы У самописца подается напряжение от тахогенератора постоянного тока, откалиброванного с точностью 0,5%. Тахогенератор дает напряжение 25 в при 1000 об1мин (режим холостого хода). Для снижения подаваемого на клеммы У самописца выходного сигнала до 10 мв включен набор сопротивлений. Величина тока в цепи контролируется амперметром.  [c.195]

На участках, где применяется рекуперативное торможение, перед выездом из депо под поезд машинист на электровозе, имеющем рекуперативное оборудование, должен проверить его работу. Для этой цели при поднятом токоприемнике и включенном быстродействующем выключателе на электровозе ВЛ22 пускается возбудитель, селективная рукоятка устанавливается в одно из поло жений соединения тяговых электродвигателей (последовательное, последовательно-параллельное или параллельное) и краном вспомогательного тормоза повышается давление в тормозных цилиндрах электровоза до 1,5 KPf M . После этого главную рукоятку контроллера переводят из нулевого положения на 1-ю позицию, в которой должна собраться схема моторного режима. Затем тормозную рукоятку переводят на 1-ю позицию, при которой схема моторного режима должна разобраться, а схема тормозного режима собраться. При этом амперметры цепи якоря и цепи обмоток возбуждения тяговых двигателей доллсны показывать величину тока около 100 а в цепи якоря и 70 а в цепи возбуждения.  [c.33]

В нижней части рисунка показана последовательность преобразования подводимой энергии напряжением /л промышленной частоты 50 Гц в частоту 10 000 Гц в машинном преобразователе. Высокое напряжение С/1 с помощью понижающего трансформатора трансформируется в напряжение С/г, не превышающее нескольких десятков вольт. Контроль электрических параметров процесса нагрева детали осуществляется по приборам, схема включения которых изображена на рис. 61. В схему включаются пять приборов вольтметр В, амперметр А, киловаттметр КВ для измерения соответственно напряжения, тока и мощности генератора фазометр Ф для измерения коэффициента мощности на-  [c.108]


Затем, замкнув общий пакетный вьгключатель ПВ и тумблер питания блока управления, проверяют наличие тока на выходе УПТ силового выпрямителя установки (амперметры и Лг). Выходной ток исправного УПТ может достигать 0,7—0,8 а величину тока на выходе установки определяют параметрами дренажной цепи (или нагрузочным сопротивлением / н) и схемой включения вторичных обмоток ТРг (6 или 12 в).  [c.82]

Амперметр и вольтметр. Правила включения. 🐲 СПАДИЛО.РУ

Амперметр

Для измерения силы тока используется амперметр. В идеале собственное сопротивление амперметра стремится к нулю, и оно никак не влияет на значение силы тока. Он включается в цепь последовательно с соблюдением полярности:

Вольтметр

Для измерения напряжения участка цепи используется вольтметр. В идеале собственное сопротивление вольтметра стремится к бесконечности, и устройство не проводит через себя ток. Он включается в электрическую цепь параллельно участку, в котором будет измеряться напряжение, с соблюдением полярности:

Как правильно записывать показания измерительных приборов с учетом погрешности

При записи величин (с учетом погрешности) следует пользоваться формулой:

A=a±Δa 

где A — измеряемая величина, a — результат измерений, Δa — погрешность измерений.

Важно!

Погрешность измерений равна половине цены деления шкалы измерительного прибора, если в задаче не указана другая величина погрешности.

Цена деления шкалы — разность значений величины, соответствующих двум соседним отметкам шкалы. Чтобы найти цену деления шкалы, нужно:

  1. Найти два ближайших штриха шкалы, возле которых написаны значения величин.
  2. Вычесть из большего значения меньшее.
  3. Полученное число разделить на число делений (промежутков), находящихся между ними.

Пример №1. Определите показания вольтметра (см. рисунок), если погрешность прямого измерения напряжения составляет половину цены деления вольтметра.

Видно, что стрелка вольтметра встала на значении «2,0» Вольт. Она немного не дотягивает до штриха «2», но к нему она находится ближе, чем к предыдущему штриху.

Два ближайших штриха шкалы с указанными значениями имеют значения 1 и 2 В. Всего между ними 5 промежутков. Следовательно, цена деления шкалы равна: (2 – 1)/5 = 0,2 (Вольт).

Так как по условию задачи погрешность равна половине цене деления шкалы, то она равна 0,1 Вольтам. Следовательно, вольтметр показывает: 2,0 ± 0,1 В.

Задание EF18821 Определите показания вольтметра (см. рисунок), если погрешность прямого измерения напряжения равна цене деления вольтметра.

Ответ: (____± ____) В.

Алгоритм решения

1.Определить цену деления шкалы измерительного прибора.

2.Определить погрешность измерений.

3.Определить показания прибора.

4.Записать показания прибора с учетом погрешности измерений.

Решение

Так как два ближайших штриха, обозначенными числовыми значениями, показывают 1 и 2 Вольта, а между ними 5 делений, то цена деления шкалы равна:

2−15..=0,2 (В)

Согласно условию задачи, погрешность измерений равна цене деления шкалы. Стрелка вольтметра стоит в трех делениях от штриха, обозначенном цифрой «1». 3 деления по 0,2 Вольта равны 0,6 Вольтам. Следовательно, вольтметр показывает 1,6 В. С учетом погрешности: V = 1,6 ± 0,2 В.

Внимание! При записи ответа нужно использовать только десятичные числа без пробелов и знака «±».

.

Ответ: 1,60,2

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF18883

Определите показания амперметра (см. рисунок), если погрешность прямого измерения силы тока равна цене деления амперметра.

Ответ: ( ____± ____) А.

Алгоритм решения

1.Определить цену деления шкалы измерительного прибора.

2.Определить погрешность измерений.

3.Определить показания прибора.

4.Записать показания прибора с учетом погрешности измерений.

Решение

Так как два ближайших штриха, обозначенными числовыми значениями, показывают 0 и 0,2 Ампера, а между ними 10 делений, то цена деления шкалы равна:

0,2−010..=0,02 (А)

Согласно условию задачи, погрешность измерений равна цене деления шкалы. Стрелка амперметра стоит на штрихе, обозначенном числом «0,2». Следовательно, амперметр показывает 0,2 А. Так как при измерении учитываются сотые доли Амперов, правильно результат измерения записывается так: I = 0,20 А. С учетом погрешности: I = 0,20 ± 0,02 А.

Внимание! При записи ответа нужно использовать только десятичные числа без пробелов и знака «±».

.

Ответ: 0,200,02

pазбирался: Алиса Никитина | обсудить разбор | оценить

Задание EF19038 Определите напряжение на лампочке (см. рисунок), если погрешность прямого измерения напряжения равна цене деления вольтметра.

Ответ: ( ____±____ ) В.

Алгоритм решения

1.Определить цену деления шкалы измерительного прибора.

2.Определить погрешность измерений.

3.Определить показания прибора.

4.Записать показания прибора с учетом погрешности измерений.

Решение

Так как два ближайших штриха, обозначенными числовыми значениями, показывают 2 и 4 Вольта, а между ними 10 делений, то цена деления шкалы равна:

4−210..=0,2 (В)

Согласно условию задачи, погрешность измерений равна цене деления шкалы. Стрелка вольтметра стоит в пяти делениях от штриха, обозначенном цифрой «2». 5 делени1 по 0,2 Вольта равны 1 Вольту. Следовательно, вольтметр показывает 3 В. Так как при измерении учитываются сотые доли Вольтов, правильно результат измерения записывается так: U = 3 В.С учетом погрешности: U = 3,0 ± 0,2 В.

Внимание! При записи ответа нужно использовать только десятичные числа без пробелов и знака «±».

.

Ответ: 3,00,2

pазбирался: Алиса Никитина | обсудить разбор | оценить

Способы измерения мощности в цепях постоянного и переменного тока

Значение активной мощности в однофазной цепи переменного тока определяют по формуле P = UI cos фи, где U – напряжение приемника, В, I – ток приемника, А, фи – фазовый сдвиг между напряжением и током.

Из формулы видно, что мощность в цепи переменного тока можно определить косвенным путем, если включить три прибора: амперметр, вольтметр и фазометр. Однако в этом случае нельзя рассчитывать на большую точность измерения, так как погрешность измерения мощности будет зависеть не только от суммы погрешностей всех трех приборов, но и от погрешности метода измерения, вызванной способом включения амперметра и вольтметра. Поэтому данный метод можно применять только в случае, когда не требуется большая точность измерений.

Если активную мощность нужно измерить точно, то лучше всего применить ваттметры электродинамической системы или электронные ваттметры. При грубых измерениях могут быть использованы ферродинамические ваттметры.

Если напряжение в цепи меньше предела измерений ваттметра по напряжению, ток нагрузки меньше допустимого тока измерительного прибора, то схема включения ваттметра в цепь переменного тока аналогична cхеме включения ваттметра в цепь постоянного тока. То есть токовую катушку включают последовательно с нагрузкой, а обмотку напряжения – параллельно нагрузке.

При подключении электродинамических ваттметров следует учитывать, что они полярны не только в цепи постоянного, но и в цепи переменного тока. Чтобы обеспечить правильное (в сторону шкалы) отклонение стрелки прибора от нуля, начала обмоток на панели прибора обозначены точкой или звездочкой. Зажимы, по меченные таким образом, называют генераторными, так как именно их подключают к источнику энергии.

Неподвижную катушку ваттметра можно включать последовательно с нагрузкой только при токах нагрузки 10 – 20 А. Если ток нагрузки больше, то токовую катушку ваттметра включают через измерительный трансформатор тока.

Для измерения мощности в цепи переменного тока с низким коэффициентом мощности следует применять специальные низкокосинусные ваттметры. На их шкале указано, для каких значений cos фи они предназначены.

Когда cos фи<1, то для исключения перегрузки электродинамического ваттметра нужно включать контрольные амперметр и вольтметр. Например, ваттметр с номинальным током Iи=5 А может показать полное отклонение при токе I = 5 А и cos фи =1 и при токе I =6,25 Аиcos фи =1 (так кaк I = Iн / cos фи). Во втором случае ваттметр будет перегружен.

Если ток нагрузки больше допустимого тока ваттметра, то токовую катушку ваттметра включают через измерительный трансформатор тока (рис. 1, а).

Рис. 1. Схемы включения ваттметра в цепь переменного тока с большим током (а) и в высоковольтную сеть (б).

При выборе трансформатора тока необходимо следить за тем, чтобы номинальный первичный ток трансформатора I1и был равен измеряемому току в сети или больше него.

Например, если значение тока в нагрузке достигает 20 А, то можно брать трансформатор тока, рассчитанный на первичный номинальный ток 20 А с номинальным коэффициентом трансформации по току Kн1 = I1и/ I2и = 20/5 = 4.

Если при этом в измерительной цепи напряжение меньше допустимого ваттметром, то катушку напряжения включают непосредственно на напряжение нагрузки. Начало катушки напряжения при помощи перемычки / подключают к началу токовой катушки. Так же обязательно устанавливают перемычку 2 (начало катушки подключают к сети). Конец катушки напряжения подключают к другому зажиму сети.

Для определения действительной мощности в измеряемой цепи необходимо показание ваттметра умножить на номинальный коэффициент трансформации трансформатора тока:

P = Pw х Kн1 = Pw х 4

Если ток в сети может превышать 20 А, то следует выбрать трансформатор тока с первичным номинальным током 50 А, при этом Kн1 = 50/5 = 10.

В этом случае для определения значения мощности показания ваттметра надо умножать на 10.

При измерении мощности в трехфазных цепях двумя ваттметрами есть возможность не только сэкономить один ваттметр, но и по их показаниям судить ориентировочно о значении коэффициента мощности трехфазного электроприемника.

Например, если нагрузка в фазах активная и симметричная то показания обоих ваттметров будут одинаковы. Это видно из векторной диаграммы (рис. 1, в).

Токи совпадают по направлению с фазными напряжениями (приемник соединен звездой): ток IА с напряжением UА, а ток IВ с напряжением UB, так как нагрузка активная. Угол ψ1 между UAC и IА равен 30о, и угол ψ2 между UBC и IB также равен 30о.

Рис. 1. Схема включения двух ваттметров в трехпроводную сеть (а, б) и векторные диаграммы напряжений и токов при cos ф=1 (в) и cos ф=0,5 (г).

Значения мощности, измеряемые ваттметрами, определяются одинаковыми выражениями:

Рw1 = UACIАcosψ1= UлIл cos30°,

Pw1 = UBCIBcosψ2 = UлIл cos30°

Если нагрузка носит активно-индуктивный характер и косинус фи равен 0,5, то есть угол φ = 60°, то угол ψ1= 30°, а угол ψ2 = 90° (рис. 1, г).

Показания ваттметров будут следующими:

Рw1 = UлIл cos30°

Pw1 = UлIл cos90°

Если показания одного из ваттметров становятся равными нулю, это значит, что косинус фи уменьшился до 0,5.

Из диаграммы также видно, что если косинус фи в сети станет меньше 0,5, то есть угол φ будет больше 60° , то угол ψ2 станет больше 90°, а это приведет к тому, что показания второго ваттметра станут отрицательными, стрелка прибора начнет отклоняться в другую сторону (обычно в современных ваттметрах предусмотрен переключатель направления тока в подвижной катушке). Общая мощность в этом случае равна разности показаний ваттметров.

Если нагрузка симметрична, то по показаниям двух ваттметров можно точно вычислить значение cos φ по формуле

cos φ = P/S = P/(√P2 + Q2),

где P = Рw1 + Рw2 – активная мощность трехфазного электроприемника, Вт, Q = √3(Рw1 + Рw2) – реактивная мощность трехфазного электроприемника. Последнее выражение показывает, что если разность показаний двух ваттметров умножить на √3, получится значение реактивной мощности трехфазного электроприемника.

Принцип работы и виды амперметров

22.05.2014

Принцип работы и виды амперметров

Амперметр — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют. Поэтому, чем ниже внутреннее сопротивление амперметра (в идеале — 0), тем меньше будет влияние прибора на исследуемый объект, и тем выше будет точность измерения.

Для увеличения предела измерений амперметр снабжается шунтом (для цепей постоянного и переменного тока), трансформатором тока (только для цепей переменного тока) или магнитным усилителем (для цепей постоянного тока). Комплектное устройство из токоизмерительной головки и трансформатора тока специальной конструкции называется «токоизмерительные клещи».

Очень опасно пытаться использовать амперметр в качестве вольтметра (подключать его непосредственно к источнику питания), что может привести к коротким замыканиям!

Общая характеристика

По конструкции амперметры делятся:

  • со стрелочной измерительной головкой без электронных схем;
  • со стрелочной измерительной головкой с использованием электронных схем;
  • с цифровым индикатором.

Приборы со стрелочной головкой

Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол крена, пропорциональный величине измеряемого тока.

Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими.

Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными — силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

Приборы со стрелочной головкой могут снабжаться дополнительными электронными схемами для усиления сигнала, подаваемого на головку (для измерения токов, существенно меньших чем ток полного отклонения головки, который для большинства магнитоэлектрических приборов составляет 50 мкА и более), защиты головки от перегруза и прочее.

Приборы с цифровым индикатором

В последнее время приборы со стрелочной измерительной головкой стали вытесняться приборами с цифровым индикатором на основе жидких кристаллов и светодиодов.

Принцип действия стрелочной измерительной головки

Принцип действия самых распространённых в амперметрах систем измерения:

  • В магнитоэлектрической системе прибора крутящий момент стрелки создаётся благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки (вращающий момент). С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки устанавливается при равенстве вращающего момента и момента пружины.
  • В электромагнитной системе прибора вращающий момент стрелки создаётся между катушкой и подвижным ферромагнитным сердечником, к которому прикрепляется указательная стрелка.
  • В электродинамической системе измерительная головка состоит из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки.

Во всех вышеуказанных системах угол поворота стрелки устанавливается при равенстве вращающего момента и момента сопротивления пружины.

Включение амперметра в электрическую цепь

В электрической цепи амперметр соединяется последовательно с нагрузкой, а при больших токах — через трансформатор тока, магнитный усилитель или шунт. Для измерения токов может также применяться милливольтметр и калиброванный шунт (первичные токи шунтов могут быть выбраны из стандартного ряда, вторичное напряжение стандартизировано – чаще всего 75 мВ). При высоких напряжениях (выше 1000В) – в цепях переменного тока для гальванической развязки амперметров также применяют трансформаторы тока, а цепях постоянного тока – магнитные усилители.


Как и что измеряет амперметр – Wira Electrical

Три основных измерительных инструмента для электрических устройств: вольтметры, амперметры и омметры. Вы, должно быть, использовали эти инструменты, не один или два, а все. У инженера-электрика нет опыта в таких вещах. В основном они просты в эксплуатации и изготовлении, но пока остановимся на амперметрах. По этой причине мы сейчас узнаем, что измеряет амперметр.

Амперметр – это устройство для измерения силы тока в электрической цепи или, точнее, потока электричества.Подобно тому, что мы прочитали в основном объяснении электрической цепи, единицы измерения электрического тока в Амперах с символом «А».

Следовательно, амперметр или амперметр – это инструмент для измерения количества «ампер» в цепи. Не удивляйтесь, если вы найдете «амперметр», потому что люди часто ошибаются.

Звучит очень похоже, но правильный – «амперметр». Странный? Но что есть, то есть. Это не так уж и плохо, но звучит так странно.

Что такое амперметр

В системе СИ единица измерения ампер – это ампер, поэтому его измерительный инструмент называется амперметр или просто амперметр.Несмотря на то, что существует два типа тока: переменный ток и постоянный ток, амперметр не имеет проблем с измерением обоих.

Из этого краткого объяснения мы заключаем вопрос:

Что измеряет амперметр?
Амперметр используется для измерения электрического тока в электрической цепи, измеряемого в амперах (A).

Амперметр сконструирован с использованием подвижной катушки со стрелкой, перемещаемой гальванометром. Не путайте его с вольтметром при подключении к электрической цепи.Вы должны подключить амперметр последовательно с элементом схемы. Внутри амперметра очень низкое сопротивление.

Почему?

Использование закона Ома, где I = V / R, очевидно, что нам нужно, чтобы сопротивление было как можно более низким, потому что мы не хотим изменять текущее значение. Представьте себе схему ниже, в ней есть источник напряжения 10 В и резистор 2 Ом. Мы добавим резистор 0,5 Ом в качестве сопротивления амперметра.

Даже если на амперметре 0.5 Ом, это все равно повлияет на ток в цепи. Предполагается, что ток внутри цепи составляет 10/2 = 5 А. Амперметр с сопротивлением 0,5 Ом снизит ток до 10 / 2,5 = 4 А.

Это, конечно, пустая трата.

Теперь вы понимаете, почему амперметр рассчитан на очень маленькое сопротивление, близкое к нулю.

Чтобы не влиять на значение тока, в амперметре используется небольшой резистор, подключенный параллельно гальванометру. Цель этой конструкции – заставить весь ток течь через резистор.

Почему?

Как вы узнали из базовой электроники, больший ток будет проходить через ветвь с меньшим сопротивлением.

Следующая проблема: амперметр – это цифровой измерительный инструмент? Ответ – нет. Амперметр – это аналоговый инструмент. Вы можете найти или использовать «цифровой» амперметр, но это не означает, что амперметр работает цифровым способом. Амперметр даже не механический. Цифровой амперметр, который вы используете, должен иметь цифровой дисплей (7-сегментный дисплей), но это из-за преобразователя.

В цифровом мультиметре используется АЦП (аналого-цифровой преобразователь), обеспечиваемый микроконтроллером, который выполняет все вычисления и отображение через резистор.

В идеале амперметр должен иметь нулевое сопротивление, поэтому амперметр не изменит никаких значений в цепи. Но, как мы уже понимаем, идеальное состояние достигается только в математическом анализе, а не в практическом. Даже проводник имеет очень маленькое сопротивление.

Будьте осторожны при использовании амперметра.Как было сказано выше, амперметр необходимо подключить последовательно к ответвлению. Если вы подключите амперметр параллельно, ток будет очень высоким (можно предположить «короткозамкнутым») и перегорит предохранитель, выйдет из строя амперметр или даже сломаются компоненты цепи.

Амперметр Функция

Гальванометр и амперметр

Гальванометр может определять значение и направление тока в цепи. Как уже говорилось выше, он имеет указатель, прикрепленный к якорю, сделанный из катушек.Дисплей откалиброван для считывания результатов движения.

Так в чем разница между гальванометром и амперметром?

Если вы видели самую простую схему постоянного тока, то вы понимаете, что якорь может перемещаться с помощью набора магнитов, в то время как якорь возбуждается электрическим током. Ту же концепцию можно использовать для различения гальванометра и амперметра:

Для гальванометра нужен набор магнитов, а для амперметра он не нужен.

Другое отличие состоит в том, что гальванометр может измерять только постоянный ток.

Вы можете это представить? Почему он не может измерить значение переменного тока? Поскольку переменный ток имеет отрицательную полярность, он будет перемещать указатель в противоположном направлении. На мой взгляд, довольно запутано.

Так как же амперметр измеряет переменный ток? В то время как амперметр постоянного тока по-прежнему использует принцип движущейся катушки и магнита, амперметр переменного тока подсчитывает железные части, которые перемещаются в присутствии электромагнитной силы неподвижного провода катушки.

Обозначение амперметра как для переменного, так и для постоянного тока остается прежним.Как вольтметр, но вместо этого мы используем букву «А». Вы можете найти это в следующем разделе, как нам использовать амперметр.

Шунтирующее сопротивление

Гальванометр обладает двумя характеристиками:

  • Очень чувствительное устройство даже при небольшом изменении электрического тока.
  • Невозможно измерить высокий электрический потенциал.

Поскольку мы не должны изменять электрический ток, нам разрешается использовать только очень маленькое сопротивление. Но как это сделать с гальванометром?

Подключаем резистор параллельно гальванометру.Поскольку это «параллельное» соединение, мы можем назвать его шунтирующим сопротивлением. (Шунт = Параллельный)

Помните, о чем мы говорили выше, почему мы включили амперметр последовательно со схемой? Мы будем использовать сопротивление шунта, чтобы пропустить через него весь ток, так что гальванометр будет получать только очень небольшой ток.

Таким образом, гальванометр может измерять гораздо более высокий ток. Конечно, сопротивление шунта одновременно защищает гальванометр.

Как определить значение сопротивления шунта? Соблюдайте уравнение ниже:

Где:

S = сопротивление шунта
G = сопротивление гальванометра
I g = максимальный ток, который может пройти через гальванометр для полного отклонения
I = измеряемый ток

Поскольку I – это ток, который мы измеряем, тогда I g – это единственный ток, который может проходить через гальванометр для полного отклонения.А остальной ток ( I I g ) должен проходить через сопротивление шунта.

Мы рассматриваем G и S параллельно.

Эффективное сопротивление амперметра выражается как:

Как работает амперметр

Амперметр предназначен для измерения электрического тока в цепи.

Как это работает?

Амперметр измеряет ток, протекающий через набор катушек с очень низким сопротивлением и индуктивным сопротивлением.Импеданс должен быть очень маленьким, чтобы амперметр не изменил текущее значение из-за своего дополнительного импеданса.

На изображении выше показан амперметр с подвижной катушкой, который мы часто называем аналоговым амперметром. Внутри него есть фиксированные магниты, которые предназначены для противодействия протекающему через него электрическому току. Указатель индикатора перемещается с помощью якоря, расположенного в центре магнита (аналогично простым двигателям постоянного тока). Указатель расположен в точном месте со шкалой и числом на экране дисплея.

Самое главное в любом измерительном инструменте – это то, что они не должны изменять значения переменных в цепи. Вольтметру, амперметру и омметру запрещается изменять напряжение, ток и сопротивление внутри цепи.

Как и что измеряет амперметр

Узнав, что такое амперметр и гальванометр, давайте применим их на практике: как и что измеряет амперметр.

Что мы должны понимать здесь:

  • Понимание того, что измеряет амперметр
  • Знание того, как использовать амперметр для измерения тока

Понимание того, что измеряет амперметр

Если вы читаете этот пост, я уверен вы поняли, что сейчас происходит.Трудно выучить амперметр, если вы даже не знаете, что такое мера амперметра. Все, что вам нужно прочитать в первую очередь, можно найти в моем сообщении о том, что такое электрические токи. Резюме,

Электрический ток – это изменение заряда за период времени, измеряемое в амперах (А), а заряд – это атомная частица в электрической системе, измеряемый в кулонах

Не забудьте подключить амперметр последовательно со схемой. Если вы по ошибке подключите его параллельно, это приведет к короткому замыканию.

Умение использовать амперметр для измерения тока

Например, давайте воспользуемся простой электрической схемой, представленной ниже. Мы будем использовать источник напряжения 3 В и набор из 3 резисторов с сопротивлением 10 Ом. Из закона Ома мы легко узнаем, что сила тока будет 1 ампер. Поскольку очень просто рассчитать схему, нам не нужен амперметр.

Но что мы будем делать, если схема сложная, с большим количеством компонентов и сочетанием последовательно-параллельного соединения, в то время как у нас нет роскоши времени? Здесь размещаются измерительные инструменты.

В любом случае, давайте проанализируем схему ниже:

Давайте вычислим i 1 , i 2 и i 3 .

Для начала мы сначала найдем токи с основным законом Ома, чтобы позже проверить показания измерительных инструментов.

Для i 1 , поскольку это ток, включенный последовательно с источником напряжения, мы можем принять его как полный ток в цепи. Чтобы рассчитать полный ток в цепи, нам нужно сначала рассчитать общее сопротивление в цепи.

А затем общее сопротивление

Суммарный ток

Для i 2 и i 3 мы можем использовать текущее деление. Поскольку R 2 и R 3 имеют одинаковое сопротивление, мы разделим общий ток на 2. Следовательно,

i 2 = 0,1 A и i 3 = 0,1 A

У нас есть текущие значения здесь.Пора применить другой подход с амперметром.

Какое сопротивление у амперметра? Предположим, он имеет сопротивление 0,01 Ом.

Для i 1 мы поместим амперметр между источником напряжения и R1. схема становится:

Как вы заметили, i 1 составляет 0,19998 А. Это очень близко к 2 А, если использовать закон Ома. Почему они разные? Потому что, если мы используем математические методы, мы предполагаем, что каждый компонент находится в идеальном состоянии.Идеальный амперметр имеет нулевое внутреннее сопротивление, что практически невозможно. Сопротивление амперметра 0,01 Ом немного снижает общий ток, и мы можем игнорировать разницу.

Переходя к i 2 и i 3 ,

Мы получаем 0,09999 A для i 2 и i 3 вместо 0,1 A. И снова, мы можем игнорировать различия.

Часто задаваемые вопросы

Как амперметр измеряет ток?

Амперметр будет измерять ток, протекающий через набор катушек с очень низким сопротивлением и индуктивным сопротивлением.Импеданс должен быть очень маленьким, чтобы амперметр не изменил текущее значение из-за своего дополнительного импеданса.

Что измеряют амперметры и вольтметры?

Амперметр используется для измерения электрического тока, а вольтметр – для измерения электрического напряжения.

Каков принцип действия амперметра?

Импеданс должен быть очень маленьким, чтобы амперметр не изменил текущее значение из-за своего дополнительного импеданса.

У амперметров высокое сопротивление?

Сопротивление должно быть очень маленьким, чтобы амперметр не изменил текущее значение из-за своего дополнительного сопротивления.

21,4 Вольтметры и амперметры постоянного тока – Физика колледжа, главы 1-17

Сводка

  • Объясните, почему вольтметр нужно подключать параллельно цепи.
  • Нарисуйте схему, показывающую правильно подключенный амперметр в цепь.
  • Опишите, как гальванометр можно использовать как вольтметр или амперметр.
  • Найдите сопротивление, которое необходимо подключить последовательно с гальванометром, чтобы его можно было использовать в качестве вольтметра с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, а амперметры измеряют ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. Рис. 1.) Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, позволяют лучше понять применение последовательного и параллельного подключения.

Рис. 1. Датчики топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств, которое, как мы надеемся, пропорционально количеству бензина в баке и температура двигателя. (Фото: Christian Giersing)

Вольтметры подключаются параллельно к любому устройству, которое необходимо измерить. Параллельное соединение используется потому, что параллельные объекты испытывают одинаковую разность потенциалов.(См. Рисунок 2, где вольтметр обозначен символом V.)

Амперметры подключаются последовательно к любому измеряемому устройству. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. Рисунок 3, где амперметр обозначен символом A.)

Рис. 2. (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов.Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр напрямую к ЭДС без учета его внутреннего сопротивления, r . (b) Используемый цифровой вольтметр. (предоставлено Messtechniker, Wikimedia Commons) Рис. 3. Амперметр (A) включен последовательно для измерения тока. Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении.(Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Аналоговые счетчики имеют стрелку, которая поворачивается, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков , которые имеют числовые показания, подобные портативному калькулятору. Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром , обозначенное буквой G. Ток, протекающий через гальванометр, [латекс] \ boldsymbol {I _ {\ textbf {G}}} [/ latex], производит пропорциональное отклонение стрелки. .(Это отклонение происходит из-за силы магнитного поля на провод с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность по току. Чувствительность по току – это ток, обеспечивающий отклонение стрелки гальванометра на полную шкалу , максимальный ток, который может измерить прибор. Например, гальванометр с текущей чувствительностью [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] имеет максимальное отклонение стрелки, когда [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] проходит через него, считывает половину шкалы, когда [latex] \ boldsymbol {25 \; \ mu \ textbf {A}} [/ latex] проходит через него, и так далее.

Если такой гальванометр имеет сопротивление [латекс] \ boldsymbol {25 – \; \ Omega} [/ latex], то напряжение только [латекс] \ boldsymbol {V = IR = (50 \; \ mu \ textbf { A}) (25 \; \ Omega) = 1,25 \; \ textbf {mV}} [/ latex] производит показание полной шкалы. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр как вольтметр

На рисунке 4 показано, как гальванометр можно использовать в качестве вольтметра, подключив его последовательно с большим сопротивлением, [латекс] \ boldsymbol {R} [/ латекс].Значение сопротивления [латекс] \ boldsymbol {R} [/ латекс] определяется максимальным измеряемым напряжением. Предположим, вам нужно 10 В для полного отклонения вольтметра, содержащего [латексный] \ boldsymbol {25 – \; \ Omega} [/ latex] гальванометр с [латексным] \ boldsymbol {50 – \; \ mu \ textbf {A}} [/ latex] чувствительность. Затем 10 В, приложенное к измерителю, должно производить ток [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex]. Общее сопротивление должно быть

.

[латекс] \ boldsymbol {R _ {\ textbf {tot}} = R + r =} [/ latex] [latex] \ boldsymbol {\ frac {V} {I}} [/ latex] [latex] \ boldsymbol { =} [/ latex] [латекс] \ boldsymbol {\ frac {10 \; \ textbf {V}} {50 \; \ mu \ textbf {A}}} [/ latex] [латекс] \ boldsymbol {= 200 \ ; \ textbf {k} \ Omega \; \ textbf {или}} [/ latex]

[латекс] \ boldsymbol {R = R _ {\ textbf {tot}} – r = 200 \; \ textbf {k} \ Omega – 25 \; \ Omega \ приблизительно 200 \; \ textbf {k} \ Omega} [ / латекс]

([латекс] \ boldsymbol {R} [/ latex] настолько велик, что сопротивлением гальванометра [латекс] \ boldsymbol {r} [/ latex] можно пренебречь.) Обратите внимание, что 5 В, приложенное к этому вольтметру, вызывает отклонение в половину шкалы, создавая ток [латекс] \ boldsymbol {25 – \; \ mu \ textbf {A}} [/ latex] через измеритель, и поэтому показания вольтметра пропорционально напряжению по желанию.

Этот вольтметр не годится для напряжений менее примерно половины вольта, потому что отклонение измерителя будет небольшим и его трудно будет точно прочитать. Для других диапазонов напряжения другие сопротивления устанавливаются последовательно с гальванометром. У многих метров есть выбор шкалы.Этот выбор включает последовательное включение соответствующего сопротивления с гальванометром.

Рисунок 4. Большое сопротивление R , включенное последовательно с гальванометром G, дает вольтметр, отклонение которого на полную шкалу зависит от выбора R . Чем больше измеряемое напряжение, тем больше должно быть R . (Обратите внимание, что r представляет внутреннее сопротивление гальванометра.)

Гальванометр как амперметр

Тот же гальванометр можно превратить в амперметр, разместив его параллельно небольшому сопротивлению [латекс] \ boldsymbol {R} [/ latex], часто называемому шунтирующим сопротивлением , как показано на рисунке 5. Поскольку шунт сопротивление невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие те, которые вызывают полное отклонение гальванометра.

Предположим, например, что необходим амперметр, который дает полное отклонение на 1.0 A, и содержит такой же гальванометр [latex] \ boldsymbol {25 – \; \ Omega} [/ latex] с его чувствительностью [latex] \ boldsymbol {50 – \; \ mu \ textbf {A}} [/ latex] . Поскольку [latex] \ boldsymbol {R} [/ latex] и [latex] \ boldsymbol {r} [/ latex] параллельны, напряжение на них одинаковое.

Эти [латекс] \ boldsymbol {IR} [/ latex] капли представляют собой [latex] \ boldsymbol {IR = I_Gr} [/ latex], так что [latex] \ boldsymbol {IR = \ frac {I_G} {I} = \ frac {R} {r}} [/ latex]. Решая для [latex] \ boldsymbol {R} [/ latex] и отмечая, что [latex] \ boldsymbol {I_G} [/ latex] – это [latex] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] и [latex] \ boldsymbol {I} [/ latex] равно 0.{-3} \; \ Omega}. [/ Латекс]

Рис. 5. Небольшое шунтирующее сопротивление R , помещенное параллельно гальванометру G, дает амперметр, полное отклонение которого зависит от выбора R . Чем больше измеряемый ток, тем меньше должно быть R . Большая часть тока ( I ), протекающего через счетчик, шунтируется через R для защиты гальванометра.(Обратите внимание, что r представляет внутреннее сопротивление гальванометра.) Амперметры также могут иметь несколько шкал для большей гибкости в применении. Различные шкалы достигаются путем переключения различных шунтирующих сопротивлений параллельно гальванометру – чем больше максимальный измеряемый ток, тем меньше должно быть шунтирующее сопротивление.

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему.В идеале вольтметры и амперметры не оказывают заметного влияния на схему, но полезно изучить обстоятельства, при которых они влияют или не влияют.

Сначала рассмотрим вольтметр, который всегда размещается параллельно с измеряемым устройством. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь это не оказывает заметного влияния. (См. Рисунок 6 (a).) (Большое сопротивление, параллельное малому, имеет суммарное сопротивление, по существу равное малому.) Если, однако, сопротивление вольтметра сопоставимо с сопротивлением измеряемого устройства, то два параллельно подключенных устройства имеют меньшее сопротивление, что существенно влияет на цепь. (См. Рисунок 6 (b).) Напряжение на устройстве не такое, как при отключении вольтметра от цепи.

Рис. 6. (a) Вольтметр, имеющий сопротивление намного больше, чем устройство ( R Voltmeter >> R ), с которым он подключен параллельно, создает параллельное сопротивление, по существу такое же, как и устройство, и не оказывает заметного влияния измеряемая цепь.(b) Здесь вольтметр имеет такое же сопротивление, как и устройство ( R Voltmeter ≅ R ), так что параллельное сопротивление составляет половину от того, которое есть, когда вольтметр не подключен. Это пример значительного изменения схемы, которого следует избегать.

Амперметр подключается последовательно к ветви измеряемой цепи, так что его сопротивление добавляется к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому дополнительное сопротивление незначительно.(См. Рисунок 7 (a).) Однако, если задействованы очень малые сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление значительно больше, а ток в ветви измеряется уменьшается. (См. Рисунок 7 (b).)

Практическая проблема может возникнуть, если амперметр подключен неправильно. Если его подключить параллельно с резистором для измерения тока в нем, вы можете повредить счетчик; низкое сопротивление амперметра позволит большей части тока в цепи проходить через гальванометр, и этот ток будет больше, поскольку эффективное сопротивление меньше.

Рис. 7. (a) Амперметр обычно имеет такое маленькое сопротивление, что общее последовательное сопротивление в измеряемой ветви существенно не увеличивается. Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как и сопротивление ветви, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого существенного изменения схемы следует избегать.

Одним из решений проблемы вольтметров и амперметров, мешающих измеряемым цепям, является использование гальванометров с большей чувствительностью.Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.

Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности измерителя.

Связи: границы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что приводит к погрешности измерения.Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью исключить его нельзя. Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что невозможно сделать сколь угодно малым. Это фактически ограничивает знания о системе – даже ограничивает то, что природа может знать о самой себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.6} [/ латекс].

Проверьте свое понимание

1: Цифровые измерители способны обнаруживать меньшие токи, чем аналоговые измерители, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Исследование PhET: комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория

Стимулируйте нейрон и следите за тем, что происходит. Сделайте паузу, перемотайте назад и двигайтесь вперед во времени, чтобы наблюдать за перемещением ионов через мембрану нейрона.

Рис. 8. Комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория
  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр помещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр подключается последовательно, чтобы через ответвление протекал полный ток, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговые показания тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Концептуальные вопросы

1: Почему не следует подключать амперметр непосредственно к источнику напряжения, как показано на рисунке 9? (Обратите внимание, что скрипт E на рисунке означает ЭДС.)

Рис. 9.

2: Предположим, вы используете мультиметр (предназначенный для измерения диапазона напряжений, токов и сопротивлений) для измерения тока в цепи и случайно оставляете его в режиме вольтметра.Как измеритель повлияет на схему? Что бы произошло, если бы вы измеряли напряжение, но случайно перевели измеритель в режим амперметра?

3: Укажите точки, к которым можно подключить вольтметр для измерения следующих разностей потенциалов на Рисунке 10: (a) разность потенциалов источника напряжения; (b) разность потенциалов на [латексе] \ boldsymbol {R_1} [/ latex]; (c) через [латекс] \ boldsymbol {R_2} [/ latex]; (г) поперек [латекса] \ boldsymbol {R_3} [/ latex]; (e) через [латекс] \ boldsymbol {R_2} [/ latex] и [латекс] \ boldsymbol {R_3} [/ latex].Обратите внимание, что на каждую часть может быть несколько ответов.

Рис. 10.

4: Для измерения токов на рис. 10 замените провод между двумя точками на амперметр. Укажите точки, между которыми вы разместите амперметр, чтобы измерить следующее: (a) общий ток; (б) ток, протекающий через [латекс] \ boldsymbol {R_1} [/ latex]; (c) через [латекс] \ boldsymbol {R_2} [/ latex]; (г) через [латекс] \ boldsymbol {R_3} [/ латекс]. Обратите внимание, что на каждую часть может быть несколько ответов.

Проблемные упражнения

1: Какова чувствительность гальванометра (то есть, какой ток дает полное отклонение) внутри вольтметра, имеющего [латексный] \ boldsymbol {1,00 – \; \ textbf {M} \ Omega} [ / латекс] по шкале 30,0 В?

2: Какова чувствительность гальванометра (то есть, какой ток дает полное отклонение) внутри вольтметра, имеющего [латексный] \ boldsymbol {25.0 – \; \ textbf {k} \ Omega} [ / латекс] по шкале 100 В?

3: Найдите сопротивление, которое должно быть последовательно подключено с символом [латекс] \ bold {25.0 – \; \ Omega} [/ latex] гальванометр с чувствительностью [latex] \ boldsymbol {50.0 – \; \ mu \ textbf {A}} [/ latex] (такой же, как тот, который обсуждается в тексте), чтобы позволить его следует использовать как вольтметр с показаниями полной шкалы 0,100 В.

4: Найдите сопротивление, которое необходимо подключить последовательно с [латексным] \ boldsymbol {25.0 – \; \ Omega} [/ latex] гальванометром, имеющим [латексный] \ boldsymbol {50.0 – \; \ mu \ textbf {A}} [/ latex] чувствительность (такая же, как та, что обсуждается в тексте), позволяющая использовать его в качестве вольтметра с показаниями полной шкалы 3000 В.Включите принципиальную схему в свое решение.

5: Найдите сопротивление, которое необходимо разместить параллельно [латексному] \ boldsymbol {25.0 – \; \ Omega} [/ latex] гальванометру с [латексным] \ boldsymbol {50.0 – \; \ textbf {A }} [/ latex] чувствительность (такая же, как та, что обсуждается в тексте), позволяющая использовать его в качестве амперметра с показаниями полной шкалы 10,0 A. Включите принципиальную схему в свое решение.

6: Найдите сопротивление, которое необходимо разместить параллельно символу [латекса] \ bold {25.0 – \; \ Omega} [/ latex] гальванометр с чувствительностью [latex] \ boldsymbol {50.0 – \; \ mu \ textbf {A}} [/ latex] (такой же, как тот, который обсуждается в тексте), чтобы позволить его следует использовать как амперметр с показаниями полной шкалы 300 мА.

7: Найдите сопротивление, которое необходимо подключить последовательно с [латексным] \ boldsymbol {10.0 – \; \ Omega} [/ latex] гальванометром, имеющим [латексный] \ boldsymbol {100 – \; \ mu \ textbf {A}} [/ latex] чувствительность, позволяющая использовать его в качестве вольтметра при: (а) полномасштабном показании 300 В и (б) 0.Полномасштабное показание 300 В.

8: Найдите сопротивление, которое необходимо разместить параллельно [латексному] \ boldsymbol {10.0 – \; \ Omega} [/ latex] гальванометру с [латексным] \ boldsymbol {100 – \; \ mu \ textbf {A}} [/ latex] чувствительность, позволяющая использовать его в качестве амперметра с: (a) показанием полной шкалы 20,0 A и b) показанием полной шкалы 100 мА.

9: Предположим, вы измеряете напряжение на клеммах щелочного элемента на 1,585 В, имеющего внутреннее сопротивление [латекс] \ boldsymbol {0.100 \; \ Omega} [/ latex], поместив вольтметр [latex] \ boldsymbol {1.00 – \; \ textbf {k} \ Omega} [/ latex] на его клеммы. (См. Рис. 11.) (а) Какой ток течет? (b) Найдите напряжение на клеммах. (c) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

Рис. 11.

10: Предположим, вы измеряете напряжение на клеммах литиевого элемента на 3.200 В, имеющего внутреннее сопротивление [латекс] \ boldsymbol {5.00 \; \ Omega} [/ латекс], помещая [латекс] \ boldsymbol {1.{-5} \; \ Omega} [/ latex] по шкале 3,00-A и содержит [латексный] \ boldsymbol {10.0 – \; \ Omega} [/ latex] гальванометр. Какая чувствительность у гальванометра?

12: Вольтметр [латекс] \ boldsymbol {1.00 – \; \ textbf {M} \ Omega} [/ latex] устанавливается параллельно [латексному] \ boldsymbol {75.0 – \; \ textbf {k} \ Omega} [/ latex] резистор в цепи. (а) Нарисуйте принципиальную схему подключения. б) Каково сопротивление комбинации? (c) Если напряжение на комбинации остается таким же, как на [латексе] \ boldsymbol {75.0 – \; \ textbf {k} \ Omega} [/ latex] только резистор, каков процент увеличения тока? (d) Если ток через комбинацию остается таким же, как через резистор [latex] \ boldsymbol {75.0 – \; \ textbf {k} \ Omega} [/ latex], каково процентное снижение напряжения ? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

13: Амперметр [latex] \ boldsymbol {0,0200 – \; \ Omega} [/ latex] последовательно с резистором [latex] \ boldsymbol {10.00 – \; \ Omega} [/ latex] в цепи схема.(а) Нарисуйте принципиальную схему подключения. (b) Рассчитайте сопротивление комбинации. (c) Если напряжение в комбинации остается таким же, каким оно было через резистор [latex] \ boldsymbol {10.00 – \; \ Omega} [/ latex], каков процент уменьшения тока? (d) Если ток остается таким же, как через резистор [latex] \ boldsymbol {10.00 – \; \ Omega} [/ latex], то каков процент увеличения напряжения? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

14: необоснованные результаты

Предположим, у вас есть гальванометр [latex] \ boldsymbol {40.0 – \; \ Omega} [/ latex] с чувствительностью [latex] \ boldsymbol {25.0 – \; \ mu \ textbf {A}} [/ latex]. (a) Какое сопротивление вы бы включили последовательно, чтобы его можно было использовать в качестве вольтметра с полным отклонением на 0,500 мВ? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

15: необоснованные результаты

(a) Какое сопротивление вы бы поставили параллельно с символом [латекс] \ bold {40.0 – \; \ Omega} [/ latex] гальванометр с чувствительностью
[латекс] \ boldsymbol {25.0 – \; \ mu \ textbf {A}} [/ latex], позволяющий использовать его в качестве амперметра с полное отклонение для [латекса] \ boldsymbol {10.0 – \; \ mu \ textbf {A}} [/ latex]? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

Глоссарий

вольтметр
прибор для измерения напряжения
амперметр
прибор для измерения силы тока
аналоговый счетчик
Измерительный прибор, дающий показания в виде движения стрелки над отмеченным датчиком
цифровой счетчик
Измерительный прибор, выдающий показания в цифровом виде
гальванометр
аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током
чувствительность по току
максимальный ток, который может прочитать гальванометр
полный прогиб
максимальное отклонение стрелки гальванометра, также известное как чувствительность по току; гальванометр с полным отклонением [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] имеет максимальное отклонение стрелки, когда [латекс] \ boldsymbol {50 \; \ mu \ textbf {A}} [/ latex] проходит через него
шунтирующее сопротивление
небольшое сопротивление [латекс] \ boldsymbol {R} [/ latex], помещенное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше должен быть [латекс] \ boldsymbol {R} [/ latex]; большая часть тока, протекающего через счетчик, шунтируется через [латекс] \ boldsymbol {R} [/ latex] для защиты гальванометра

Решения

Проверьте свое понимание

1: Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые, они изменяют схему меньше, чем аналоговые счетчики.{-4} \; \ Omega} [/ латекс]

7: (a) [латекс] \ boldsymbol {3.00 \; \ textbf {M} \ Omega} [/ latex]

(b) [латекс] \ boldsymbol {2.99 \; \ textbf {k} \ Omega} [/ latex]

9: (a) 1,58 мА
(b) 1,5848 В (необходимо четыре цифры, чтобы увидеть разницу)

(c) 0,99990 (нужно пять цифр, чтобы увидеть разницу от единицы)

11: [латекс] \ boldsymbol {15.0 \; \ mu \ textbf {A}} [/ латекс]

13: (а)

Рисунок 12.{-1}} [/ latex] процент увеличения

(e) Не имеет значения.

15: (a) [латекс] \ boldsymbol {-66.7 \; \ Omega} [/ латекс]

(b) У вас не может быть отрицательного сопротивления.

(c) Неразумно, что [latex] \ boldsymbol {I_G} [/ latex] больше, чем [latex] \ boldsymbol {I _ {\ textbf {tot}}} [/ latex] (см. Рисунок 5). Вы не можете добиться полного отклонения, используя ток, меньший, чем чувствительность гальванометра.

ТАБЛИЦА ЭЛЕКТРИЧЕСКИХ СИМВОЛОВ

И.ОБЩИЕ ИНСТРУКЦИИ:

1. Не загромождайте рабочее место. Все неиспользуемые инструменты следует отложить в сторону. на другом столе. Лишние провода следует отложить. Пальто и сумки для книг нельзя оставлять на ваши рабочие столы.

2. Избегать ударов . Вы испытываете электрошок при прохождении тока С по какая-то часть вашего тела. Поэтому не позволяйте своему телу стать веткой в цепи под напряжением. Металлические предметы, водопроводные трубы, электрические кабели и т. Д. Обычно находятся на земле. потенциал.Части вашей схемы будут под другими потенциалами. Так касаясь части схемы, пока Одновременное касание частью вашего тела заземленного металлического предмета может вызвать у вас толчок. Быть уверенным что источники питания отключены до того, как вы коснетесь каких-либо проводов или компонентов в цепи. Даже с цепями, которые, по вашему мнению, не являются “живыми”, выработайте у электромонтера привычку работать. одной рукой, а вторую руку надежно положите на колени или в карман.

3. Избегайте случайных коротких замыканий между клеммами цепи и составные части.Шорты могут необратимо повредить дорогое оборудование. Смотрите, что ушки лопаты на соседние клеммы не касаются друг друга. Проушины лопаты также не должны касаться металлических корпусов. инструментов. Используйте изолированные провода для всех соединений на временных и открытых схемы.

4. Избегайте перегрузок по току и мощности . Если есть сомнения сколько тока находится в ветви цепи, установите регулируемые резисторы, которые влияют на это перейти к значениям, которые максимально ограничивают ток.Поставьте амперметр достаточно высокий ассортимент в отрасли. Затем медленно измените настройки резистора, чтобы увеличить тока, внимательно следя за показаниями счетчика. В общем, РАССЧИТАЙТЕ ПЕРЕД ПОДКЛЮЧЕНИЕ!

5. Знайте ограничения оборудования . Каждый компонент схемы имеет ограничения по току, напряжению или мощности, за пределами которых он не будет работать должным образом и может быть поврежден. Эти ограничения четко указаны в каталогах производителя, которые находятся в файле. в лаборатории.Найдите эти значения и запишите их в лабораторную записную книжку перед подключением . и питание цепей. Если какая-то информация отсутствует в файлах, обратитесь к инструктору. для этого.

6. Знайте, что вы делаете . Это ответственность экспериментатора. возможность изучить эксперимент перед тем, как прийти в лабораторию, и уметь производить расчеты в заранее, как схема будет себя вести.

7. Предохранитель всех цепей на вашей лабораторной станции, чтобы избежать перегорания строительные предохранители.[Исключение: предохранитель может не понадобиться, если на вашу работу подается питание. подстанцию ​​от независимого источника с соответствующими автоматическими выключателями или защитой от перегрузки. Многие источники питания, которые вы будете использовать, имеют внутреннее питание и защиту от перегрузки по току, но даже с ними вам могут потребоваться предохранители для защиты отдельных компонентов схемы.] 8. Сообщите обо всех повреждениях оборудованию, чтобы его можно было отремонтировать или заменен до следующего лабораторного периода.

9.Когда вы уходите, приведите в порядок свое рабочее место и верните все оборудование, провода и т. их надлежащее место. Если цепь необходимо оставить подключенной, установите выступ . НЕ Распишитесь на DISTURB .

II. РЕЗИСТОРЫ:

У вас будет возможность использовать несколько типов резисторов, некоторые с фиксированным номиналом, некоторые Переменная.

Прецизионные декады сопротивления. На ящиках сопротивления есть декадные циферблаты для устанавливая точные значения, и обычно производятся с допусками точности около 1% или лучше.Они используются, когда вы должны изменить значение сопротивления и при этом точно знать его значение. Это , а не , способные выдерживать большой ток из-за их прецизионных катушек сопротивления. легко перегреваются, и их изоляция может расплавиться. Поэтому прецизионные ящики сопротивления должны никогда не использовать для управления большими токами . Обратитесь к каталогу производителя, чтобы определить ограничения всех компонентов схемы.

Обычно каждая катушка коробки сопротивления может рассеивать не более одного ватта непрерывно.Если бы такой ящик был установлен на значение одного Ом, он мог бы принимать не более одного ампера тока. и поэтому на его клеммы не должно подаваться более одного вольт. Когда поле установлено на более высокие значения сопротивления, отдельные катушки включены последовательно, поэтому все равно нельзя превышают один ампер, но могут применяться и более высокие напряжения. На 100 Ом все равно мог выдержать только 100 вольт. Самая большая опасность при использовании этих коробок – это рассеянный сброс циферблатов с от более высоких к более низким значениям без учета этих фактов и без предварительного расчеты.

Другая опасность возникает, когда поле сопротивления установлено на ноль (что обычно безопасно для коробку сопротивления), затем набрал, скажем, 0,1 Ом. Это может “поджарить” катушки с низким сопротивлением в коробка. Лучшая процедура – установить коробку на высокое значение сопротивления, обеспечивающее низкий ток, затем медленно уменьшите его значение, внимательно наблюдая за показаниями счетчика.

Проволочные реостаты, потенциометры и т. Д. Проволочные реостаты (Рис. 3) являются используется в физической лаборатории, когда требуется переменное сопротивление в сильноточной ветви схема.Они большие, чтобы эффективно отводить тепло в окружающую среду, и состоят из провод сопротивления, намотанный на изолирующий керамический цилиндр. Скользящий контакт можно перемещать на всю длину катушки. Условное обозначение их схемы показано на рис. 1 и 2.

Значок стрелки или указателя обозначает скользящий контакт.

Зигзагообразный символ резистора почти уникален для США. В мире символ резистора представляет собой простой прямоугольник, сплошной или открытый, часто с меткой значения напечатано внутри;

Метка значения 2K8 означает 2.8 кОм, символ множителя K помещается в позицию десятичной запятой. Это хорошо читается, и десятичная точка не может потеряться.

Реостаты

имеют два важных применения:

Рис. 3. Лабораторный реостат с тросом
длиной около 1 фута.
A и B – терминалы на каждом конце.
S – клемма для скользящего крана.

(1) Переменный резистор (рис. 2).В этом приложении принято подключать скользящий отвод к одному концу резистора, закорачивая неиспользуемую часть провода сопротивления. На рис.2 сопротивление между A и B увеличивается, когда скользящий контакт C перемещается к верно. На рис. 3 показано реальное устройство со скользящим контактом, обозначенным S.

.

Для приложений с очень высоким током или для ситуаций, когда требуется реостат с низким значением тока с регулятором smooth используется компрессионный реостат из угля .Это стопка углеродных блоков, разделенных металлическими полосами, которые действуют как теплоотводящие ребра. Когда стек сжимается, его сопротивление снижается. С этими устройствами нужно позаботиться, чтобы что блоки и ребра равномерно расположены в своей V-образной канавке. Если один наклонен, он может треснуть при приложении давления. Также не переворачивайте реостат вверх дном при ослаблении давления. в стеке, или все блоки и плавники могут выпасть, и вы будете играть подбирать.

Рис. 4. Реостат, подключенный
как делитель потенциала.

(2) Делитель потенциала (рис. 1 и 4). Клеммы A и B подключены к потенциальный источник, а скользящий контакт C “отводит” потенциал, который может изменяться от нуля до потенциала источника.

Выходной потенциал снимается с клемм A и C (или C и B). Для этого приложения размер реостата обычно выбирается большим по сравнению с резистивной нагрузкой, которая будет быть подключенным к выходным клеммам A и C.Кроме того, это расположение обычно используется только в случаях, когда ток на выходных клеммах невелик. Это , а не . подходящий способ управления большим током.

Рис. 5. Потенциометры. A (верхний ряд): слаботочный.
B: Сильный ток. C: Маленькие горшки для печатных плат,
с регулировкой отвертки.

Можно было бы предположить, что если токи были достаточно малы, точно откалиброванная переменная Таким образом можно было бы использовать резистор для получения откалиброванного переменного потенциала.К сожалению, это нецелесообразно при наличии тока на выходных клеммах A и C. Это связано с тем, что ток через левую часть реостата (от A до C) отличается от тока в правой часть (от C до B), и поэтому выходное напряжение не является простой функцией отвода сопротивления параметр. Однако этот метод может быть полезен в ситуациях, когда ток равен нулю. на выходных клеммах, как в схемах сравнения напряжений.

Меньшие версии реостата широко используются в электронных схемах, например как регуляторы громкости и тона на радиоприемниках и телевизорах.Их часто называют “горшками” (рис. 5). что является сокращением от “потенциометр”. Они имеют катушку или полоску из резистивной проволоки, согнутую по дуге, контактирует с помощью скользящего крана, прикрепленного к вращающемуся центральному валу.

(3) Ящики сопротивления переменного тока. Устройства, используемые в цепях переменного тока, не должны содержать индуктивный датчик. Поэтому резисторы с проволочной обмоткой, например, в коробках сопротивлений, должны быть намотаны без индуктивности и заключены в защитные металлические коробки. Ящики сопротивления постоянного тока, которые могут катушки индуктивно намотаны и помещены в деревянные ящики “определенно непригодны для Работа переменного тока.

Коробки сопротивлений

переменного тока часто имеют три выходных клеммы, одна из которых помечена как “ высокий ” (или окрашена красный), один помечен как «низкий» (или окрашен в черный цвет), а другой – с пометкой «земля» (или окрашен в черный или зеленый цвет). Клемма заземления подключается только к металлическому экрану корпуса инструмент. Может присутствовать невыпадающая «заземляющая» лента, позволяющая легко подключать «низкий» клемму к клемме “земли”. “Низкий” терминал – это тот, у которого больше всего паразитной емкости, измеренной относительно клеммы “заземления” экрана.Если один из клеммы должны быть соединены с землей, это должна быть клемма низкого уровня, тем самым исключая емкость. В любом случае компонент должен быть включен в цепь так, чтобы клемма низкого уровня тот, у которого кратчайший путь к земле.

III. ЗАЗЕМЛЕНИЕ

Студенты часто озадачиваются термином “ земля ” и спрашивают: “ Как должна быть заземлен? ” Термин “ заземление ” имеет несколько различных значений.

Рис. 6. Наземные символы.

(1) Общая земля. Это относится к проводу, токопроводящей ленте или проводящее шасси, которое служит общим опорным потенциалом для различных частей схемы. На принципиальных схемах этот символ может появляться во многих точках, и все эти точки Считается, что они связаны вместе, то есть между ними существует проводящий путь.При подключении такой цепи по схеме вы должны включить эту проводку. дорожка.

(2) Масса шасси. Металлический ящик или корпус, в котором Схема размещена называется “шасси”. Если эта коробка также служит общим электрическим заземляющий провод, он называется “заземлением шасси”.

(3) Заземление. Низкоомный провод или труба, подключенные к металлический кол, вбитый в землю, называется землей.Его цель – гарантировать, что потенциал заземленной части вашей цепи стабилизирован на потенциале земли. Быть в курсе что заземляющее соединение с недостаточно низким сопротивлением может “ улавливать ” нежелательные электромагнитные воздействия. Это связано с тем, что индуцированные токи в проводе создают потенциал на сопротивление провода. Поэтому короткий длина тяжелый , низкое сопротивление провод лучше всего подходит для заземления, чтобы наведенные напряжения были небольшими.Иногда простуда- водопровод – хорошее заземление. Труба горячей воды – плохой грунт, для водонагревателя обычно нарушает электрическое соединение с землей. Хорошее заземление также может служить защитным заземлением, но правила электропроводки требуют наличия независимой системы защитного заземления. сантехнической системы.

(4) Защитное заземление . Если вы прикоснетесь к объекту с разным потенциалом от вашего тела, вы можете получить шок.Следовательно, металлическое шасси схемы не должно позволили достичь потенциалов, сильно отличающихся от потенциалов окружающей среды. Это почему открытые металлические поверхности приборов подключены к заземлению через зеленый провода “защитного заземления” электропроводки здания. Земля представляет собой источник / сток для электроны. Вы можете думать о Земле как об огромном конденсаторе бесконечной емкости, потенциал которого не меняется, даже когда на него подаётся или снимается большой заряд.В этом метод заземления Заземление шасси также является заземлением, но часто недостаточно хорошим заземление в целях защиты. [Очевидно, вам не нужна ситуация, когда неосторожный водопроводчик может непреднамеренно нарушить электрическую безопасность заземления.]

(5) Экраны с заземлением . В цепях переменного тока, особенно на звуковых и радиочастотах может возникнуть необходимость в электрическом экранировании всей цепи или ее части от электромагнитных излучений из окружающей среды.Любая цепь переменного тока излучает электромагнитные волны. Части схемы действуют как излучающие антенны. Другие схемы или части схем могут действовать как приемные антенны. Таким образом сигналы могут быть “связанные”, т.е. передаваемые от одной части схемы к другой. Муфта может быть индуктивный , емкостной или оба.

Это излучение может попасть в цепь через индуктивную или емкостную связь с соединяющие провода, катушки и конденсаторы, производящие “нежелательные” сигналы, смешанные с “желаемыми” единицы.

Большие металлические детали подвержены емкостной связи. Обычно это можно устранить заключив неисправную цепь в полностью экранированную и заземленную металлическую коробку (Фарадей клетка). Металлическая коробка шасси схемы может служить экраном для схемы, особенно если шасси также подключено к заземлению.

Катушки с проводом, такие как обмотки трансформатора и обмотки индуктора, могут индуктивно соединяться к другим катушкам проволоки.К сожалению, металлические листы не полностью экранируют магнитные поля. Один Меры предосторожности против индуктивной связи между двумя катушками – ориентировать катушки так, чтобы их оси находятся под прямым углом.

Самым распространенным “нежелательным” радиационным “загрязнением” окружающей среды является излучение от источника питания 60 Гц. линии, которые также излучают гармоники с частотой 120 Гц и выше. Основная и первая гармоника самые хлопотные. Ближайшие радио- и телестанции могут вызывать такие также электромагнитное загрязнение.

(6) Экранированные кабели . Если необходимо подключить несколько цепных шасси вместе лучше всего использовать экранированные кабели, у которых сигнальные провода находятся в пределах заключающий в себе металлическую оплетку «экран», который соединяется с заземленными рамами.

Рис. 7. Контуры заземления.

(7) Контуры заземления . Когда количество компонентов или количество корпусов инструментов соединены вместе, необходимо соблюдать осторожность, чтобы не допустить образования контуров заземления.Инжир. 7 показывает плохой пример. В этой цепи слишком много путей заземления. Они образуют два физических `петли ‘. Они действуют как индуктивные петли, в которых могут возникать наведенные токи из-за полей излучения. в окружающей среде. Если AB и CD являются экранами соединительных кабелей, они обеспечивают необходимые заземляющие соединения между тремя шасси. Поэтому два других провода EH, FH и GH следует удалить, чтобы исключить контуры заземления. [Схема на рис. 6 может иметь был результатом чрезмерно усердной любительской попытки заземления.] Этот момент важен для понять, когда подключаются компоненты высококачественной звуковой системы. Это даже больше важно при подключении лабораторного оборудования для обнаружения очень слабых сигналов.

Как правило, провод, идущий на землю, должен быть толстым проводом с низким сопротивлением. (или медной оплеткой) и должен пройти кратчайший путь к земле. Близлежащая труба с холодной водой делает удобная точка заземления, как и тяжелый металлический кабелепровод хорошей электропроводки в здании система.Заземление подключается к той точке в цепи, где “ полезные ” сигналы являются самыми слабыми, так как на входе аудиосистемы “магнитный фонограф” антенна вход радиоприемника или вход очень чувствительного измерителя.

В лаборатории вы должны поэкспериментировать, чтобы найти, какая схема заземления лучше всего снижает “нежелательные” сигналы и шум. Иногда лучше всего заземлить рядом с низкими сигнальными точками схема. Иногда лучше заземлить осциллограф (или другой детектор) на собственном входе. разъем.

(8) Рекомендации по заземлению в цепи . Несмотря на заземление и экранирование шасси, некоторое внешнее излучение действительно попадает в цепь. Кроме того, части цепь может производить излучение, которое может емкостным или индуктивным образом связываться с другими частями цепь, где это не нужно. Трансформаторы, катушки и конденсаторы – худшие нарушители, но на радиочастотах даже соединительные провода могут вызвать проблемы.

Источники питания с трансформаторами и выпрямителями должны быть экранированы от других частей. схемы.Силовой трансформатор часто имеет металлический экран вокруг него. Может даже быть металлический корпус вокруг всего блока питания. Некоторые конденсаторы, особенно электролитические, находятся в металлической банке, которая служит экраном, если банка подключена к заземлению шасси. Трубчатый Конденсаторы изготавливаются путем обертывания двух проводящих фольг с листами диэлектрика между ними. Одна фольга оказывается “вне” другого. Вывод, подключенный к внешней фольге, отмечен полосой на этот конец конденсатора.Это вывод, который следует подключить к земле или через кратчайший путь к земле, поэтому внешняя фольга выполняет свою работу по экранированию остальной части конденсатор.

IV. ИСТОЧНИКИ ПИТАНИЯ:

Безопасность
Опасности
Часто
Может
Убить

Химические сухие элементы различных типов подходят для многих из этих экспериментов. Имейте в виду, что все такие ячейки имеют внутреннее сопротивление, которое невелико в свежей ячейке, но может стать значительно большим в течение срока службы ячейки.Это вызывает падение потенциала на клеммах ячейки. Таким образом, элемент, у которого было напряжение на клеммах 1,5 В, может иметь только 1,4 В или меньше после некоторого периода использования.

В лаборатории также доступны коммерческие блоки питания со встроенным напряжением питания. регулирование, а также защита от перегрузки. Они отключаются, когда слишком большой ток или мощность. извлекаются из них, предотвращая повреждение источника питания. После отключения им может потребоваться период «остывания», прежде чем они начнут нормально работать.

Любой блок питания, который подключается к электрической системе здания, обычно имеет часть схемы, подключенной к заземляющему проводу здания, ведущему к заземлению. Обычно прибор в металлическом корпусе подключается к заземляющему проводу здания. Иногда одна из его выходных клемм будет внутренне подключена к той же самой земле, и если это так, этот факт обычно будет обозначаться символом «земли» на этой клемме, обычно это клемма с черным или зеленым кодом.Вы должны знать об этом, чтобы избежать подключения нескольких таких инструментов таким образом, чтобы это могло привести к нежелательным и потенциально опасным «коротким замыканиям».

Бывают ситуации, когда может потребоваться «обесточить» защитное заземление в такой системе, особенно при одновременном использовании нескольких таких инструментов. Возможны два пути.

  1. Изолируйте прибор от системы заземления здания с помощью изолирующего трансформатора.
  2. «Поднимите» землю с помощью адаптера шнура питания, который прерывает путь заземляющего провода прибора.

Во втором случае знает, что вы делаете, и понимает, что вы нарушили функцию электробезопасности прибора, и принимает соответствующие меры предосторожности от травм себя или цепи.

НИКОГДА ни при каких обстоятельствах не отрезайте предохранительный штырь разъема питания прибора. Другие люди, использующие инструмент, будут недовольны и могут подвергнуться риску. Если розетки на вашей рабочей станции относятся к более старому типу и не подходят для новых заземляющих вилок, замените их современными розетками и убедитесь, что они действительно правильно подключены к системе заземления здания (зеленый провод или металлический провод). оболочка трубопровода).

V. ИЗМЕРЕНИЯ СЧЕТЧИКАМИ:

Рис. 8. Гальванометр, 3 дюйма
диаметр лица. Обычно это
точность 2% от полной шкалы.

Как пользоваться вольтметрами и амперметрами:

Хороший вольтметр имеет очень высокое сопротивление, часто мегаом. При правильном подключении через элемент схемы вольтметр не отклоняет большую часть тока схемы через сам.Следовательно, токи и потенциалы, существующие в цепи, не сильно меняются. процесс измерения.

Идеальный амперметр имеет очень низкое сопротивление. При правильном подключении , включенный последовательно с элементом схемы, он не добавляет цепи значительного сопротивления. Следовательно существующие в цепи токи и потенциалы не сильно меняются. К сожалению, большинство Амперметры не близки к идеалу, а действительно изменяют схему.

Когда амперметр неправильно подключен, параллельно с элементом цепи его низкое сопротивление позволяет отводить значительный ток через счетчик, что может привести к повреждению счетчика или цепи. Даже если ток в пределах диапазона счетчика, текущее показание счетчика, полученное в результате этого неправильного подключения, составляет бесполезны для экспериментатора

Когда вольтметр неправильно подключен, последовательно с элементом цепи его высокое сопротивление (по сравнению с сопротивлением цепи) ограничивает ток в этой ветви цепи до очень низкого значения.Это изменяет токи и потенциалы. схемы от их исходных значений. Счетчик обычно не будет поврежден и покажет напряжение очень близко к нулю. В редких случаях измененные токи и потенциалы в цепь может повредить компонент схемы.

На рис. 9 показано правильное подключение вольтметра. Вольтметр измеряет потенциал на резистор А.

На рис. 10 показано правильное подключение амперметра. Амперметр измеряет ток в резистор А.Для этого была разорвана (разрезана или распаяна) цепь рядом с резистором А и амперметр, включенный в разрыв последовательно с резистором. Следовательно, весь ток в A также должен проходить через амперметр. Измерение также можно было провести, сломав цепь слева от резистора A, поскольку по закону Кирхгофа ток в резисторе равен такой же, как ток из него, и, конечно, такой же, как ток через него. Электрический ток в B это , а не , равный току в A, однако, потому что A и B равны , а не последовательно.

Обратите внимание на полярность проводов измерительного щупа относительно полярности батареи схема. Показанные выше соединения правильны.

Измерения потенциала в цепи.

Рис. 9. Измерение вольтметром потенциала
на резисторе A.

Как видно из приведенного выше обсуждения, измерение потенциалов в цепи выполняется просто. Достаточно просто прикоснуться щупами вольтметра к соответствующим точкам цепи.Не нужно разорвите все соединения или даже закрепите провода вольтметра навсегда. Надо позаботиться о том, чтобы щупы вольтметра обеспечивают надежное электрическое соединение. Маленькие зажимы или крючки на концах зонда помогают временно закрепить зонд на месте, чтобы он не упал.

Измерение тока в цепи.

По возможности старайтесь найти способ, не требующий прерывания цепи. Если вам нужно измерить ток в ответвлении, и в этом ответвлении есть резистор с четко обозначенным отмеченное значение, измерьте потенциал на нем и используйте I = V / R для расчета тока.Когда устранение неисправностей в неисправной цепи, внимательно осмотрите резистор, чтобы убедиться, что на нем нет признаков повреждений: сгоревшая или обугленная изоляция, обрыв проводов, даже дымный остаток на цепи плата под резистором, любой из которых может указывать на неисправность резистора.

Рис. 10. Измерение амперметром тока
через резистор A.

В большинстве практических схем есть резистор в большинстве ветвей, так что можно легко найти ток в любой ветви, используя только измерение вольтметра.Устранение неисправностей в цепи практически полностью сводится к измерениям вольтметром. Схематические схемы обычно показывают потенциал ценности на многих перекрестках, чтобы помочь военнослужащим; только изредка вы видите текущее значение дано.

Когда вы должны разорвать ответвление цепи, отпаяйте (или перережьте) провод и поднимите достаточно лишь присоединить провода амперметра.

В цепях AC ток можно измерить с помощью индуктивного щупа и Амперметр переменного тока.Этот зонд закрепляется на токоведущем проводе и реагирует на изменение электромагнитное поле вокруг него.

Измерение сопротивления в цепи.

Если есть подозрение, что резистор неисправен, измерьте на нем потенциал. Если этот потенциал слишком высокий или слишком низкий для нормальных условий, ожидаемых в цепи, резистор может быть дефектным (закороченным или разомкнутым). Большинство отказов резисторов имеют катастрофические последствия: они приводят к отказу резистора. быть разомкнутым (бесконечное сопротивление) или закороченным (нулевое сопротивление) “редко просто небольшое изменение сопротивление.

Отказ резистора, особенно закороченного резистора, может быть результатом (или причиной) отказа другой компонент рядом. Замена резистора может привести к немедленному выходу из строя новый.

В редком случае, когда необходимо измерить номинал резистора в цепи, лучше всего Порядок действий состоит в том, чтобы полностью отключить питание от цепи, а затем отключить один конец резистора. и используйте хороший омметр, чтобы измерить его.

Конечно, поскольку вы все равно должны “взломать” цепь, вы можете измерить ток в своей отрасли и потенциал в ней.Но это именно то, что делает омметр. Кроме, если цепь неисправна, так что резистор “перегорел”, он представит ненормально высокий ток на амперметр. Поэтому, если вы все же используете амперметр в неисправной цепи, обязательно Для начала установите амперметр на сильноточный диапазон.

Когда вам нужно измерить сопротивление подозрительного компонента в цепи, и найдите последовательно с ним хороший резистор, измерьте потенциал на хорошем резисторе, затем измерить потенциал “подозрительного” компонента.Рассчитайте сопротивление “подозреваемого” компонент, использующий тот факт, что, будучи последовательными, они имеют одинаковый ток.

Одной из причин, по которой следует избегать измерений амперметром, является тот факт, что доступные амперметры редко даже близки к идеалу (ничтожно малое сопротивление по сравнению с сопротивлением цепи). Вольтметры намного ближе к идеалу (очень высокое сопротивление по сравнению с сопротивлением цепи). Поэтому измерение амперметром изменяет токи и потенциалы в цепи намного больше, чем вольтметр измерение.

VI. ВЫКЛЮЧАТЕЛИ:

Рис. 11. Подключение реверсивного переключателя
.
Рис. 12. Реверсивный переключатель,
упрощенная схема.

Часто возникает необходимость в быстром переключении двух проводов в цепи. A реверсивный switch делает свое дело. На рис. 11 показано, как двухполюсный двухпозиционный рубильник может быть подключенным для работы в качестве переключателя переключения полярности.Очевидно, что обозначения входа и выхода можно поменять местами.

На рис. 12 показана та же электропроводка, но способом, который может быть проще понимать. Два подвижных “ножа” (стрелки на схеме) жестко соединены между собой изолирующий стержень (пунктирная линия) и может быть повернут вместе из положения A в положение B. Два провода `перекрестно подключите клеммы 1 к 6 и 2 к 5. В положении переключателя A клемма 1 подключается к клемме 3. и 2 подключается к 4. В позиции B клемма 1 подключается к 4, а 2 подключается к 3.Нет внешних подключаются к клеммам 5 и 6.

В схемах домашней электропроводки такой переключатель используется, когда более двух тумблеров должны управлять такая же лампочка. Такие переключатели продаются с необходимыми перекрестными подключениями целиком. внутренние, и имеют только четыре доступных винтовых зажима, 1, 2, 3 и 4 выше. Это называется «трехходовой» переключатель.

VII. СОПРОТИВЛЕНИЕ ПРОВОДОВ:

# 20 Медь 3.33 x 10 -4 Ом / фут = 9,57 x 10 -4 Ом / метр

# 18 Медь 2,09 x 10 -4 Ом / фут = 6,86 x 10 -4 Ом / метр


Текст и диаграммы © 1995, 2004 Дональд Э. Симанек.

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 7A

        • Марка 7Б

        • 7 класс (A и B вместе)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 8A

        • Сорт 8Б

        • 8 класс (A и B вместе)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 6А

        • Марка 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственным ограничением является то, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (безымянные версии)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием – дать соответствующую оценку Siyavula. Для получения дополнительной информации посетите Creative Commons Attribution 3.0 Unported.

Амперметр переменного тока используется для измерения тока в цепи класса 11 по физике CBSE

Подсказка: амперметр переменного тока измеряет среднеквадратичное значение переменного тока.Среднеквадратичное значение переменного тока – это то же самое значение постоянного тока, которое при прохождении через резистор в течение того же времени производит такое же количество тепла, что и переменный ток.
Таким образом, мы можем рассчитать общий тепловой ток из-за переменного и постоянного тока, а затем вычислить виртуальный постоянный ток, который будет производить такое же количество тепла в секунду.
Используемая формула:
Среднеквадратичное значение переменного тока = постоянный ток, который выделяет такое же количество тепла, как и переменный ток в секунду. {2}} R $
где H – тепловая энергия, производимая в секунду, когда ток (I) проходит через резистор сопротивления (R).{2}} = 25 $
$ \, следовательно, I = \ sqrt {25} = 5A $
Следовательно, требуемый ток и значение, показываемое амперметром, составляют 5А.
Следовательно, правильный вариант – D) 5A.

Примечание. Эту проблему также можно решить с помощью традиционного определения RMS, которое является корнем из среднего квадрата величины, путем интегрирования функции в терминах $ \ sin \ theta $ или $ \ cos \ theta $ для Однако переменный ток превратился бы в долгий и запутанный процесс, требующий некоторых запутанных расчетов. Однако это наиболее общий способ решения проблемы, связанной со среднеквадратичным значением величины.
Поскольку в электроэнергии RMS можно определить в терминах произведенного тепла, всегда лучше применять определение и процесс, указанные выше. Это экономит много времени и способствует лучшему пониманию и упрощает мыслительный процесс для учащегося.

Учебная серия по электричеству и электронике ВМС (NEETS), модуль 3, 1-21–1-30

Модуль 3 – Введение в защиту цепей, управление и измерения
Страницы i – ix, От 1-1 до 1-10, С 1-11 по 1-20, 1-21–1-30, С 1-31 по 1-40, С 1-41 по 1-50, От 1-51 до 1-60, От 1-61 до 1-70, С 1-71 по 1-73, От 2-1 до 2-10, От 2-11 до 2-20, 1-21–2-30, От 2-31 до 2-40, С 2-41 по 2-42, С 3-1 по 3-10, С 3-11 до 3-20, С 3–21 до 3–30, С 33-31 по 3-39, От AI-1 до AI-3, От AII-1 до AII-2, От AIII-1 до AIII-10, IV − 1, Индекс

Рисунок 1-22.- Амперметр с внутренними шунтирующими резисторами.

Путем добавления нескольких шунтирующих резисторов в счетчик случае, с переключателем для выбора желаемого резистора, амперметр будет способен измерять несколько различных максимальные текущие показания или диапазоны.

Большинство используемых сегодня измерительных механизмов имеют чувствительность от 5 микроампер на 1 миллиампер. На рисунке 1-22 показана схема измерителя, переключенная на более высокие диапазоны, шунт и амперметр, в котором используется измерительный механизм с чувствительностью 100 мкА и шунтирующие резисторы.Этот амперметр имеет пять диапазонов (100 микроампер; 1, 10 и 100 миллиампер; 1 ампер), выбираемых переключателем. С переключателем в положение 100 мкА, весь измеряемый ток будет проходить через движение измерителя. Ни один из ток будет проходить через любой из шунтирующих резисторов. Если амперметр установлен в положение 1 миллиампер, Измеряемый ток будет иметь параллельные пути движения измерителя и всех шунтирующих резисторов (R1, R2, R3, и R4).Теперь только часть тока пройдет через движение счетчика, а остальная часть тока пройдет. через шунтирующие резисторы. Когда счетчик переключен в положение 10 мА (как показано на рис. 1-22), только резисторы R1, R2 и R3 шунтируют счетчик. Поскольку сопротивление шунтирующего сопротивления меньше, чем у R4 в цепи (как это было в положении 1 миллиампер), через шунт будет проходить больше тока. резисторы и меньший ток будет проходить через движение счетчика.По мере того, как сопротивление уменьшается и идет больше тока через шунтирующие резисторы. Пока измеряемый ток не превышает выбранный диапазон, измеритель движение никогда не будет пропускать ток более 100 мкА.

Шунтирующие резисторы изготавливаются из жесткие допуски. Это означает, что если выбран шунтирующий резистор с сопротивлением 0,01 Ом (как R1 на рис. 1-22), фактическое сопротивление этого шунтирующего резистора не будет отличаться от этого значения более чем на 1 процент.Поскольку шунт резистор используется для защиты движения счетчика и для обеспечения точных измерений, важно, чтобы сопротивление шунтирующего резистора известно очень точно.

Шунтирующие резисторы находятся внутри корпуса счетчика. и выбирается переключателем. Для ограниченных диапазонов тока (ниже 50 ампер) чаще всего используются внутренние шунты.

1-21


Для более высоких диапазонов тока (выше 50 ампер) используются амперметры с внешними шунтами.В внешний шунтирующий резистор служит той же цели, что и внутренний шунтирующий резистор. Внешний шунт подключен к последовательно с измеряемой цепью и параллельно с амперметром. Это шунтирует (шунтирует) амперметр, поэтому только часть тока проходит через счетчик. Каждый внешний шунт будет отмечен максимальным током. значение, которое амперметр будет измерять при использовании этого шунта. На рис. 1-23 показан амперметр, предназначенный для использования внешние шунты и механизм измерения д’Арсонваля.Рисунок 1-23 (A) показывает внутреннюю конструкцию счетчика и способ подключения внешнего шунта к измерителю и к измеряемой цепи. Рисунок 1-23 (C) показаны некоторые типичные внешние шунты.

Рисунок 1-23. – Амперметр, использующий принцип Д’Арсонваля и внешние шунты.

Шунтирующий резистор не что иное, как резистор параллельно движению счетчика. Для измерения больших токов очень маленькое сопротивление используются шунты, поэтому большая часть тока проходит через шунт
.Поскольку полное сопротивление параллельная цепь (движение счетчика и шунтирующий резистор) всегда меньше, чем сопротивление наименьшего резистор, при увеличении диапазона амперметра его сопротивление уменьшается.

Это важно, потому что нагрузка сопротивление сильноточных цепей меньше сопротивления нагрузки слаботочных цепей. Чтобы получить Для точных измерений необходимо, чтобы сопротивление амперметра было намного меньше сопротивления нагрузки, так как амперметр включен последовательно с нагрузкой.

Q20. Какие электрические свойства измеряет амперметр?

1-22


Q21. Как подключить амперметр к тестируемой цепи?

Q22. Как работает амперметр повлиять на измеряемую цепь?

Q23. Как сводится к минимуму влияние амперметра на измеряемую цепь?

Q24. Что такое амперметр чувствительность?

Q25. Что используется, чтобы амперметр мог измерять разные диапазоны?

Выбор диапазона

Частью правильного использования амперметра является правильное использование выбора диапазона выключатель.Если измеряемый ток больше, чем шкала выбранного измерителя, движение измерителя будет иметь чрезмерный ток и будет поврежден. Поэтому важно всегда начинать с самого высокого диапазона, когда вы используйте амперметр. Если ток можно измерить в нескольких диапазонах, используйте диапазон, который дает показания, близкие к середина шкалы. Рисунок 1-24 иллюстрирует эти моменты.

Рисунок 1-24. – Считывание амперметра в различных диапазонах.

На Рисунке 1-24 (A) показано начальное показание схема. Был выбран самый высокий диапазон (250 миллиампер), а показания счетчика очень маленькие. Было бы Будет сложно правильно интерпретировать это чтение с какой-либо степенью точности. Рисунок 1-24 (B) показывает второй показания со следующим по величине диапазоном (50 миллиампер). Отклонение счетчика немного больше. Это возможно интерпретировать это значение как 5 миллиампер. Поскольку это приближение тока меньше следующего диапазона, счетчик переключается как

1-23


, как показано на рисунке 1-24 (C).Диапазон измерения измерителя теперь составляет 10 миллиампер, и он возможно считывание показаний счетчика 5 миллиампер с наибольшей степенью точности. Поскольку нынешний указанное значение равно (или больше) следующего диапазона амперметра (5 миллиампер), счетчик НЕ ДОЛЖЕН быть перешел на следующий диапазон.

МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ РАБОТЕ С АММЕТРОМ

При использовании амперметра необходимо соблюдать определенные меры предосторожности, чтобы предотвратить нанесение травм себе и окружающим, а также предотвратить повреждение амперметра. или оборудование, на котором вы работаете.Следующий список содержит МИНИМАЛЬНЫЕ меры предосторожности, которые следует соблюдать при с помощью амперметра.

• Амперметры всегда должны подключаться последовательно с проверяемой цепью.

• Всегда начинайте с самый высокий диапазон амперметра.

• Обесточьте и полностью разрядите цепь перед подключением или отключите амперметр.

• В амперметрах постоянного тока соблюдайте полярность цепи, чтобы быть поврежденным.

• Никогда не используйте амперметр постоянного тока для измерения переменного тока.

• Соблюдайте общие правила техники безопасности при работе с электрооборудованием и электронные устройства.

Q26. Почему вы должны использовать амперметр с максимальным диапазоном измерение?

Q27. Какой диапазон амперметра выбран для окончательного измерения?

Q28. Перечислите шесть безопасных меры предосторожности при использовании амперметров.

Q29. Почему амперметр выйдет из строя при параллельном подключении цепь, которую нужно измерить?

ВОЛЬТМЕТРЫ

Все перемещения измерителя, рассмотренные до сих пор реагируют на ток, и вам было показано, как построены амперметры из этих перемещений измерителя.Это часто необходимо для измерения других свойств схемы, кроме силы тока. Например, измерение напряжения выполняется с помощью ВОЛЬТМЕТР.

ВОЛЬТМЕТРЫ, ПОДКЛЮЧЕННЫЕ ПАРАЛЛЕЛЬНО

Хотя амперметры всегда подключаются последовательно, вольтметры всегда подключаются параллельно. На рис.
1-25 (и на следующих рисунках) резисторы используются для обозначения движение вольтметра. Поскольку движение счетчика можно рассматривать как резистор, проиллюстрированные концепции верны. как для вольтметров, так и для резисторов.Для простоты показаны цепи постоянного тока, но принципы применимы к обоим переменным токам. и вольтметры постоянного тока.

1-24


Рисунок 1-25. – Ток и напряжение в последовательной и параллельной цепях.

На Рисунке 1-25 (A) показаны два резисторы подключены параллельно. Обратите внимание, что напряжение на обоих резисторах одинаковое. На рисунке 1-25 (B) одинаковые резисторы включены последовательно. В этом случае напряжения на резисторах не равны.Если R1 представляет собой вольтметр, единственный способ, которым он может быть подключен для измерения напряжения R2 – параллельно с R2, как на рисунке 1-25 (A).

НАГРУЗОЧНЫЙ ЭФФЕКТ

Вольтметр влияет на измеряемую цепь. Этот называется ЗАГРУЗКА схемы. Рисунок
1-26 иллюстрирует эффект нагрузки и способ, которым эффект сведен к минимуму.

1-25


Рисунок 1-26.- Эффект загрузки.

На рисунке 1-26 (A) показана последовательная цепь с R1, равным 15 Ом. и R2 равны 10 Ом. Напряжение на R2 (ER2) равно 10 вольт. Если счетчик (обозначенный R3) с сопротивление 10 Ом подключено параллельно с R2, как на рисунке 1-26 (B), объединенное сопротивление R2 и R3 (Rn) равно 5 Ом. Напряжение на R2 и R3 теперь составляет 6,25 вольт, и это то, что покажет измеритель. Обратите внимание, что напряжение на R1 и ток цепи увеличились.Добавление счетчика (R3) имеет загрузил схему.

На рисунке 1-26 (C) измеритель низкого сопротивления (R3) заменен измерителем более высокого сопротивления (R 4) с сопротивление 10 кОм. Суммарное сопротивление R2 и R4 (Rn) равно 9,99 Ом. Напряжение на R2 и R 4 теперь составляет 9,99 вольт, значение, которое будет отображаться на измерителе. Это намного ближе к напряжению через R2, без счетчика (R3 или R4) в цепи.Обратите внимание, что напряжение на R и ток цепи в цифры 1-26 (C) намного ближе к значениям 1-26 (A). Ток (IR4) через измеритель (R4) на рисунке 1-26 (C) также очень мало по сравнению с током (IR2) через R 2. На рисунке 1-26 (C) измеритель (R4) имеет много меньше влияет на схему и не так сильно нагружает схему. Следовательно, вольтметр должен иметь высокий сопротивление по сравнению с измеряемой схемой, чтобы минимизировать эффект нагрузки.

1-26


Q30. Какая электрическая величина измеряется вольтметром?

Q31. Как подключается вольтметр к цепи быть измеренным?

Q32. Что такое нагружающий эффект вольтметра?

Q33. Как эффект нагрузки вольтметр сведен к минимуму?

ИЗГОТОВЛЕНИЕ ВОЛЬТМЕТРА ПО ЧУВСТВИТЕЛЬНОМУ ДВИЖЕНИЮ СЧЕТЧИКА

Обсуждаемые перемещения измерителя ранее в этой главе все отреагировали на ток.Были показаны различные способы, которыми эти движения могут быть используется в амперметрах. Если ток и сопротивление известны, напряжение можно рассчитать по формуле E = IR. А движение счетчика имеет известное сопротивление, поэтому, поскольку движение реагирует на ток, напряжение может отображаться на шкала метра.

На рисунке 1-27 (A) вольтметр (обозначенный R2), подключенный через 10-омный резистор с приложенным напряжением 10 вольт. Ток через вольтметр (R2) равен.1 миллиампер. На рисунке 1-27 (B) напряжение повышено до 100 вольт. Теперь ток через вольтметр (R2) составляет 1 миллиампер. Напряжение имеет увеличился в 10 раз, как и ток. Это показывает, что ток через счетчик пропорционально измеряемому напряжению.

Рисунок 1-27. – Ток и напряжение в параллельной цепи.

ЧУВСТВИТЕЛЬНОСТЬ ВОЛЬТМЕТРА

Чувствительность вольтметра выражается в омах на вольт (Вт / В).Это сопротивление вольтметра при полном показании в вольтах. Поскольку сопротивление вольтметра не меняется с положением указателя общее сопротивление измерителя – это чувствительность, умноженная на полномасштабное считывание напряжения. Чем выше чувствительность вольтметра
, тем выше сопротивление вольтметра. Поскольку вольтметры с высоким сопротивлением

1-27


оказывают меньшее влияние на нагрузку на цепи, высокочувствительный измеритель обеспечит большую точное измерение напряжения.

Для определения чувствительность движения измерителя, вам нужно только разделить 1 на количество тока, необходимое для создания полной шкалы отклонение движения счетчика. Производитель обычно отмечает движения счетчика необходимой величиной тока. для полного отклонения и сопротивления измерителя. По этим цифрам можно рассчитать чувствительность


и полную шкалу показание напряжения тока полной шкалы (ток полной шкалы x сопротивление).

Например, если счетчик имеет ток полной шкалы 50 мкА и сопротивление и сопротивление 960 Ом, чувствительность может быть рассчитана как:

Полномасштабная Значение напряжения рассчитывается как:

Показание напряжения полной шкалы = ток полной шкалы x сопротивление

Показание напряжения полной шкалы 50 мкА x 960 Ом

Показание напряжения полной шкалы = 48 мВ

ДИАПАЗОНОВ

В Таблице 1-1 показаны цифры для большинства используемых в настоящее время расходомеров.

Таблица 1-1. – Характеристики движения счетчика


ТОК ОТКЛОНЕНИЯ ПОЛНОЙ МАСШТАБЫ

СОПРОТИВЛЕНИЕ

ЧУВСТВИТЕЛЬНОСТЬ

ПОЛНАЯ ШКАЛА НАПРЯЖЕНИЯ

1 мА

100 Ом

1 кОм / Вольт

.1 В

50 мкА

960 Ом

20 кОм / VOLT

.048 В

5 мкА

5750 Ом

200 кОм / VOLT

.029 В

8.4: Конструкция амперметра – рабочая сила LibreTexts

Амперметры Измерение электрического тока

Измеритель, предназначенный для измерения электрического тока, обычно называется «амперметром», потому что единицей измерения является «ампер».

В конструкциях амперметра внешние резисторы, добавленные для увеличения полезного диапазона движения, подключаются по параллельно движению, а не последовательно, как в случае вольтметров.Это связано с тем, что мы хотим разделить измеренный ток, а не измеренное напряжение, идущее на движение, и потому, что цепи делителей тока всегда образованы параллельными сопротивлениями.

Разработка амперметра

Взяв то же движение измерителя, что и в примере с вольтметром, мы можем увидеть, что он сам по себе будет очень ограниченным прибором, полное отклонение происходит только при 1 мА.

Как и в случае с расширением возможностей измерения напряжения измерительного механизма, нам пришлось бы соответственно изменить маркировку шкалы механизма, чтобы она показывала по-другому для расширенного диапазона тока.Например, если бы мы хотели спроектировать амперметр с диапазоном полной шкалы в 5 ампер с использованием того же движения измерителя, что и раньше (с внутренним диапазоном полной шкалы всего 1 мА), нам пришлось бы изменить маркировку механизма. шкала так, чтобы показывать 0 A в крайнем левом и 5 A в крайнем правом углу, а не от 0 мА до 1 мА, как раньше. Какой бы расширенный диапазон ни обеспечивали резисторы, включенные параллельно, мы должны были бы отобразить его графически на лицевой стороне счетчика.

Используя 5 ампер в качестве расширенного диапазона для движения нашего образца, давайте определим величину параллельного сопротивления, необходимого для «шунтирования» или байпаса большей части тока, чтобы только 1 мА прошел через механизм с общим током 5 А. :

Исходя из заданных значений тока движения, сопротивления движению и полного (измеренного) тока цепи, мы можем определить напряжение на перемещении измерителя (закон Ома, примененный к центральной колонке, E = IR):

Зная, что цепь, образованная движением и шунтом, имеет параллельную конфигурацию, мы знаем, что напряжение на движущемся, шунтирующем и испытательном проводах (общее) должно быть одинаковым:

Мы также знаем, что ток через шунт должен быть разницей между общим током (5 ампер) и током через механизм (1 мА), потому что токи ответвления складываются в параллельной конфигурации:

Затем, используя закон Ома (R = E / I) в правом столбце, мы можем определить необходимое сопротивление шунта:

Конечно, мы могли бы рассчитать такое же значение чуть более 100 мОм (100 мОм) для шунта, вычислив полное сопротивление (R = E / I; 0.5 вольт / 5 ампер = 100 мОм точно), затем обратная формула параллельного сопротивления, но арифметика была бы более сложной:

Амперметр в реальных конструкциях

В реальной жизни шунтирующий резистор амперметра обычно заключен в защитный металлический корпус измерительного блока, скрытый от глаз. Обратите внимание на конструкцию амперметра на следующей фотографии:

Этот конкретный амперметр – автомобильный прибор, произведенный Stewart-Warner.Хотя сам механизм измерителя D’Arsonval, вероятно, имеет диапазон полной шкалы в миллиамперах, измеритель в целом имеет диапазон +/- 60 ампер. Шунтирующий резистор, обеспечивающий этот диапазон высоких токов, заключен в металлический корпус измерителя. Также обратите внимание на этот конкретный измеритель, что стрелка центрируется на нуле ампер и может указывать либо «положительный» ток, либо «отрицательный» ток. Подключенный к цепи зарядки аккумуляторной батареи автомобиля, этот измеритель может указывать состояние зарядки (электроны текут от генератора к аккумулятору) или состояние разрядки (электроны текут от аккумулятора к остальной части нагрузки автомобиля).

Увеличение полезного диапазона амперметра

Как и в случае с многодиапазонными вольтметрами, амперметрам может быть предоставлено более одного рабочего диапазона за счет включения нескольких шунтирующих резисторов, переключаемых с помощью многополюсного переключателя:

Обратите внимание, что резисторы диапазона подключаются через переключатель так, чтобы быть параллельно движению измерителя, а не последовательно, как это было в конструкции вольтметра. Разумеется, пятипозиционный переключатель одновременно контактирует только с одним резистором.Размер каждого резистора соответствует разному диапазону полной шкалы в зависимости от номинальной скорости движения измерителя (1 мА, 500 Ом).

В такой конструкции измерителя значение каждого резистора определяется одним и тем же методом с использованием известного полного тока, номинального отклонения перемещения и сопротивления перемещению. Для амперметра с диапазонами 100 мА, 1 А, 10 А и 100 А сопротивление шунта будет таким:

Обратите внимание, что значения этих шунтирующих резисторов очень низкие! 5.00005 мОм составляет 5,00005 мОм или 0,00500005 Ом! Чтобы добиться такого низкого сопротивления, шунтирующие резисторы амперметра часто должны быть изготовлены на заказ из проволоки относительно большого диаметра или твердых кусков металла.

При выборе размеров шунтирующих резисторов амперметра следует учитывать фактор рассеиваемой мощности. В отличие от вольтметра, резисторы диапазона амперметра должны пропускать большой ток. Если эти шунтирующие резисторы не имеют соответствующего размера, они могут перегреться и получить повреждения или, по крайней мере, потерять точность из-за перегрева.В приведенном выше примере счетчика рассеиваемая мощность при полномасштабном показании составляет (двойные волнистые линии представляют «приблизительно равные» в математике):

Резистор на 1/8 ватта подойдет для R 4 , резистора на 1/2 Вт будет достаточно для R 3 и 5 Вт для R 2 (хотя резисторы, как правило, сохраняют свою долговременную точность. Лучше, если они не будут эксплуатироваться вблизи их номинальной рассеиваемой мощности, поэтому вы можете захотеть переоценить резисторы R 2 и R 3 ), но прецизионные резисторы на 50 Вт действительно редкие и дорогие компоненты.Для R 1 может потребоваться изготовить нестандартный резистор из металлической заготовки или толстой проволоки, чтобы удовлетворить требованиям как низкого сопротивления, так и высокой номинальной мощности.

Иногда шунтирующие резисторы используются вместе с вольтметрами с высоким входным сопротивлением для измерения тока. В этих случаях ток, протекающий через движение вольтметра, достаточно мал, чтобы его можно было считать незначительным, а сопротивление шунта может быть рассчитано в соответствии с тем, сколько вольт или милливольт будет выпадать на один ампер тока:

Если, например, шунтирующий резистор в приведенной выше схеме имеет номинал точно 1 Ом, на каждый ампер тока через него будет падать 1 вольт.Тогда показания вольтметра можно рассматривать как прямую индикацию тока через шунт. Для измерения очень малых токов можно использовать более высокие значения сопротивления шунта для создания большего падения напряжения на данную единицу тока, тем самым расширяя полезный диапазон (вольтметра) до более низких значений тока. Использование вольтметров в сочетании с маломощными шунтирующими сопротивлениями для измерения тока обычно наблюдается в промышленных приложениях.

Использование шунтирующего резистора и вольтметра вместо амперметра

Использование шунтирующего резистора вместе с вольтметром для измерения тока может быть полезным приемом для упрощения задачи частого измерения тока в цепи.Обычно, чтобы измерить ток через цепь с помощью амперметра, цепь должна быть разорвана (прервана) и амперметр вставлен между разделенными концами проводов, например:

Если у нас есть цепь, в которой необходимо часто измерять ток, или если мы просто хотим сделать процесс измерения тока более удобным, можно поместить шунтирующий резистор между этими точками и оставить там постоянно, а показания тока будут сняты с помощью вольтметра как необходимо без нарушения целостности цепи:

Конечно, необходимо соблюдать осторожность при выборе достаточно низкого номинала шунтирующего резистора, чтобы он не оказывал отрицательного воздействия на нормальную работу схемы, но это, как правило, несложно.Этот метод также может быть полезен при компьютерном анализе цепей, где мы могли бы захотеть, чтобы компьютер отображал ток через цепь с точки зрения напряжения (с SPICE это позволило бы нам избежать идиосинкразии чтения отрицательных значений тока):

Мы бы интерпретировали значение напряжения на шунтирующем резисторе (между узлами схемы 1 и 2 в моделировании SPICE) непосредственно как ампер, при этом 7.999E-04 составляет 0,7999 мА или 799,9 мкА. В идеале, напряжение 12 В, приложенное непосредственно к 15 кОм, даст нам ровно 0.8 мА, но сопротивление шунта немного снижает этот ток (как в реальной жизни). Однако такая крошечная ошибка обычно находится в приемлемых пределах точности либо для моделирования, либо для реальной схемы, и поэтому шунтирующие резисторы можно использовать во всех приложениях, кроме самых требовательных для точного измерения тока.

Обзор

  • Диапазоны амперметра создаются путем добавления параллельных «шунтирующих» резисторов в цепь механизма, обеспечивающих точное деление тока.
  • Шунтирующие резисторы могут иметь большую рассеиваемую мощность, поэтому будьте осторожны при выборе деталей для таких измерителей!
  • Шунтирующие резисторы могут использоваться в сочетании с вольтметрами с высоким сопротивлением, а также с механизмами амперметра с низким сопротивлением, обеспечивая точное падение напряжения для заданных величин тока. Шунтирующие резисторы следует выбирать с максимально низким значением сопротивления, чтобы минимизировать их влияние на тестируемую цепь.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *