Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Простой стабилизатор напряжения на 3 вольта схема. Как получить нестандартное напряжение. Расчет сопротивления резистора

Ниже приведены сразу две схемы 3-х Вольтовых блоков питания .
Они собраны на разных элементах, а конкретную вы сможете выбрать сами, познакомившись с их особенностями и исходя из своих потребностей м возможностей.
На первом рисунке приведена простая схема блока питания на 3 В (ток в нагрузкеке 200 мА) с электронной защитой от перегрузки (Iз = 250 мА). Уровень пульсации выходного напряжения не превышает 8 мВ.

Для нормальной работы стабилизатора напряжение после выпрямителя (на диодах VD1...VD4) может быть от 4,5 до 10 В, но лучше, если оно будет 5...6 В, ≈ меньшая мощность источника теряется на тепловыделение транзистором VT1 при работе стабилизатора. В схеме в качестве источника опорного напряжения используется светодиод HL1 и диоды VD5, VD6. Светодиод является одновременно и индикатором работы блока питания.

Транзистор VT1 крепится на теплорассеивающей пластине. Как рассчитать размер теплоотводящего радиатора можно более подробно посмотреть .
Трансформатор Т1 можно приобрести из унифицированной серии ТН любой, но лучше использовать самые малогабаритные ТИ1-127/220-50 или ТН2-127/220-50. Подойдут также и многие другие типы трансформаторов со вторичной обмоткой на 5...6 В. Конденсаторы С1...СЗ типа К50-35.

Вторая схема использует интегральный стабилизатор DA1, но в отличие от транзисторного стабилизатора, приведенного на первом рисунке, для нормальной работы микросхемы необходимо, чтобы входное напряжение превышало выходное не менее чем на 3,5 В. Это снижает КПД стабилизатора за счет тепловыделения на микросхеме.

При низком выходном напряжении мощность, теряемая в блоке питания, будет превышать отдаваемую в нагрузку. Необходимое выходное напряжение устанавливается подстроечным резистором R2. Микросхема устанавливается на радиатор. Интегральный стабилизатор обеспечивает меньший уровень пульсации выходного напряжения (1 мВ), а также позволяет использовать емкости меньшего номинала.

Как из 5 Вольт получить 3. 3 Вольта? Нужен наиболе простой способ

Есть микросхема, которая питается от 3. 3 Вольт. Её нужно подключить к USB-разъему, где напряжение 5 Вольт. Как правильно поступить, искать какой-то преобразователь или просто припаять резистор? 3 годов назад от Евгений Пуртов

3 Ответы

Микросхема потребляет боле-мене стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100. 0 мкф на Землю) . Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3. 3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал. 3 годов назад от Andrey Fedaevskiy Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна - ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78х. Такие дела! 3 годов назад от asdasdasdas dasdasdasd Наиболе простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3. 3 v. если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3. 3 вольта. Или просто переменным резистором выставляешь 3. 3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая. 3 годов назад от Яркие Краски

Связанные вопросы

9 месяцев назад от *****

1 год назад от федор волошин

1 год назад от Андрей Козлов

engangs. ru

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ - domino22

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ

  1. микросхема-стабилизатор на 3.3В или микросхема-инвертор 5В на 3.3В сам
  2. Господи, да включи ее напрямую, какие 3.3 в, ты смотри максимально допустимые, да и те, можно в нку поднять 20%
  3. Можно поставить стабилизатор на 3,3 в. Их полно всяких, выбирайте подходящую.
  4. 1) никаких сопротивлений, если ты питаешь микросхему Сопротивление ставится, если тебе уровень сигнала уменьшить!2) Бершь LM1117-3.3 дешовая, доступная и дешовая. Только на вход и выход желательно поставить конденсаторы электоролитические - так стабильнее будет.
  5. Поставить стабилитрон на 3,3 вольта.
  6. Если бы вы указали, что за микросхема, получили бы дельный совет. Почему у этих вопрошающих все засекречено?
  7. Микросхема потребляет более-менее стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100.0 мкф на Землю) .Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3.3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал.
  8. Ищи LDO стабилизатор - это стабилизатор позволяющий подавать напряжение чуть выше чем на входе. Поясню почему 7833 не годится: у серии 78xx минимальное падение между входом и выходом около 2,5 Вольт, так что получить 3,3 из 5 не удастся. У LDO входное напряжение может отличаться от входного на 0,2…0,5 Вольт, Примеры: AMS1117-3.3, NCP551-3.3 и подобные.Микросхема - это и наджность и простота схемотехнического решения.
  9. Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна - ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78хх. Такие дела!
  10. Резистор 300Ом + стабилитрон 3.3В
  11. Наиболее простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3.3 v… если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3.3 вольта. Или просто переменным резистором выставляешь 3.3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая..
Внимание, только СЕГОДНЯ!

www.domino22.ru

Как из 5 вольт сделать 3 -

Сегодня мы разберём как из 5 вольт сделать 3 на примере прибора для удаления катышков. Данное руководство можно использовать для любого устройства с питанием 3 вольта. Прибор для удаления катышков http://ali.pub/1be8qi Понижающий преобразователь http://ali.pub/1be9f0



Как с помощью резистора уменьшить напряжение? Как подобрать резистор чтобы понизить напряжение? Провожу небольшой эксперимент, и объясняю результаты. Обсудить н

Краткий ликбез по типам низковольтных стабилизаторов напряжения и принципам их работы. поддержать канал материально. http://www.donationalerts.ru/r/arduinolab

Подробно о явлениях в трехфазной электропроводке возникающих в результате обрыва нулевого проводника. Повышенное напряжение в розетке. Как защитить свою электри

Переделка старого блока питания. Группа ВК https://vk.com/beginner_electronika Всем привет! В этом видео я расскажу Вам, как можно переделать старый источник пи

Here are the instructions to wire a stable AMS1117-3.3 voltage regulator properly. This can power an ESP8266 or any 3.3V micro-controller reliably supporting cu

Как из зарядного устройства от мобильного телефона получить разное напряжение на выходе. ======================================================= Тестер RM 102

В видеомагнитофонах есть сборка-модулятор.Это готовый маломощный телевизионный передатчик и антенный усилитель.На вход модулятора нужно подать видео и аудио сиг

Подписывайтесь на нашу группу Вконтакте - http://vk.com/chipidip, и Facebook - https://www.facebook.com/chipidip * Казалось бы, что сложного в последовате

Давно хотел сделать из пьезоэлемента от зажигалки звуковое устройство. Радиопередатчик из пьезика https://youtu.be/3-SVSQQ-REU я соорудил, Фонарик из пьезоэлеме

Wireless зарядка на любой телефон - http://got.by/21qcge Зарядник QuickCharge 3в1 - http://got.by/294bwr Клей для ремонта дисплеев - http://got.by/294bpy Прогр

Внимание не суйте пальцы на высоковольтную часть схемы, там может укусить 220 вольт Недорогие блоки питания на 12V http://ali.pub/73zah и на 5V http://ali.pub

В видео показал как я паял себе стабилизаторы напряжения для автомобиля. с 14в понижает до 12в и не дает перегореть диодам! Моя партнерка на ЮТУБЕ - www.air.i

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ. ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ своими руками. ♦DIY CAM♦ Для преобразования напряжения 24-вольтового аккумулятора автомобиля или автобуса

Покупал для nrf24l01 стабилизаторы, за 50 штук отдал менее двух долларов, все естественно не проверял, но те что использовал работают. Как подключять и на какое

vimore.org

Основой стабилизатора напряжения (см. рис.1)является микросхема К157ХП2. Прекрасный и не справедливо забытый стабилизатор, с дополнительным транзистором, например КТ972А, может работать с током до 4А.

В данной схеме выходное напряжение стабилизатора равно 3В. Стабилизатор предназначен для питания низковольтной радиоаппаратуры. Вообще, при указанных на схеме номиналах резисторов, выходное напряжение можно устанавливать от 1,3 до 6В. При больших токах нагрузки транзистор должен быть установлен на соответствующий радиатор. Входное напряжение, подаваемое на стабилизатор, должно быть не менее семи вольт, хотя практически оно может быть вплоть до сорока.

Такой стабилизатор хорошо работает от автомобильного аккумулятора. Главное, чтобы выделяющаяся мощность на транзисторе не превышала максимально допустимую 8Вт. Выключателем SB1 можно коммутировать выходное напряжение. При больших токах нагрузки это очень удобно — возможно применение маломощных тумблеров.


В настоящее время множество домашних устройств требуют подключения напряжения стабильной величины на 3 вольта, и нагрузочный ток 0,5 ампер. К ним могут относиться:

  • Плееры.
  • Фотоаппараты.
  • Телефоны.
  • Видеорегистраторы.
  • Навигаторы.

Эти устройства объединены видом источника питания в виде аккумулятора или батареек на 3 вольта.

Как создать питание от бытовой сети дома, не тратя деньги на аккумуляторы или батарейки? Для этих целей не нужно проектировать многоэлементный блок питания, так как в продаже имеются специальные микросхемы в виде стабилизаторов на низкие напряжения.

Схема стабилизатора на 3 вольта

Изображенная схема выполнена в виде регулируемого стабилизатора, и дает возможность создания напряжения на выходе от 1 до 30В. Следовательно, можно применять этот прибор для питания различных устройств для питания 1,5 В, а также для подключения устройств на 3 вольта. В нашем случае устройство применяется для плеера, напряжение на выходе настроено на 3 В.

Работа схемы

С помощью изменяемого сопротивления устанавливается необходимое напряжение на выходе, которое рассчитывается по формуле: U вых=1.25*(1 + R2 / R1). Вместо регулятора напряжение применяется микросхема SD1083 / 1084. Без изменений применяются отечественные подобные микросхемы 22А / 142КРЕН 22, которые различаются током выхода, что является незначительным фактором.

Для нормального режима микросхемы необходимо смонтировать для нее маленький радиатор. В противном случае при малом напряжении выхода регулятор функционирует в токовом режиме, и значительно нагревается даже без нагрузки.

Монтаж стабилизатора

Прибор собирается на монтажной плате с габаритами 20 на 40 мм. Схема довольно простая. Есть возможность собрать стабилизатор без использования платы, путем навесного монтажа.

Выполненная готовая плата может разместиться в отдельной коробочке, либо прямо в корпусе самого блока. Необходимо в первую очередь настроить рабочее напряжение стабилизатора на его выходе, с помощью регулятора в виде резистора, а потом подсоединять нагрузку потребителя.

Переключаемый стабилизатор на микросхеме

Такая схема является наиболее легкой и простой. Ее можно смонтировать самостоятельно на обычной микросхеме LZ. С помощью отключения и включения сопротивления в цепи обратной связи образуется два различных напряжения на выходе. в этом случае нагрузочный ток может возрасти до 100 миллиампер.

Нельзя забывать про цоколевку микросхемы, так как она имеет отличие от обычных стабилизаторов.

Стабилизатор на микросхеме AMS 1117

Это элементарный стабилизатор с множественными фиксированными положениями регулировки напряжения 1,5-5 В, током до 1 ампера. Его можно монтировать самостоятельно на сериях — X.X (CX 1117 — X.X) (где XX - напряжение на выходе).

Есть образцы микросхем на 1,5 – 5 В, с регулируемым выходом. Они применялись раньше на старых компьютерах. Их преимуществом является малое падение напряжения и небольшие габариты. Для выполнения монтажа необходимы две емкости. Чтобы хорошо отводилось тепло, устанавливают радиатор возле выхода.

Схема устройства

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.25 — 30 вольт. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.5 вольтовым питанием (например Ultra Page UP-10 и т.п.), так и для питания 3-х вольтовых устройств. В моем случае она используется для питания пейджера «Moongose PS-3050», то есть выходное напряжение установлено в 3 вольта.

Работа схемы

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Выходное напряжение можно рассчитать по формуле Uвых=1.25(1 + R2/R1) .
В качестве регулятора напряжения используется микросхема SD 1083/1084 . Без всяких изменений можно использовать российские аналоги этих микросхем 142 КРЕН22А/142 КРЕН22 . Они различаются только выходным током и в нашем случае это несущественно. На микросхему необходимо установить небольшой радиатор, так как при низком выходном напряжении регулятор работает в токовом режиме и существенно нагревается даже на «холостом» ходу.

Монтаж устройства

Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа.
Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Я разместил свою в корпусе AC-DC адаптера на 12 вольт для радиотелефонов.

Примечание.

Необходимо сначала установить рабочее напряжение на выходе стабилизатора (при помощи резистора R2) и лишь, затем подключать нагрузку.

Другие схемы стабилизаторов.

Это одна из самых простых схем, которую можно собрать на доступной микросхеме LM317LZ . Путем подключения/отключения резистора в цепи обратной связи мы получаем на выходе два разных напряжения. При этом, ток нагрузки может достигать 100 мА.

Только обратите внимание на распиновку микросхемы LM317LZ. Она немного отличается от привычных стабилизаторов.

Простой стабилизатор на различные фиксированные напряжения (от 1,5 до 5 вольт) и ток до 1А. можно собрать на микросхеме AMS1117 -X.X (CX1117-X.X) (где X.X — выходное напряжение). Есть экземпляры микросхем на следующие напряжения: 1.5, 1.8, 2.5, 2.85, 3.3, 5.0 вольт. Также есть микросхемы с регулируемым выходом с обозначением ADJ. Этих микросхем очень много на старых компьютерных платах. Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO-252.

Стабилитроны

Добавлено 12 июня 2017 в 02:10

Сохранить или поделиться

Если мы подключим диод и резистор последовательно с источником постоянного напряжения так, чтобы диод был смещен в прямом направлении (как показано на рисунке ниже (a)), падение напряжения на диоде будет оставаться достаточно постоянным в широком диапазоне напряжений источника питания.

В соответствии с диодным уравнением Шокли, ток через прямо-смещенный PN переход пропорционален e, возведенному в степень прямого падения напряжения. Поскольку это экспоненциальная функция, ток растет довольно быстро при умеренном увеличении падения напряжения. Другой способ рассмотреть это: сказать что напряжение, падающее на прямо-смещенном диоде, слабо изменяется при больших изменениях тока, протекающего через диод. На схеме, показанной на рисунке ниже (a), ток ограничен напряжением источника питания, последовательно включенным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольта. Если напряжение источника питания будет увеличено, падение напряжения на резисторе увеличится почти на такое же значение, а падение напряжения на диоде увеличится очень слабо. И наоборот, уменьшение напряжения источника питания приведет к почти равному уменьшению падения напряжения на резисторе и небольшому уменьшению падения напряжения на диоде. Одним словом, мы могли бы обобщить это поведение, сказав, что диод стабилизирует падение напряжения на уровне примерно 0,7 вольта.

Управление напряжением – это очень полезное свойство диода. Предположим, что мы собрали какую-то схему, которая не допускает изменений напряжения источника питания, но которую необходимо запитать от батареи гальванических элементов, напряжение которых меняется в течение всего срока службы. Мы могли бы собрать схему, как показано на рисунке, и подключить схему, требующую стабилизированного напряжения, к диоду, где она получит неизменные 0,7 вольта.

Это, безусловно, сработает, но для большинства практических схем любого типа для правильной работы требуется напряжение питания свыше 0,7 вольта. Одним из способов увеличения уровня нашего стабилизированного напряжения может быть последовательное соединение нескольких диодов, поскольку падение напряжения на каждом отдельном диоде, равное 0,7 вольта, увеличит итоговое значение на эту величину. Например, если бы у нас было десять последовательно включенных диодов, стабилизированное напряжение было бы в десять раз больше 0,7 вольта, то есть 7 вольт (рисунок ниже (b)).

Прямое смещение Si диодов: (a) одиночный диод, 0,7В, (b) 10 диодов, включенных последовательно, 7,0В.

До тех пор, пока напряжение не упадет ниже 7 вольт, на 10-диодном «стеке» будет падать примерно 7 вольт.

Если требуются большие стабилизированные напряжения, мы можем либо использовать большее количество диодов, включенных последовательно, (по моему мнению, не самый изящный способ), либо попробовать принципиально другой подход. Мы знаем, что прямое напряжение диода является довольно постоянной величиной в широком диапазоне условий, также как и обратное напряжение пробоя, которое, как правило, значительно больше прямого напряжения. Если мы поменяем полярность диода в нашей схеме однодиодного стабилизатора и увеличим напряжение источника питания до того момента, когда произойдет «пробой» диода (диод больше не может противостоять приложенному к нему напряжению обратного смещения), диод будет стабилизировать напряжение аналогичным образом в этой точке пробоя, не позволяя ему увеличиваться дальше, как показано на рисунке ниже.

Пробой обратно смещенного Si диода при напряжении примерно 100 В.

К сожалению, когда обыкновенные выпрямительные диоды «пробиваются», они обычно разрушаются. Тем не менее, можно создать специальный тип диода, который может обрабатывать пробой без полного разрушения. Этот тип диода называется стабилитроном, и его условное графическое обозначение приведено на рисунке ниже.

Условное графическое обозначение стабилитрона

При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: они обладают прямым падением напряжения, которое соответствует «диодному уравнению» и составляет примерно 0,7 вольта. В режиме обратного смещения они не проводят ток до тех пор, пока приложенное напряжение не достигнет или не превысит так называемого напряжения стабилизации, и в этот момент стабилитрон способен проводить значительный ток и при этом будет пытаться ограничить напряжение, падающее на нем, до значения напряжения стабилизации. Пока мощность, рассеиваемая этим обратным током, не превышает тепловых ограничений стабилитрона, стабилитрон не будет поврежден.

Стабилитроны изготавливаются с напряжениями стабилизации в диапазоне от нескольких вольт до сотен вольт. Это напряжение стабилизации незначительно изменяется в зависимости от температуры, и его погрешность может составлять от 5 до 10 процентов от характеристик, указанных производителем. Однако, эта стабильность и точность обычно достаточны для использования стабилитрона в качестве стабилизатора напряжения в общей схеме питания, показанной на рисунке ниже.

Схема стабилизатора напряжения на стабилитроне, напряжение стабилизации = 12,6 В

Пожалуйста, обратите внимание на направление включения стабилитрона на приведенной выше схеме: стабилитрон смещен в обратном направлении, и это сделано преднамеренно. Если бы мы включили стабилитрон «обычным» способом, чтобы он был смещен в прямом направлении, то на нем падало бы только 0,7 вольта, как на обычном выпрямительном диоде. Если мы хотим использовать свойства обратного пробоя стабилитрона, то мы должны использовать его в режиме обратного смещения. Пока напряжение питание остается выше напряжения стабилизации (12,6 вольт в этом примере), напряжение, падающее на стабилитроне, останется примерно на уровне 12,6 вольт.

Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Слишком высокая температура разрушит стабилитрон, и поскольку он и понижает напряжение, и проводит ток, то он выделяет тепло в соответствии с законом Джоуля (P = IU). Поэтому необходимо быть осторожным при проектировании схемы стабилизатора напряжения, чтобы не превышалась номинальная мощность рассеивания стабилитрона. Интересно отметить, что когда стабилитроны выходят из строя из-за высокой мощности рассеивания, они обычно замыкаются накоротко, а не разрываются. Диод, вышедший из строя по такой же причине, легко обнаружить: на нем падение напряжения практически равно нулю, как на куске провода.

Рассмотрим схему стабилизатора напряжения на стабилитроне математически, определяя все напряжения, токи и рассеиваемые мощности. Взяв ту же схему, что была показана ранее, мы выполним вычисления, принимая, что напряжение стабилитрона равно 12,6 вольт, напряжение питания равно 45 вольт, а сопротивнение последовательно включенного резистора равно 1000 Ом (мы будет считать, что напряжение стабилитрона составляет ровно 12,6 вольт, чтобы избежать необходимости оценивать все значения как «приблизительные» на рисунке (a) ниже).

Если напряжение стабилитрона составляет 12,6 вольт, а напряжение источника питания составляет 45 вольт, падение напряжения на резисторе будет составлять 32,4 вольта (45 вольт – 12,6 вольт = 32,4 вольта). 32,4 вольта, падающие на 1000 Ом, дают в цепи ток 32,4 мА (рисунок (b) ниже).

(a) Стабилизатор напряжения на стабилитроне с резистором 1000 Ом. (b) Расчет падений напряжения и тока.

Мощность рассчитывается путем умножения тока на напряжение (P=IU), поэтому мы можем легко рассчитать рассеивание мощности как для резистора, так и для стабилитрона:

\[P_{резистор} = (32,4 мА)(32,4 В)\]

\[P_{резистор} = 1,0498 Вт\]

\[P_{стабилитрон} = (32,4 мА)(12,6 В)\]

\[P_{стабилитрон} = 408,24 мВт\]

Для этой схемы было бы достаточно стабилитрона с номинальной мощностью 0,5 ватта и резистора с мощностью рассеивания 1,5 или 2 ватта.

Если чрезмерная рассеиваемая мощность вредна, то почему бы не спроектировать схему с наименьшим возможным количеством рассеивания? Почему бы просто не установить резистор с очень высоким сопротивлением, тем самым сильно ограничивая ток и сохраняя показатели рассеивания очень низкими? Возьмем эту же схему, например, с резистором 100 кОм, вместо резистора 1 кОм. Обратите внимание, что и напряжение питания, и напряжение стабилитрона не изменились:

Стабилизатор напряжения на стабилитроне с резистором 100 кОм

При 1/100 от значения тока, который был у нас ранее (324 мкА, вместо 32,4 мА), оба значения рассеиваемой мощности должны уменьшиться в 100 раз:

\[P_{резистор} = (324 мкА)(32,4 В)\]

\[P_{резистор} = 10,498 мВт\]

\[P_{стабилитрон} = (324 мкА)(12,6 В)\]

\[P_{стабилитрон} = 4,0824 мВт\]

Кажется идеальным, не так ли? Меньшая рассеиваемая мощность означает более низкую рабочую температуру и для стабилитрона, и для резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления уменьшает уровни рассеиваемой мощности в схеме, но к сожалению, создает другую проблему. Помните, что цель схемы стабилизатора – обеспечить стабильное напряжение для другой схемы. Другими словами, мы в конечном итоге собираемся запитать что-то напряжением 12,6 вольт, и это что-то будет обладать собственным потреблением тока. Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону, на рисунке ниже.

Стабилизатор напряжения на стабилитроне с последовательно включенным резистором 1 кОм и нагрузкой 500 Ом

Если 12,6 вольт поддерживаются при нагрузке 500 Ом, нагрузка будет потреблять ток 25,2 мА. Для того, чтобы «понижающий» резистор снизил напряжение на 32,4 вольта (снижение напряжения источника питания 45 вольт до 12,6 вольт на стабилитроне), он все равно должен проводить ток 32,4 мА. Это приводит к тому, что через стабилитрон будет протекать ток 7,2 мА.

Теперь рассмотрим нашу «энергосберегающую» схему стабилизатора с понижающим резистором 100 кОм, подключив к ней такую же нагрузку 500 Ом. Предполагается, что она должна поддерживать на нагрузке 12,6 вольт, как и предыдущая схема. Однако, как мы увидим, она не может выполнить эту задачу (рисунок ниже).

Нестабилизатор напряжения на стабилитроне с последовательно включенным резистором 100 кОм и нагрузкой 500 Ом

При большом номинале понижающего резистора на нагрузке 500 Ом будет напряжение около 224 мВ, что намного меньше ожидаемого значения 12,6 вольт! Почему так? Если бы у нас на самом деле было на нагрузке 12,6 вольт, то был бы и ток 25,2 мА, как и раньше. Этот ток нагрузки должен был бы пройти черезе последовательный понижающий резистор, как это было раньше, но с новым (намного большим!) понижающим резистором падение напряжения на этом резисторе с протекающим через него током 25,2 мА составило бы 2 520 вольт! Поскольку у нас, очевидно, нет такого большого напряжения, подаваемого с аккумулятора, то этого не может быть.

Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.

Нестабилизатор с удаленным стабилитроном

И понижающий резистор 100 кОм, и сопротивление нагрузки 500 Ом включены последовательно, обеспечивая общее сопротивление схемы 100,5 кОм. При полном напряжении 45 В и общем сопротивлении 100,5 кОм, закон Ома (I=U/R) говорит нам, что ток составит 447,76 мкА. Рассчитав падения напряжения на обоих резисторах (U=IR), мы получим 44,776 вольта и 224 мВ, соответственно. Если бы в этот момент мы вернули стабилитрон, он также «увидел» 224 мВ на нем, будучи включенным параллельно сопротивлению нагрузки. Это намного ниже напряжения пробоя стабилитрона, и поэтому он не будет «пробит» и не будет проводить ток. В этом отношении, при низком напряжении стабилитрон не будет работать, даже если он будет смещен в прямом направлении. По крайней мере, на него должно поступать 12,6 вольт, чтобы его «активировать».

Аналитическая методика удаления стабилитрона из схемы и наблюдения наличия или отсутствия достаточного напряжения для его проводимости является обоснованной. Только то, что стабилитрон включен в схему, не гарантирует, что полное напряжение стабилитрона всегда дойдет до него! Помните, что стабилитроны работают, ограничивая напряжение до некоторого максимального уровня; они не могут компенсировать недостаток напряжения.

Таким образом, любая схема стабилизатора на стабилитроне будет работать до тех пор, пока сопротивление нагрузки будет равно или больше некоторого минимального значения. Если сопротивление нагрузки слишком низкое, это приведет к слишком большому току, что приведет к слишком большому напряжению на понижающем резисторе, что оставит на стабилитроне напряжение недостаточное, чтобы заставить его проводить ток. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение на нагрузке будет ниже точки регулирования.

Однако, наша схема стабилизатора с понижающим резистором 100 кОм должна подходить для некоторого значения сопротивления нагрузки. Чтобы найти это подходящее значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в цепи из двух последовательно включенных резисторов (без стабилитрона), введя известные значения общего напряжения и сопротивления понижающего резистора, и рассчитав для ожидаемого на нагрузке напряжения 12,6 вольт:

При 45 вольтах общего напряжения и 12,6 вольтах на нагрузке, мы должны получить 32,4 вольта на понижающем резисторе Rпониж:

При 32,4 вольтах на понижающем резисторе и его сопротивлении 100 кОм ток, протекающий через него, составит 324 мкА:

При последовательном включении ток, протекающий через все компоненты, одинаков:

Расчитать сопротивление нагрузки теперь довольно просто согласно закону Ома (R=U/I), что даст нам 38,889 кОм:

Таким образом, если сопротивление нагрузки составляет точно 38,889 кОм, на нем будет 12,6 вольт и со стабилитроном, и без него. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению на нагрузке менее 12,6 вольт и со стабилитроном, и без него. При использовании стабилитрона напряжение на нагрузке будет стабилизироваться до 12,6 вольт для любого сопротивления нагрузки более 38,889 кОм.

При изначальном значении 1 кОм понижающего резистора схема нашего стабилизатора смогла бы адекватно стабилизировать напряжение даже при сопротивлении нагрузки до 500 Ом. То, что мы видим, представляет собой компромисс между рассеиванием мощности и допустимым сопротивлением нагрузки. Более высокое сопротивление понижающего резистора дает нам меньшее рассеивание мощности за счет повышения минимально допустимого значения сопротивления нагрузки. Если мы хотим стабилизировать напряжение для низких значений сопротивления нагрузки, схема должна быть подготовлена для работы с рассеиванием большой мощности.

Стабилитроны регулируют напряжение, действуя как дополнительные нагрузки, потребляя в зависимости от необходимости большую или меньшую величину тока, чтобы обеспечить постоянное падение напряжения на нагрузке. Это аналогично регулированию скорости автомобиля путем торможения, а не изменением положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть построены так, чтобы управлять всей мощностью двигателя тогда, как условия вождения не требуют этого. Несмотря на эту фундаментальную неэффективность, схемы стабилизаторов напряжения на стабилитронах широко используются из-за своей простоты. В мощных приложениях, где неэффективность неприемлема, применяются другие методы управления напряжением. Но даже тогда небольшие схемы на стабилитронах часто используются для обеспечения «опорного» напряжения для управления более эффективной схемой, контролирующей основную мощность.

Стабилитроны изготавливаются для стандартных номиналов напряжений, перечисленных в таблице ниже. Таблица «Основные напряжения стабилитронов» перечисляет основные напряжения для компонентов мощностью 0,5 и 1,3 Вт. Ватты соответствуют мощности, которую компонент может рассеять без повреждения.

Основные напряжения стабилитронов
0,5 Вт      
2,4 В3,0 В3,3 В3,6 В3,9 В4,3 В4,7 В
5,1 В5,6 В6,2 В6,8 В7,5 В8,2 В9,1 В
10 В11 В12 В13 В15 В16 В18 В
20 В24 В27 В30 В   
1,3 Вт      
4,7 В5,1 В5,6 В6,2 В6,8 В7,5 В8,2 В
9,1 В10 В11 В12 В13 В15 В16 В
18 В20 В22 В24 В27 В30 В33 В
36 В39 В43 В47 В51 В56 В62 В
68 В75 В100 В200 В   

Ограничитель напряжения на стабилитронах: схема ограничителя, которая отсекает пики сигнала примерно на уровне напряжения стабилизации стабилитронов. Схема, показанная на рисунке ниже, имеет два стабилитрона, соединенных последовательно, но направленных противоположно друг другу, чтобы симметрично ограничивать сигнал примерно на уровне напряжения стабилизации. Резистор ограничивает потребляемый стабилитронами ток до безопасного значения.

Ограничитель напряжения на стабилитронах
*SPICE 03445.eps
D1 4 0 diode
D2 4 2 diode
R1 2 1 1.0k
V1 1 0 SIN(0 20 1k)
.model diode d bv=10
.tran 0.001m 2m
.end

Напряжения пробоя стабилитрона устанавливается на уровень 10 В с помощью параметра bv=10 модели диода в списке соединений spice, приведенном выше. Это заставляет стабилитроны ограничивать напряжение на уровне около 10 В. Встречно включенные стабилитроны ограничивают оба пика. Для положительного полупериода, верхний стабилитрон смещен в обратном направлении, пробивающем стабилитрон при напряжении 10 В. На нижнем стабилитроне падает примерно 0,7 В, так как он смещен в прямом направлении. Таким образом, более точный уровень отсечки составляет 10 + 0,7 = 10,7 В. Аналогично отсечка при отрицательном полупериоде происходит на уровне –10,7 В. Рисунок ниже показывает уровень отсечки немного больше ±10 В.

Диаграмма работы ограничителя напряжения на стабилитронах: входной сигнал v(1) ограничивается до сигнала v(2)

Подведем итоги:

  • Стабилитроны предназначен для работы в режиме обратного смещения, обеспечивая относительно низкий, стабильный уровень пробоя, то есть напряжение стабилизации, при котором они начинают проводить значительный обратный ток.
  • Стабилитрон может работать в качестве стабилизатора напряжения, действуя в качестве вспомогательной нагрузки, потребляющей больший ток от источник, если его напряжение слишком большое, или меньший ток, если напряжение слишком низкое.

Оригинал статьи:

Теги

LTspiceДиодМоделированиеОбучениеСтабилитронЭлектроника

Сохранить или поделиться

Стабилизаторы напряжения или как получить 3,3 вольта

 

Исходные данные:  мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже:  аккумулятор литий-ионный 18650 напряжением 2,8 — 4,2 Вольт без внутренней схемы зарядного устройства  -> присоединяем  модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056  подключаем модуль на микросхеме  MT3608  — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

 

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!

 

Небольшой обзор стабилизаторов напряжения и тока


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.AMS1117 Технический паспорт

Наименование RT9013
Richtek технологии 
Описание Стабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO.  
RT9013 PDF Технический паспорт (datasheet) :

 

*Описание MP1584EN

**Приобрести можно в магазине Your  Cee

MP2307N

*Приобрести можно в магазине Your  Cee

Наименование LM2596
Во-первых компонентов Международной 
Описание Простой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц 
LM2596 Технический паспорт PDF (datasheet) :
Наименование MC34063A
Крыло Шинг International Group 
Описание DC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :
ОПИСАНИЕ
MC34063A представляет собой монолитную схему управления , содержащую основные функции , необходимые для преобразователей постоянного тока в постоянный ток.
ОСОБЕННОСТИ
Работа от  0.3 Вольт до 40Вольт.
Низкое потребление в режиме ожидания.
Выходная защита по току до 1.5A.
Регулируемая рабочая частота до 42kHz.
Точность 2% от заданного значения.Применение: DC-DC преобразователь

 

Наименование XL6009
XLSEMI 
Описание 4A, 400kHz, входное напряжение 5~32V / выходное напряжение 5~35V, коммутируемый повышающий преобразователь DC / DC
XL6009 Технический паспорт PDF (datasheet) :

Готовый модуль повышающего преобразователя напряжения XL6009

 

Общее описание
XL6009 является повышающим преобразователем постоянного в постоянный ток с широким диапазоном входного напряжением,  который способен генерировать положительное или отрицательное выходное напряжение. Повышающий DC / DC конвертер  XL6009 служит для поднятия напряжения. Используется при подаче питания к ESP8266, Arduino и других микроконтроллеров от аккумулятора или блока питания с низким напряжением. А также для питания подключенных сенсорных и исполнительных модулей  к ESP8266, Arduino и другим микроконтроллерам  работающих от напряжения  выше 3.3 Вольт прямо от источника питания самого контроллера.Характеристики:
  • Входное напряжение 5~32V
  • Выходное напряжение 5~35V
  • Входной ток 4А (макс), 18мА без нагрузки
  • Конверсионная эфективность более 94%
  • Частота 400кГц
  • Габариты 43x14x21мм

Таблица характеристик при различных напряжениях:

Входное, V Выходное, V сила тока, A мощность,Вт
5 12 0,8 9,6
7,4 12 1,5 18
12 15 2 30
12 16 2 32
12 18 1,6 28,8
12 19 1,5 28,5
12 24 1 24
3 12 0,4 4,8

 

Повышающий преобразователь напряжения XL6009 (Видео)

http://dwiglo. ru/mp2307dn-PDF.html

Китайские стабилизаторы для самоделкиных. Часть 1.

Китайские стабилизаторы для самоделкиных. Часть 2.

Китайские стабилизаторы для самоделкиных. Часть 3.

 

 

Какой стабилитрон на 3 вольта. Как получить нестандартное напряжение

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение — это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда «заточены» различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ — это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 — 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона — это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт — уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода — 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.


Каждый, кто захочет сможет изготовить 12 - ти вольтовый блок самостоятельно, без особых затруднений.
Кому-то необходим источник для питания усилителя, а кому запитать маленький телевизор или радиоприемник...
Шаг 1: Какие детали необходимы для сборки блока питания...
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок....
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В - 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ - 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты....
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие...


Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.

Схема блока питания 12в 30А .
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку - типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.

Блок питания 3 - 24в

Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5. 1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.

Схема блока питания на 1,5 в

Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.

Схема регулируемого блока питания от 1,5 до 12,5 в

Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.

Схема блока питания с фиксированным выходным напряжением

Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.

Схема блока питания мощностью 20 Ватт с защитой

Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения...
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.

Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.

Самодельный блок питания на 3.3v

Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.

Трансформаторный блок питания на КТ808

У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.

При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта

Блок питания на 1000в, 2000в, 3000в

Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы - отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.

В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А) и понижающий накальный трансформатор Т2 - ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.

Еще по теме

Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.

Ремонт и доработка китайского блока питания для питания адаптера.

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение — это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда «заточены» различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ — это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 — 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона — это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт — уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода — 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Метеостанции на .

Подумав, я пришел к выводу, что самой дорогой и объёмной частью метеостанции является плата Arduino Uno. Самым дешевым вариантом замены может стать плата Arduino Pro Mini. Плата Arduino Pro Mini производится в четырех вариантах. Для решения моей задачи подходит вариант с микроконтроллером Mega328P и напряжением питания 5 вольт. Но есть еще вариант на напряжение 3,3 вольта. Чем эти варианты отличаются? Давайте разберемся. Дело в том, что на платах Arduino Pro Mini устанавливается экономичный стабилизатор напряжения. Например такой, как MIC5205 c выходным напряжением 5 вольт. Эти 5 вольт подаются на вывод Vcc платы Arduino Pro Mini, поэтому и плата будет называться «плата Arduino Pro Mini с напряжением питания 5 вольт». А если вместо микросхемы MIC5205 будет поставлена другая микросхема с выходным напряжением 3,3 вольта, то плата будет называться «плата Arduino Pro Mini с напряжением питания 3,3 вольт»

Плата Arduino Pro Mini может получать энергию от внешнего нестабилизированного блока питания с напряжением до 12 вольт. Это питание должно подаваться на вывод RAW платы Arduino Pro Mini. Но, ознакомившись с даташитом (техническим документом) на микросхему MIC5205, я увидел, что диапазон питания, подаваемого на плату Arduino Pro Mini, может быть шире. Если, конечно, на плате стоит именно микросхема MIC5205.

Даташит на микросхема MIC5205:


Входное напряжение, подаваемое на микросхему MIC5205, может быть от 2,5 вольт до 16 вольт. При этом на выходе схемы стандартного включения должно быть напряжение около 5 вольт без заявленной точности в 1%. Если воспользоваться сведениями из даташита: VIN = VOUT + 1V to 16V (Vвходное = Vвыходное + 1V to 16V) и приняв Vвыходное за 5 вольт, мы получим то, что напряжение питания платы Arduino Pro Mini, подаваемое на вывод RAW, может быть от 6 вольт до 16 вольт при точности в 1%.

Даташит на микросхему MIC5205:
Для питания платы GY-BMP280-3.3 для измерения барометрического давления и температуры я хочу применить модуль с микросхемой AMS1117-3.3. Микросхема AMS1117 - это линейный стабилизатор напряжения с малым падением напряжения.
Фото модуль с микросхемой AMS1117-3.3:


Даташиты на микросхему AMS1117:
Схема модуля с микросхемой AMS1117-3.3:


Я указал на схеме модуля с микросхемой AMS1117-3.3 входное напряжение от 6,5 вольт до 12 вольт, основывая это документацией на микросхему AMS1117.


Продавец указывает входное напряжение от 4,5 вольт до 7 вольт. Самое интересное, что другой продавец на Aliexpress.com указывает другой диапазон напряжений - от 4,2 вольт до 10 вольт.


В чем же дело? Я думаю, что производители впаивают во входные цепи конденсаторы с максимально допустимым напряжением меньшим, чем позволяют параметры микросхемы - 7 вольт, 10 вольт. И, может быть, даже ставят бракованные микросхемы с ограниченным диапазоном питающих напряжений. Что произойдет, если на купленную мной плату с микросхемой AMS1117-3.3, подать напряжение 12 вольт, я не знаю.
Возможно для повышения надежности китайской платы с микросхемой AMS1117-3.3 надо будет поменять керамические конденсаторы на электролитические танталовые конденсаторы. Такую схему включения рекомендует производитель микросхем AMS1117А минский завод УП "Завод ТРАНЗИСТОР".

Самодельные стабилизатор на 3 вольта. Миниатюрные стабилизаторы напряжения

Схема устройства

Схема, изображенная на рисунке 1, представляет собой регулируемый стабилизатор напряжения и позволяет получить выходное напряжение в пределах 1.25 — 30 вольт. Это позволяет использовать данный стабилизатор для питания пейджеров с 1.5 вольтовым питанием (например Ultra Page UP-10 и т.п.), так и для питания 3-х вольтовых устройств. В моем случае она используется для питания пейджера «Moongose PS-3050», то есть выходное напряжение установлено в 3 вольта.

Работа схемы

При помощи переменного резистора R2 можно установить необходимое выходное напряжение. Выходное напряжение можно рассчитать по формуле Uвых=1.25(1 + R2/R1) .
В качестве регулятора напряжения используется микросхема SD 1083/1084 . Без всяких изменений можно использовать российские аналоги этих микросхем 142 КРЕН22А/142 КРЕН22 . Они различаются только выходным током и в нашем случае это несущественно. На микросхему необходимо установить небольшой радиатор, так как при низком выходном напряжении регулятор работает в токовом режиме и существенно нагревается даже на «холостом» ходу.

Монтаж устройства

Устройство собрано на печатной плате размером 20х40мм. Так как схема очень простая рисунок печатной платы не привожу. Можно собрать и без платы с помощью навесного монтажа.
Собранная плата помещается а отдельную коробочку или монтируется непосредственно в корпусе блока питания. Я разместил свою в корпусе AC-DC адаптера на 12 вольт для радиотелефонов.

Примечание.

Необходимо сначала установить рабочее напряжение на выходе стабилизатора (при помощи резистора R2) и лишь, затем подключать нагрузку.

Другие схемы стабилизаторов.

Это одна из самых простых схем, которую можно собрать на доступной микросхеме LM317LZ . Путем подключения/отключения резистора в цепи обратной связи мы получаем на выходе два разных напряжения. При этом, ток нагрузки может достигать 100 мА.

Только обратите внимание на распиновку микросхемы LM317LZ. Она немного отличается от привычных стабилизаторов.

Простой стабилизатор на различные фиксированные напряжения (от 1,5 до 5 вольт) и ток до 1А. можно собрать на микросхеме AMS1117 -X.X (CX1117-X.X) (где X.X — выходное напряжение). Есть экземпляры микросхем на следующие напряжения: 1.5, 1.8, 2.5, 2.85, 3.3, 5.0 вольт. Также есть микросхемы с регулируемым выходом с обозначением ADJ. Этих микросхем очень много на старых компьютерных платах. Одним из достоинств этого стабилизатора является низкое падение напряжения — всего 1,2 вольта и небольшой размер стабилизатора адаптированный под СМД-монтаж.

Для его работы требуется всего пара конденсаторов. Для эффективного отвода тепла при значительных нагрузках необходимо предусмотреть теплоотводную площадку в районе вывода Vout. Этот стабилизатор также доступен в корпусе TO-252.

С разных компьютерных плат, я их иногда применяю для стабилизации нужных напряжений в зарядках от сотовых телефонов. И вот недавно понадобился носимый и компактный БП на 4,2 В 0,5 А для проверки телефонов с подзарядкой аккумуляторов, и сделал так - взял подходящую зарядку, добавил туда платку стабилизатора на базе данной микросхемы, работает отлично.

И вот для общего развития подробная информация о данной серии. APL1117 это линейные стабилизаторы напряжения положительной полярности с низким напряжением насыщения, производятся в корпусах SOT-223 и ID-Pack. Выпускаются на фиксированные напряжения 1,2, 1,5, 1,8, 2,5, 2,85, 3,3, 5,0 вольт и на 1,25 В регулируемый.

Выходной ток микросхем до 1 А, максимальная рассеиваемая мощность 0,8 Вт для микросхем в корпусе SOT-223 и 1,5 Вт выполненных в корпусе D-Pack. Имеется система защиты по температуре и рассеиваемой мощности. В качестве радиатора может использоваться полоска медной фольги печатной платы, небольшая пластинка. Микросхема крепится к теплоотводу пайкой теплопроводящего фланца или приклеивается корпусом и фланцем с помощью теплопроводного клея.

Применение микросхем этих серий обеспечивает повышенную стабильность выходного напряжения (до 1%), низкие коэффициенты нестабильности по току и напряжению (менее 10 мВ), более высокий КПД, чем у обычных 78LХХ, что позволяет снизить входные напряжения питания. Это особенно актуально при питании от батарей.

Если требуется более мощный стабилизатор, который выдаёт ток 2-3 А, то типовую схему нужно изменить, добавив в нее транзистор VT1 и резистор R1.

Стабилизатор на микросхеме AMS1117 с транзистором

Транзистор серии КТ818 в металлическом корпусе рассеивает до 3 Вт. Если требуется большая мощность, то транзистор следует установить на теплоотвод. С таким включением максимальный ток нагрузки может быть для КТ818БМ до 12 А. Автор проекта - Igoran.

Обсудить статью МИНИАТЮРНЫЕ СТАБИЛИЗАТОРЫ НАПРЯЖЕНИЯ

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди? Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, и тд.

Но, увы, наш мир не идеален. Иногда просто ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания . Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его. Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Вариант №1

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно ):

Вариант №2

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!


Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:


Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать .

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт. 8 Вольт – уже нестандартный ряд напряжения;-). Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:


Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.


Теперь берем стабилитрон на U стабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.



Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает! Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Вариант №3

Есть также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта ? Именно этим свойством диода и воспользуемся;-).

Итак, схему в студию!


Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.


Итак, что на выходе?


Почти 5.7 Вольт;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:


На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Как из 5 Вольт получить 3. 3 Вольта? Нужен наиболе простой способ

Есть микросхема, которая питается от 3. 3 Вольт. Её нужно подключить к USB-разъему, где напряжение 5 Вольт. Как правильно поступить, искать какой-то преобразователь или просто припаять резистор? 3 годов назад от Евгений Пуртов

3 Ответы

Микросхема потребляет боле-мене стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100. 0 мкф на Землю) . Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3. 3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал. 3 годов назад от Andrey Fedaevskiy Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна - ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78х. Такие дела! 3 годов назад от asdasdasdas dasdasdasd Наиболе простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3. 3 v. если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3. 3 вольта. Или просто переменным резистором выставляешь 3. 3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая. 3 годов назад от Яркие Краски

Связанные вопросы

9 месяцев назад от *****

1 год назад от федор волошин

1 год назад от Андрей Козлов

engangs.ru

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ - domino22

Как из 5 Вольт получить 3.3 Вольта? Нужен наиболее простой способ

  1. микросхема-стабилизатор на 3.3В или микросхема-инвертор 5В на 3.3В сам
  2. Господи, да включи ее напрямую, какие 3.3 в, ты смотри максимально допустимые, да и те, можно в нку поднять 20%
  3. Можно поставить стабилизатор на 3,3 в. Их полно всяких, выбирайте подходящую.
  4. 1) никаких сопротивлений, если ты питаешь микросхему Сопротивление ставится, если тебе уровень сигнала уменьшить!2) Бершь LM1117-3.3 дешовая, доступная и дешовая. Только на вход и выход желательно поставить конденсаторы электоролитические - так стабильнее будет.
  5. Поставить стабилитрон на 3,3 вольта.
  6. Если бы вы указали, что за микросхема, получили бы дельный совет. Почему у этих вопрошающих все засекречено?
  7. Микросхема потребляет более-менее стабильный ток. Проще последовательно с проводом питания установить подобранный резистор (не забудьте блокировочный электролитический конденсатор 100.0 мкф на Землю) .Подбираете так: сначала ставите резистор явно большого значения. Начните с 5 ком. Тестером меряете напряжение на ИМС и, уменьшая резистор, приближаете его к номинальному значению напряжения питания -3.3 вольта. Это обычный радиолюбительский способ, когда не требуется особой стабилизации по питанию. У меня всегда он работал.
  8. Ищи LDO стабилизатор - это стабилизатор позволяющий подавать напряжение чуть выше чем на входе. Поясню почему 7833 не годится: у серии 78xx минимальное падение между входом и выходом около 2,5 Вольт, так что получить 3,3 из 5 не удастся. У LDO входное напряжение может отличаться от входного на 0,2…0,5 Вольт, Примеры: AMS1117-3.3, NCP551-3.3 и подобные.Микросхема - это и наджность и простота схемотехнического решения.
  9. Вы хочете песен? Их есть у нас! Мелкосхема-стабилизатор обзывается 7833! Массу паяешь посередке, слева паяешь плюсовой провод от УСБ, а справа запитываешь этот свой секретный девайс. А разгадка одна - ну не может толковый илехтронщег, которым ты себя мнишь, не знать про микросхемы-стабилизаторы напряжения готично-православной серии 78хх. Такие дела!
  10. Резистор 300Ом + стабилитрон 3.3В
  11. Наиболее простой и правильный способ-это микросхема-стабилизатор на фиксированное напряжение 3.3 v… если нет такой микросхемы, то тогда делаешь схему из даташита на lm317 -их везде навалом. Рассчитываешь 2 резистора по формуле из даташита, чтоб было на выходе 3.3 вольта. Или просто переменным резистором выставляешь 3.3 вольта. Можешь сделать стабилизатор на резисторе и стабилитроне, как тебе написали выше, но по любому надо после него поставить эмиттерный повторитель. . Делать импульсные преобразователи смысла не вижу, так как разница между входом и выходом небольшая..
Внимание, только СЕГОДНЯ!

www.domino22.ru

Как из 5 вольт сделать 3 -

Сегодня мы разберём как из 5 вольт сделать 3 на примере прибора для удаления катышков. Данное руководство можно использовать для любого устройства с питанием 3 вольта. Прибор для удаления катышков http://ali.pub/1be8qi Понижающий преобразователь http://ali.pub/1be9f0



Как с помощью резистора уменьшить напряжение? Как подобрать резистор чтобы понизить напряжение? Провожу небольшой эксперимент, и объясняю результаты. Обсудить н

Краткий ликбез по типам низковольтных стабилизаторов напряжения и принципам их работы. поддержать канал материально. http://www.donationalerts.ru/r/arduinolab

Подробно о явлениях в трехфазной электропроводке возникающих в результате обрыва нулевого проводника. Повышенное напряжение в розетке. Как защитить свою электри

Переделка старого блока питания. Группа ВК https://vk.com/beginner_electronika Всем привет! В этом видео я расскажу Вам, как можно переделать старый источник пи

Here are the instructions to wire a stable AMS1117-3.3 voltage regulator properly. This can power an ESP8266 or any 3.3V micro-controller reliably supporting cu

Как из зарядного устройства от мобильного телефона получить разное напряжение на выходе. ======================================================= Тестер RM 102

В видеомагнитофонах есть сборка-модулятор.Это готовый маломощный телевизионный передатчик и антенный усилитель.На вход модулятора нужно подать видео и аудио сиг

Подписывайтесь на нашу группу Вконтакте - http://vk.com/chipidip, и Facebook - https://www.facebook.com/chipidip * Казалось бы, что сложного в последовате

Давно хотел сделать из пьезоэлемента от зажигалки звуковое устройство. Радиопередатчик из пьезика https://youtu.be/3-SVSQQ-REU я соорудил, Фонарик из пьезоэлеме

Wireless зарядка на любой телефон - http://got.by/21qcge Зарядник QuickCharge 3в1 - http://got.by/294bwr Клей для ремонта дисплеев - http://got.by/294bpy Прогр

Внимание не суйте пальцы на высоковольтную часть схемы, там может укусить 220 вольт Недорогие блоки питания на 12V http://ali.pub/73zah и на 5V http://ali.pub

В видео показал как я паял себе стабилизаторы напряжения для автомобиля. с 14в понижает до 12в и не дает перегореть диодам! Моя партнерка на ЮТУБЕ - www.air.i

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ. ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ своими руками. ♦DIY CAM♦ Для преобразования напряжения 24-вольтового аккумулятора автомобиля или автобуса

Покупал для nrf24l01 стабилизаторы, за 50 штук отдал менее двух долларов, все естественно не проверял, но те что использовал работают. Как подключять и на какое

vimore.org

Принцип работы и маркировка стабилитронов ⋆ diodov.net

Стабилитрон относится к одному из применяемых радиоэлектронных элементов. Каждый более-менее качественный блок питания содержит узел стабилизации напряжения, которое может изменяться при изменении сопротивления нагрузки либо при отклонении входного напряжения от номинального значения.

Стабилизация напряжения выполняется главным образом с целью обеспечения нормального режима работы остальных радиоэлементов устройства, например микросхем, транзисторов, микроконтроллеров и т.п.

Стабилитроны широко используются в маломощных блоках питания либо в отдельных его узлах, мощность которых редко превышает десятки ватт.

Главное преимущество стабилитронов – их малая стоимость и габариты, поэтому они до сих пор не могут вытисниться интегральными стабилизаторами напряжения типа LM7805 или 78L05 и т.п.

Стабилитрон очень похож на диод, поскольку его полупроводниковый кристалл помещен в аналогичный корпус.

Условное графическое обозначение стабилитрона на чертежах электрических схем также похоже на обозначение диода, только со стороны катода добавлена короткая горизонтальная черточка, направленная в сторону анода.

Принцип работы стабилитрона

Рассмотрим принцип работы стабилитрона на примере схемы его включения и вольт-амперной характеристике. Для выполнения своей основной функции стабилитрон VD соединяется последовательно с резистором Rб и вместе они подключаются к источнику входного нестабилизированного напряжения Uвх. Уже стабилизированное выходное напряжение Uвых снимается только с выводов 2, 3 VD. Поэтому нагрузка Rн подключается к соответствующим точкам 2 и 3. Как видно из схемы, VD и Rб образуют делитель напряжения. Только сопротивление стабилитрон имеет не постоянно значение и называется динамическим, поскольку зависит от величины электрического тока, протекающего через полупроводниковый прибор.

Величина напряжения Uвх, подаваемого на стабилитрон с резисторов должна быть выше на минимум на пару вольт выходного напряжения Uвых, в противном случае полупроводниковый прибор VD не откроется и не сможет выполнять свою основную функцию.

Допустим, в какой-то произвольный момент времени на выходах 1 и 3 значение Uвх начало возрастать. В схеме начнут протекать следующие процессы. С ростом напряжения согласно закону Ома начнет возрастать ток, назовем его входным током Iвх. С увеличением ток возрастет падение напряжения на резисторе Rб, а на VD она останется неизменным (это будет пояснено далее на характеристике), поэтому и Uвых останется на прежнем уровне. Следовательно, прирост входного напряжения упадет или погасится на резисторе Rб. Поэтому Rб называют гасящим или балластным.

Теперь, допустим, изменилась нагрузка, например, снизилось сопротивление Rн, соответственно возрастет и ток Iн. В этом случае снизится ток, протекающий стабилитрон Iст, а Iвх останется практически без изменений.

Вольт-амперная характеристика стабилитрона

Вольт-амперная характеристика (ВАХ) стабилитрона аналогично ВАХ диода и имеет две ветви: прямую и обратную. Прямая ветвь является рабочей для диода, а обратная ветвь характеризует работу стабилитрона, поэтому он включается в электрическую цепь в обратном направлении (катодом к плюсу, а анодом к минусу) по сравнению с диодом. Поэтому стабилитрон называю опорным диодом, а источник питания с данным полупроводниковым элементом называют опорным источником напряжения. Такой терминологий будем пользоваться и мы.

На обратной ветви вольт-амперной характеристик опорного диода выделим две характерные точки 1 и 3. Точка 1 отвечает минимальному значению тока стабилизации, который находится в пределах единиц миллиампер. Если ток, протекающий через стабилитрон, будет ниже точки 1, то он не сможет выполнять свои функции (не откроется). В случае превышения тока выше точки 3 опорный диод перегреется и выйдет из строя. Поэтому оптимальной точкой в большинстве случае будет точка посредине обратной ветви ВАХ, то есть точка 2. Тогда при изменении тока в широких пределах (смотрите ось Y) точка 2 будет изменять свое положение, перемещаясь вверх или вниз по обратной ветви, а напряжение будет изменяться незначительно (смотрите ось X).

Встречное, параллельное, последовательное соединение стабилитронов

Для повышения напряжения стабилизации можно последовательно соединять два и более стабилитрона. Например на нагрузке нужно получить 17 В, тогда, в случае отсутствия нужного номинала, применяют опорные диоды на 5,1 В и на 12 В.

Параллельное соединение применяется с целью повышения тока и мощности.

Также стабилитроны находят применение для стабилизации переменного напряжения. В этом случае они соединяются последовательно и встречно.

В один полупериод переменного напряжения работает один стабилитрон, а второй работает как обычный диод. Во второй полупериод полупроводниковые элементы выполняют противоположные функции. Однако в таком случае форма выходного напряжения будет отличается от входного и выглядит как трапеция. За счет того, что опорный диод будет отсекать напряжение, превышающее уровень стабилизации, верхушки синусоиды будут срезаться.

Маркировка стабилитронов

Маркировка наносится на корпус стабилитрона в виде цифр и букв (или буквы). Различают принципиально два разных типа маркировки. Стабилитрон в стеклянном корпусе имеет привычную для нас маркировку, непосредственно обозначающую номинальное напряжение стабилизации. Цифры могут быть разделены буквой V, выполняющую роль десятичной точки. Например, 5V1 означает 5,1 В.

Менее понятный способ маркировки состоит из четырех цифр и буквы в конце. Если вы не опытный радиолюбитель, то без даташита никак не обойтись. Для примера расшифруем параметры опорного диода серии 1N5349B. Больше всего нас интересует первый столбец, в котором приведено номинальное напряжение 12 В. Второй столбец – номинальное значения ток – 100 мА.

Катод стабилитрона любого типа обозначается кольцом черного или синего цвета, которое наносится на корпус со стороны соответствующего вывода.

Маркировка SMD стабилитронов

Наибольшее распространение получили опорные диоды в стеклянном корпусе и в пластмассовом корпусе с тремя выводами. Маркировка SMD стабилитрона в стеклянном корпусе состоит из цветного кольца, цвет которого обозначает параметры данного полупроводникового прибора.

Если вам встретился SMD стабилитрон с тремя выводами, то следует знать, что один вывод – это «пустышка», то есть он не задействован и применяется лишь для надежной фиксации элемента на печатной плате после пайки. Анод и катод такого экземпляра проще всего определить с помощью мультиметра.

Мощность рассеивания стабилитрона

Мощность рассеивания стабилитрона Pст характеризует его способность не перегреваться выше определенной температуры на протяжении длительного времени. Чем выше значение Pст, тем больше тепла способен рассеять полупроводниковый прибор. Мощность рассеивания рассчитывается для самых неблагоприятных условий работы прибора, поэтому в ниже приведенную формулу подставляют максимально возможное в работе Uвх и наименьшие значения и :

Существует ряд стандартных номиналом по данному параметру: 0,3 Вт, 0,5 Вт, 1,3 Вт, 5 Вт и т.п. Чем больше Pст, тем больше габариты полупроводникового прибора.

Как проверить стабилитрон

Проверить стабилитрон на предмет исправности довольно просто и быстро можно с помощью простейшего мультиметра. Для этого мультиметр следует перевести в режим «прозвонка», как правило, обозначенный знаком диода. Затем, если положительным щупом мультиметра прикоснуться анода, а отрицательным – катода, то на дисплее измерительного прибора мы увидим некоторое значение падения напряжения на pn-переходе. Поскольку к полупроводниковому прибору приложено прямое напряжение (смотрите прямую ветвь вольт-амперной характеристики), то опорный диод откроется.

Теперь, если щупы мультиметра поменять местами, тем самым приложить к выводам полупроводникового прибора обратное напряжение (смотрите обратную ветвь ВАХ), то он окажется заперт и не будет проводить ток. На дисплее измерительного прибора отобразится единица, обозначающая бесконечно высокое сопротивление.

Если в обеих случаях мультиметр покажет единицу или будет звенеть, то стабилитрон непригоден.

Еще статьи по данной теме

Как работает стабилитрон. Стабилитрон - это что такое и для чего он нужен? Стабилитрон с напряжением стабилизации 30 вольт

R3 10k (4k7 – 22k) reostat

R6 0.22R 5W (0,15- 0.47R)

R8 100R (47R – 330R)

C1 1000 x35v (2200 x50v)

C2 1000 x35v (2200 x50v)

C5 100n ceramick (0,01-0,47)

T1 KT816 (BD140)

T2 BC548 (BC547)

T3 KT815 (BD139)

T4 KT819(КТ805,2N3055)

T5 KT815 (BD139)

VD1-4 КД202 (50v 3-5A)

VD5 BZX27 (КС527)

VD6 АЛ307Б, К (RED LED)

Регулируемый стабилизированный блок питания – 0-24 V , 1 – 3А

с ограничением тока.

Блок питания (БП) предназначен для получения регулируемого стабилизированного выходного напряжения от 0 до 24v при токе порядка 1-3А, проще говоря чтобы не покупали вы батарейки, а использовали его для эксперементов со своими конструкциями.

В блоке питания предусмотрена так называемая защита т е ограничение максимального тока.

Для чего это нужно? Для того что бы этот БП служил верой и правдой, не боясь коротких замыканий и не требовал ремонта, так сказать «несгораемый и неубиваемый»

На Т1 собран стабилизатор тока стабилитрона, т е имеется возможность установки практически любого стабилитрона с напряжением стабилизации менее входного напряжения на 5 вольт

Это значит, что при установке стабилитрона VD5 допустим ВZX5,6 или КС156 на выходе стабилизатора получим регулируемое напряжение от 0 до приблизительно 4 вольт, соответственно - если стабилитрон на 27 вольт, то максимальное выходное напряжение будет в пределах 24-25 вольт.

Трансформатор следует выбирать примерно так- переменное напряжение вторичной обмотки должно быть примерно на 3-5 вольт больше того, которое вы рассчитываете получить на выходе стабилизатора, которое в свою очередь зависит от установленного стабилитрона,

Ток вторичной обмотки трансформатора как минимум должен быть не менее того тока, который нужно получить на выходе стабилизатора.

Выбор конденсаторов по емкости С1 и С2 –примерно по 1000-2000 мкф на 1А, С4 – 220 мкф на 1А

Несколько сложнее с емкостями по напряжению – рабочее напряжение грубо рассчитывается по такой методике – переменное напряжение вторичной обмотки трансформатора делится на 3 и умножается на 4

(~ Uвх:3×4)

Т е – допустим, что выходное напряжение вашего трансформатора порядка 30 вольт – 30 делим на 3 и множим на 4 – получаем 40 – значит рабочее напряжение конденсаторов должно быть более чем 40 вольт.

Уровень ограничения тока на выходе стабилизатора зависит от R6 по минимуму и R8 (по максимуму вплоть до отключения)

При установке перемычки вместо R8 между базой VТ5 и эмиттером VТ4 при сопротивлении R6 равном 0,39 ом ток ограничения будет примерно на уровне 3А,

Как понять «ограничение»? Очень просто – выходной ток даже в режиме короткого замыкания на выходе не превысит 3 А, за счет того что выходное напряжение будет автоматически снижено практически до нуля,

А можно ли заряжать автомобильный аккумулятор? Запросто. Достаточно выставить регулятором напряжения, извиняюсь - потенциометром R3 напряжение 14,5 вольта на холостом ходу (т е с отключенным аккумулятором) а потом подключить к выходу блока, аккумулятор, И пойдет ваш аккумулятор заряжаться стабильным током до уровня 14,5в, Ток по мере зарядки будет уменьшаться и когда достигнет значения 14,5 вольта (14,5 в – напряжение полностью заряженного акк) он будет равен нулю.

Как отрегулировать ток ограничения. Выставить на выходе стабилизатора напряжение на холостом ходу порядка 5-7 вольт. Затем к выходу стабилизатора подключить сопротивление примерно на 1 ом мощностью 5-10 ватт и последовательно с ним амперметр. Подстроечным резистором R8 выставить требуемый ток. Правильно выставленный ток ограничения можно проконтролировать выкручивая потенциометр регулировки выходного напряжения на максимум до упора При этом ток, контролируеммый амперметром должен оставаться на прежнем уровне.

Теперь про детали. Выпрямительный мостик – диоды желательно выбирать с запасом по току минимум раза в полтора, Указанные КД202 диоды могут без радиаторов достаточно долго работать при токе 1 ампер, но ежели рассчитываете что вам этого мало, то установив радиаторы можно обеспечить 3-5 ампер, вот только нужно посмотреть в справочнике какие из них и с какой буквой могут до 3 а какие и до 5 ампер. Хочется больше – загляните в справочник и выбирайте диоды помощнее, скажем ампер на 10.

Транзисторы – VT1 и VT4 устанавливать на радиаторы. VT1 будет слегка греться поэтому и радиатор нужен небольшой, а вот VT4 да в режиме ограничения тока будет греться довольно таки хорошо. Поэтому и радиатор нужно подобрать внушительный, можно и вентилятор от блока питания компьютера к нему приспособить – поверьте, не помешает.

Особо пытливым – почему греется транзистор? Ток то течет по нему и чем больше ток, тем больше греется транзистор. Давайте посчитаем – на входе, на конденсаторах 30 вольт. На выходе стабилизатора ну скажем вольт так 13, В итоге между коллектором и эмиттером остается 17 вольт.

Из 30 вольт минусуем 13 вольт получаем 17 вольт (кто хочет видит тут математику, а мне как то на память приходит один из законов дедушки Киргофа, про сумму падений напряжения)

Ну так вот, тот же Киргоф, что то говорил о токе в цепи, наподобие того что какой ток течет в нагрузке, такой же ток и через транзистор VT4 течет. Скажем ампера эдак 3 течет, резистор в нагрузке греется транзистор тоже греется, Так вот тепло это, которым воздух греем и можно назвать мощностью, которая рассеивается... Но попробуем выразиться математически, то бишь

школьный курс физики

где Р - это мощность в ваттах, U – напряжение на транзисторе в вольтах, а J - ток который течет и через нашу нагрузку и через амперметр и естественно через транзистор.

Итак 17 вольт множим на 3 ампера получаем 51 ватт рассеивающийся на транзисторе,

Ну а допустим подключим сопротивление на 1 ом. По закону Ома при токе 3А падение напряжения на резисторе получится 3 вольта и рассеиваемая мощность величиной в 3 ватта начнет греть сопротивление. Тогда падение напряжения на транзисторе: 30 вольт минус 3 вольта = 27 вольт, а мощность рассеиваимая на транзисторе 27v×3A=81 ватт... Теперь заглянем в справочник, в раздел транзисторы. Ежели проходной транзистор т е VТ4 у нас стоит скажем КТ819 в пластмассовом корпусе то по справочнику выходит что он не выдержит т к мощность рассеивания (Рк*max) у него 60 ватт, но зато в металлическом корпусе (КТ819ГМ, аналог 2N3055) – 100 ватт – вот этот подойдет, но радиатор обязателен.

Надеюсь на счет транзисторов более менее понятно, перейдем к предохранителям. Вообще то предохранитель это последняя инстанция, реагирующая на грубые ошибки допущенные вами и «ценой своей жизни» предотвращающая.... Давайте допустим что в первичной обмотке трансформатора по каким то причинам произошло замыкание,или во вторичной. Может от того что перегрелся, может изоляция прохудилась, а может и просто – неправильное соединение обмоток, но предохранителей нет. Трансформатор дымит, изоляция плавится,сетевой провод пытаясь выполнить доблестную функцию предохранителя, горит и не дай бог если на распределительном шите вместо автомата у вас стоят пробоки с гвоздиками вместо предохранителей.

Один предохранитель на ток примерно на 1А больше чем ток ограничения блока питания (т е 4-5А), должен стоять между диодным мостом и трансформатором, а второй между трансформатором и сетью 220 вольт примерно на 0,5-1 ампер.

Трансформатор. Самое пожалуй дорогое в конструкции Грубо говоря чем массивнее трансформатор тем он мощнее. Чем толще провод вторичной обмотки, тем больший ток может отдать трансформатор. Все это сводится к одному – мощности трансформатора. Так как же выбрать трансформатор? Опять школьный курс физики, раздел электротехника.... Опять 30 вольт, 3 ампера и в итоге мощность 90 ватт. Это минимум, который следует понимать так – этот трансформатор кратковременно может обеспечить выходное напряжение 30 вольт при токе 3 ампера, Поэтому желательно накинуть по току запас минимум процентов 10, а лучше все 30-50 процентов. Так что 30 вольт при токе 4-5 ампер на выходе трансформатора и ваш БП сможет часами если не сутками отдавать ток 3 ампера в нагрузку.

Ну и тем кто желает получть максимум по току от этого БП, скажем ампер эдак 10.

Первое – соответствующий вашим запросам трансформатор

Второе – диодный мост ампер на 15 и на радиаторы

Третье – проходной транзистор заменить на два-три соединенных в параллель с сопротивлениями в эмиттерах по 0,1 ом (радиатор и принудительный обдув)

Четвертое- емкости желательно конечно увеличить, но в том случае если БП будет использоваться как зарядное устройство – это не критично.

Пятое – армировать токопроводящие дорожки по пути следования больших токов напайкой дополнительных проводников и соответственно не забывать про соединительные провода «потолще»


Схема подключения запараллеленных транзисторов вместо одного




Стабильная зарплата, стабильная жизнь, стабильное государство. Последнее не про Россию, конечно:-). Если глянуть в толковый словарик, то можно толково разобрать, что же такое “стабильность”. На первых строчках Яндекс мне сразу выдал обозначение этого слова: стабильный – это значит постоянный, устойчивый, не изменяющийся.

Но чаще всего этот термин используется именно в электронике и электротехнике. В электронике очень важны постоянные значения какого-либо параметра. Это может быть сила тока , напряжение , частота сигнала и . Отклонение сигнала от какого-либо заданного параметра может привести к неправильной работе радиоэлектронной аппаратуры и даже к ее поломке. Поэтому, в электронике очень важно, чтобы все стабильно работало и не давало сбоев.

В электронике и электротехнике стабилизируют напряжение . От значения напряжения зависит работа радиоэлектронной аппаратуры. Если оно изменится в меньшую, или даже еще хуже, в большую сторону, то аппаратура в первом случае может неправильно работать, а во втором случае и вовсе колыхнуть ярким пламенем.

Для того, чтобы не допустить взлетов и падения напряжения, были изобретены различные стабилизаторы напряжения. Как вы поняли из словосочетания, они используются чтобы стабилизировать “играющее” напряжение.

Стабилитрон или диод Зенера

Самым простым стабилизатором напряжения в электронике является радиоэлемент стабилитрон . Иногда его еще называют диодом Зенера . На схемах стабилитроны обозначаются примерно так:

Вывод с “кепочкой” называется также как и у диода – катод , а другой вывод – анод .

Стабилитроны выглядят также, как и диоды . На фото ниже, слева популярный вид современного стабилитрона, а справа один из образцов Советского Союза


Если присмотреться поближе к советскому стабилитрону, то можно увидеть это схематическое обозначение на нем самом, указывающее, где у него находится катод, а где анод.


Напряжение стабилизации

Самый главный параметр стабилитрона – это конечно же, напряжение стабилизации. Что это за параметр?

Давайте возьмем стакан и будем наполнять его водой…

Сколько бы воды мы не лили в стакан, ее излишки будут выливаться из стакана. Думаю, это понятно и дошкольнику.

Теперь по аналогии с электроникой. Стакан – это стабилитрон. Уровень воды в полном до краев стакане – это и есть напряжение стабилизации стабилитрона. Представьте рядом со стаканом большой кувшин с водой. Водой из кувшина мы как раз и будем заливать наш стакан водой, но кувшин при этом трогать не смеем. Вариант только один – лить воду из кувшина, пробив отверстие в самом кувшине. Если бы кувшин был меньше по высоте, чем стакан, то мы бы не смогли лить воду в стакан. Если объяснить языком электроники – кувшин обладает “напряжением” больше, чем “напряжение” стакана.

Так вот, дорогие читатели, в стакане заложен весь принцип работы стабилитрона. Какую бы струю мы на него не лили (ну конечно в пределах разумного, а то стакан унесет и разорвет), стакан всегда будет полным. Но лить надо обязательно сверху. Это значит, напряжение, которое мы подаем на стабилитрон, должно быть выше, чем напряжение стабилизации стабилитрона.

Маркировка стабилитронов

Для того, чтобы узнать напряжение стабилизации советского стабилитрона, нам понадобится справочник. Например, на фото ниже советский стабилитрон Д814В:


Ищем на него параметры в онлайн справочниках в интернете. Как вы видите, его напряжение стабилизации при комнатной температуре примерно 10 Вольт.


Зарубежные стабилитроны маркируются проще. Если приглядеться, то можно увидеть незамысловатую надпись:


5V1 – это означает напряжение стабилизации данного стабилитрона составляет 5,1 Вольта. Намного проще, не так ли?

Катод у зарубежных стабилитронов помечается в основном черной полосой


Как проверить стабилитрон

Как же проверить стабилитрон? Да также как и ! А как проверить диод, можно посмотреть в этой статье. Давайте же проверим наш стабилитрон. Ставим на прозвонку и цепляемся красным щупом к аноду, а черным к катоду. Мультиметр должен показать падение напряжения прямого .


Меняем щупы местами и видим единичку. Это значит, что наш стабилитрон в полной боевой готовности.


Ну что же, настало время опытов. В схемах стабилитрон включается последовательно с резистором:


где Uвх – входное напряжение, Uвых.ст. – выходное стабилизированное напряжение

Если внимательно глянуть на схему, мы получили ни что иное, как Делитель напряжения . Здесь все элементарно и просто:

Uвх=Uвых.стаб +Uрезистора

Или словами: входное напряжение равняется сумме напряжений на стабилитроне и на резисторе.

Эта схема называется параметрический стабилизатор на одном стабилитроне. Расчет этого стабилизатора выходит за рамки данной статьи, но кому интересно, в гугл;-)

Итак, собираем схемку. Мы взяли резистор номиналом в 1,5 Килоом и стабилитрон на напряжение стабилизации 5,1 Вольта. Слева цепляем Блок питания , а справа замеряем мультиметром полученное напряжение:


Теперь внимательно следим за показаниями мультиметра и блока питания:


Так, пока все понятно, еще добавляем напряжение… Опа на! Входное напряжение у нас 5,5 Вольт, а выходное 5,13 Вольт! Так как напряжение стабилизации стабилитрона 5,1 Вольт, то как мы видим, он прекрасно стабилизирует.


Давайте еще добавим вольты. Входное напряжение 9 Вольт, а на стабилитроне 5,17 Вольт! Изумительно!


Еще добавляем… Входное напряжение 20 Вольт, а на выходе как ни в чем не бывало 5,2 Вольта! 0,1 Вольт – это ну очень маленькая погрешность, ей можно даже в некоторых случаях пренебречь.


Вольт-амперная характеристика стабилитрона

Думаю, не помешало бы рассмотреть Вольт амперную характеристику (ВАХ) стабилитрона. Выглядит она примерно как-то так:


где

Iпр – прямой ток, А

Uпр – прямое напряжение, В

Эти два параметра в стабилитроне не используются

Uобр – обратное напряжение, В

Uст – номинальное напряжение стабилизации, В

Iст – номинальный ток стабилизации, А

Номинальный – это значит нормальный параметр, при котором возможна долгосрочная работа радиоэлемента.

Imax – максимальный ток стабилитрона, А

Imin – минимальный ток стабилитрона, А

Iст, Imax, Imin это сила тока, которая течет через стабилитрон при его работе.

Так как стабилитрон работает именно в обратной полярности, в отличие от диода (стабилитрон подключают катодом к плюсу, а диод катодом к минусу), то и рабочая область будет именно та, что отмечена красным прямоугольником.


Как мы видим, при каком-то напряжении Uобр у нас график начинает падать вниз. В это время в стабилитроне происходит такая интересная штука, как пробой. Короче говоря, он не может больше наращивать на себе напряжение, и в это время начинается возрастать сила тока в стабилитроне. Самое главное – не переборщить силу тока, больше чем Imax , иначе стабилитрону придет кердык. Самым лучшим рабочим режимом стабилитрона считается режим, при котором сила тока через стабилитрон находится где-то в середине между максимальным и минимальным его значением. На графике это и будет рабочей точкой рабочего режима стабилитрона (пометил красным кружком).


Заключение

Раньше, во времена дефицитных деталей и начала расцвета электроники, стабилитрон часто использовался, как ни странно, для стабилизации выходного напряжения . В старых советских книгах по электронике можно увидеть вот такой участок цепи различных источников питания:


Слева, в красной рамке, я пометил знакомый вам участок цепи блока питания. Здесь мы получаем постоянное напряжение из переменного . Справа же, в зеленой рамке, схема стабилизации;-).

В настоящее время трехвыводные (интегральные) стабилизаторы напряжения вытесняют стабилизаторы на стабилитронах, так как они в разы лучше стабилизируют напряжение и обладают хорошей мощностью рассеивания.

На Али можно взять сразу целый набор стабилитронов, начиная от 3,3 Вольт и до 30 Вольт. Выбирайте на ваш вкус и цвет.


Простейший блок питания 0-30 Вольт для радиолюбителя.

Схема.

В этой статье мы продолжаем тему схемотехники блоков питания для радиолюбительских лабораторий. На сей раз речь пойдет о самом простом устройстве, собранном из радиодеталей отечественного производства, и с минимальным их количеством.

И так, принципиальная схема блока питания:


Как видите, все просто и доступно, элементная база имеет широкое распространение и не содержит дефицитов.

Начнем с трансформатора. Мощность его должна быть не менее 150 Ватт, напряжение вторичной обмотки - 21…22 Вольта, тогда после диодного моста на емкости С1 вы получите порядка 30 Вольт. Рассчитывайте так, чтобы вторичная обмотка могла обеспечивать ток 5 Ампер.

После понижающего трансформатора стоит диодный мост, собранный на четырех 10-ти амперных диодах Д231. Запас по току конечно хороший, но конструкция получается довольно громоздкая. Наилучшим вариантом будет использование импортной диодной сборки типа RS602, при небольших габаритах она рассчитана на ток 6 Ампер.

Электролитические конденсаторы рассчитаны на рабочее напряжение 50 Вольт. С1 и С3 можно ставить от 2000 до 6800 мкФ.

Стабилитрон Д1 - он задает верхний предел регулировки выходного напряжения. На схеме мы видим надпись Д814Д х 2 , это значит, что Д1 состоит из двух последовательно соединенных стабилитронов Д814Д. Напряжение стабилизации одного такого стабилитрона составляет 13 Вольт, значит два последовательно соединенных дадут нам верхний предел регулировки напряжения 26 вольт минус падение напряжения на переходе транзистора Т1. В результате вы получите плавную регулировку от нуля до 25 вольт.
В качестве регулирующего транзистора в схеме применен КТ819, они выпускаются в пластиковых и металлических корпусах. Расположение выводов, размеры корпусов и параметры этого транзистора смотрите на следующих двух изображениях.


Блок питания 0-30 Вольт своими руками

Сколько всяких интересных радиоустройств собирают радиолюбители, но основа, без которой не будет работать практически ни одна схема - блок питания . .Часто до сборки приличного блока питания просто не доходят руки. Конечно промышленность выпускает достаточно качественных и мощных стабилизаторов напряжения и тока, однако не везде они продаются и не у всех есть возможность их купить. Проще спаять своими руками.

Схема блока питания:


Предлагаемая схема простого (всего 3 транзистора) блока питания выгодно отличается от аналогичных точностью поддержания выходного напряжения - тут применена компенсационная стабилизация, надёжностью запуска, широким диапазоном регулировки и дешёвыми недефицитными деталями.


После правильной сборки работает сразу, только подбираем стабилитрон согласно требуемому значению максимального выходного напряжения БП.

Корпус делаем из того, что под рукой. Классический вариант - металлическая коробочка от компьютерного БП ATX. Уверен, каждый имеет их немало, так как иногда они сгорают, а купить новый проще, чем чинить.

В корпус прекрасно влазит трансформатор на 100 ватт, и плате с деталями найдётся место.

Кулер можно оставить - лишним не будет. А чтоб не шумел, просто питаем его через токоограничительный резистор, который подберёте экспериментально.

Для передней панели не поскупился и купил пластиковую коробочку - в ней очень удобно делать отверстия и прямоугольные окна для индикаторов и регуляторов.

Амперметр берём стрелочный - чтоб хорошо были видны броски тока, а вольтметр поставил цировой - так удобнее и красивее!

После сборки регулируемого блока питания проверяем его в работе - он должен давать почти полный ноль при нижнем (минимальном) положении регулятора и до 30В - при верхнем. Подключив нагрузку пол ампера - смотрим на просадку выходного напряжения. Она должна быть тоже минимальной.

В общем, при всей своей кажущейся простоте, данный блок питания наверное один из лучших по своим параметрам. При необходимости можно добавить в него узел защиты - пару лишних транзисторов.

Много-много лет тому назад такого слова как стабилитрон не существовало вообще. Тем более в бытовой аппаратуре.

Попробуем представить себе громоздкий ламповый приёмник середины двадцатого века. Многие приносили их в жертву собственному любопытству, когда папа с мамой приобретали что-нибудь новое, а «Рекорд» или «Неман» отдавали на растерзание .

Блок питания лампового приёмника был предельно прост: мощный кубик силового трансформатора , который обыкновенно имел всего две вторичных обмотки, диодный мостик или селеновый выпрямитель, два электролитических конденсатора и резистор на два ватта между ними.

Первая обмотка питала накал всех ламп приёмника переменным током и напряжением 6,3V (вольт), а на примитивный выпрямитель приходило порядка 240V для питания анодов ламп. Ни о какой стабилизации напряжения и речи не шло. Исходя из того, что приём радиостанций вёлся на длинных, средних и коротких волнах с очень узкой полосой и ужасным качеством, наличие или отсутствие стабилизации напряжения питания на это качество совершенно не влияло, а приличной автоподстройки частоты на той элементной базе просто быть не могло.

Стабилизаторы в то время применялись только в военных приёмниках и передатчиках, конечно тоже ламповые. Например: СГ1П – стабилизатор газоразрядный, пальчиковый. Так продолжалось до тех пор, пока не появились транзисторы. И тут выяснилось, что схемы, выполненные на транзисторах очень чувствительны к колебаниям питающего напряжения, и обыкновенным простым выпрямителем уже не обойтись. Используя физический принцип, заложенный в газоразрядных приборах, был создан полупроводниковый стабилитрон реже называемый диод Зенера.

Графическое изображение стабилитрона на принципиальных схемах.

Внешний вид стабилитронов. Первый сверху в корпусе для поверхностного монтажа . Второй сверху – в стеклянном корпусе DO-35 и мощностью 0,5 Вт. Третий, – мощностью 1 Вт (DO-41). Естественно, стабилитроны изготавливают в разнообразных корпусах. Иногда в одном корпусе объединяется два элемента.

Принцип работы стабилитрона.

Прежде всего, не следует забывать, что стабилитрон работает только в цепях постоянного тока. Напряжение на него подают в обратной полярности, то есть на анод стабилитрона будет подан минус "-". При таком включении через него протекает обратный ток (I обр ) от выпрямителя. Напряжение с выхода выпрямителя может изменяться, будет изменяться и обратный ток, а напряжение на стабилитроне и на нагрузке останется неизменным, то есть стабильным. На следующем рисунке показана вольт-амперная характеристика стабилитрона.

Стабилитрон работает на обратной ветви ВАХ (Вольт-Амперной Характеристики), как показано на рисунке. К его основным параметрам относятся U ст . (напряжение стабилизации) и I ст . (ток стабилизации). Эти данные указаны в паспорте на конкретный тип стабилитрона. Причём величина максимального и минимального тока учитывается только при расчёте стабилизаторов с прогнозируемым большим изменением напряжения.

Основные параметры стабилитронов.

Для того чтобы подобрать нужный стабилитрон необходимо разбираться в маркировках полупроводниковых приборов. Раньше все типы диодов, включая и стабилитроны, обозначались буквой “Д” и цифрой определяющей, что же это за прибор. Вот пример очень популярного стабилитрона Д814 (А, Б, В, Г). Буква показывала напряжение стабилизации.

Рядом паспортные данные современного стабилитрона (2C147A ), который использовался в стабилизаторах для питания схем на популярных сериях микросхем К155 и К133 выполненных по ТТЛ технологии и имеющих напряжение питания 5V.

Чтобы разбираться в маркировках и основных параметрах современных отечественных полупроводниковых приборов необходимо немного знать условные обозначения. Они выглядят следующим образом: цифра 1 или буква Г – германий, цифра 2 или буква К – кремний, цифра 3 или буква А – арсенид галлия. Это первый знак. Д – диод, Т – транзистор, С – стабилитрон, Л – светодиод. Это второй знак. Третий знак это группа цифр обозначающих сферу применения прибора. Отсюда: ГТ 313 (1Т 313) – высокочастотный германиевый транзистор, 2С147 – кремниевый стабилитрон с номинальным напряжением стабилизации 4,7 вольта, АЛ307 – арсенид-галлиевый светодиод.

Вот схема простого, но надёжного стабилизатора напряжения.

Между коллектором мощного транзистора и корпусом подается напряжение с выпрямителя и равное 12 – 15 вольт. С эмиттера транзистора мы снимаем 9V стабилизированного напряжения, так как в качестве стабилитрона VD1 мы используем надёжный элемент Д814Б (см. таблицу). Резистор R1 – 1кОм, транзистор КТ819 обеспечивающий ток до 10 ампер.

Транзистор необходимо разместить на радиаторе-теплоотводе. Единственный недостаток данной схемы – это невозможность регулировки выходного напряжения. В более сложных схемах подстроечный резистор, конечно, имеется. Во всех лабораторных и домашних радиолюбительских источниках питания есть возможность регулировки выходного напряжения от 0 и до 20 – 25 вольт.

Интегральные стабилизаторы.

Развитие интегральной микроэлектроники и появление многофункциональных схем средней и большой степени интеграции, конечно, коснулось и проблем связанных со стабилизацией напряжения. Отечественная промышленность напряглась и выпустила на рынок радиоэлектронных компонентов серию К142, которую составляли как раз интегральные стабилизаторы. Полное название изделия было КР142ЕН5А, но так как корпус был маленький и название не убиралось целиком, стали писать КРЕН5А или Б, а в разговоре они назывались просто «кренки».

Сама серия была достаточно большая. В зависимости от буквы варьировалось выходное напряжение. Например, КРЕН3 выдавал от 3 до 30 вольт с возможностью регулировки, а КРЕН15 был пятнадцативольтовым двухполярным источником питания.

Подключение интегральных стабилизаторов серии К142 было крайне простым. Два сглаживающих конденсатора и сам стабилизатор. Взгляните на схему.

Если есть необходимость получить другое стабилизированное напряжение, то поступают следующим образом: допустим, мы используем микросхему КРЕН5А на 5V, а нам нужно другое напряжение. Тогда между вторым выводом и корпусом ставится стабилитрон с таким расчётом, чтобы сложив напряжение стабилизации микросхемы, и стабилитрона мы получили бы нужное напряжение. Если мы добавим стабилитрон КС191 на V = 9,1 + 5V микросхемы, то на выходе мы получим 14.1 вольт.

Распиновка

, советы по использованию и техническое описание

Стабилитрон 3.3 В 1N4728A

Стабилитрон 3.3 В 1N4728A

3.Распиновка стабилитрона 3V 1N4728A

нажмите на картинку для увеличения

Штифт Конфигурация :

Контактный №

Имя контакта

Описание

1

Анод

Ток всегда проходит через анод

2

Катод

Ток всегда выходит через катод

Характеристики:
  • Номинальное напряжение стабилитрона (В Z ): 3.3В
  • Рассеиваемая мощность (P Z ): 500 мВт
  • Ток Зенера (I ZT ): 76 мА
  • Пакет: DO-35

Примечание: Полную техническую информацию можно найти в таблице данных 1N4728A в конце этой страницы.

1N4728A Эквивалентные стабилитроны:

Стабилитрон 4,7 В, стабилитрон 5,1 В, стабилитрон 6,8 В, стабилитрон 7,5 В, стабилитрон 15 В

Как выбрать стабилитрон:

Стабилитрон - это еще одна форма диода, но она используется для совершенно иных целей.В основном они используются в схемах защиты или в качестве грубых регуляторов напряжения. Давайте посмотрим, как мы можем выбрать один для вашего приложения.

При выборе стабилитрона необходимо проверить два основных параметра. Один из них - это стабилитрон , а другой - Рассеиваемая мощность . Напряжение стабилитрона - это напряжение, которое появляется на стабилитроне при приложении к нему более высокого напряжения обратного потенциала. В схемах регулятора регулируется именно это напряжение (напряжение стабилитрона), а в схеме защиты именно это напряжение (напряжение стабилитрона) больше, чем защищается цепь.Рассеиваемая мощность определяет количество тока, который может протекать через диод. Чем выше рассеиваемая мощность, тем выше может протекать ток.

Как использовать стабилитрон:

Как уже говорилось, стабилитрон в основном используется в схеме защиты или в грубой схеме регулятора напряжения. В любом случае, очень важно помнить, что стабилитрон всегда должен использоваться вместе с резистором Зенера .

Стабилитрон - это не что иное, как обычный резистор, который используется для ограничения тока.Этот резистор определяет (ограничивает) величину тока, который может протекать через стабилитрон или через нагрузку, подключенную к стабилитрону; это был стабилитрон, защищенный от сильного тока. Если этот резистор не используется, диод выйдет из строя из-за высокого тока.

В приведенной выше схеме формулы для расчета последовательного резистора Зенера Rs показаны ниже

.
Rs = (Vs - Vz) / Из 

Для стабилитрона 1N4728A значение V z равно 3.3V и P z составляет 500 мВт, как указано в технических характеристиках выше, теперь при напряжении питания (Vs) 12 В значение Rs будет

.
Rs = (12-3,3) / Изн.
Iz = Pz / Vz = 500 мВт / 3,3 В = ~ 151 мА
Следовательно, Rs = (12-3,3) / 151 = 0,0576 = 57 Ом.
Rs = 60 Ом (приблизительно) 

Применения диода:
  • Используется в цепях защиты по напряжению
  • Может использоваться как слаботочный регулятор напряжения
  • Защита входного напряжения для микроконтроллеров или других микросхем
  • Цепи стабилизации напряжения

2D-представление (DO-41):

Стабилитрон

делает паршивый стабилизатор

Стабилитрона часто используются для создания опорного напряжения.В учебных пособиях и даже учебных пособиях упоминается создание стабилизатора на основе стабилитрона. Идея состоит в том, что стабилитрон поддерживает известное падение напряжения. Проблема в том, что текущее имеет значение. В этом посте представлен краткий обзор стабилитронов и показано, что произошло, когда я попытался запитать микроконтроллер с помощью «стабилизатора на стабилитронах».

Обзор стабилитронов

Краткий обзор, если вы не знакомы с стабилитронами. Как и обычные диоды, стабилитроны имеют низкое прямое напряжение.Обычно у вас напряжение около 0,7. Однако разные наборы материалов могут иметь разное прямое напряжение.

Также, как и в обычных диодах, существует обратное напряжение пробоя. Если вы посмотрите на здоровенный диод, такой как 1n4001, вы обнаружите, что напряжение пробоя начинается с 50 вольт.

1n4001 Напряжение обратного пробоя

Стабилитроны

уникальны тем, что их обратное напряжение пробоя относительно низкое. Например, у меня есть такие, которые на 3,3, 5,0, 9,1 и 12 вольт. (Интересные цифры, не правда ли?)

Кривая показывает, что выше прямого напряжения и «ниже» обратного напряжения диод проводит.Я заключил ниже в кавычки, потому что это предполагает отрицательный потенциал. Этот комментарий не означает, что вам нужен источник отрицательного напряжения, просто диод имеет обратное смещение. Также известен как обернулся.

Стабилитрон

Как уже упоминалось, идея стабилитрона заключается в том, что на диоде падает стабильное напряжение при обратном смещении. Более того, с такими значениями, как 3.3 и 5.0, о которых я упоминал ранее, это начинает звучать как хороший вариант, не так ли?

BZX79C3V3 от Fairchild (на полу)

Давайте возьмем BZX79C3V3 в качестве примера стабилитрона.Обратите внимание в таблице характеристик, что обратное напряжение составляет 3,3 В при 5,0 мА.

Идея состоит в том, что вы выбираете номинал резистора, возможно, даже прецизионное значение, чтобы создать достаточный ток для обратного смещения стабилитрона на 5,0 мА.

Однако есть проблема с этой базовой схемой. Ток, протекающий через нагрузку, также должен протекать через резистор. В соответствии с законом Ома падение напряжения на резисторе изменяется в зависимости от протекающего тока.

Питание ESP8266 с стабилизатором стабилитрона

Используя приведенную выше схему, я попытался запитать ESP8266 с помощью 5.Питание 0 вольт. Перед построением этой схемы я измерил, что ток, потребляемый ESP8266, составляет 60 мА при питании от источника питания 3,3 В.

При использовании стабилитрона 3,3 В на последовательном резисторе падает 1,7 В. При 60 мА на нагрузке и 5 мА для стабилитрона закон Ома говорит нам, что нам нужен резистор 28 Ом. Ближайшее значение, которое у меня есть, 22 Ом.

Когда я подключил схему, с ESP8266 ничего не произошло. Узел VOUT измерял около 0,9 вольт. Что еще хуже, независимо от того, какое напряжение источника я сделал, узел VOUT оставался на 0.9 вольт.

Догадываясь, я уменьшил сопротивление резистора примерно на 10 Ом.

Когда я измерил мультиметром, то увидел на делителе всего 1,8 вольт. Однако ESP8266 работал. После сброса ESP8266 увидел 2,5 вольта. И в зависимости от того, какой вес был на моей левой или правой ноге, любое промежуточное значение.

Так что, черт возьми, здесь происходит? Что ж, во-первых, спасибо, что продолжаете читать, прежде чем переходить к комментариям, чтобы сказать следующее утверждение.Вы не можете рассматривать микроконтроллер, особенно систему на кристалле (SOC), как постоянную нагрузку.

Когда я нажимаю и удерживаю кнопку RESET, узел Vout подскакивает до хороших чистых 3,4 вольт. В этот момент большинство активных цепей в микросхеме выключено.

Поскольку ESP8266 был нагрузкой с высоким импедансом, почти весь ток в этой цепи протекает через последовательный резистор и ESP8266. Величина тока была ошеломляющей, почти 200 мА. Что ж, ошеломляюще, когда можно было ожидать только около шестидесяти.

Другие проблемы стабилизатора стабилитрона

Все это упражнение было направлено на то, чтобы показать, почему стабилитрон - плохой стабилизатор. Падение напряжения слишком сильно зависит от тока, протекающего через переход. Это означает, что «схема регулятора» зависит от постоянной нагрузки. Любое активное устройство вызовет нестабильность узла VOUT.

Так что же хорошего в этой схеме стабилитрона? Ну это не регулятор. Вместо этого это ссылка.

Например, вы можете использовать аналогичную схему на AREF Arduino.Допустим, вы используете аналоговый датчик, который выдает максимум 3 В. Использование ссылки стабилитрон может дать A / D большее разрешение.

Вы можете использовать стабилитрон в качестве эталона для операционного усилителя. Эта схема не слишком отличается от того, как работают линейные регуляторы.

Урок здесь в том, что если вы хотите использовать схему стабилизатора на стабилитроне, вам необходимо пересмотреть свою конструкцию. В некоторых очень редких или сложных случаях это сработает.

Если вы использовали стабилитрон в качестве регулятора, а не для справки, оставьте комментарий ниже.Я хотел бы услышать, как вы это использовали.

3 W DO-41 Surmetic 30 стабилитроны

% PDF-1.4 % 1 0 obj > эндобдж 5 0 obj / Title (1N5913B - Регуляторы напряжения на стабилитронах DO-41 Surmetic 30 мощностью 3 Вт) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > транслировать application / pdf

  • ON Semiconductor
  • 1N5913B - 3 Вт DO-41 Surmetic 30 стабилитроны
  • Это полная серия стабилитронов мощностью 3 Вт с ограничениями и отличные рабочие характеристики, отражающие превосходные возможности переходов, пассивированных оксидом кремния.
  • 2019-12-18T16: 19: 46-07: 00PScript5.dll Версия 5.2.22019-12-18T16: 20: 50-07: 002019-12-18T16: 20: 50-07: 00 Acrobat Distiller 19.0 (Windows) uuid: 9bf84b58-865d-402b-8ff4-c737d9946b3buuid: 0aa08f6f-a58e-49dc-a0af-a1033c4c1652 Распечатать конечный поток эндобдж 6 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > транслировать HW [s6 ~ ׯ # 1 ątv: ul7u7Ԓn> eHwp

    Что такое стабилитроны? | Диоды и выпрямители

    Что такое стабилитрон?

    Стабилитрон - это особый тип выпрямительного диода, который может выдерживать пробой из-за обратного напряжения пробоя без полного отказа.Здесь мы обсудим концепцию использования диодов для регулирования падения напряжения и то, как стабилитрон работает в режиме обратного смещения для регулирования напряжения в цепи.

    Как диоды регулируют падение напряжения

    Если мы подключим диод и резистор последовательно к источнику постоянного напряжения так, чтобы диод был смещен в прямом направлении, падение напряжения на диоде останется довольно постоянным в широком диапазоне напряжений источника питания, как показано на рисунке (а) ниже.

    Ток через смещенный в прямом направлении PN-переход пропорционален величине e , возведенной к мощности прямого падения напряжения.Поскольку это экспоненциальная функция, ток растет довольно быстро при небольшом увеличении падения напряжения.

    Другой способ рассмотреть это - сказать, что напряжение, падающее на диоде с прямым смещением, мало изменяется при больших изменениях тока диода. В схеме, показанной на рисунке (а) ниже, ток диода ограничен напряжением источника питания, последовательным резистором и падением напряжения на диоде, которое, как мы знаем, не сильно отличается от 0,7 вольт.

    Прямо смещенный Si-образный опорный элемент: (а) одиночный диод, 0.7В, (б) 10-диодов последовательно 7.0В.

    Если бы напряжение источника питания было увеличено, падение напряжения резистора увеличилось бы почти на такую ​​же величину, а напряжение диода упало бы совсем немного. И наоборот, уменьшение напряжения источника питания привело бы к почти одинаковому уменьшению падения напряжения на резисторе с небольшим уменьшением падения напряжения на диодах.

    Короче говоря, мы могли бы резюмировать это поведение, сказав, что диод регулирует падение напряжения примерно на 0.7 вольт.

    Использование регулирования напряжения

    Регулировка напряжения - это полезное свойство диодов. Предположим, мы строим какую-то схему, которая не может выдерживать колебаний напряжения источника питания, но должна питаться от химической батареи, напряжение которой изменяется в течение срока ее службы. Мы могли бы сформировать схему, как показано выше, и подключить схему, требующую постоянного напряжения на диоде, где он будет получать неизменное 0,7 вольт.

    Это, безусловно, сработает, но для большинства практических схем любого типа требуется напряжение источника питания выше 0.7 вольт для нормальной работы. Один из способов увеличить нашу точку стабилизации напряжения - это подключить несколько диодов последовательно, чтобы их отдельные прямые падения напряжения по 0,7 вольта добавлялись, чтобы получить большее общее количество.

    Например, в нашем примере выше [рисунок (b)], если бы у нас было десять последовательно соединенных диодов, регулируемое напряжение было бы в десять раз 0,7 или 7 вольт.

    До тех пор, пока напряжение батареи никогда не опускалось ниже 7 вольт, на десятидиодной «стопке» всегда будет падать около 7 вольт.”

    Как стабилитроны регулируют напряжение

    Если требуются более высокие регулируемые напряжения, мы могли бы либо использовать больше диодов последовательно (на мой взгляд, это неэлегантный вариант), либо попробовать принципиально другой подход.

    Мы знаем, что прямое напряжение на диоде является довольно постоянной величиной в широком диапазоне условий, но также и обратное напряжение пробоя . Напряжение пробоя обычно намного больше прямого напряжения.

    Если бы мы поменяли полярность диода в нашей схеме однодиодного стабилизатора и увеличили напряжение источника питания до точки, где диод «сломался» (то есть он больше не мог выдерживать напряжение обратного смещения, подаваемое на него) диод аналогичным образом регулирует напряжение в этой точке пробоя, не позволяя ему расти дальше.Это показано на рисунке (а) ниже.

    (a) Кремниевый малосигнальный диод с обратным смещением выходит из строя при напряжении около 100 В. (b) Символ стабилитрона.

    К сожалению, когда обычные выпрямительные диоды «выходят из строя», они обычно разрушаются. Однако можно создать диод особого типа, который сможет справиться с пробоем без полного выхода из строя. Этот тип диода называется стабилитроном , и его символ показан на рисунке (b) выше.

    При прямом смещении стабилитроны ведут себя так же, как стандартные выпрямительные диоды: у них прямое падение напряжения, которое соответствует «уравнению диода» и составляет около 0.7 вольт. В режиме обратного смещения они не проводят до тех пор, пока приложенное напряжение не достигнет или не превысит так называемое напряжение Зенера , после чего диод может проводить значительный ток, и при этом будет пытаться ограничить падение напряжения на это к той точке напряжения Зенера.

    Пока мощность, рассеиваемая этим обратным током, не превышает тепловые пределы диода, диод не будет поврежден. По этой причине стабилитроны иногда называют «диодами пробоя».”

    Схема стабилитрона

    Стабилитроны

    производятся с напряжением стабилитрона от нескольких вольт до сотен вольт. Это напряжение стабилитрона незначительно изменяется с температурой, и, как и обычные значения резисторов из углеродного состава, может иметь погрешность от 5 до 10 процентов по сравнению со спецификациями производителя. Однако этой стабильности и точности обычно достаточно для использования стабилитрона в качестве устройства регулятора напряжения в общей цепи питания, показанной на рисунке ниже.

    Схема стабилизатора стабилитрона, напряжение стабилитрона = 12,6 В).

    Принцип работы стабилитрона

    Обратите внимание на ориентацию стабилитрона в приведенной выше схеме: диод смещен в обратном направлении , и это сделано намеренно. Если бы мы сориентировали диод «нормальным» образом, чтобы он был смещен в прямом направлении, он бы упал всего на 0,7 В, как и обычный выпрямительный диод. Если мы хотим использовать свойства обратного пробоя этого диода, мы должны использовать его в режиме обратного смещения.Пока напряжение источника питания остается выше напряжения стабилитрона (в данном примере 12,6 вольт), падение напряжения на стабилитроне будет оставаться на уровне примерно 12,6 вольт.

    Как и любой полупроводниковый прибор, стабилитрон чувствителен к температуре. Чрезмерная температура разрушит стабилитрон, и, поскольку он снижает напряжение и проводит ток, он производит собственное тепло в соответствии с законом Джоуля (P = IE). Следовательно, нужно быть осторожным при проектировании схемы регулятора таким образом, чтобы не превышалась мощность рассеиваемой мощности диода.Интересно, что когда стабилитроны выходят из строя из-за чрезмерного рассеивания мощности, они обычно выходят из строя. закорачивает , а не размыкает. Диод, вышедший из строя таким образом, легко обнаруживается: он падает почти до нуля при смещении в любую сторону, как кусок проволоки.

    Математический анализ цепи стабилитрона

    Давайте рассмотрим схему стабилизации стабилитрона математически, определив все напряжения, токи и рассеиваемую мощность. Взяв ту же форму схемы, показанную ранее, мы выполним вычисления, предполагая, что напряжение Зенера равно 12.6 вольт, напряжение источника питания 45 вольт и номинальное сопротивление последовательного резистора 1000 Ом (мы будем считать, что напряжение стабилитрона составляет , ровно 12,6 вольт, чтобы избежать необходимости квалифицировать все цифры как «приблизительные» на рисунке ( а) ниже

    Если напряжение стабилитрона составляет 12,6 В, а напряжение источника питания составляет 45 В, на резисторе будет падать 32,4 В (45 - 12,6 В = 32,4 В). Падение 32,4 В на 1000 Ом дает 32,4 мА тока в цепи. (Рисунок ниже (b))

    (a) Зенеровский стабилизатор напряжения с резистором 1000 Ом.(б) Расчет падений напряжения и тока.

    Мощность рассчитывается путем умножения тока на напряжение (P = IE), поэтому мы можем довольно легко рассчитать рассеиваемую мощность как для резистора, так и для стабилитрона:

    Подойдет стабилитрон с номинальной мощностью 0,5 Вт, а также резистор с мощностью рассеяния 1,5 или 2 Вт.

    Схема стабилитрона с повышенным сопротивлением

    Если чрезмерное рассеяние мощности является вредным, то почему бы не спроектировать схему с минимальным возможным рассеянием? Почему бы просто не рассчитать резистор на очень высокое значение сопротивления, тем самым резко ограничив ток и сохранив очень низкие показатели рассеиваемой мощности? Возьмем, например, эту схему с резистором 100 кОм вместо резистора 1 кОм.Обратите внимание, что как напряжение источника питания, так и напряжение стабилитрона диода на рисунке ниже идентичны последнему примеру:

    стабилитрон с резистором 100 кОм.

    При только 1/100 тока, который был у нас раньше (324 мкА вместо 32,4 мА), оба значения рассеиваемой мощности должны быть в 100 раз меньше:

    Рекомендации по сопротивлению нагрузки

    Кажется идеальным, не правда ли? Меньшая рассеиваемая мощность означает более низкие рабочие температуры как диода, так и резистора, а также меньшие потери энергии в системе, верно? Более высокое значение сопротивления действительно снижает уровень рассеиваемой мощности в цепи, но, к сожалению, создает другую проблему.Помните, что цель схемы регулятора - обеспечить стабильное напряжение для другой схемы . Другими словами, мы в конечном итоге собираемся запитать что-то с напряжением 12,6 вольт, и это что-то будет иметь собственное потребление тока.

    Меньшее значение сопротивления падающему резистору

    Рассмотрим нашу первую схему стабилизатора, на этот раз с нагрузкой 500 Ом, подключенной параллельно стабилитрону на рисунке ниже.

    Стабилизатор стабилитрона с последовательным резистором 1000 Ом и нагрузкой 500 Ом.

    Если на нагрузке 500 Ом поддерживается 12,6 В, нагрузка потребляет ток 25,2 мА. Чтобы «падающий» резистор 1 кОм упал на 32,4 В (уменьшив напряжение источника питания с 45 В до 12,6 на стабилитроне), он все равно должен проводить ток 32,4 мА. Это оставляет 7,2 мА тока через стабилитрон.

    Рассмотрение резистора с понижением более высокого значения

    Теперь рассмотрим нашу схему «энергосберегающего» регулятора с понижающим резистором 100 кОм, обеспечивающую питание той же нагрузки 500 Ом.Что он должен делать, так это поддерживать 12,6 вольт на нагрузке, как и в последней цепи. Однако, как мы увидим, не может выполнить эту задачу с помощью . (Рисунок ниже)

    Нерегуляторный стабилитрон с последовательным резистором 100 кОм и нагрузкой 500 Ом.>

    При большем значении понижающего резистора на месте будет только около 224 мВ напряжения на нагрузке 500 Ом, что намного меньше ожидаемого значения 12,6 вольт! Почему это? Если бы у нас действительно было 12,6 вольт на нагрузке, она бы потребляла 25.2 мА тока, как и раньше. Этот ток нагрузки должен был бы пройти через последовательный понижающий резистор, как это было раньше, но с новым (намного большим!) Понижающим резистором, падение напряжения на этом резисторе при токе 25,2 мА, проходящем через него, составит 2520 вольт! Поскольку очевидно, что аккумулятор не имеет такого большого напряжения, этого не может произойти.

    Анализ более высокого сопротивления падению без стабилитрона

    Ситуацию легче понять, если мы временно удалим стабилитрон из схемы и проанализируем поведение только двух резисторов на рисунке ниже.

    Нерегулятор со снятым стабилитроном.

    Понижающий резистор 100 кОм и сопротивление нагрузки 500 Ом включены последовательно друг с другом, что дает общее сопротивление цепи 100,5 кОм. При общем напряжении 45 вольт и общем сопротивлении 100,5 кОм закон Ома (I = E / R) говорит нам, что ток будет 447,76 мкА. Рассчитав падение напряжения на обоих резисторах (E = IR), мы получаем 44,776 В и 224 мВ соответственно.

    Если бы мы переустановили стабилитрон в этот момент, он также «увидел бы» 224 мВ, параллельно сопротивлению нагрузки.Это намного ниже напряжения пробоя стабилитрона диода, поэтому он не «пробивается» и не проводит ток. Если уж на то пошло, при таком низком напряжении диод не будет проводить, даже если он будет смещен в прямом направлении! Таким образом, диод перестает регулировать напряжение. Чтобы «активировать» его, необходимо упасть минимум 12,6 вольт.

    Аналитическая методика удаления стабилитрона из схемы и проверки наличия достаточного напряжения, чтобы заставить его проводить, является правильной. Тот факт, что стабилитрон включен в цепь, не гарантирует, что на нем всегда будет падать полное напряжение стабилитрона! Помните, что стабилитроны работают по , ограничивая напряжение до некоторого максимального уровня; они не могут заменить из-за отсутствия напряжения.

    Правило в работе стабилитрона

    Таким образом, любая схема стабилизации на стабилитронах будет работать до тех пор, пока сопротивление нагрузки равно некоторому минимальному значению или превышает его. Если сопротивление нагрузки слишком низкое, он будет потреблять слишком большой ток, слишком большое падение напряжения на последовательном понижающем резисторе, оставляя недостаточное напряжение на стабилитроне, чтобы заставить его проводить. Когда стабилитрон перестает проводить ток, он больше не может регулировать напряжение, и напряжение нагрузки упадет ниже точки регулирования.

    Расчет сопротивления нагрузки для некоторых резисторов падения

    Однако наша схема регулятора с понижающим резистором 100 кОм должна подходить для некоторого значения сопротивления нагрузки. Чтобы найти это приемлемое значение сопротивления нагрузки, мы можем использовать таблицу для расчета сопротивления в последовательной цепи с двумя резисторами (без диода), вставив известные значения общего напряжения и сопротивления падающего резистора и рассчитав ожидаемое напряжение нагрузки 12,6 В. :

    С общим напряжением 45 В и 12.6 вольт на нагрузке, у нас должно быть 32,4 вольт на R , падение :

    При 32,4 В на падающем резисторе и сопротивлении 100 кОм ток через него будет 324 мкА:

    Поскольку цепь является последовательной, ток во всех компонентах в любой момент времени одинаков:

    Расчет сопротивления нагрузки теперь является простым делом закона Ома (R = E / I), что дает нам 38,889 кОм:

    Таким образом, если сопротивление нагрузки равно 38.889 кОм, на нем будет 12,6 вольт, диод или без диода. Любое сопротивление нагрузки менее 38,889 кОм приведет к напряжению нагрузки менее 12,6 В, диод или отсутствие диода. При установленном диоде напряжение нагрузки будет регулироваться максимум до 12,6 В для любого сопротивления нагрузки больше , чем 38,889 кОм.

    При исходном значении падающего резистора 1 кОм наша схема регулятора смогла адекватно регулировать напряжение даже при сопротивлении нагрузки всего 500 Ом.Мы видим компромисс между рассеиваемой мощностью и допустимым сопротивлением нагрузки. Понижающий резистор большего номинала дал нам меньше рассеиваемой мощности за счет повышения допустимого минимального значения сопротивления нагрузки. Если мы хотим регулировать напряжение для низких сопротивлений нагрузки, схема должна быть подготовлена ​​к более высокому рассеиванию мощности.

    Как стабилитрон регулирует напряжение

    Стабилитроны

    регулируют напряжение, действуя как дополнительные нагрузки, потребляя больше или меньше тока, если это необходимо для обеспечения постоянного падения напряжения на нагрузке.Это аналогично регулированию скорости автомобиля путем торможения, а не путем изменения положения дроссельной заслонки: это не только расточительно, но и тормоза должны быть сконструированы так, чтобы справляться со всей мощностью двигателя, когда условия движения этого не требуют.

    Несмотря на эту фундаментальную неэффективность конструкции, схемы стабилизаторов на стабилитронах получили широкое распространение благодаря своей простоте. В приложениях с большой мощностью, где неэффективность недопустима, применяются другие методы регулирования напряжения.Но даже в этом случае небольшие схемы на основе стабилитронов часто используются для обеспечения «эталонного» напряжения для управления более эффективной схемой усилителя, управляющей основной мощностью.

    Напряжение общего стабилитрона

    Стабилитроны

    производятся со стандартными номинальными напряжениями, указанными в таблице ниже. В таблице «Общие напряжения стабилитронов» указаны стандартные напряжения для компонентов мощностью 0,3 Вт и 1,3 Вт. Мощность соответствует размеру кристалла и корпуса и представляет собой мощность, которую диод может рассеять без повреждений.

    Напряжение на обычных стабилитронах

    0.5 Вт
    2,7 В 3,0 В 3,3 В 3,6 В 3,9 В 4,3 В 4,7 В
    5,1 В 5,6 В 6,2 В 6,8 В 7,5 В 8,2 В 9,1 В
    10 В 11 В 12 В 13 В 15 В 16 В 18 В
    20 В 24 В 27 В 30 В
    1.3Вт
    4,7 В 5,1 В 5,6 В 6,2 В 6,8 В 7,5 В 8,2 В
    9,1 В 10 В 11 В 12 В 13 В 15 В 16 В
    18 В 20 В 22 В 24 В 27 В 30 В 33V
    36 В 39V 43V 47V 51V 56V 62V
    68 В 75 В 100 В 200 В

    Ограничитель на стабилитроне: Схема ограничения, которая фиксирует пики формы волны приблизительно при напряжении стабилитрона диодов.В схеме на рисунке ниже два стабилитрона соединены последовательно друг с другом, чтобы симметрично ограничить форму волны почти при напряжении стабилитрона. Резистор ограничивает ток, потребляемый стабилитронами, до безопасного значения.

    * SPICE 03445.eps D1 4 0 диод D2 4 2 диода R1 2 1 1.0k V1 1 0 SIN (0 20 1k). Модель диода d bv = 10 .tran 0,001 м 2 м. Конец 

    Ограничитель стабилитрона:

    Напряжение пробоя стабилитрона для диодов устанавливается равным 10 В параметром модели диода «bv = 10» в списке цепей spice на рисунке выше.Это приводит к срезанию стабилитронов при напряжении около 10 В. Вставные диоды срезают оба пика. Для положительного полупериода верхний стабилитрон смещен в обратном направлении, выходя из строя при напряжении стабилитрона 10 В. Нижний стабилитрон падает примерно на 0,7 В, поскольку он смещен в прямом направлении. Таким образом, более точный уровень отсечения составляет 10 + 0,7 = 10,7 В. Аналогичное отрицательное ограничение полупериода происходит при -10,7 В. (Рисунок ниже) показывает уровень ограничения при чуть более ± 10 В.

    Ограничитель стабилитрона: вход v (1) ограничен по форме волны v (2).

    ОБЗОР:

    • Стабилитроны предназначены для работы в режиме обратного смещения, обеспечивая относительно низкий стабильный пробой, или напряжение Стабилитрон , при котором они начинают проводить значительный обратный ток.
    • Стабилитрон может работать как регулятор напряжения, действуя как дополнительная нагрузка, потребляя больше тока от источника, если напряжение слишком высокое, и меньше, если оно слишком низкое.

    СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

    Стабилитрон

    Стабилитрон | REUK.co.uk

    Стабилитрон - это электронный компонент, который можно использовать для создания очень простой схемы регулятора напряжения . Эта схема позволяет получать фиксированное стабильное напряжение от источника нестабильного напряжения, такого как аккумуляторная батарея системы возобновляемых источников энергии, которая будет колебаться в зависимости от уровня заряда батареи.

    Цепь стабилизатора напряжения на стабилитроне

    На рисунке выше показана очень простая схема регулятора напряжения , для которой требуется всего один стабилитрон (можно приобрести в магазине REUK) и один резистор .Пока входное напряжение на несколько вольт больше желаемого выходного напряжения, напряжение на стабилитроне будет стабильным.

    По мере увеличения входного напряжения ток через стабилитрон увеличивается, но падение напряжения остается постоянным - особенность стабилитронов. Следовательно, поскольку ток в цепи увеличился, падение напряжения на резисторе увеличивается на величину, равную разнице между входным напряжением и напряжением стабилитрона диода.

    * Обратите внимание, что стабилитроны обычно доступны со следующими напряжениями: 2,4, 2,7, 3, 3,3, 3,6, 3,9, 4,3, 4,7, 5,1, 5,6, 6,2, 6,8, 7,5, 8,2, 9,1, 10, 11, 12, 13, 15, 18, 20, 22… и в корпусах мощностью 300, 500, 1,3, 2, 3,25 и 5 Вт.

    Согласование стабилитрона и резистора с ситуацией

    Вот пример ручной работы, который показывает, как выбрать правильный стабилитрон и резистор для известной нагрузки: у нас нестабильное напряжение питания 12 В и требуется стабильный выходной сигнал 8 В для питания устройства 100 мА.12 вольт достаточно выше 8 вольт, чтобы гарантировать, что любые колебания в питании не опустят нас ниже нашего целевого напряжения.

    1. Выберите стабилитрон
    Поскольку нам нужно 8 вольт, мы можем выбрать между стабилитроном 7,5 В или 8,2 В. 8,2 В достаточно близко к нашему целевому напряжению, поэтому мы выбираем стабилитрон с напряжением стабилитрона 8,2 В .

    2. Вычислите максимальный ток в цепи
    Нашему устройству нагрузки требуется ток 100 мА, плюс нам также потребуется не менее 5 мА для стабилитрона, поэтому для безопасности можно установить I max как 110 мА.Если вы добавите 10-20% к току нагрузки, это даст вам безопасное значение для максимального тока в цепи, если входное напряжение вряд ли подскочит намного выше.

    3. Выберите номинальную мощность стабилитрона
    Стабилитроны доступны с различными номинальными мощностями. Если через малый стабилитрон протекает большой ток, он выйдет из строя, поэтому мы рассчитываем мощность, которая должна быть потеряна в диоде, и выбираем диод с номиналом выше этого значения. Здесь номинальная мощность стабилитрона равна напряжению стабилитрона, умноженному на максимальный ток (I max ), вычисленный выше, который равен 8.2 * 0,110 = 0,9 Вт. Поэтому стабилитрон с номинальной мощностью 1,3 Вт должен быть идеальным.
    Мы умножаем полный максимальный ток на напряжение стабилитрона, поскольку, когда ток не течет через нагрузку - например, когда прибор выключен - весь ток будет проходить через стабилитрон.

    4. Выберите резистор
    Падение напряжения на резисторе равно разнице между напряжением источника и напряжением стабилитрона = 12-8 = 4 В, и, следовательно, сопротивление согласно закону Ома является падением напряжения. разделить на I max = 4/0.110 = 36 Ом, поэтому выберите резистор на 39 Ом.
    Если напряжение источника, вероятно, будет намного выше заявленных 12 В, тогда падение напряжения на резисторе будет больше, и поэтому может потребоваться резистор с большим сопротивлением.

    5. Выберите номинальную мощность резистора
    Мощность, рассеиваемая на резисторе, равна падению напряжения на резисторе, умноженному на I max . Следовательно, в этом примере мощность = 4 * 0,110 = 0,440 Вт. Используя 0.Резистор мощностью 5 Вт будет немного лучше, особенно если напряжение источника будет регулярно повышаться, поэтому здесь следует использовать резистор
    мощностью 1 или 2 Вт, несмотря на то, что он стоит несколько дополнительных копеек.

    Ситуация с банком батарей системы возобновляемой энергии

    Если вышеупомянутая ситуация относится к аккумуляторной батарее системы возобновляемой энергии, напряжение источника 12 В может варьироваться от всего лишь 10,6 В до 15,5 Вольт. Поэтому нам нужно проверить, что все по-прежнему работает правильно при более высоком и низком напряжении.

    Если бы напряжение источника выросло до 15,5 В, то на резисторе 39 Ом было бы 15,5–8,2 = 7,3 Вольт: ток 187 мА. Если бы напряжение источника упало до 10,6 В, то на резисторе 39 Ом было бы только 10,6-8,2 = 2,4 В: ток 61 мА. Следовательно, в обоих случаях через стабилитрон проходит достаточно тока, чтобы обеспечить стабильное выходное напряжение.

    При максимальном напряжении у нас будет 1,37 Вт мощности, рассеиваемой резистором, поэтому хорошо, что мы выбрали модель с номинальной мощностью 2 Вт.У нас также будет максимальный потенциал 1,5 Вт, рассеиваемый стабилитроном, поэтому мы также должны изменить его на модель с номиналом 2 Вт, чтобы быть в безопасности.

    Альтернативы стабилизаторам напряжения на стабилитронах

    Если вам требуется определенное фиксированное выходное напряжение - например, 5 В, 12 В, 15 В от заданного входного напряжения, существует широкий выбор микросхем линейных регуляторов. Например, L7805 для + 5V (на фото выше) и L7812 для + 12V являются самыми популярными.Им просто нужны конденсаторы на входе и выходе для сглаживания напряжений, и они очень надежны.

    Если требуется регулируемое выходное напряжение, обычно выбирают LM317 - см. Нашу статью Регулируемый источник питания LM317 для получения подробной информации о конструкциях как слаботочных, так и сильноточных источников питания с LM317.

    Если входное напряжение очень близко к выходному напряжению, L7812 или LM317, например, не могут быть использованы, так как выход этих микросхем всегда, по крайней мере, на пару вольт меньше входного напряжения.В таких ситуациях регулятор с малым падением напряжения LM2940 или регулируемый LM2941 являются лучшим вариантом, поскольку выходное напряжение может быть менее чем на 0,5 В ниже входного напряжения. Они особенно полезны в тех случаях, когда освещение и устройства, чувствительные к напряжению 12 В, должны питаться от батареи «12 В» - особенно если эта батарея должна заряжаться от солнечной панели или генератора переменного тока и т. Д.

    Каков принцип стабилитрона?

    Введение

    Этот видеоурок по электронике дает базовое представление о стабилитронах , которые используются в качестве стабилизаторов напряжения в цепях постоянного тока.

    Каталог


    1.1 Терминология

    Стабилитрон является активным устройством. Он использует состояние обратного пробоя pn-перехода, чтобы обеспечить возможность изменения тока в широком диапазоне и постоянного напряжения, то есть диод имеет эффект регулирования напряжения. Этот диод представляет собой полупроводниковое устройство, которое имеет очень высокое сопротивление до тех пор, пока не будет достигнуто критическое обратное напряжение пробоя. В этой критической точке пробоя обратное сопротивление снижается до небольшого значения, в этой области низкого сопротивления ток увеличивается, а напряжение остается постоянным.Так что стабилитрон используется в основном в качестве регулятора напряжения или опорного напряжения компонента.

    Когда обратное напряжение стабилитрона достигает определенного значения, обратный ток внезапно увеличивается, и стабилитрон входит в область пробоя, но он не повреждает, а работает в нормальном состоянии, которое является самым большим. отличие от обычного диода.

    После перехода в это рабочее состояние, даже если обратный ток изменяется в широком диапазоне, обратное напряжение на стабилитроне может оставаться практически неизменным.С другой стороны, если обратный ток продолжает увеличиваться до определенного значения, стабилитрон полностью выйдет из строя и повредится.

    Следовательно, когда используется стабилитрон, он должен быть подключен последовательно с токоограничивающим резистором . В противном случае его потребляемая мощность превышает указанное значение, что может привести к повреждению устройства.

    1.2 Расчет сопротивления стабилизации напряжения

    Характеристики схемы стабилизатора стабилитрона связаны с динамическим сопротивлением в состоянии пробоя, а также со значением сопротивления резистора регулятора напряжения R.Чем меньше динамическое сопротивление стабилитрона, тем больше регулятор напряжения R и тем лучше характеристики регулирования напряжения.

    Динамическое сопротивление стабилитрона зависит от рабочего тока. Чем больше рабочий ток, тем меньше динамическое сопротивление. Следовательно, чтобы обеспечить хороший эффект регулирования напряжения, рабочий ток должен быть выбран правильно. Рабочий ток больше, чем можно эффективно уменьшить динамическое сопротивление, но не должен превышать максимально допустимый ток (или максимальную рассеиваемую мощность) диода.А рабочий ток и максимально допустимый ток для различных типов диодов можно найти в инструкции.

    Стабильность стабилитрона также зависит от температуры. При изменении температуры изменяется и его стабильное напряжение, которое обычно выражается температурным коэффициентом стабильного напряжения.

    а. Когда входное напряжение является наименьшим, а ток нагрузки максимален, ток, протекающий через стабилитрон, минимален.При этом IZ не должно быть меньше IZmin, тем самым рассчитывается максимальное значение резистора стабилизации напряжения, а фактически выбранное сопротивление стабилизации напряжения должно быть меньше максимального значения, которое составляет

    .

    г. Когда входное напряжение наибольшее, а ток нагрузки наименьший, ток, протекающий через стабилитрон, является наибольшим. В это время IZ не должно превышать IZmax , тем самым вычисляя минимальное значение сопротивления стабилизации напряжения.что составляет

    (R мин. макс. )

    1,3 Символ стабилитрона

    1,4 Вольт-амперная характеристика

    Рисунок 1. Вольт-амперная характеристика

    Вольт-амперные характеристики стабилитрона аналогичны характеристикам обычного диода, за исключением того, что

    (1) крутая обратная кривая пробоя

    (2) работает при обратном пробое

    Обычно используемые значения регулирования напряжения: 3.3 В, 3,6 В, 3,9 В, 4,7 В, 5,1 В, 5,6 В, 6,2 В, 15 В, 27 В, 30 В, 75 В

    1,5 Типовая схема регулирования напряжения

    Рисунок 2. Типовая схема регулирования

    1.6 Влияние положительной и отрицательной серии

    1. В схеме усилителя мощности затвор G и источник S силовой лампы всегда последовательно соединены с стабилитроном, который защищает GS путем ограничения напряжение и предотвращает пробой изоляционного слоя между GS из-за слишком высокого напряжения.

    2. Когда два диода соединены последовательно в обратном порядке, цепь, соединенная параллельно, может обеспечить защиту от перенапряжения. Когда в цепи повышенное напряжение, сначала пробивается диод, что приводит к короткому замыканию.

    Основная функция стабилитрона - стабилизация напряжения. Необходимо следить за тем, чтобы ток через резистор ограничения последовательного тока не превышал установленный предел. Если нет токоограничивающего резистора, он может обеспечить только единственную защиту от перенапряжения, и легко вызвать постоянный отказ в лавинном пробое, что приведет к короткому замыканию.Как правило, источник питания процессора можно подключить параллельно с стабилитроном, напряжение которого на 20% выше, чем его рабочее напряжение. Когда источник питания вызывает слишком высокое напряжение, стабилитрон имеет обратную проводимость, чтобы защитить ЦП от сгорания. Для нормальной работы достаточно только проверить блок питания и заменить стабилитрон.

    Из вышеизложенного видно, что стабилитрон находится в пробое обратного тока, в пределах определенного диапазона тока (или в пределах определенного диапазона потерь мощности), напряжение на клеммах почти постоянно, что свидетельствует о характеристиках регулирования напряжения.Это предложение имеет два значения:

    1) Диод стабилизации напряжения должен быть обратно включен в цепь.

    2) Стабилитрон должен работать в определенном диапазоне (до стабильного текущего состояния) для стабилизации.

    Ⅱ Принцип регулирования напряжения

    Чтобы понять, как работает стабилитрон, достаточно взглянуть на его обратные характеристики , . Основная характеристика всех кристаллических диодов - однонаправленная проводимость.То есть добавление прямого напряжения включается, а обратное напряжение блокируется. Кроме того, добавляемое обратное напряжение не превышает обратного выдерживаемого напряжения диода, иначе стабилитрон сгорит. Но это еще не окончательный результат. Тест показал, что до тех пор, пока значение обратного тока ограничено (например, резистор установлен последовательно между диодом и источником питания), он не сгорит, хотя и сломан. Более того, было обнаружено, что после обратного пробоя диода ток резко уменьшился, а напряжение упало незначительно.Напряжение резко падало при уменьшении силы тока до определенного значения. Именно по этому принципу используется стабилитрон. И наиболее важным моментом при использовании стабилитрона является расчет его текущего значения.

    Стабилитрон отличается тем, что после пробоя напряжение на нем остается практически неизменным. Таким образом, когда регулятор напряжения подключен к цепи, если напряжение в каждой точке схемы колеблется из-за колебаний напряжения источника питания или по другим причинам, напряжение на нагрузке останется практически неизменным.

    Ⅲ Прикладная схема стабилитрона

    3.1 Характеристики стабилитрона

    Обычно нормальный диод с прямым проводом и обратным отсечением. Когда обратное напряжение, приложенное к диоду, превышает возможности диода, диод выходит из строя. Однако есть диод, прямая характеристика которого такая же, как у обычного диода, но обратная характеристика особенная: когда обратное напряжение прикладывается до определенной степени, хотя диод демонстрирует состояние пробоя, пропускается большой ток. , но он не поврежден, и это явление очень воспроизводимо.Напротив, пока диод находится в состоянии пробоя, хотя электричество, протекающее через трубку, сильно меняется, напряжение на диоде изменяется очень мало, чтобы стабилизировать напряжение. Это стабилитрон.

    Типы стабилитронов: 2CW, 2DW и т. Д. Символ цепи показан ниже.

    Характеристики стабилизации напряжения стабилитрона могут быть четко выражены кривой вольт-амперной характеристики, показанной на рисунке ниже.

    Рисунок 3. Вольт-амперная характеристика

    Стабилитрон работает, используя характеристику регулирования напряжения обратного пробоя. Поэтому стабилитрон включен в цепь наоборот. Напряжение обратного пробоя стабилитрона называется стабильным напряжением, и стабильное напряжение разных типов стабилитронов также отличается. Значение стабилизации напряжения определенного типа стабилитрона фиксируется в определенном диапазоне.Например, значение регулирования 2CW11 составляет от 3,2 до 4,5 вольт, где один диод может иметь регулирование напряжения 3,5 В, а другой - 4,2 В.

    В практических приложениях , если стабилитрон не выбран для соответствия требуемому требованию регулирования напряжения, можно выбрать стабилитрон с более низким напряжением регулирования. А затем один или несколько кремниевых диодов в качестве «подушек» могут быть подключены последовательно, чтобы повысить стабильность напряжения до требуемого значения. Это достигается за счет использования кремниевого диода с прямым падением напряжения 0.От 6 В до 0,7 В. Следовательно, диод должен быть подключен в прямом направлении цепи, что отличается от стабилитрона.

    Стабилизация напряжения стабилитрона может быть выражена его динамическим сопротивлением r:

    Рисунок 4. Простая схема регулирования

    Очевидно, что для того же изменения тока ΔI, чем меньше изменение напряжения ΔU на стабилитроне, тем меньше динамическое сопротивление и тем лучше рабочие характеристики стабилитрона.

    Рисунок 5. Цепь регулирования

    3.2 Колебания напряжения сети и колебания нагрузки

    Для любой схемы регулирования характеристики регулирования напряжения следует исследовать с двух сторон:

    а. колебания напряжения сети

    г. изменение нагрузки

    Стабилитрон

    Когда напряжение сети увеличивается, входное напряжение Ui схемы регулирования напряжения увеличивается, а выходное напряжение Uo также увеличивается пропорционально.Поскольку Uo = Uz, согласно вольт-амперной характеристике стабилитрона, увеличение Uz приведет к резкому увеличению Idz, как и Ir, Ur резко возрастет с Ir одновременно, и увеличение Ur обязательно будет уменьшить выходное напряжение Uo. Следовательно, пока параметры выбраны правильно, приращение напряжения на R может быть приблизительно равно приращению Ui, так что Uo по существу не изменяется. Краткое описание выглядит следующим образом:

    Когда напряжение сети падает, изменение каждого значения противоположно описанному выше процессу.

    Видно, что при изменении напряжения сети схема регулирования напряжения компенсирует изменение Ui изменением напряжения на токоограничивающем резисторе R, то есть ΔUr ≈ ΔUi, так что Uo не изменяется.

    Когда сопротивление нагрузки RL уменьшается, то есть ток нагрузки IL увеличивается, Ir увеличивается, Ur также увеличивается, Uo неизбежно уменьшается, а Uz уменьшается. Согласно вольтамперным характеристикам стабилитрона падение Uz вызывает резкое уменьшение Idz.В результате резко уменьшается Ir. Если параметры выбраны правильно, ΔIdz≈-ΔIL можно сделать так, чтобы Ir по существу не изменился, так что Uo по существу не изменится. Краткое описание выглядит следующим образом:

    Очевидно, что пока ΔIz ≈ - ΔIL сделано в цепи, Ir можно сделать практически неизменным, тем самым гарантируя, что Uo практически не изменится.

    Таким образом, в цепи стабилизации напряжения, состоящей из стабилитрона, функция стабилизации тока стабилитрона используется для компенсации изменения напряжения или тока токоограничивающего резистора R для достижения цели стабилизации напряжения.Токоограничивающий резистор R не только ограничивает ток в стабилитроне до нормального режима работы, но также взаимодействует с стабилитроном для достижения цели регулирования напряжения.

    3.3 Основные параметры

    После понимания принципа регулирования напряжения стабилитрона, вы должны понять его основные параметры:

    Vz - ровное напряжение: это стабильное значение напряжения, генерируемое двумя концами стабилитрона при прохождении номинального тока.Это значение незначительно меняется в зависимости от рабочего тока и температуры. Из-за различий в производственном процессе значения стабилизации напряжения одного и того же типа стабилитронов не совсем одинаковы.

    Iz - постоянный ток: это значение тока, проходящего через диод, когда стабилитрон генерирует стабильное напряжение. Ниже этого значения, хотя стабилитрон может регулировать напряжение, эффект регулирования напряжения будет хуже; выше этого значения, пока не превышаются номинальные потери мощности, это разрешено, и характеристики регулирования напряжения будут лучше, но потребляется больше мощности.

    Rz - динамическое сопротивление: это отношение изменения напряжения на диоде к изменению тока, и это соотношение зависит от рабочего тока. Как правило, чем больше ток, тем меньше динамическое сопротивление. Например, когда рабочий ток регулятора 2CW7C составляет 5 мА, Rz составляет 18 Ом; при рабочем токе 10 мА Rz составляет 8 Ом; когда он равен 20 мА, Rz равен 2 Ом, рабочий ток превышает 20 мА.

    Pz - номинальная мощность: определяется допустимым превышением температуры микросхемы, и ее значение является произведением стабильного напряжения Vz и максимально допустимого тока Izm.

    Ctv - температурный коэффициент напряжения: это параметр, показывающий, что стабильное значение напряжения зависит от температуры.

    IR - обратный ток утечки. Он относится к току утечки, создаваемому стабилитроном при заданном обратном напряжении.

    S ilicon Zener D iode

    На следующем рисунке представлена ​​простая схема стабилизации напряжения, состоящая из кремниевого стабилитрона: кремниевый стабилизатор напряжения DW и нагрузка Rfz включены параллельно, а R1 - токоограничивающий резистор.

    Рис. 6. Схема кремниевого стабилизирующего диода (a)

    Схема кремниевого стабилитрона регулируется обратной пробойной характеристикой стабилитрона. Из-за крутой обратной характеристической кривой большое изменение тока вызовет только небольшое изменение напряжения.

    Рис. 7. Схема кремниевого стабилизирующего диода (b)

    Как регулируется эта схема? Если напряжение сети повышается, выходное напряжение Usr схемы выпрямителя также повышается, вызывая повышение напряжения нагрузки Usc .Поскольку стабилитрон DW подключен параллельно нагрузке Rfz , до тех пор, пока корень имеет небольшое увеличение, ток, протекающий через стабилитрон, резко увеличивается, так что I1 также увеличивается, и падение напряжения на токоограничивающий резистор R1 увеличивается, тем самым компенсируя повышение Usr. сохраняет напряжение нагрузки Usc по существу неизменным. И наоборот, если напряжение в сети падает, вызывая падение Usr , то же самое происходит и с Usc , ток в стабилитроне резко уменьшается, вызывая уменьшение I1 и падение напряжения на R1 , тем самым смещая падение usr и поддержание нагрузки.Напряжение Usc практически не изменилось.

    Если Usr, постоянно и ток нагрузки увеличивается, падение напряжения на R1 увеличивается, вызывая падение напряжения нагрузки Usc . Как только Usc немного падает, ток в стабилитроне быстро уменьшается, уменьшая падение напряжения на R1 и сохраняя падение напряжения на R1 по существу постоянным, что стабилизирует напряжение нагрузки Usc .

    Таким образом, стабилитрон действует как автоматическая регулировка тока. Чем меньше динамическое сопротивление стабилитрона, тем больше токоограничивающее сопротивление и лучше стабильность выходного напряжения.

    Пример анализа

    При использовании стабилитронов они не могут ограничить потенциал до идеального значения, исходя из ваших фактических требований. Например, такая цифра:

    Рисунок 8.Схема регулирования

    После того, как внешний интерфейс получает сигнал, он усиливается операционным усилителем и затем вводится в АЦП микроконтроллера, и видна только выходная цепь:

    Рисунок 9. Схема цепи регулирования (часть)

    Конденсатор C17, является конденсатором выборки и хранения, а резистор R31 и стабилитрон D9 образуют схему регулирования напряжения. Если выходное напряжение больше 3.3 В, стабилитрон будет ограничивать его до 3,3 В. Однако это не так, у такого диода есть своя характеристическая кривая. Обратитесь к регулятору BZT52C3V3 на Kynix Semiconductor для замены регулятора 1N4728 в цепи на BZT52C3V3 :

    Рисунок 10. Характеристики пробоя стабилитрона (а)

    Рисунок 11. Характеристики пробоя стабилитрона (б)

    Глядя на кривую C3V3 , можно увидеть, что когда ток стабилитрона равен 0, его напряжение составляет около 1.8 В, что означает, что когда сопротивление токоограничивающего резистора R31 в цепи бесконечно, ток, протекающий через стабилитрон, почти равен нулю, а выходное напряжение составляет около 1,8 В. Когда сопротивление резистора R31 невелико, ток, протекающий через диод, очень велик независимо от внутреннего сопротивления переднего выхода, а выходное напряжение может достигать от 3,5 В до 4,0 В. Очевидно, что в обоих случаях стабилитрон диоды не очень хорошо выполняют свои обязанности.

    Когда входное напряжение меньше 3.3 В, выход и вход стабилитрона остаются прежними. Когда входное напряжение внешнего интерфейса больше 3,3 В, стабилитрон выдает 3,3 В. Но на самом деле такого стабилитрона нет.

    Предположим, что входное напряжение на приведенной выше принципиальной схеме равно Uo, напряжение стабилитрона равно Ui, сопротивление R31 равно R, а ток через диод равен i, можно получить формулу:

    i = (Uo - Ui) / рэнд

    Измените формулу на:

    i = (-1 / R) * Ui + Uo / R

    Это уравнение нанесено на характеристическую кривую стабилитрона:

    Рисунок 12.Характеристики пробоя стабилитрона (в)

    Перехватчик уравнения равен Uo / R , что представляет собой ток при коротком замыкании регулятора напряжения. Пересечение уравнения и оси X составляет Ui = Uo . Фокус этой линии и кривой C3V3 является рабочей точкой стабилитрона. Но это уравнение не было определено, потому что значения Uo и R не фиксированы. Мы знаем, что с входным напряжением внешнего интерфейса работает операционный усилитель. Рабочее напряжение операционного усилителя составляет 5 В, поэтому выходное напряжение операционного усилителя не превышает 5 В, поэтому мы предполагаем, что диапазон Uo находится в пределах от 0 до 5 В.

    Поскольку опорное напряжение AD части системы микроконтроллера 3.3V. Если вы надеетесь, что выходное напряжение стабилитрона не превышает 3,3 В, необходимо сохранить пересечение приведенного выше уравнения и характеристической кривой не более 3,3 В, предполагая, что напряжение в точке пересечения составляет 3,3 В. В настоящее время ток через стабилитрон составляет 5 мА, когда наше уравнение просто проходит через эту точку:

    Рисунок 13. Характеристики пробоя стабилитрона (г)

    Выходное напряжение стабилитрона равно 3.3V, и мы называем эту точку точкой отсчета. Если пересечение уравнения и кривой находится ниже контрольной точки, выходное напряжение стабилитрона меньше 3,3 В. Если пересечение уравнения и кривой находится выше контрольной точки, выходное напряжение стабилитрона больше 3,3 В, что повлияет на микроконтроллер и даже сгорит.

    Рисунок 14. Характеристики пробоя стабилитрона (д)

    Выходное напряжение выше 3.3V ненормально. В нормальном состоянии напряжение, передаваемое операционным усилителем, меньше или равно 3,3 В, и нам нужно, чтобы выходное напряжение Uo операционного усилителя и выходное напряжение стабилитрона были меньше 3,3 В, то есть Uo = Ui. Когда входное напряжение операционного усилителя меньше или равно 3,3 В, пересечение уравнения и оси X составляет Ui≤3,3 В. В это время пересечение уравнения и кривой всегда меньше контрольной точки, потому что уравнение не может быть вертикальным.Ui на перекрестке меньше 3,3 В, что означает, что выход нашего операционного усилителя составляет 3,3 В, а выходное напряжение стабилитрона меньше 3,3 В. Это вызывает искажение сигнала, то есть входной и выходной сигнал несовместимы. Это абсолютно недопустимо в системе, потому что различное напряжение указывает на изменение соответствующего измеренного значения.

    Итак, что нам делать, если возникла эта проблема? Мы только что обнаружили, что пересечение характеристической кривой и оси X не соответствует Ui = 0 , а Ui = 1.8В . В это время, когда напряжение, передаваемое нашим операционным усилителем, меньше 1,8 В, значения Uo и Ui одинаковы. Другими словами, искажения сигнала не происходит:

    Рисунок 15. Характеристики пробоя стабилитрона (f)

    Видно, что пересечение уравнения и кривой всегда находится на оси X, что составляет Ui = Uo . Но диапазон уменьшен, от 0 до 3,3В до 1,8В, снижена точность обнаружения АЦ, для устойчивости системы нужен стабилитрон.Конечно, если вы выберете стабилитрон с лучшей характеристической кривой (более дорогой). В это время пересечение характеристической кривой стабилитрона и оси X может составлять 2,0 В или более.

    Мы можем наблюдать характеристическую кривую, чтобы увидеть характеристическую кривую C3V9 лампы Зенера на 3,9 В. Ui на пересечении с осью X составляет около 3 В. Когда ток стабилитрона составляет около 1 мА, Ui составляет около 3,3 В, для регулирования напряжения можно использовать стабилизатор напряжения 3,9 В.Уравнение выглядит следующим образом:

    Рисунок 16. Характеристики пробоя стабилитрона (г)

    При нормальных условиях , выходное напряжение операционного усилителя находится в диапазоне 3,3 В, а пересечение уравнения и кривой находится на оси X, как показано на красной линии ниже. Когда значение превышает 3,3 В, чтобы гарантировать, что пересечение уравнения и кривой находится ниже контрольной точки, нам необходимо уменьшить наклон уравнения так, чтобы пересечение уравнения и кривой удовлетворяло Ui ≤ 3.3V, а наклон уравнения равен (-1 / R). Чтобы уменьшить наклон, нужно увеличить значение R, то есть мы можем использовать трубку регулятора 3,9 В для увеличения сопротивления R31. Примерно мы можем видеть, что когда Ui = 3,3 В, i составляет около 1 мА, мы вносим эту точку в уравнение:

    1 мА = -3,3 / R + Uo / R

    Когда Uo принимает максимальное значение 5 В, рассчитывается R = 1700 Ом. То есть, когда R больше или равно 1700 Ом, а Uo меньше или равно 5 В, пересечение уравнения и кривой всегда меньше контрольной точки.В то же время наш неискаженный диапазон напряжения составляет от 0 до 3 В, что намного больше, чем от 0 до 1,8 В при использовании стабилитрона на 3,3 В.

    Внимание к применению

    1. Обратите внимание на разницу между обычным диодом и стабилитроном. Многие обычные диоды, особенно стеклянные трубки, имеют схожий цвет или форму по сравнению с диодами Зенера. Если вы не будете их различать внимательно, вы воспользуетесь ими неправильно.Разница заключается в следующем: судя по форме, многие стабилитроны имеют цилиндрическую форму, короткие и толстые, а общий диод - тонкий; Глядя на знак, внешняя поверхность стабилитрона отмечена значением регулятора напряжения, например, 5V6, что указывает на то, что значение регулирования напряжения составляет 5,6 В. Используйте мультиметр для измерения напряжения в соответствии с однонаправленной проводимостью, используя блок X1K для определения положительной и отрицательной полярности проверяемого диода, затем с помощью блока X10K, черную ручку для подключения к отрицательному полюсу диода и красная ручка подключена к положительному полюсу диода.Если значение обратного сопротивления велико, можно использовать обычный диод. Если значение обратного сопротивления становится небольшим, это стабилитрон.

    2. Обратите внимание на разницу между прямой и обратной проводимостью стабилитронов. Когда стабилитрон используется в прямой проводимости, он в основном такой же, как и нормальный диод, и напряжение на обоих концах после прямой проводимости в основном постоянное, около 0,7 В. Теоретически стабилитрон также можно использовать в прямом направлении, но его значение регулирования напряжения будет ниже 1 В, а характеристики регулирования напряжения будут плохими.Как правило, характеристика прямой проводимости стабилитрона используется не только для стабилизации, но и с характеристиками обратного пробоя для регулирования. Значение напряжения обратного пробоя является значением регулирования. Иногда два стабилитрона используются последовательно, один использует свою прямую характеристику, а другой использует обратную характеристику для регулирования и температурной компенсации, чтобы улучшить регулирование напряжения.

    3. Обратите внимание на эффект токоограничивающего резистора и влияние сопротивления.В схеме стабилизатора напряжения на стабилитроне резистор R обычно включен последовательно. Этот резистор действует как ограничитель тока в цепи и улучшает эффект регулирования напряжения. Если резистор не применяется, когда R = 0, стабилитрон легко выгорит, что приведет к очень плохому эффекту регулирования напряжения. Чем больше сопротивление токоограничивающего резистора, тем лучше характеристики регулирования напряжения схемы, но разница входного и выходного напряжения будет слишком большой, а потребляемая мощность будет больше.

    4. Обратите внимание на разницу в напряжении и между входом и выходом. При нормальном использовании выходное напряжение схемы стабилизатора напряжения на стабилитроне равно значению стабилизации напряжения на обоих концах после обратного пробоя. Если значение напряжения, входящее в схему регулятора напряжения, меньше, чем напряжение регулятора напряжения, схема потеряет регулирование напряжения, только когда оно больше номинального значения, будет действовать эффект регулирования напряжения, и чем больше разница напряжений , тем больше должно быть сопротивление токоограничивающего резистора, иначе трубка регулятора напряжения будет повреждена.

    5. Стабилитроны можно использовать в серии . После последовательного соединения нескольких серий регуляторов напряжения можно получить множество различных значений регулирования напряжения, так что последовательное соединение является более распространенным. В следующем примере показано, как получить значение стабилизации напряжения после того, как они используются последовательно. Если значение стабилизации напряжения стабилитрона составляет 5,6 В, другое значение стабилизации напряжения составляет 3,6 В, а напряжение стабилитрона напряжения равно 0.7 В, после последовательного подключения есть четыре различных значения регулирования напряжения.

    6. Стабилитроны обычно не используются параллельно . После того, как несколько стабилитронов подключены параллельно, значение регулирования будет определяться наименьшим из них (включая значение напряжения после прямой проводимости). В качестве примера возьмем два регулятора напряжения, чтобы проиллюстрировать метод расчета значения регулирования напряжения. После двух параллельных подключений есть четыре случая, а значение регулирования напряжения равно только двум.Стабилитроны не используются параллельно, если не указано иное.

    Часто задаваемые вопросы о принципе работы стабилитрона

    1. Для чего нужен стабилитрон? Стабилитроны
    используются для регулирования напряжения, в качестве опорных элементов, ограничителей перенапряжения, а также в коммутационных устройствах и схемах ограничителей. Напряжение нагрузки равно напряжению пробоя VZ диода. Последовательный резистор ограничивает ток через диод и снижает избыточное напряжение, когда диод проводит.

    2. Каковы характеристики стабилитрона? Стабилитроны
    более легированы, чем обычные диоды. У них очень тонкая область истощения. Когда мы прикладываем напряжение больше, чем напряжение пробоя стабилитрона (может варьироваться от 1,2 до 200 вольт), область обеднения исчезает, и через переход начинает течь большой ток.

    3. Почему стабилитрон имеет обратное смещение?
    При параллельном подключении к источнику переменного напряжения с обратным смещением стабилитрон становится проводящим, когда напряжение достигает обратного напряжения пробоя диода.С этого момента низкий импеданс диода поддерживает напряжение на диоде на этом значении.

    4. Что такое эффект Зенера и эффект лавины?
    Зенера и лавинный эффект могут возникать одновременно или независимо друг от друга. Как правило, пробои диодного перехода при напряжении ниже 5 вольт вызваны эффектом стабилитрона, а пробои при напряжении более 5 вольт вызваны лавинным эффектом.

    5. Что такое лавинный пробой и пробой Зенера?
    Пробой, который происходит из-за столкновения электронов внутри PN-перехода, называется лавинным пробоем, тогда как пробой Зенера происходит, когда сильное электрическое поле прикладывается к PN-переходу.... Потому что механизм пробоя стабилитрона происходит в сильно легированной области.

    6. Что произойдет, если стабилитрон смещен в прямом направлении?
    Стабилитрон похож на сигнальный диод общего назначения. При смещении в прямом направлении он ведет себя так же, как обычный сигнальный диод, но когда на него подается обратное напряжение, напряжение остается постоянным для широкого диапазона токов. ... Обратное напряжение может увеличиваться до тех пор, пока не достигнет напряжения пробоя диода.

    7.Как рассчитать ток стабилитрона?
    3SMAJ5927B - стабилитрон на 12 В в корпусе 3 Вт. Это ток колена, ток пробоя или минимальный ток 0,25 мА. Максимальный ток рассчитывается путем деления номинальной мощности на напряжение стабилитрона: I = P / V = ​​3 Вт / 12 В = 0,25 А.

    8. Обратим ли пробой стабилитрона?
    Лавинный пробой необратим, а пробой Зенера обратим. Лавинный пробой происходит из-за столкновения ускоренных носителей заряда с соседними атомами и из-за размножения носителей.

    9. Можно ли использовать стабилитрон в качестве выпрямителя?
    Стабилитрон состоит из p-n-перехода, но сильно легирован по сравнению с обычным диодом. В результате он может выйти из строя, не повредившись. И только благодаря этому свойству стабилитрон используется как регулятор напряжения в электронных схемах. Фактически, стабилитроны никогда не используются для выпрямления.

    10. Что такое идеальный стабилитрон?
    В идеальном диоде ток вообще не проходит, когда напряжение меньше нуля: диод полностью предотвращает обратный ток.Для небольшого положительного напряжения («прямое смещение» или иногда «прямое напряжение») может протекать крошечный ток, а очень большой ток будет течь выше заданного порога.

    Вам также может понравиться

    Лавинный фотодиод

    Физические карты и символы диодов

    Учебное пособие по основам работы со светодиодами

    Функция и принцип действия диода

    Принцип работы стабилитрона и определение положительного и отрицательного полюсов

    diode% 20zener% 203v техническое описание и примечания по применению

    .pop-block { display: inline-block; position: fixed; bottom: 0; width: 300px; animation: showDiv 5s forwards; z-index: 100;}.close-block { background: url(/close.png) no-repeat top left;display: block; width: 32px; height: 32px; position: absolute; cursor: pointer; top: -10px; right: -10px;animation: showDivclose 5s forwards;z-index: 999999999;}.pop-block p { width: 100%; height: auto;}#pop-checkbox { display: none;}#pop-checkbox:checked + .pop-block { display: none;}@keyframes showDiv { 0%, 99% { height: 0px; }}@keyframes showDivclose { 0%, 99% { height: 0px; } 100% { height: 32px; }}
    (function(w, d, n, s, t) { w[n] = w[n] || []; w[n].push(function() { Ya.Context.AdvManager.render({ blockId: 'R-A-506966-1', renderTo: 'yandex_rtb_R-A-506966-1', async: true }); }); t = d.getElementsByTagName('script')[0]; s = d.createElement('script'); s.type = 'text/javascript'; s.src = '//an.yandex.ru/system/context.js'; s.async = true; t.parentNode.insertBefore(s, t); })(this, this.document, 'yandexContextAsyncCallbacks');
    '";

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    fgt313

    Аннотация: транзистор fgt313 SLA4052 RG-2A Diode SLA5222 fgt412 RBV-3006 FMN-1106S SLA5096 диод ry2a
    Текст: Текст файла отсутствует


    Оригинал
    PDF 2SA1186 2SC4024 2SA1215 2SC4131 2SA1216 2SC4138 100 В переменного тока 2SA1294 2SC4140 fgt313 транзистор fgt313 SLA4052 Диод РГ-2А SLA5222 fgt412 РБВ-3006 FMN-1106S SLA5096 диод ry2a
    перекрестная ссылка на диод

    Аннотация: перекрестная ссылка диода Шоттки MV3110 AH513 AH512 AH761 Диод Ганна Ah470 импатт-диод DMK-6606
    Текст: Текст файла отсутствует


    Сканирование OCR
    PDF MA40401 MA40402 MA40404 MA40405 MA40406 MA40408 перекрестная ссылка диода перекрестная ссылка на диод Шоттки MV3110 AH513 AH512 AH761 Диод Ганна Ач470 импат-диод DMK-6606
    2002 - SE012

    Аннотация: sta474a SE140N диод SE115N 2SC5487 SE090 sanken SE140N STA474 UX-F5B
    Текст: Текст файла отсутствует


    Оригинал
    PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 SE012 sta474a SE140N диод SE115N 2SC5487 SE090 Санкен SE140N STA474 UX-F5B
    Антенна GPS AT65

    Резюме: MA4EX580L1-1225T MA4ST1081CK-287 ELDC-17LITR MA4ST1081 MA4P789ST-287T etc1-1-13tr MAALSS0042 MAAVSS0007 MADRCC0013
    Текст: Текст файла отсутствует


    Оригинал
    PDF AM50-0002 AM50-0003 AM50-0004 AM50-0006 AT10-0009 AT10-0017 AT10-0019 AT-108 АТ-110-2 AT-113 Антенна GPS AT65 MA4EX580L1-1225T MA4ST1081CK-287 ELDC-17LITR MA4ST1081 MA4P789ST-287T etc1-1-13tr MAALSS0042 MAAVSS0007 MADRCC0013
    диод

    Аннотация: диод стабилитрон 1N4148 "высокочастотный диод" стабилитрон A 36 кодовый диод 1n4148 стабилитрон Шоттки диод стабилитрон частотный высокочастотный диод 8889
    Текст: Текст файла отсутствует


    Сканирование OCR
    PDF 1N4148 1N4148W 1N4150 1N4150W 1N914 1N4151 1N4151W 1N4448 1N4448W 1N4731 диод стабилитрон диодный 1Н4148 "высокочастотный диод" стабилитрон A 36 коде диод 1n4148 стабилитрон Диод Шоттки Частота стабилитрона высокочастотный диод 8889
    KIA78 * pI

    Аннотация: транзистор КИА78 * п ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П хб9д0н90н КИД65004АФ МОП-транзистор хб * 2Д0Н60П KIA7812API
    Текст: Текст файла отсутствует


    Оригинал
    PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E KIA78 * pI транзистор KIA78 * р ТРАНЗИСТОР 2Н3904 хб * 9Д5Н20П khb9d0n90n KID65004AF Транзистор MOSFET хб * 2Д0Н60П KIA7812API
    CTX12S

    Аннотация: SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N ​​2SC5586 2SK1343 CTPG2F
    Текст: Текст файла недоступен


    Оригинал
    PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 CTX12S SLA4038 fn651 SLA4037 sla1004 CTB-34D SAP17N 2SC5586 2SK1343 CTPG2F
    2SC5586

    Реферат: транзистор 2SC5586 диод RU 3AM 2SA2003 СВЧ диод 2SC5487 однофазный мостовой выпрямитель IC с выходом 1A RG-2A Diode Dual MOSFET 606 2sc5287
    Текст: Текст файла отсутствует


    Оригинал
    PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 2SC5586 транзистор 2SC5586 диод РУ 3АМ 2SA2003 диод СВЧ 2SC5487 однофазный мостовой выпрямитель IC с выходом 1A Диод РГ-2А Двойной полевой МОП-транзистор 606 2sc5287
    2001 - диод РУ 3АМ

    Аннотация: диод RU 4B RG-2A Диод MN638S диод RU 4AM FMM-32 SPF0001 красный зеленый зеленый стабилитрон sta464c Diode RJ 4B
    Текст: Текст файла отсутствует


    Оригинал
    PDF
    Варистор RU

    Аннотация: Транзистор SE110N 2SC5487 SE090N 2SA2003 Транзистор высокого напряжения 2SC5586 SE090 RBV-406
    Текст: Текст файла отсутствует


    Оригинал
    PDF 2SA1186 2SA1215 2SA1216 2SA1262 2SA1294 2SA1295 2SA1303 2SA1386 2SA1386A 2SA1488 Варистор РУ SE110N транзистор 2SC5487 SE090N 2SA2003 транзистор высокого напряжения 2SC5586 SE090 РБВ-406
    fn651

    Резюме: CTB-34D 2SC5586 hvr-1x7 STR20012 sap17n 2sd2619 RBV-4156B SLA4037 2sk1343
    Текст: Текст файла недоступен


    Оригинал
    PDF 2SA744 2SA745 2SA746 2SA747 2SA764 2SA765 2SA768 2SA769 2SA770 2SA771 fn651 CTB-34D 2SC5586 hvr-1x7 STR20012 sap17n 2sd2619 РБВ-4156Б SLA4037 2sk1343
    1N4007 ЗЕНЕР ДИОД

    Аннотация: диод A14A диод st4 diac diode a15a стабилитрон db3 стабилитрон 1n4744 диод стабилитрон 1n4002 стабилитрон 5A стабилитрон 400в
    Текст: Текст файла отсутствует


    Сканирование OCR
    PDF 1N4001 1N4002 1N4003 1N4004 1N4005 1N4006 1N4007 1N5400 1N5401 1N5402 1N4007 ЗЕНЕР ДИОД диод A14A диод st4 diac диод a15a стабилитрон db3 стабилитрон 1n4744 стабилитрон диодный 1н4002 стабилитрон 5А стабилитрон 400 в
    кб * 9Д5Н20П

    Аннотация: Стабилитрон khb9d0n90n 6v транзистор khb * 2D0N60P транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI KHB9D0N90N схема ktd998 транзистор
    Текст: Текст файла отсутствует


    Оригинал
    PDF 2N2904E BC859 KDS135S 2N2906E BC860 KAC3301QN KDS160 2N3904 BCV71 KDB2151E хб * 9Д5Н20П khb9d0n90n Стабилитрон 6в хб * 2Д0Н60П транзистор KHB7D0N65F BC557 транзистор kia * 278R33PI Схема КХБ9Д0Н90Н ktd998 транзистор
    Q2N4401

    Аннотация: D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751
    Текст: Текст файла недоступен


    Оригинал
    PDF RD91EB Q2N4401 D1N3940 Q2N2907A D1N1190 Q2SC1815 Q2N3055 D1N750 Q2N1132 D02CZ10 D1N751
    2012 - SR506 Диод

    Аннотация: диод 6А 1000в SM4007 Диод диод SR360 диод her307
    Текст: Текст файла отсутствует


    Оригинал
    PDF SMD4001-4007) SR560 DO-27 UF4004 DO-41 UF4007 10A10 LL4148 FR101-FR107 SR506 Диод диод 6А 1000в SM4007 Диод Диод SR360 диод her307
    2006 - термодиод

    Аннотация: Тепловой диод PowerPC970MP CY8C27243 PPC970MP PowerPC970MPTM PowerPC970MP PowerPC 970 PowerPC-970mp Использование тепловых диодов в процессоре PowerPC 970MP
    Текст: Текст файла отсутствует


    Оригинал
    PDF PowerPC970MP® 64-битный PowerPC970MPTM 970 МП) 970 МП термодиод Тепловой диод PowerPC970MP CY8C27243 PPC970MP PowerPC970MPTM PowerPC970MP PowerPC 970 PowerPC-970mp Использование тепловых диодов в процессоре PowerPC 970MP
    OZ Optics Пигтейл оптоволоконного кабеля AR покрытие

    Аннотация: Лазерный диод 1550нм 1300нм 1550нм лазерный диод Радиальный sma ОПТИЧЕСКОЕ ВОЛОКНО LDC-21A ЛАЗЕРНЫЙ ИЗМЕРИТЕЛЬ РАССТОЯНИЯ лазерный соединитель SMA 905 размеры волокна линза лазерный диод TILT rotATOR
    Текст: Текст файла отсутствует


    Оригинал
    PDF -40 дБ OZ Optics Fiber пигтейл AR покрытие Лазерный диод 1550нм 1300нм 1550нм лазерный диод Радиальное sma ОПТИЧЕСКОЕ ВОЛОКНО LDC-21A ЛАЗЕРНЫЙ ИЗМЕРИТЕЛЬ РАССТОЯНИЯ лазерный соединитель Размеры волокна SMA 905 линза лазерный диод НАКЛОН ВРАТОРА
    Германиевый диод

    Аннотация: 5-амперные диодные выпрямители Germanium Diode OA91 aa117 diode 2 Amp rectifier diode diode 2 Amp zener diode DIODE 1N649 германиевый выпрямительный диод OA95 diode
    Текст: текст файла отсутствует


    Сканирование OCR
    PDF 1N34A 1Н38А 1N60A 1N100A 1N270 1N276 1N277 1N456 1N459 1N456A Германиевый диод Диодные выпрямители на 5 ампер Германиевый диод OA91 aa117 диод Выпрямительный диод на 2 А диод 2-амперный стабилитрон ДИОД 1Н649 германиевый выпрямительный диод Диод OA95
    диод Шоттки 60V 5A

    Аннотация: Высокоскоростной диод 30A Диод Шоттки 20V 5A Диод Шоттки высокого обратного напряжения код маркировки 1A диод Schottky Diode 40V 2A диод Шоттки код 10 Барьер Шоттки 3A БАРЬЕРНЫЙ ДИОД ШОТТКИ ERG81-004
    Текст: Текст файла отсутствует


    Оригинал
    PDF 5 В / 10 А) 500нс, диод шоттки 60V 5A 30А быстродействующий диод Диод Шоттки 20V 5A Диод Шоттки, высокое обратное напряжение код маркировки 1А диод Диод Шоттки 40V 2A диод шоттки код 10 Барьер Шоттки 3A БАРЬЕРНЫЙ ДИОД ШОТТКИ ERG81-004
    Диод Ганна

    Аннотация: Кремниевый детектор СВЧ-диод DW9248 СВЧ-волновод Маркони-ганн Кремниевый детектор УВЧ-диод варакторный диодный фильтр варактор
    Текст: Текст файла отсутствует


    Сканирование OCR
    PDF DA1304 DA1307 DA1321 DA1321-1 DA1338 DA1338-1 DA1338-2 DA1338-3 DA1349-2 DA1349-4 Диод Ганна Кремниевый детекторный диод СВЧ DW9248 СВЧ волновод Маркони Гунн Кремниевый детектор УВЧ диод варакторный диодный фильтр варактор
    pm2222a

    Резюме: BCB47B SOD80C PHILIPS BF960 PMBTA64 1N4148 SOD80C PXTA14 BCB47BW pzt222a BF606A
    Текст: Текст файла недоступен


    Сканирование OCR
    PDF BA582 OD123 BA482 BA682 BA683 BA483 BAL74 BAW62, 1N4148 pm2222a BCB47B SOD80C ФИЛИПС BF960 PMBTA64 1N4148 SOD80C PXTA14 BCB47BW pzt222a BF606A