Выбор стабилизатора напряжения | Заметки электрика
Здравствуйте, уважаемые читатели сайта http://zametkielectrika.ru.
В прошлой статье я рассказывал Вам про необходимость установки стабилизатора напряжения для дома, показатели качества электрической энергии и типы стабилизаторов. Сегодня проведем выбор стабилизатора напряжения по мощности на примере своего дома (дачи) в деревне. В конце статьи я расскажу Вам про виды крепления и установку стабилизаторов напряжения.
Пример выбора стабилизатора напряжения для однофазной сети
Вы решили приобрести стабилизатор напряжения, но не знаете, как его правильно выбрать. Привожу наглядный пример выбора стабилизатора напряжения для своего «домика в деревне».
Пока речь завели про деревянный дом, то рекомендую Вам почитать мои следующие полезные статьи:
1. Однофазная или трехфазная сеть
Для начала необходимо узнать количество фаз питающего напряжения.
Если у Вас трехфазная сеть, то в таком случае необходимо выбирать трехфазный стабилизатор напряжения, либо три однофазных стабилизатора, соединив их «звездой».
2. Мощность потребителей
Теперь нам нужно определиться с мощностью потребителей, для которых будем использовать стабилизатор напряжения. Это может быть один или несколько электроприемников. Также стабилизатор напряжения можно установить на вводе для абсолютно всех потребителей. Но об этом чуть позже.
Мощность всех потребителей выписываю в один список с указанием их активной мощности. Активная мощность измеряется в ваттах (Вт). Ее можно найти в руководстве (паспорте) на прибор или на корпусе самого прибора.
Вот мой составленный список:
Подход к расчету мощности для выбора стабилизатора напряжения должен быть рациональным, ведь у Вас не всегда включены в сеть все перечисленные выше потребители.
Поэтому здесь нужно точно определиться, что у нас будет включено одновременно.Если не хотите с этим «заморачиваться», то берите всю мощность.
Например, для себя я определил потребителей, которые могут быть включены одновременно:
Далее из полученного списка необходимо выбрать те приборы, в которых содержатся электродвигатели.
Это нужно нам для того, чтобы учесть их пусковые токи, которые достигают величину в 3-5 раз больше, чем номинальные. Пусковая мощность или пусковой ток этих потребителей можно найти в паспортах. Если паспортов уже давно нет, то можно воспользоваться приблизительным расчетом, умножив их номинальную мощность на 3. Я так и сделал.
Далее рассчитаем общую полную мощность. Полная мощность измеряется в вольт-амперах (ВА) и отличается от активной мощности на коэффициент мощности «косинус фи» (cosφ). Этот коэффициент всегда указан в паспортах на приборы. Опять же, если паспортов у Вас нет, то можно принять приближенный cosφ = 0,75.
Еще хочу заметить, что нагреватель и утюг имеют cosφ = 1, т.к. это чисто активная нагрузка, которая идет только на образование тепла.
Освещение в моем доме выполнено с помощью энергосберегающих ламп, у которых коэффициент мощности равен примерно cosφ = 0,9. Кому интересно, то можете почитать мою статью о том, почему мигают энергосберегающие лампы.
Для остальных потребителей принимаем средний коэффициент мощности, равный cosφ = 0,75.
Чтобы перевести активную мощность в полную мощность необходимо разделить активную мощность на cosφ.
В итоге получаем суммарную полную мощность наших потребителей: 12322,22 + 12600 = 24922,22 (ВА) или 24,9 (кВА).
Можно округлить до 25 (кВА).
3. Фактическое напряжение сети
После расчета потребляемой мощности необходимо измерить фактическое напряжение питающей сети. Сделать это можно самостоятельно, воспользовавшись мультиметром. Более подробно об этом я писал в статье: «Как пользоваться мультиметром при измерении напряжения».
Еще вариант, это пригласить специалистов для проведения энергоаудита, но это обойдется Вам дороже. Они установят приборы на 24 часа для анализа качества электрической энергии и в конце выдадут Вам подробный отчет.
Допустим Вы зафиксировали, что напряжение в сети в вечернее время у Вас составляет 180 (В).
4. Выбор мощности стабилизатора напряжения
Номинальная полная мощность стабилизатора напряжения всегда указывается в вольт-амперах (В) и соответствует питающему напряжению 220 (В).
При снижении питающего напряжения, соответственно, снижается его выходная мощность. Также хочу сказать Вам, что не допускается длительная работа стабилизатора напряжения при пониженном напряжении, т.к. это вызывает перегрузку и может привести к его отключению, что приведет к обесточиванию всех потребителей.
Чтобы избежать таких последствий, необходимо к полученной полной мощности наших потребителей 25 (кВА) добавить коэффициент нижнего предела напряжения стабилизатора, который равен 1,2 при 180 (В), и 1,3 — при напряжении 170 (В). В нашем случае напряжение в вечернее время составляет 180 (В), поэтому применяем коэффициент 1,2.
25 · 1,2 = 30 (кВА)
Чтобы была возможность использовать стабилизатор напряжения длительное время со всей включенной нагрузкой, необходимо к полученной выше мощности добавить коэффициент запаса по мощности, равный 1,25.
30 · 1,25 = 37,5 (кВА)
Остается только выбрать стабилизатор напряжения из предложенных моделей, зная его необходимую мощность. Например, нам подойдет стабилизатор напряжения мощностью 40 (кВА) и больше.
Как выбрать стабилизатор напряжения для трехфазной сети
Выбор стабилизатора напряжения для трехфазной сети практически аналогичен. Производим расчет мощности для какой-то одной фазы, желательно наиболее загруженной. По этой фазе замеряем фактическое напряжение в сети в часы пиковых нагрузок. Полную мощность в вольт-амперах, умножаем на 3 (количество фаз).
Запас по мощности делаем порядка 10%.
Полученное значение и есть полная мощность стабилизатора напряжения для трехфазной сети. По этой мощности из всего ассортимента предлагаемой продукции выбираем необходимый стабилизатор напряжения.
А вообще выбор стабилизатора напряжения лучше доверить специалистам. Так будет надежнее.
Иногда меня спрашивают, можно ли вместо трехфазного стабилизатора напряжения приобрести три однофазных? Да конечно можно, так будет даже дешевле и практичнее. Например, при обрыве одной питающей фазы, остальные фазы будут в рабочем состоянии. Но если у Вас в доме имеется хоть какая нибудь трехфазная нагрузка, то в любом случае Вам нужен трехфазный стабилизатор напряжения, потому что он ведет контроль фаз по линейному напряжению сети. И если хоть одна фаза оборвется, то стабилизатор полностью отключается.
Еще два не менее важных совета по выбору стабилизатора напряжения для трехфазной сети:
- стабилизаторы должны быть установлены в каждой фазе (оставлять без стабилизатора напряжения хоть одну фазу запрещено)
- нагрузка по каждому стабилизатору напряжения должна быть примерно равная, иначе в нуле пойдет большой ток, который может вывести стабилизатор из строя
- если разница линейных напряжений сети составляет более 25%, то стабилизаторы напряжений устанавливать запрещено
Функция BYPASS
Для начала давайте определимся что это за функция BYPASS (Байпас) и нужна ли она нам?
Практически во всех стабилизаторах мощностью от 3 (кВА) имеется функция BYPASS (Байпас). Включив автомат с этой надписью, стабилизатор на выходе выдает входное напряжение. Удобна эта функция тогда, когда напряжение в сети понижается не всегда, а например, только по вечерам, как в моем случае.
Выбор стабилизатора напряжения. Функция задержки
Еще одна из удобных функций стабилизатора напряжения, на которую стоит обратить внимание при покупке. Это функция задержки включения выходного напряжения, когда питающее напряжение вышло за пределы входного напряжения стабилизатора или совсем пропало. Существует несколько регулировок задержки — у разных производителей по-разному.
Крепление и установка стабилизатора напряжения
Стабилизатор напряжения можно крепить двумя способами:
- на полу
- на стене
Установка стабилизатора напряжения на полу или на полке применима к стабилизаторам небольшой мощности. У них малые габариты и вес. Например, мой небольшой и старенький стабилизатор напряжения «Ресанта» мощностью всего 0,5 (кВА) установлен прямо на подоконнике окна.
Более мощные стабилизаторы напряжения целесообразно размещать на стене, поэтому они выпускаются немного плоскими. Хотя по желанию их тоже можно установить на полу.
Заключение по выбору стабилизатора напряжения
В конце данной статьи хочу сделать небольшой вывод. Я показал пример расчета и выбора стабилизатора напряжения для однофазной сети. Мы получили, что стабилизатор напряжения для наших потребителей должен быть мощностью не ниже 37,5 (кВА). Можно идти покупать, но я задумался о его стоимости. Ведь стабилизатор напряжения такой мощности стоит совсем не дешево.
Как вариант можно через него не запитывать нагреватель и утюг, ведь при понижении напряжения в сети они будут лишь медленнее нагреваться. Остальным потребителям необходима только качественная электрическая энергия. Если воспользоваться таким вариантом, то можно немного сэкономить.
P.S. На этом я заканчиваю статью на тему выбора стабилизатора напряжения. Если у Вас есть вопросы, то спрашивайте в комментариях. Можете поделиться данной статьей с друзьями и коллегами, особенно владельцев дач и домов. Спасибо.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Выбор стабилизатора напряжения
Автоматические стабилизаторы напряжения предназначены для поддержания стабильного однофазного напряжения питания нагрузок бытового и промышленного назначения в пределах 220В 50/60Гц при отклонениях сетевого напряжения в широких пределах по значению и длительности.
Стабилизаторы DAEWOO могут работать в широким диапазоне входного напряжения (от 140 В до 270 В), обладают высоким быстродействием, возможностью постоянного контроля входного и выходного напряжения, индикатором нагрузки, что позволяет правильно подбирать мощность подключаемых через стабилизатор приборов и избежать перегрузки, функцией защитного отключения при длительных повышенных и пониженных нагрузках.
Выбор стабилизатора напряжения.
Основные эксплуатационные характеристики, на которые следует обращать внимание при выборе стабилизатора напряжения:
- Диапазон входных напряжений;
- Мощность стабилизатора;
- Быстродействие и точность стабилизации напряжения;
- Дополнительные функциональные возможности.
Первым шагом при выборе стабилизатора является расчет его мощности. Вам необходимо определить, какое электрооборудование вы будете защищать: один прибор, группу приборов наиболее чувствительных к перепадам напряжения в сети, либо всю домашнюю (офисную) технику. Затем необходимо рассчитать суммарную мощность защищаемых энергопотребителей.
При этом нужно учитывать основное условие выбора мощности стабилизатора напряжения – суммарная мощность подключаемой к нему нагрузки не должна превышать мощности самого стабилизатора. В противном случае автоматика стабилизатора напряжения будет их просто отключать.
Ориентировочные значения потребляемой мощности для различных наиболее распространенных бытовых электроприборов приведены в таблице. Точные значения можно узнать только по паспортным данным вашего конкретного прибора.
Потребитель | Мощность, Вт |
Телевизор | 100-400 |
Холодильник | 150-600 |
Электродуховка | 1000-2000 |
Фен для волос | 450-2000 |
Утюг | 500-2000 |
Стиральная машина | 1500-2500 |
Кофеварка | 800-1500 |
Электрообогреватель | 1000-2400 |
Электрогриль | 1200-2000 |
Пылесос | 400-2000 |
Электроплита | 1100-6000 |
Тостер | 600-1500 |
СВЧ печь | 1500-2000 |
Компьютер | 400-750 |
Электрочайник | 1000-2000 |
Электролампа | 20-250 |
Водонагреватель | 1200-1500 |
Электродрель | 400-800 |
Водяной насос | 500-900 |
Кондиционер | 1000-3000 |
Электроника и электронасосы газового котла | 200-900 |
Вентиляторы | 750-1700 |
Газонокосилка | 750-2500 |
Сведения о мощности того или иного прибора содержатся в его паспортных данных (инструкции по эксплуатации), при этом важно учесть такой момент: при расчете мощности используется не номинальная мощность электроприбора, а его полная мощность. Значительная доля бытовой техники (холодильник, стиральная машина, вентилятор, пылесос) имеет в своем составе электродвигатель, для которого характерны высокие пусковые токи. Помимо электродвигателей высокими пусковыми токами обладают также компрессоры и насосы. Пусковые токи могут превышать номинальную мощность прибора в 3-7 раз, поэтому при расчете суммарной мощности потребителей необходимо учитывать пиковые характеристики мощности каждого прибора. Для примера рассмотрим привычные холодильник и кондиционер: номинальная мощность современного холодильника 150-200 Вт, пусковая мощность 1 кВт; номинальная мощность кондиционера 750 Вт, пусковая мощность 3 кВт. В случае, когда в состав нагрузки входит электродвигатель, который является основным потребителем в данном устройстве (например, погружной насос, холодильник), но его пусковой ток неизвестен, то паспортную потребляемую мощность двигателя рекомендуется умножить минимум на 3 во избежание перегрузки стабилизатора напряжения в момент включения устройства.
Рекомендуется выбирать модель стабилизатора напряжения с 25% запасом от потребляемой мощности нагрузки. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым увеличив его срок службы, во-вторых, создадите себе резерв мощности для подключения нового оборудования.
Помимо правильного расчета мощности необходимо знать о том, что при уменьшении входного напряжения увеличивается входной ток и как следствие – уменьшается максимальная мощность стабилизатора.
Качественные показатели вашего участка электросети – важный критерий при выборе модели стабилизатора. Перед покупкой необходимо оценить, насколько повышено либо понижено напряжения в электросети, определить характер помех. Диапазон рабочего напряжения стабилизатора должен быть шире, чем некондиционное напряжение в электросети, особенно стоит уделить внимание нижней границе диапазона стабилизатора.
Меры безопасности.
Необходимо четко соблюдать меры безопасности при подключении и работе со стабилизаторами напряжения. Запрещается самостоятельно разбирать стабилизатор и подключать прибор к сети со снятым кожухом, перегружать стабилизатор. Общая потребляемая мощность электроприборов, подключаемых к стабилизатору, не должна превышать указанную суммарную мощность нагрузки. Длительная перегрузка приведет к выходу из строя и стабилизатора и подключенных к нему электроприборов. Запрещается подключать стабилизатор без заземления. Запрещается работа изделия в помещениях с взрывоопасной или химически активной средой, в условиях воздействия капель или брызг, а также на открытых площадках. Запрещается накрывать стабилизатор какими-либо материалами, размещать на нем приборы и предметы, закрывать вентиляционные отверстия. Запрещается эксплуатация изделия при появлении дыма или запаха, характерного для горящей изоляции, появлении повышенного шума, поломке или появлении трещин в корпусе, при поврежденных соединителях. При поломке не пытайтесь самостоятельно устранить ее причину – обратитесь в сервисный центр.
Порядок и режимы работы.
После транспортировки или хранения стабилизатора при отрицательных температурах, перед включением, необходимо выдержать его в условиях эксплуатации не менее 3-х часов. Произвести внешний осмотр изделия с целью определения отсутствия повреждений корпуса. Подключить сетевой кабель и кабель нагрузки. Предварительно необходимо открыть клеммную колодку с помощью винтов крепления. Подключение стабилизаторов большой мощности должен производить квалифицированный электрик.
Сечение кабеля должно соответствовать нормам для используемой нагрузки. Нормы для стабилизаторов напряжения Daewoo указаны в таблице.
DW-TZM5kVA | DW-TZM8kVA | DW-TZM10kVA | DW-TZM12k | |
Мин. сечение провода, мм 2 | 1.0 | 2.5 | 4 | 6 |
Максимальный ток, А | 13 | 22 | 36 | 45 |
Стабилизаторы DAEWOO – надежные защитники Ваших электроприборов.
Важные аспекты при выборе стабилизатора напряжения
Напоминаем, наши инженеры бесплатно помогут с выбором оборудования под ваши задачи.
Стабилизатор напряжения – оборудование, которое подключается к общей электросети. Основное его предназначение – поддержание напряжения в допустимых границах, защита от непредвиденных скачков.
Устанавливают стабилизаторы напряжения на вводе в квартиру, после электросчетчика. Стабилизаторы выравнивают напряжение, ликвидирует большие скачки и обеспечивает беспрерывную работу всего электрооборудования либо отдельных его элементов.
Нужно ли устанавливать стабилизатор напряжения в квартире?
Ответ на этот вопрос можно получить лишь после длительного наблюдения за напряжением в сети на протяжении достаточно длительного времени. Исходя из стандарта IEC 60038:2009, данные показатели не должны выходить за границы 220-240 В. Для Российской Федерации допустимым считается интервал около 198-253 В.
В основном, напряжение практически на территории всей страны не выходит за рамки требуемых стандартов. Если в процессе наблюдения были замечены перепады напряжения на протяжении длительного периода времени и уровень напряжения колебался менее 198 В либо более 253 В, то настоятельно рекомендуем подумать о покупке хорошего стабилизатора напряжения.
Какая именно бытовая техника нуждается в стабилизации напряжения?
Некоторое оборудование имеет встроенные системы защиты, которые дают возможность нормально функционировать оборудованию и «безболезненно» переносить незначительные перепады напряжения.
Сюда можно отнести:
1. Многие телевизоры уже имеют встроенный импульсивный блок питания, который может обеспечить относительно-нормальное бесперебойное функционирование техники при перепадах напряжения.
2. Практически все компьютеры способны функционировать при небольших перепадах напряжения.
3. Можно выделить активные нагрузки. Сюда относят утюг, водонагреватель, плойку, электрическую плиту. Они менее капризны, однако, при низком напряжении их продуктивность падает.
4. Работоспособность светодиодных ламп обеспечивается благодаря встроенному драйверу тока, который в них интегрирован. Напряжение в электросети практически не оказывает никакого влияния на яркость свечения светодиодных ламп.
Существует огромное количество электрооборудования, которому необходима достойная защита от значительных перепадов напряжения в сети:
1. Это могут быть глубинные насосы и кондиционеры. Данные электроприборы имеют встроенные асинхронные двигатели. При функционировании с низким напряжением в сети, им свойственен сильный перегрев, который очень часто и приводит к серьезным поломкам.
2. В холодильнике при работе с низким напряжением в электросети двигатель может сильно перегреться, начать гудеть и выйти из строя.
3. Домашние кинотеатры. Не все производители устанавливают импульсные блоки питания способные работать в широком диапазоне входных напряжений. (Может произойти пробой специального элемента на входе телевизора – варистора).
4. Все лампы накаливания. На яркость их света огромное влияние оказывает характеристика напряжения в электросети.
5. Микроволновые печи. При более низком напряжении снижается и мощность СВЧ-излучения. Если характеристики тока не соответствуют заявленным требованиям сети, то печь просто перестает функционировать.
6. Стиральные машины. Даже новые модели очень чувствительны к перепадам напряжения. Если напряжение резко падает, может произойти сбой программы. Более ранним моделям перепады напряжения страшны сильнее. От скачков напряжения они могут даже сгореть.
7. Посудомоечные машины. Если напряжение в сети очень низкое, то машинка может просто не включиться либо отключиться в процессе работы.
8. Бойлеры новых моделей. Они очень чувствительны к резким скачкам в сети.
Чтобы решить проблему как можно точнее, необходимо в обязательном порядке применять стабилизаторы напряжения для очень чувствительных электроприборов.
Практически все стабилизаторы напряжения обладают такими характеристиками
1. Регулировка напряжения электросети в заданном диапазоне.
2. Защитное отключение выходного напряжения. Оно необходимо для того, чтобы прекратить подачу напряжения на все электрические приборы, если регулятор напряжения вышел из строя либо параметры сети отклонились от допустимых значений.
3. Защита от короткого замыкания – автоматический выключатель для предотвращения перегрузки.
В состав стабилизаторов входят:
1. Плата управления
2. Автотрансформатор или его разновидности
3. Индикация режимов работы
4. Узел регулирования
5. Корпус
6. Клеммная колодка подключения
Какие же стабилизаторы напряжения лучше всего использовать в квартирах?
Современный рынок не ограничивается одним типом стабилизаторов, на нем представлено огромное количество оборудования с различными характеристиками.
Различают такие виды стабилизаторов напряжения:
1. Электромеханические с токосъемными роликами или на щетках;
2. Электронные на тиристорах,транзисторах или реле.
Все это оборудование в зависимости от внешних условий (диапазон колебаний, помехи и т.д.) подходит для устранения проблем в сети. Какие же стабилизаторы подходят для обеспечения полноценной работы электроприборов в Вашей квартире?
Выбор производится исходя из:
1. Количества фаз;
2. Мощности нагрузки;
3. Диапазона перепадов напряжения;
4. Точности выходного напряжения;
5. Допустимого уровня шума;
6. Требуемого быстродействия;
7. Условий окружающей среды.
8. Уровня устойчивости к помехам в сети;
9. Срока эксплуатации.
Количество фаз
трехфазный
Мощность
30 кВА
Рабочий диапазон
141-266 В
Габариты
300*560*300 (3 шт. ) мм
3 x Atlas 20 (60)Количество фаз
трехфазный
Мощность
60 кВА
Рабочий диапазон
141-266 В
Габариты
300*560*300 (3 шт. ) мм
Orion 105Количество фаз
трехфазный
Мощность
105 кВА
Рабочий диапазон
150-278 В
Габариты
600x800x1800 мм
Orion Plus 500Количество фаз
трехфазный
Мощность
500 кВА
Рабочий диапазон
150-278 В
Габариты
1200x800x2000 мм
Электромеханические стабилизаторы напряжения:
Регулирование в стабилизаторах данного типа осуществляется при помощи автотрансформатора, по обмоткам которого передвигаются графитовые ролики, либо щетки( в бюджетных вариантах). Регулирование осуществляется плавно и с высокой точностью. Они достаточно хорошо справляются с током нагрузки, и более неприхотливые к помехам в сети. Подходят для эксплуатации радиолюбителям и любителям музыки, так как не вносят посторонних шумов и помех в сеть. Лампы накаливания горят роно и не моргая.
Среди недостатков можно выделить основное:
1. Качественные зарубежные модели достаточно дорогие;
2. Большое количество некачественных китайских подделок;
3. Скорость регулирования ниже, чем у электронных;
4. Необходимость проведения регламентных работ.
Стабилизаторы напряжения электронного типа
Различаются по принципу действия и используемым компонентам. Приведем основные типы:
1. Релейные
2. Тиристорные/ симисторные
3. IGBT/ ШИМ- регулирование.
Первый и второй тип самое популярное и обоснованное направление в улучшении электромеханических стабилизаторов – это производство оборудования с двойными преобразователями – инверторами. Не совсем компактные приборы, однако они в силах обеспечить:
1. Высокое качество тока на выходе;
2. Достаточно высокий уровень работоспособности;
3. Способность подавлять импульсные помехи тока в сети.
Достаточно высокая стоимость делает такое оборудование не доступным для широкой массы покупателя.
Электронные релейные
Наверное, это самые дешевые стабилизаторы напряжения, которые выполняют ступенчатое регулирование напряжения. Самый главный минус такого оборудования – во время работы иногда щелкают. Бывают такие периоды, когда стабилизатор клацает практически все время. Поводом тому может быть:
1. Сломалось одно реле или подгорели контакты;
2. Электросеть находится в плачевном состоянии – имеется огромное число скруток и плохих контактов, маленькое сечение провода;
3. Сломанный контроллер.
Не важно, какая будет причина. Если стабилизатор систематически щелкает, то при таких условиях он очень быстро выйдет из строя.
Стабилизаторы напряжения релейного типа – достаточно удобны для эксплуатации в домашних условиях, за счет:
1. Скорости переключения, которая практически не уступает электромеханическим моделям;
2. Достаточно быстрого срабатывания;
3. Очень удобного корпуса, малого веса;
4. Очень выгодной цене.
Среди недостатков можно выделить следующее: очень часто реле выходит из строя, потому что контакты имеют свойство подгорать: можно обслуживать лишь мощную аппаратуру; синусоида напряжения на выходе очень искажается; не очень любят перегрузки.
Такие приборы отлично подойдут для обеспечения бесперебойной работы телевизора, холодильника, приборов для освещения, различной офисной техники, вентиляционной системы, кондиционеров.
Так что, если у вас нет сверхчувствительной техники, которая боится частых и резких перепадов напряжения, то такие стабилизаторы очень подойдут для использования в условиях квартиры.
Они включают в себя:
1. Серводвигатель;
2. Автотрансформатор;
3. система управления.
Основные достоинства таких стабилизаторов напряжения:
1. Очень удобная регулировка;
2. Возможность нормально полноценно работать при разном напряжении;
3. Результат на выходе очень точный;
4. Способность работать без сбоев достаточно долго;
5. Могут без сбоев переносить не долгосрочные перегрузки.
Основные минусы в работе стабилизаторов:
1. Пыль, при попадании внутрь стабилизатора, обугливается;
2. Очень чувствительны к низкой температуре;
3. Периодически нуждаются в смене токосъемной щетки;
4. Может образоваться искра в процессе замыкания либо размыкания контактов. Из-за этого нельзя устанавливать стабилизаторы в непосредственной близости с газовыми приборами и оборудованием.
Более современные модели стабилизаторов, вместо привычных токосъемных щеток, имеют встроенные долговечные ролики. Если сравнивать по стоимости, то и стоят такие приборы гораздо больше своих предшественников. Чаще всего, такие стабилизаторы используют там, где не наблюдается частых перепадов напряжения в сети.
Как выбрать стабилизатор напряжения исходя из мощности
Руководствуясь данным критерием, не стоит забывать и о числе используемой техники, которая будет подключена к стабилизатору.
Как вычислить необходимую мощность:
1. Необходимо сложить мощность всех электроприборов. Эти данные можно найти в техпаспорте к приборам либо на наклейках корпуса;
2. Нужно выяснить какой же прибор обладает наиболее высокой мощность пуска. Самый распространенный вариант в быту – это мясорубка либо кондиционер. Далее определяем разницу между номинальной и пусковой мощностями и добавляем полученное значение к полученной совокупной мощности.
Выбор стабилизатора по количеству фаз
Практически во всех многоквартирных домах однофазная сеть с напряжением 220В. При таких условиях и стабилизатор необходимо подбирать из однофазных.
Трехфазные устройства могут понадобиться при:
1. Если имеются трехфазные потребители. Сюда можно отнести – компрессор, котел, насос. Однако, в квартире такие приборы не встречаются;
2. Если квартира подключена к трехфазной сети.
Трехфазные стабилизаторы имеют достаточно высокую стоимость и поэтому очень часто вместо одного трехфазного, пользователи покупают три однофазных стабилизатора.
Выбор стабилизатора по точности, диапазону, месту монтажа
По диапазону различают две категории приборов:
1. Рабочий. Указывает на доступный интервал напряжения на входе, при котором будет происходить подача напряжения 220В (это подходит лишь для однофазной сети) либо 380В (для трехфазной сети). Погрешность имеет место быть;
2. Предельный. Указывает на разницу между входным напряжением и оптимальным его значением, при котором стабилизатор не питает все приборы, которые от него отключены, но при этом сам находится в рабочем состоянии. В основном, это 14-18%.
Стабилизаторы напряжения имеют относительную точность. Чем более точно работает стабилизатор, тем дороже он стоит. Самые дешевые стабилизаторы имеют точность около 2-7%, в таких случаях отклонение должно быть не более 1%.
Установить стабилизатор можно без особого труда и специальных навыков. Практически все модели устанавливаются с помощью кронштейнов, которые идут в комплекте. Обязательным условием при монтировании стабилизатора является то, что он должен располагаться не меньше 0,3 м от потолка.
Если у вас остались вопросы, просьба, не стесняться задавать их нашим инженерам. Каждый из них, ежегодно, проходит обучение на заводе производителя. Телефон горячей линии: +7 925 772 2557
Как выбрать стабилизатор напряжения – Статьи – Справочник
Основные эксплуатационные характеристики, по которым рекомендуется выбирать стабилизатор напряжения:
- диапазон входных напряжений;
- количество фаз;
- мощность стабилизатора;
- точность и скорость стабилизации напряжения;
- дополнительные функциональные возможности;
- габариты, масса.
Первоначально необходимо выяснить тип Вашей электросети – однофазная или трехфазная и исходя из этого подобрать необходимый вид прибора. Также стоит уточнить основные проблемы электропитания – постоянно пониженное или постоянно повышенное напряжение в сети либо частые скачки.
Многие модели стабилизаторов не рассчитаны на широкий диапазон входного напряжения и могут качественно отрабатывать только один вид отклонений – понижение либо скачки.
Также для выбора и подключения стабилизатора необходимо рассчитать примерную потребляемую суммарную мощность всех подключаемых к стабилизатору электроприборов. Основное условие выбора мощности стабилизатора напряжения – суммарная мощность подключаемой к нему нагрузки не должна превышать мощности самого стабилизатора (в противном случае автоматика современных стабилизаторов будет их просто отключать).
Ориентировочные значения мощности для различных приборов приведены в таблице. Точные значения можно узнать по паспортным данным.
Таблица: Ориентировочная потребляемая мощность наиболее распространённых бытовых электроприборов.
потребитель | мощность, Вт | потребитель | мощность, Вт |
БЫТОВЫЕ ПРИБОРЫ | ЭЛЕКТРОИНСТРУМЕНТ | ||
Фен для волос | 450-2000 | Электродрель | 400-800 |
Утюг | 500-2000 | Перфоратор | 600-1400 |
Электроплита | 1100-6000 | Электроточило | 300-1100 |
Тостер | 600-1500 | Дисковая пила | 750-1600 |
Кофеварка | 800-1500 | Электрорубанок | 400-1000 |
Электрообогреватель | 1000-2400 | Электролобзик | 250-700 |
Электрогриль | 1200-2000 | Шлифовальная машина | 650-2200 |
Пылесос | 400-2000 | ЭЛЕКТРОПРИБОРЫ | |
Радио | 50-250 | Компрессор | 750-2800 |
Телевизор | 100-400 | Водяной насос | 500-900 |
Холодильник | 150-600 | Циркулярная пила | 1800-2100 |
Электродуховка | 1000-2000 | Кондиционер | 1000-3000 |
СВЧ печь | 1500-2000 | Электроника (плата и управления) и электронасосы газового котла | 200-900 |
Компьютер | 400-750 | Электромоторы | 550-3000 |
Электрочайник | 1000-2000 | Вентиляторы | 750-1700 |
Электролампа | 20-250 | Газонокосилка | 750-2500 |
Бойлер | 1200-1500 | Насос высокого давления | 2000-2900 |
Также необходимо учитывать высокие пусковые токи, сопровождающие работу многих приборов оснащенных электродвигателями. Данная величина зависит от типа и конструкции электродвигателя, наличия или отсутствия устройства плавного запуска. Любой электродвигатель в момент включения потребляет энергии в несколько раз больше, чем в штатном режиме. В случае, когда в состав нагрузки входит электродвигатель, который является основным потребителем в данном устройстве (например, погружной насос, холодильник), но его пусковой ток неизвестен, то паспортную потребляемую мощность двигателя необходимо умножить минимум на 3, во избежание перегрузки стабилизатора напряжения в момент включения устройства. Большие пусковые токи могут наблюдаться и у других устройств.
Рекомендуется выбирать модель стабилизатора напряжения как минимум с 30% запасом от потребляемой мощности нагрузки. Во-первых, Вы обеспечите “щадящий” режим работы стабилизатора, тем самым увеличив его срок службы, во-вторых, создадите себе резерв мощности для подключения нового оборудования.
Настоятельно рекомендуется устанавливать стабилизатор в специально отведенном для этого месте, недоступном для детей. Стабилизатор нельзя устанавливать на чердаках, в шкафах, в закрытых нишах стен, в сырых (с повышенной влажностью воздуха) помещениях. Так же нельзя располагать стабилизатор в помещении с горючими, легковоспламеняющимися, химически активными материалами и жидкостями. При установке стабилизатора необходимо применять кабели, имеющие соответствующее сечение и изоляцию а так же обеспечить надёжное заземление его корпуса.
Мощность стабилизаторов «Эра» изначальна указана в Вт, чтобы упростить Вам выбор необходимой мощности стабилизатора. Кроме того, стабилизатор «Эра» снабжен индикатором нагрузки, который позволяет наглядно увидеть мощность подключенных к стабилизатору приборов и ее изменения – в частности – пуск электродвигателя, и тем самым предупредить нежелательные перегрузки стабилизатора.
Как выбрать стабилизатор напряжения. Вольтра
Стабильные характеристики электросети являются залогом долгой и верной службы электроприборов. Наверняка все замечали, как освещение в комнате становится более тусклым или, наоборот, более ярким. Это признаки нестабильного напряжения в электросети. Наиболее опасны для техники резкие скачки напряжения: так, изменение этого параметра на 10% способно уменьшить срок службы электроприборов в 4 раза. Скачки напряжения случаются даже в мегалополисах, что уже говорить о более мелких городах, деревнях или дачных поселках. Ремонтные мастерские регулярно принимают технику, вышедшую из строя из-за скачков напряжения.
Почему же скачет напряжение? Изменение характеристик сети неизбежно – любое включение или выключение электроприбора уменьшает или повышает нагрузки на сеть. К примеру, при использовании сварки в гаражном кооперативе свет тускнеет в такт работе сварщика. На качество тока также влияет общая нагрузка в сет.К примеру, в жилых многоквартирных домах нагрузка на сеть заметно вырастает по вечерам, когда большинство людей находятся дома. Еще одна причина падения напряжения кроется в самих проводах: чем они длиннее, тем больше потерь происходит. По этой причине довольно часто страдают дачные поселки и деревни.
Кто покупает стабилизаторы напряжения? В первую очередь, основными покупателями являются предприятия, производства, офисы и различные учреждения – скачок напряжения не только грозит солидными растратами на ремонт или покупку всего оборудования, но и влияет на работоспособность всего производства. Трудно работать в офисе, если компьютеры выключается едва ли не каждые 10 минут. Кроме того, на предприятиях с точными и сложными приборами стабильное напряжение является обязательным фактором для работы. Покупка стабилизатора напряжения для дома – вопрос и личное дело каждого, и если в квартире без него еще можно обойтись, то в частном доме или на даче жизнь без стабилизатора становится слегка напряженной.
В электротехнике существует несколько видов преобразователей напряжения. В данном случае речь идет о корректирующих стабилизаторах переменного тока. Они призваны регулировать напряжение, которое подается на технику – холодильники, стиральные машины, компьютеры и прочее. Главной задачей стабилизаторов является приведения характеристик тока к стандартным (и самое главное – стабильным) показателям. Это обеспечит сохранить подключенное оборудование или технику и продлит срок их службы.
Если Вы задумались о покупке стабилизатора напряжения для дома, стоит понять наверняка, существует ли необходимость в его приобретении. Для этого необходимо с помощью тестера несколько раз в будний и выходной дни произвести замеры. Критическими показателями являются 198В и 242В – выход за эти пределы способен испортить технику, покупать стабилизатор стоит для защиты всей сети. В среднем электроприборы способны выдерживать колебания напряжения в пределах 10%, но срок их эксплуатации при этом сокращается. Лампочки начинают перегорать при выходе из диапазона 205-235В. Если напряжение колеблется в пределах 210-230В, имеет смысл задуматься о покупке стабилизатора напряжения для одного самого дорогого прибора.
Стабилизатор подключается к сети таким образом, что ток подается на технику только после прохождения через него. Несмотря на одну функцию, различают три вида стабилизаторов – ферромагнитный, электромеханический, электронный (цифровой). Первоначально электромагнитные стабилизаторы были распространены больше всего, но сейчас наиболее популярны цифровое и электромеханические устройства – рассмотрим их подробнее.
Виды стабилизаторов напряжения
Электромеханические стабилизаторы
В основе такого устройства находится автотрансформатор с проводами, которые автоматически переключаются. Грубо говоря, это катушка с обмоткой из медной проволоки. Вторым главным элементом стабилизатора является электромагнитный механизм с ползунком. Если входное напряжение пониженное, этот ползунок перемещается вверх и повышает напряжение на выходе, и, соответственно, наоборот. В качестве ползунка используются графитовые щетки. Они способны установить необходимое выходное напряжение с погрешностью всего до 2%, регулировка напряжения – плавная. В некоторых стабилизаторах напряжения – например «Ресанта» – используются сразу две графитовые щетки, за счет этого возрастает скорость регулировки напряжения. Некоторые особо мощные стабилизаторы (30кВт и больше) оснащаются также дополнительным трансформатором.
В работе электромеханические стабилизаторы бесшумны, даже несмотря на наличие движущихся частей. Они не вносят в сеть никаких искажений и устойчивы к помехам в сети. Точность напряжения на выходе таких стабилизаторов достаточно высока, поэтому к ним можно смело подключать чувствительную аудиоаппаратуру, медицинские и измерительные приборы.
Из недостатков стоит отметить особенность эксплуатации, связанную с наличием движущихся щеток. Они подвержены естественному износу и требуют регулировки, ухода и замены. При изменении показателей электросети возможно небольшое отставание в их реакции. Мощные стабилизаторы отличаются внушительными габаритами и весам. Устройства достаточно требовательны к условиям эксплуатации: температура в помещении не должна быть ниже -5 градусов или выше +40 градусов. И естественно, использование их во влажных помещениях недопустимо.
Электронные (цифровые) стабилизаторы
Приборы этого типа производят регулировку напряжения ступенчато – из-за этого такие стабилизаторы также называются «дискретными». Как и в электромеханических стабилизаторах, в их основе находится автотрансформатор. Но графитовых щеток нет – вместо них используются реле или полупроводники (тиристоры и симисторы).
Работа цифровых стабилизаторов осуществляется по следующему принципу: каждый виток на трансформаторе добавляет от 4 до 22В (у однофазных). Реле или электронные ключи включают необходимую обмотку. Точность регулировка в зависимости модели колеблется от 2 до 10%. Этот показатель зависит от количества обмоток. Рассмотрим на примере бытового стабилизатора напряжения с точностью 8%, каждая обмотка которого прибавляет 17,6В. Если входное напряжение составляет 195В, происходит подключение двух обмоток – выходное значение составляет 230,2В. Регулировка происходит достаточно быстро, но при этом несколько страдает точность. Если точность стабилизатора составляет 2%, то при таких же показателях на выходе будет напряжение 221,4В. При этом будет задействовано шесть обмоток, соответственно, увеличится время регулировки. Большое количество элементов системы увеличивает ее цену, надежность, при этом, остается такой же.
Разница в точности моделей не столь критична, как может показаться. Бытовая техника способна нормально функционировать при изменении напряжения в пределах +/- 10%. Таким образом, холодильники, насосы и другие приборы с электродвигателем или нагревательным элементом будут работать нормально. Что касается компьютеров, домашних кинотеатров и другой точной бытовой электроники, то для них лучше купить стабилизатор с меньшей погрешностью. Электронные стабилизаторы напряжения оснащены цифровым управлением. Все управляющие элементы размещаются на одной микросхеме, что позволило значительно уменьшить вес и габариты прибора. Стабилизаторы оснащены электронным дисплеем, который, как правило, расположен на фронтальной части корпуса. На него выводятся значения входного и выходного напряжения.
Из преимуществ цифровых стабилизаторов стоит отметить отсутствие движущихся частей – отныне можно забыть о замене графитовых щеток. Качество стабилизатора и срок его службы напрямую зависят от качества тиристоров и симисторов. Кроме того, некоторые модели можно использовать в довольно суровых условиях – при температуре от -20 и ниже.
Недостатком электронным стабилизаторов напряжения является слабая перегрузочная сопротивляемость. Электронные ключи достаточно нежные, и большие нагрузки или короткое замыкание способны быстро вывести их из строя. При покупке цифрового стабилизатора желательно иметь как можно больший запас мощности.
Виды стабилизаторов напряжения по типу сети
Однофазные стабилизаторы напряжения используются в помещениях с однофазной электросетью – 220В. Мощность однофазных стабилизаторов составляет от 0,5 до 30кВт. Такой диапазон позволяет обеспечить защиту как всей техники в доме, так и отдельных устройств или приборов.
В помещениях с трехфазной сетью 380В необходимо использовать трехфазные стабилизаторы. Они представляют собой три однофазных стабилизатора, скомпонованных между собой. Мощность трехфазных стабилизаторов составляет от 3-30кВт и больше. Существуют модели стабилизаторов, мощность которых превышает 100кВт – это три трансформатора с одним сердечником.
И однофазные, и трехфазные стабилизаторы могут быть как электромеханического, так и электронного типа.
Технические характеристики стабилизаторов
При покупке стабилизатора для дома или дачи основная информация, на которую стоит ориентироваться, – технические характеристики прибора.
Однофазные и трехфазные стабилизаторы
Об этих типах стабилизаторов мы подробно рассказывали чуть выше, но все же рассмотрим основные случаи. В быту преимущественно используется однофазная сеть с напряжением 220В, в многоквартирных жилых домах с электроплитами есть трехфазная сеть. Кроме того, трехфазные сети можно встретить на дачах и в частных домах.
В сети 220В можно применять однофазные стабилизаторы напряжения. В сети 380В возможны комбинации из трех- и однофазных моделей.
Мощность
Все электроприборы при включении создают нагрузку на сеть – при подключении к стабилизатору эта нагрузка переходит на него. Нормальная работа стабилизатора будет обеспечена только в том случае, если мощность подключенных приборов не превышает его собственную. Если это условие будет нарушено, сработает защита и стабилизатор отключится. Чем больше витков обмотки и чем больше диаметр проволоки, тем выше будет мощность прибора. Эти параметры также напрямую влияют на вес и размеры прибора.
Мощность стабилизаторов напряжения в зависимости от модели может составлять от 0,5 до 100кВт. Приборы с минимальной мощностью покупают для защиты конкретной техники. Для защиты всех устройств необходим стабилизатор большой мощности – о том, как высчитать этот параметр, мы расскажем чуть ниже.
Входное напряжение
Основой стабилизатора является автотрансформатор, который состоит из первичной и вторичной обмотки. При его создании учитываются мощность и входное напряжение. По их значениям рассчитывается сечение проволоки, а также количество витков. Как правило, каждый производитель придерживается собственных «традиций». Так, у всех однофазных приборов «Ресанты» этот показатель составляет 140-260В, трехфазных – 240-430В. У других производителей этот диапазон может равняться 160-250В для однофазных и 280-430В для трехфазных. Выбор входного напряжения стабилизатора очень прост – оно не должно выходить за пределы напряжения электросети. Так, стабилизатор с входным напряжением 160В уже не сможет работать с сетью, напряжение которой составляет 150В.
Выходное напряжение
Выходное напряжение является прямым результатом работы стабилизатора. При его покупке стоит обращать внимание не только на значения в 220 или 380В, но и на погрешность, выраженную в процентах. Она отображает допустимые отклонения от нормы.
Как мы уже говорили, более точными являются электромеханические стабилизаторы. Значение погрешности любого из них не будет превышать 3%. Погрешность у электронных стабилизаторов может составлять от 2 до 10%. Чем дороже стабилизатор, тем он точнее – на стоимость напрямую влияет количество витков обмотки и электронных ключей. Для защиты всей сети лучше выбирать стабилизатор с минимальной погрешностью.
Частота питающей сети
Напряжение сети – важный, но не единственный ее параметр. Вторым важным показателем является частота питающей сети. Отклонения до 0,2Гц считаются достаточно серьезными, до 0,4Гц – критическими. Превышение этого отклонения способны нарушить работоспособность техники. К примеру, повышенной чувствительностью к колебаниям частоты отличаются асинхронные двигатели, которые используются в отопительных котлах (смотрите стабилизаторы для котлов) и насосах. Двигатели начинают работать с переменной частотой, что приводит к его поломке. Лучшим выходом станет покупка стабилизатора напряжения. Все модели, которые доступны к покупке в Беларуси, поддерживают частоту 50Гц.
Точность и скорость стабилизации
Как мы уже писали, точность стабилизаторов напряжения колеблется в пределах 2-10%. Этого вполне достаточно для большинства бытовой домашней техники. Для более нежной и чувствительной аппаратуры необходимо выбирать стабилизатор как можно с меньшей погрешностью. Скорость стабилизации отображает время реагирования стабилизатора на изменение характеристик тока. Чем меньше будет это время – тем лучше, однако, критичным этот параметр не является.
Габариты и вес
Вес стабилизаторов напряжения может колебаться от 3 до 700 кг, габариты – от размеров ящика до внушительного шкафа. При покупке стабилизатора для дома этот параметр играет немаловажную роль. Среди устройств с мощностью до 10кВт особую популярность у покупателей завоевали цифровые стабилизаторы с дисплеем – благодаря своей компактности, аккуратному внешнему виду, простоте отображения всех показателей на дисплее, а также некоторым другим показателям.
Системы стабилизаторов.
Как и любая сложная техника, у стабилизаторов напряжения есть не только чисто технические характеристики, но и дополнительные функции, которые упрощают работу с ними.
Защита по выходному напряжению – стабилизатор, как и любой другой прибор, имеет свой рабочий диапазон. Если напряжение в сети выходит за его пределы, стабилизатор отключает нагрузку. Как только происходит выравнивание необходимых характеристик ток, подача электроэнергии на приборы возобновляется.
Защита от перегрузки следит за мощностью подключенных к стабилизатору приборов. При превышении допустимой мощности, нагрузка на прибор будет отключена.
Защита от грозовых разрядов и коротких замыканий позволит сохранить стабилизатором работоспособным при возникновении перечисленных явлений.
Тепловая защита или термозащита отключит прибор при достижении критической температуры трансформатором. Это предупредит порчу прибора.
Байпас – функция провода тока напрямую, без участия стабилизатора. Может быть полезна в случае отключенной техники – это сэкономит электроэнергию.
Фильтрация сетевых помех помогает бороться с различными искажениями на входе.
Вольтметр и амперметр позволят следить на силой тока и его напряжением. Вольметр отражает входные и выходные показатели, амперметр замеряет ток на выходе.
Кроме того, работу некоторых моделей стабилизаторов можно отслеживать с помощью компьютера. Цифровые стабилизаторы также могут оснащаться пультом дистанционного управления.
Порядок выбора бытового стабилизатора напряжения
При решении о покупке стабилизатора напряжения в первую очередь следует определиться с количеством фаз. Следующим шагом станет замер напряжения, определение которого станет основным критерием выбора рабочего диапазона стабилизатора.
Следующим важным шагом является определенность мощности стабилизатора. Для этого необходимо сложить мощность всех устройств и техники. Приблизительное энергопотребление распространенной технике можно увидеть в таблице.
Наименование техники | Потребляемая мощность, Вт |
Промышленное и строительное оборудование | |
кондиционер | 1000 – 3000 |
компрессор | 750 – 2800 |
дисковая пила, циркулярная пила | 750 – 1600, 1800 – 2100 |
электромотор | 550 – 3000 |
водяной насос, насос высокого давления | 500 – 900, 2000 – 2900 |
дрель, перфоратор | 400 – 800, 900 – 1400 |
электролобзик, электрорубанок | 250 – 700, 400 – 1000 |
шлифмашинка | 650 – 2200 |
Бытовые электроприборы | |
телевизор | 100 – 400 |
стиральная машина | 1800 – 3000 |
фен, утюг | 500 – 2000 |
тостер, кофеварка | 700 – 1500 |
пылесос | 400 – 2000 |
холодильник | 150 – 600 |
духовка, микроволновка, электрочайник | 1000 – 2000 |
компьютер | 400 – 750 |
накопительный водонагреватель | 1200 – 1500 |
проточный водонагреватель | 5000 – 6000 |
обогреватель | 1000 – 2400 |
электролампы | 20 – 250 |
Перечисленные характеристики являются примерными – ни в коем случайте не используйте их для конечных расчетов! Более точную информацию о своей технике необходимо искать в паспортах или инструкциях.
После того, как Вы точно узнали мощность всех электроприборов, можно приступать к подсчетам мощности бытового стабилизатора. К примеру, в квартире постоянно работают холодильник, осветительные приборы, компьютер и телевизор. Итого получается 1950Вт.
Также стоит учитывать мощность электроприборов, которые включается периодически – чайники, пылесосы, утюги, стиральные машины и др. Предположим, что к нашей основной технике периодически добавляются утюг, микроволновка и обогреватель – суммарная мощность этих приборов составит 6400Вт.
Таким образом, максимальное значение потребляемой мощности будет состоять из этих двух сумм и составит 8350Вт.
После этого необходимо определить коэффициент изменения напряжения в сети. Для этого необходимы данные, полученные при замере входного напряжения.
Коэффициент изменения представлен в таблице.
Напряжение однофазной сети | 130 | 150 | 170 | 210 | 220 | 230 | 250 | 270 |
Коэффициент отклонения | 1,69 | 1,47 | 1,29 | 1,05 | 1 | 1,05 | 1,29 | 1,47 |
Коэффициент отклонения трехфазной сети определяется точно также, для этого необходимо взять диапазон +/- 380 В
Предположим, что в нашем случае напряжение в сети составляет 150В – необходимый нам коэффициент равняется 0,47.
Максимальное значение потребляемой мощности умножаем на коэффициент и получаем значение 12274Вт. Значит, стабилизатор напряжения должен иметь мощность как минимум 12Вт.
Важно: электроприборы с моторами в момент включения значительно увеличивают нагрузку на сеть. Это относится к стиральным машинам, холодильникам и другим приборам. Поэтому, необходимо покупать стабилизатор с запасом мощности – 20% является необходимым минимум. Кроме того, запас мощности позволит в дальнейшем подключать дополнительные электроприборы.
При покупке стабилизатора для предприятия, расчеты можно производить аналогичным образом, но стоит помнить об одном условии: мощность устройства должна быть в 3 раза больше номинальной, если к нему планируется подключение оборудования с асинхронными двигателям, компрессоров, насосов и др.
Чтобы избежать этих расчетов, можно также воспользоваться специальными токоизмерительными клещами. Их щупы прикрепляются к проводу, а энергию продолжает поступать к потребителям. Достаточно включить все электроприборы и прибор покажет потребляемую мощность, а также силу тока и сопротивление. Такой способ более точный, чем расчет.
После определения мощности стоит определить точность стабилизации. Ее погрешность измеряется в процентах, чем они больше – тем менее точный прибор. Для большинства техники будет допустима погрешность до 10%, однако, некоторым устройствам нужен более точный параметр. Желательно узнать это значение для каждого электроприбора в доме – в паспорте, инструкции, в местах выхода силовых кабелей или на сайте производителя.
Правила работы со стабилизатором напряжения: установка и начало использования
Как правило, установку и обслуживание стабилизаторов на предприятиях доверяют специалистам. Мы же рассмотрим, как правильно работать со стабилизатором дома.
Если стабилизатор был приобретен в холодное время года, необходимо перед подключением дать простоять ему без работы в нормальных условиях. Производители рекомендуют, чтобы это время составляло не менее суток. С подключением большинства моделей способен справится человек с базовыми навыками, в противном случае некоторые работы все же придется доверить специалисту.
Место установки
Место установки прибора должно отвечать всем требованиям в паспорте стабилизатора. Для большинства бытовых однофазных стабилизаторов минимальная температура составляет +5С. Использование трехфазных стабилизаторов допускается при температуре не ниже -5С. Максимальная температура большинства моделей составляет 45 градусов, поэтому не стоит ставить прибор на места с длительным воздействием солнечных лучей.
Стабилизатор во время работы нагревается, поэтому для отвода тепла в корпусе предусмотрена естественная или принудительная вентиляция. Расстояние между корпусом с вентиляционными отверстиями и стенами должно составлять не менее 50 см.
В зависимости от крепления стабилизатора, различают напольные и настенные модели. Первые можно поставить на пол, на полку или на стол, если позволяет вес изделия. Под стабилизатором не должно быть ковра, так как последний нарушает теплообмен.
Кроме того, не стоит забывать, что, несмотря на все заверения производителей, стабилизаторы напряжения все же шумят – негромко, но тем не менее. Поэтому от установки стабилизатора в спальне лучше отказаться. Идеальным решением станет установка его в нежилые комнаты – прихожую, гардеробную или подсобку.
Правила подключения стабилизатора напряжения
Самым главным правилом при подключении стабилизатора является его заземление. Для его проводки необходимо протянуть медный провод от корпуса к шине заземления. Это мера предосторожности напрямую влияет на безопасность прибора – она защищает пользователя от удара электрическим током. Кроме того, за счет этого уменьшается электромагнитный фон, чрезмерный уровень которого также способен повлиять на здоровье человека. При отсутствии необходимых навыков монтаж заземления лучше производить с помощью квалифицированного специалиста.
Сначала рассмотрим вариант подключения стабилизатора напряжения для отдельной техники – например компьютера, домашнего кинотеатра или холодильника. Для этих целей покупают однофазные стабилизаторы напряжения с мощностью в пределах 3кВт. При подключении стабилизатор обязательно должен быть выключен. Для подключения большинства стабилизаторов с небольшой мощностью не нужно иметь специальные знания: стабилизатор включается в сеть, а уже к нему подключается техника.
Существуют модели стабилизаторов, у которых на корпусе расположены клеммы. Чтобы его подключить, необходимо приобрести и подключить к ним шнур питания с вилкой. К клеммам прикрепляются соответствующие провода шнура. После этого необходимо включить стабилизатор на несколько секунд, чтобы на вольтметре отобразилось значение 220В. После этого стабилизатор необходимо отключить. Таким образом, щетки или электронные ключи установятся на свои рабочие положения. Провод с розеткой подключаются на выходные клеммы. После этого возможно подключать бытовую технику.
Теперь рассмотрим вариант подключения стабилизатора напряжения для защиты всей техники в доме. Для этих целей используются однофазные или трехфазные стабилизаторы. В случае, когда от распределительного щитка подается напряжение 380В, можно установить трехфазный или три однофазных стабилизатора, соединенных между собой. Последний способ более надежен – если один стабилизатор выйдет из строя, остальные продолжат работать. Но этот способ также и более затратный.
Чтобы подключить стабилизатор для всего дома, необходимо соединить фазу и ноль с выхода счетчика к соответствующим клеммам стабилизатора. Перед подключением техники, необходимо привести стабилизатор в рабочее положение способом, о котором мы писали выше. После этого к нагрузке стабилизатора необходимо подключить нейтральный провод от счетчика. Фазу к нему подключают от выходных клемм стабилизатора.
Эксплуатация
После всех необходимых манипуляций с проводами, можно включать стабилизатор. После этого он будет работать в автоматическом режиме. Даже если свет пропадет во всем доме, то после возобновления его работы, стабилизатор включится сам.
Как правило, производители стабилизаторов напряжения стараются максимально защитить их от неблагоприятных воздействий. Однако не стоит ставить на прибор бутылки с жидкостью или, например, чашку с чаем. Кроме того, по правилам электробезопасности, следует исключить возможность контакта корпуса с металлическими предметами. Следует следить за тем, чтобы вентиляционные решетки не были чем-нибудь перекрыты – в противном случае, существует вероятность выхода стабилизатора из строя из-за перегрева.
Еще один важный момент в эксплуатации стабилизатора – помнить о пределах его мощности. Перед подключением новых приборов необходимо проверить, выдержит ли стабилизатор дополнительную нагрузку. Как правило, если стабилизатор изначально был куплен со значительным запасом мощности, таких проблем не возникает.
Стабилизатор практически не требует ухода – необходимо лишь изредка протирать его корпус от пыли и следить за чистотой вентиляционных отверстий. При этом нельзя использовать влажные тряпки и моющие средства. В случае поломки стабилизатора, не стоит пытаться чинить его самостоятельно – ремонт должен производиться в сервисном центре.
Дополнительные расходы на стабилизатор
Большинство стабилизаторов готовы к работе «из коробки», но в некоторых случаях к ним необходимо докупить некоторые вещи.
Провода
Если у стабилизатора для подключения есть только клеммы, в таком случае необходимо отдельно приобретать провода. Они различаются между собой по сечению, количеству жил и допустимому напряжению. Напряжение – самый простой параметр. Провод с допустимым напряжением 380В можно использовать как в трехфазной, так и в однофазной сети. Если провод рассчитан на напряжение 220В, использование его в трехфазной сети недопустимо.
Количество жил – также немаловажный параметр. Проще говоря, жила – это проводник. В зависимости от провода, в нем может быть как одна, так и несколько жил, которые скручивают и закрывают изоляционной оболочкой. Чем больше будет жил, тем надежнее будет провод. Важным фактором является материал, из которого они изготовлены. Для стабилизатора лучше всего приобретать провода с медными жилами – они прочнее алюминия, а токопроводящие свойства выше.
Самым главным параметром при покупке провода является сечение кабеля. Сечение кабеля необходимо рассчитывать отдельно. Для этого необходимо мощность стабилизатора в ВА (ВА=Вт/0,7) разделить на минимальное входное напряжение. Таким образом мы узнаем максимальную силу тока на входе. После этого полученное значение силы тока необходимо найти в таблице. В случае несовпадения силы тока с данными в таблице, выбор сечения необходимо производить в большую сторону. Так, если ток равняется 46А, то необходимое сечение провода составит 6 мм. кв.
Ток, А | Сечение, мм2 |
11 | 0,5 |
15 | 0,75 |
17 | 1,0 |
23 | 1,5 |
26 | 2,0 |
30 | 2,5 |
41 | 4,0 |
50 | 6,0 |
80 | 10,0 |
100 | 16,0 |
140 | 25,0 |
170 | 35,0 |
Все провода, которые есть в продаже, обозначены соответствующей маркировкой. Так как нам необходим медный кабель, в маркировке не должно быть буквы А – это провод с алюминиевым жилами. Другие буквы означают вид изоляции, первая цифра – это сечение, вторая – количество жил.
Как мы уже говорили, для подключения стабилизатора необходимо заземление – сечение кабеля составляет 2,5 мм. кв. Длину проводу стоит определять исходя из места монтажа. Для подключения стабилизатора к розетке, необходим кабель с вилкой.
Монтаж проводов удобнее всего производить с помощью крепежных скоб. Их размеры зависят от диаметра кабеля. Для соединения несколько проводов лучше всего использовать пластиковые хомуты – они дешевые и надежные. Самым простым способом изоляции станет изолента.
Автоматический выключатель
Автоматический выключатель устанавливают между счетчиком и стабилизатором. Его основная задача – защита прибора от коротких замыканий и перегрузок. Его «амперы» должны превышать максимальную силу тока стабилизатора, которую мы рассчитывали выше.
Трехходовой перекидной рубильник
Это устройство позволит сделать байпасную линию, которая будет подавать электроэнергию в обход стабилизатора. К примеру, подобная линия может понадобиться для подключения сварочного аппарата.
Дополнительное оборудование
При подключении стабилизатора самостоятельно могут понадобиться мультиметр, измерительные клещи или индикаторная отвертка.
Мультиметр (проще говоря – тестер) измеряет напряжение, силу тока и сопротивление. Замеры производят с помощью щупов, результат выводится на дисплей или шкалу.
При помощи токовых клещей можно измерить ток, напряжение, сопротивление или частоту провода, проверить его изоляцию на целостность. Для этого достаточно поместить проводник между двумя щупами.
Индикаторная отвертка (отвертка-пробник) позволяет определить фазу и ноль. От обычной ее легко отличить по внешнему виду – прозрачная ручка с диодом внутри.
Как выбрать стабилизаторы напряжения для дома и дачи?
Стабилизатор напряжения бесспорно необходим на даче или в загородном доме, где в электросетях постоянно скачет напряжение. Этот прибор сбережет дорогую электронную аппаратуру и бытовую технику. Как его выбрать? Об этом пойдет речь в данной статье.
Актуальность применения стабилизаторов напряжения не требует доказательств. Они необходимы для нивелирования всплесков напряжения в электросетях. Сегодня такие проблемы встречаются намного реже, но даже небольшие скачки приводят к негативным последствиям, связанным с выходом из строя дорогостоящей бытовой техники. Качественные стабилизаторы для дома и дачи выравнивают величину напряжения электротока до стандартных параметров и очищают от высокочастотных помех. Аппараты для дома выпускаются номиналами мощности от 10 до 20 кВт.
Таким образом, на даче или в загородном доме стабилизаторы обеспечивают:
Стабильность работы бытовой техники и электронных устройств с повышенными требованиями к устойчивости напряжения.
Продление срока эксплуатации дорогостоящего бытового и электронного оборудования.
Принцип работы стабилизатора напряжения и его конструкция
Принцип работы устройства состоит в отслеживании изменений входного напряжения и его регулировании в соответствии с обстоятельствами и согласно определенному алгоритму:
Первая фаза (20 м/с) используется при изменении входного напряжения для его тестирования.
Тестирование напряжения и реакция на ситуацию.
При изменении напряжения в пределах диапазона, оно выравнивается до 220 В.
При падении напряжения ниже допустимого диапазона идет фаза «вытягивания», в пределах имеющегося ресурса трансформатора.
При скачке выше допустимых показателей происходит аварийное отключение.
При импульсных скачках и при отключениях и включениях, идет выравнивание напряжения.
Процесс корректировки напряжения идет за счет добавочных обмоток трансформатора. Напряжение переключается электронными ключами, которые срабатывают при падении синусоиды напряжения на нулевое значение. Сами ключи управляются процессором, который собирает с датчиков данные и коммутирует ключи согласно заданному алгоритму. Он не дает включаться более чем одному ключу и контролирует их исправность.
Процессор работает в определенных режимах:
Транзитном, когда напряжение на входе имеет нормальные показатели. Стабилизатор осуществляет только защиту от скачков.
Повышенном, когда входное напряжение ниже нормы и агрегат вытягивает его до номинального.
Аварийном, очень низком напряжении на входе. Стабилизатор поднимает его до возможностей ресурса своего транформатора. Другой аварийный режим связан со скачком напряжения вверх. Тогда прибор отключается, переходит в работу дежурного режима и ждет падения напряжения.
Пониженном, когда напряжение на входе высокое, но еще в диапазоне возможной корректировки. Агрегат понижает его до номинала.
Задержка включения, этот режим обеспечивает сглаживание скачка в сети при включении электроэнергии после отключения.
Конструкция стабилизатора напряжения
Устройство разных стабилизаторов отличается друг от друга в зависимости от вида. Но по своей сути, стабилизатор – это регулируемый трансформатор, с обратной связью.
Виды стабилизаторов напряжения: их преимущества и недостатки
Стабилизаторы на основе трансформаторов делятся на две группы (по способу регулирования).
Электромеханические стабилизаторы представляют собой электромагнитную катушку с бегунком. Положение бегунка изменяется действием мотора или реле. В отличие от других видов аналогичного оборудования такие стабилизаторы имеют плавную регулировку напряжения. Основным их плюсом считается высокая точность стабилизации. Это главный аргумент в пользу применения электромеханических стабилизаторов в качестве защиты особо чувствительной электротехники. Они оснащены автоматической системой защиты, позволяющей обезопасить бытовые приборы и сам аппарат от скачков напряжения и помех в электросетях. Еще один плюс данных приборов – низкая цена.
Недостатки у приборов электромеханического типа тоже есть. Это – медленное изменение параметров и шум при работе. Менее шумные – аппараты с мотором. Еще один минус – перенапряжение в случаях, когда резко упавшее напряжение также резко приходит в норму. Он попросту не успевает среагировать на резкий подъем напряжения и на выходе возникает скачок, губительный для бытовой техники. Для исключения такой неприятности на входе ставится защита по напряжению, отключающая питание.
Электронные стабилизаторы работают на симисторах или тиристорах. Они имеют многоступенчатую регулировку, которая работает на включение/выключение в зависимости от входного напряжения. Функция переключения выполняется электронным ключом или реле. К достоинствам данных приборов относят высокую скорость реакции и бесшумность работы. Минусы – низкая точность стабилизации и высокая стоимость. Чем больше ступеней, тем выше точность регулировки, тем дороже прибор.
Основные параметры выбора стабилизатора напряжения
Стабилизаторы напряжения выбирают по нескольким параметрам:
Мощность. Перед тем как выбрать оптимальный вариант стабилизатора для дома надо правильно рассчитать суммарную потенциальную мощность нагрузки. Полная мощность указана в техпаспорте и измеряется в вольт-амперах – ВА, VA. При расчете надо учитывать пусковые токи электродвигателей, сделать поправку на рост входного тока при пониженном напряжении. Не стоит нагружать прибор на все сто процентов, чтобы он прослужил в исправном состоянии долгое время.
Тип стабилизатора. По способу регулирования они бывают ступенчатые, симисторные, тиристорные и стабилизаторы плавного регулирования. Последние лучше выбирать при несущественных скачках напряжения. Чаще выбирают релейные и тиристорные аппараты, которые отличаются более качественными характеристиками и могут работать при резких перепадах напряжения в сети.
Точность стабилизации. Эта характеристика выбирается в зависимости с диапазоном допустимых напряжений, необходимых для работы оборудования. Более высокая точность у тиристорных вариантов. Она получается за счет большого числа ступеней, переключение на которые связано с кратковременным разрывом фазы.
Фаза. Для выбора фазы аппарата надо знать, к какой сети он будет подключен. Если сеть однофазная, то и стабилизатор должен быть однофазный. При наличии хотя бы одного трехфазного потребителя необходимо приобретать трехфазный стабилизатор напряжения. Преимущества трехфазного варианта – возможность работы этого устройства при исчезновении напряжения на одной из фаз.
По производителю. Аппараты делятся по этому параметру на российские, китайские, итальянские. У каждой группы есть как более качественные марки, так и менее качественные. Более выгодные в соотношении цена/качество – российские и китайские модели. Итальянские стабилизаторы отличаются высоким качеством, длительным сроком службы, но высокой стоимостью.
Как выбрать номинальную мощность стабилизатора напряжения
Выбирая номинальную мощность бытового стабилизатора, необходимо подсчитать полную мощность всех подключаемых к нему потребителей, которые могут работать одновременно. Она указывается в ВА при напряжении 220В. Снижение питающего напряжения ведет к уменьшению мощности прибора. Поэтому, рассчитывая полную мощность потребителей, надо умножить ее на 1,2 при 180В в сети и на 1,3 при 170В. Если стабилизатор будет использоваться длительное время, то коэффициент составит 1,25. Номинальная мощность прибора, указанная на маркировке, не должна быть меньше полной величины мощности при расчетах.
Как выбрать стабилизаторы напряжения для дома и дачи
Оптимальным вариантом прибора защиты от перебоев электропитания станет тот вариант, который обеспечит автоматическое поддержание установленного значения выходного напряжения (220В). Основными критериями выбора являются:
Наличие питающей сети. Для трехфазной сети лучшими решениями станут: один трехфазный стабилизатор напряжения 380 В, или три однофазных на 220В, по одному на каждую фазу.
Тип подключения. Важно определиться, что будет подключаться к стабилизатору – один прибор, или все электрооборудование в доме. Для небольшого дома или дачи подойдет однофазный прибор на 220В, подключаемый через бытовую розетку и рассчитанный на несколько потребителей. В большой загородный коттедж более подходящий вариант – мощный однофазный или трехфазный прибор, обеспечивающий комплексную защиту всей электросети.
Мощность. Как показывает опыт для современной дачи или загородного дома для самой основной техники следует рассматривать варианты моделей мощностью 5-6 кВт. Если необходим стабилизатор напряжения на весь загородный дом, то мощность его должна составлять не менее 15 кВт.
Диапазон входного напряжения. Более дешевые варианты стабилизаторов имеют небольшие границы входного напряжения. Они не всегда справляются с ситуацией, когда скачки напряжения в сети находятся в интервалах ниже 165В и выше 250В. Определить отклонения в электросети можно произведя замеры вольтмером через розетку. На основании выполненного тестирования можно определить нижние и верхние границы сетевых колебаний. Исходя из этого, можно подобрать стабилизатор, который справится с ними.
Точность стабилизации. Этот критерий должен соответствовать требованиям к качеству электричества, подключенных к нему электроприборов. Есть допустимые отклонения для некоторых категорий бытовой техники: для сложной электронной аппаратуры – от 1% до 3%; для осветительных приборов – 3%; для бытовой техники – от 5% до 7%. Если стабилизатор имеет точность стабилизации более 7%, то он не соответствует требованиям современного электрооборудования.
Стоимость. Цена стабилизатора зависит от его характеристик и сложности схемы. Самые дорогостоящие – симисторные и тиристорные стабилизаторы. Но их технические характеристики намного выше электромеханических и релейных вариантов.
Если стабилизатор необходим для работы такого оборудования как отопительный котел, то выбирать надо только электронный вариант (симисторный или тиристорный). Устройства другого типа не гарантируют стабильность работы газового или электрического котла.
Уровень шума при работе. Более шумные в работе – релейные и электромеханические приборы. Электронные приборы работают без шума.
Выбор стабилизатора. С чего начать выбор стабилизатора? Особенности выбора и другие вопросы.
Выбор стабилизатора. С чего начать выбор стабилизатора? Особенности выбора и другие вопросы.
Итак, пришло время купить стабилизатор напряжения. «Скачки» напряжения уже достали, техника выходит из строя, как выбрать стабилизатор? С чего начать? Как показывает опыт специалистов магазина Электрокапризам-НЕТ! обыватели, впервые столкнувшиеся с вопросом выбора стабилизатора напряжения, решают купить стабилизатор напряжения для техники, которая “барахлит” от нестабильного напряжения. Такой выбор имеет место быть, и этот метод защиты бытовой техники называется индивидуальным. Второй метод защиты с применением стабилизатора напряжения называется групповым. Групповой метод защиты может быть реализован как на весь дом, так и на выбранную группу потребителей, например: первый этаж дома, котельная или группа критических потребителей (насос, газовый котел, розетки для бытовой техники и др. варианты).
Выбор стабилизатора напряжения для этих двух методов различаются. Для индивидуального метода защиты выбор стабилизатора напряжения проще и сводится к оценке паспортной мощности бытового прибора, а если прибор имеет пусковые токи то это учитывается при расчете для выбора мощности стабилизатора напряжения. При втором методе защиты расчеты можно как сильно усложнить, так и максимально упростить. Многие хозяева вооружаются блокнотом и ручкой и считают всю нагрузку в доме, изучают паспортные данные на оборудование и выискивают, сколько же каждый прибор потребляет. Затем суммируют все эти значения и получают внушительную цифру потребляемой мощности. Упростить эту задачу можно практическим и проверенным способом: заглянуть в вводной щиток, найти там вводной автоматический выключатель и узнать какого номинала этот выключатель. Например, вводной автоматический выключатель однофазный с током 25А (аббревиатура С25) – соответствует мощности 5,5 кВт (220Вх25А=5500Вт). В данном случае вопрос выбора стабилизатора напряжения по мощности очевиден, а мы рекомендуем выбрать стабилизатор напряжения на одну модель мощнее, т.е. 7 кВт – запас по мощности очень даже пригодится.
Стоит ли учитывать пусковые токи при выборе стабилизатора напряжения? Как влияют пусковые токи на стабилизатор напряжения?
Пусковой ток возникает в основном в насосном и компрессорном оборудовании (скважинный насос, холодильник, кондиционер, фен). Пусковой ток возникает в момент включения и длится, как правило, до 2 сек. При выборе стабилизатора напряжения для индивидуального метода защиты, например для насоса с мощностью 1 кВт, необходимо точно знать какой у него пусковой ток т.к. пусковой ток может достигать 3-5 кВт. Практически все стабилизаторы напряжения производятся с запасом для работы с пусковыми токами. Пределы кратковременной перегрузки стабилизаторов достигают 150% от максимальной мощности. Учитывая это, теоретически, для насоса номинальной мощностью 1 кВт и пусковым током соответствующим мощности 3 кВт может подойти стабилизатор напряжения мощностью 2 кВт. Желательно выбирать мощность стабилизатора превышающее теоретически рассчитанную не менее чем на 25%. Пусковой ток можно и снизить, как понизить пусковой ток электродвигателей можно узнать из нашей статьи в рубрике полезная информация.
Что еще необходимо учесть при выборе стабилизатора?
Важным является место установки стабилизатора напряжения. Например, не рекомендуется устанавливать стабилизатор напряжения в сарае с курочками :-)). Стабилизатор напряжения согласно паспортным данным должен эксплуатироваться в строгом соответствии с климатическими условиями: влажность и температура окружающей среды. Обычно стабилизаторы напряжения производятся для эксплуатации в помещениях с температурой в диапазоне 0-40 град.Цельсия и влажностью не более 80%.
Узнайте характеристики подводящего кабеля к стабилизатору напряжения. Необходимо учесть, что при падении напряжения в сети – стабилизатор напряжения из внешней сети будет больше потреблять тока. Если сечение вводного кабеля будет меньше необходимого – он может сильно нагреться и даже воспламениться. Стабилизаторы напряжения также могут быть однофазными и трехфазными. Практически можно однофазные использовать в трехфазных сетях, установив по стабилизатору на каждую фазу, но иногда бывают ситуации когда нужно установить только трехфазный. Поэтому перед тем как купить однофазный стабилизатор напряжения желательно проконсультироваться со специалистами и задать им как можно больше вопросов.
Как правильно выбрать регулятор (ы) напряжения для вашей конструкции
В этой статье показано, как выбрать лучший тип стабилизатора напряжения для вашего конкретного электронного продукта.
Вероятно, более 90% продукции требуют регулятора напряжения того или иного типа, что делает их одними из наиболее часто используемых электрических компонентов.
Если у вас нет возможности работать напрямую от напряжения батареи или внешнего адаптера постоянного / переменного тока, требуется стабилизатор напряжения.Скорее всего, потребуется несколько регуляторов напряжения.
Эта статья – ваше руководство по выбору регулятора (ов) напряжения для вашей конструкции. Мы расскажем обо всем, от определения того, какой тип регулятора напряжения вам нужен, до выбора того, который соответствует вашим конкретным требованиям.
Выбор необходимого регулятора
Первым шагом в выборе правильного регулятора напряжения является определение входного напряжения, выходного напряжения и максимального тока нагрузки.
Хотя существует множество других спецификаций, эти три помогут вам начать работу и помогут сузить круг необходимого вам регулятора.
Регуляторы напряженияможно разделить на две широкие классификации:
- Понижающий : Выходное напряжение ниже входного
- Повышающий : Выходное напряжение больше входного
Знание входного и выходного напряжения поможет вам легко решить, к какой группе относится ваш регулятор.
Регуляторы напряжения, которым требуется выходное напряжение меньше входного, являются наиболее распространенным типом регуляторов напряжения. Например, вы вводите 5 В и выдает 3,3 В, или вы вводите 12 В и выдает 5 В.
Вам необходимо рассмотреть два типа регуляторов:
- Линейные регуляторы : простые, дешевые и бесшумные, но могут иметь низкую энергоэффективность. Линейные регуляторы способны только понижать напряжение.
- Импульсные регуляторы : Высокая энергоэффективность, но более сложная и дорогая, и с большим шумом на выходе.Импульсные регуляторы могут использоваться как для понижения, так и для повышения напряжения.
Если вам требуется выходное напряжение ниже входного, начните с линейного регулятора, а не импульсного регулятора.
Рисунок 1. Линейный регулятор использует транзистор и контур управления с обратной связью для регулирования выходного напряжения. Линейный регулятор может производить только выходное напряжение ниже входного.
Линейные регуляторынамного дешевле и проще в использовании, чем импульсные регуляторы, поэтому они, как правило, должны быть вашим первым выбором.
Единственный случай, когда вы не хотите использовать линейный стабилизатор, – это если рассеиваемая мощность слишком велика или вам нужно повысить напряжение.
Определение рассеиваемой мощности
Хотя линейные регуляторы дешевы и просты в использовании, основным недостатком является то, что они могут тратить много энергии. Это может вызвать чрезмерный разряд батареи, перегрев или повреждение продукта.
Если у вас есть аккумулятор, мощность которого расходуется на тепло, аккумулятор разряжается быстрее.Если это не аккумулятор, но он по-прежнему выделяет значительное количество тепла, это может вызвать другие проблемы с вашей конструкцией.
Фактически, при определенных условиях линейный регулятор может выделять столько тепла, что фактически разрушает себя. Очевидно, вы этого не хотите.
При использовании линейного регулятора начните с определения того, сколько мощности будет рассеиваться регулятором.
Для линейных регуляторов используйте уравнение:
Мощность = (Входное напряжение – Выходное напряжение) x Ток (Уравнение 1)
Можно предположить, что выходной ток (также называемый током нагрузки) примерно такой же, как входной ток для линейных регуляторов.
На самом деле, входной ток равен выходному току плюс ток покоя, который потребляет линейный регулятор для выполнения функции регулирования.
Однако для большинства регуляторов ток покоя чрезвычайно мал по сравнению с током нагрузки, поэтому достаточно предположить, что выходной ток равен входному току.
Как видно из уравнения 1, если у вас большой перепад напряжения (Vin – Vout) на регуляторе и / или большой ток нагрузки, то ваш регулятор будет рассеивать большое количество энергии.
Например, если на входе 12 В, а на выходе 3,3 В, разность напряжений будет рассчитана как 12 В – 3,3 В = 8,7 В.
Если ток нагрузки составляет 1 ампер, это означает, что регулятор должен рассеивать 8,7 Вт мощности. Это огромная потеря мощности, с которой не справится любой линейный регулятор.
Если, с другой стороны, у вас высокий перепад напряжения, но вы используете ток нагрузки всего в несколько миллиампер, тогда мощность будет небольшой.
Например, в приведенном выше случае, если вы сейчас используете ток нагрузки только 100 мА, рассеиваемая мощность упадет до 0,87 Вт, что гораздо более приемлемо для большинства линейных регуляторов.
При выборе линейного регулятора недостаточно просто убедиться, что входное напряжение, выходное напряжение и ток нагрузки соответствуют спецификациям регулятора.
Например, у вас есть линейный регулятор, рассчитанный на 15 В и ток 1 А. Вы думаете: «Хорошо, если это так, я могу подать на вход 12 В, взять 3.3 В на выходе и запустить его при 1 А, не так ли? ”
Неправильно! Вы должны убедиться, что линейный регулятор может выдерживать даже такое количество мощности. Способ сделать это – определить, насколько нагревается регулятор, в зависимости от мощности, которую он должен рассеять.
Для этого сначала рассчитайте, сколько мощности будет рассеивать линейный регулятор, используя уравнение 1 выше.
Во-вторых, посмотрите в таблице данных регулятора в разделе «тепловые характеристики» параметр под названием «Theta-JA», выраженный в единицах ° C / Вт (° C на ватт).
Theta-JA указывает на количество градусов, на которое микросхема будет нагреваться выше температуры окружающего воздуха, на каждый ватт мощности, которую он должен рассеять.
Просто умножьте расчетную рассеиваемую мощность на Theta-JA, и вы узнаете, насколько сильно линейный регулятор будет нагреваться при такой мощности:
Мощность x Theta-JA = Температура выше окружающей (Уравнение 2)
Допустим, ваш регулятор соответствует спецификации Theta-JA 50 ° C на ватт.Это означает, что если ваш продукт рассеивает:
- 1 ватт, он нагреется до 50 ° C.
- 2 Вт нагреется до 100 ° С.
- ½ ватта нагревается до 25 ° C.
Важно отметить, что рассчитанная выше температура представляет собой разницу температур выше температуры окружающего воздуха.
Допустим, вы подсчитали, что при ваших условиях питания регулятор будет рассеивать 2 Вт мощности. Вы умножаете это на Theta-JA, и вы определяете, что он нагреется до 100 ° C.
Здесь важно не забыть добавить температуру окружающего воздуха. Комнатная температура обычно составляет 25 ° C. Следовательно, вы должны добавить 25 ° C к 100 ° C. Теперь у вас температура 125 ° C.
125 ° C – это максимальная температура, на которую рассчитано большинство электронных компонентов, поэтому вы никогда не захотите намеренно превышать 125 ° C.
Обычно вы не повредите свой продукт, пока не достигнете температуры примерно от 170 ° C до 200 ° C. К счастью, у большинства регуляторов также есть тепловое отключение, которое срабатывает при температуре около 150 ° C, поэтому они отключатся до того, как вызовут какие-либо повреждения.
Однако некоторые регуляторы не имеют теплового отключения, поэтому вы можете повредить их, если они рассеивают слишком много энергии.
В любом случае, вы не хотите, чтобы ваш продукт постоянно перегревался и ему приходилось отключаться, чтобы остыть.
Также следует учитывать, что температура воздуха не всегда может быть 25 ° C.
Допустим, ваш регулятор все еще нагревается до 100 ° C под нагрузкой, но теперь температура окружающей среды составляет 50 ° C (например, в закрытой машине в жаркий летний день).
Теперь у вас 50 ° C плюс 100 ° C и температура до 150 ° C при загрузке. Вы превысили указанную максимальную температуру и находитесь на грани срабатывания теплового отключения.
Очевидно, этого следует избегать. Эксплуатация регулятора таким образом, чтобы он регулярно превышал заданную температуру 125 ° C, может не вызвать немедленного повреждения, но может сократить срок службы компонента.
Регуляторы с малым падением напряжения (LDO)
В некоторых случаях линейные регуляторы могут быть чрезвычайно эффективными, потребляя очень мало энергии.Это происходит, когда они работают с очень низким входным напряжением к выходному напряжению.
Например, если Vin – Vout составляет всего 300 мВ, то даже при токе нагрузки 3 А рассеиваемая мощность составляет всего 0,9 Вт, что является достаточно низкой мощностью, чтобы выдерживать нагрузку большинством регуляторов.
Минимальный дифференциал Vin-Vout, с которым может работать линейный регулятор, называется падением напряжения. Если разница между Vin и Vout падает ниже напряжения отключения, то регулятор находится в режиме отключения.
Регулятор в режиме отпускания просто выглядит как небольшой резистор от входа к выходу. Это означает, что выход, по сути, просто соответствует входному питанию, и на самом деле никакое регулирование не выполняется.
В большинстве случаев вы не хотите использовать линейный регулятор в режиме отключения. Это никоим образом не повредит чему-либо, но вы потеряете многие преимущества регулятора.
Например, если у вас много шума на входе, он обычно будет отфильтрован линейным регулятором.Однако эта фильтрация не будет происходить в режиме отключения, поэтому весь шум входного источника питания проходит прямо через выходное напряжение.
Причина, по которой стабилизаторы с малым падением напряжения так полезны, заключается в том, что они позволяют управлять регулятором с очень малой рассеиваемой мощностью. Это связано с тем, что линейный регулятор наиболее эффективен, когда разница между Vin и Vout небольшая.
Многие старые линейные регуляторы имели очень высокое падение напряжения. Например, популярные стабилизаторы серии 7800 имеют паспортное напряжение 2 В.Это означает, что входное напряжение должно быть как минимум на 2 В выше выходного напряжения.
Рисунок 2 – Старые трехконтактные линейные регуляторы требуют большего перепада напряжения Vin-Vout и, следовательно, расходуют больше энергии, чем более новые регуляторы LDO.
Хотя 2 В – это не слишком много, если вы пропускаете через этот регулятор ток в 1 ампер и у вас есть разница в 2 В, то это 2 ватта мощности, теряемой зря.
Регуляторы LDO нового поколения могут иметь очень низкое падение напряжения менее 200 мВ при полной нагрузке.
LDO, работающий только с перепадом напряжения 200 мВ, может пропускать в 10 раз больше тока при той же рассеиваемой мощности, что и линейный стабилизатор, работающий с перепадом напряжения 2 В. Таким образом, 1 ампер тока с дифференциалом Vin-Vout 200 мВ соответствует лишь 0,2 Вт рассеиваемой мощности.
Краткое описание линейных регуляторов
Линейные регуляторы полезны, если:
- Разница между входным и выходным напряжением мала
- У вас низкий ток нагрузки
- Требуется исключительно чистое выходное напряжение
- Вы должны сделать дизайн максимально простым и дешевым
Как мы обсудим дальше, импульсные стабилизаторы создают много шума на выходе и могут создавать нечеткое выходное напряжение.
Это может быть приемлемо для некоторых приложений, но во многих случаях требуется очень чистое напряжение питания. Например, при генерации напряжения питания для аналого-цифрового преобразователя или какой-либо звуковой схемы.
Таким образом, линейные регуляторы не только проще в использовании, но и обеспечивают гораздо более чистое выходное напряжение по сравнению с импульсными регуляторами, без пульсаций, всплесков или шума любого типа.
Таким образом, если рассеиваемая мощность не слишком велика или вам не требуется повышающий регулятор, линейный регулятор будет вашим лучшим вариантом.
Импульсные регуляторы
Импульсные регуляторы намного сложнее для понимания, чем линейные регуляторы. Линейный регулятор основан на силовом транзисторе, который регулирует величину тока, разрешенного для подачи на выход.
ПРИМЕЧАНИЕ: Обязательно загрузите бесплатное руководство в формате PDF 15 шагов для разработки нового электронного оборудования .
Если система управления линейного регулятора определяет, что выходное напряжение ниже, чем должно быть, то от входа к выходу может проходить больший ток.И наоборот, если обнаруживается, что выходное напряжение выше, чем должно быть, регулятор позволит меньшему току течь от входа к выходу, действуя таким образом, чтобы снизить выходное напряжение.
С другой стороны, импульсные регуляторы используют катушки индуктивности и конденсаторы для временного хранения энергии перед передачей ее на выход.
В этом уроке я проектирую печатную плату, используя простой линейный регулятор, а в этом более глубоком курсе я проектирую индивидуальную плату, используя более сложный импульсный стабилизатор.
Существует два основных типа импульсных регуляторов: повышающий и понижающий.
Понижающий импульсный стабилизатор также называется понижающим стабилизатором и, как линейный регулятор, выдает выходное напряжение ниже входного.
Рис. 3. Понижающий импульсный стабилизатор использует катушку индуктивности в качестве временного накопителя энергии для эффективного создания выходного напряжения ниже входного.
Если вы начали планировать использование линейного регулятора (понижающего), но определили, что рассеиваемая мощность слишком велика, тогда вам следует использовать понижающий импульсный стабилизатор.
В то время как повышающий импульсный стабилизатор создает выходное напряжение, превышающее входное, и называется повышающим регулятором.
Импульсные регуляторыобладают высокой эффективностью даже при очень больших перепадах между входом и выходом.
КПД равен выходной мощности, деленной на входную. Это соотношение того, какая часть мощности от входа поступает на выход.
КПД = Pout / Pin = (Vout x Iout) / (Vin x Iin) (Уравнение 3)
Уравнение эффективности то же самое для линейного регулятора.Однако, поскольку выходной ток равен входному току для линейного регулятора, уравнение 3 упрощается до простого:
КПД (линейный регулятор) = Vout / Vin (уравнение 4)
Например, предположим, что у вас на входе 24 В, а на выходе необходимо 3 В при токе нагрузки 1 А. Если бы это был линейный регулятор, он работал бы с чрезвычайно низким КПД, и почти вся мощность рассеивалась бы в виде тепла.
КПД линейного регулятора будет только 3 В / 24 В = 12.5%. Это означает, что только 12,5% мощности от входа поступает на выход. Остальные 87,5% передаваемой мощности теряются в виде тепла!
С другой стороны, импульсные регуляторы обычно имеют КПД 90% или больше независимо от разницы между входным и выходным напряжениями. Для импульсного регулятора около 90% мощности передается на выход и только 10% тратится впустую.
Только когда Vin и Vout близки друг к другу, линейный регулятор может сравниться по эффективности с импульсным регулятором.
Например, если у вас входное напряжение 3,6 В (напряжение литий-полимерной батареи), а на выходе выдается 3,3 В, то линейный регулятор будет иметь КПД 3,3 В / 3,6 В = 91,7%.
Повышающие регуляторы напряжения
В большинстве случаев выходное напряжение будет ниже входного. В этом случае следует использовать линейный регулятор или понижающий импульсный стабилизатор, как обсуждалось.
Однако есть и другие случаи, когда вам может потребоваться выходное напряжение выше входного.Например, если у вас аккумулятор 3,6 В и вам нужно питание 5 В.
Рис. 4. В повышающем импульсном стабилизаторе в качестве временного накопительного элемента используется индуктор для эффективного создания выходного напряжения, превышающего входное.
Многие новички в электронике удивляются, узнав, что можно генерировать более высокое напряжение из более низкого напряжения. Для выполнения этой функции необходим импульсный регулятор, называемый повышающим регулятором.
В отличие от линейных регуляторов выходной ток импульсного регулятора не равен входному току. Вместо этого вы должны смотреть на входную мощность, выходную мощность и эффективность.
Рассчитаем входной ток для повышающего регулятора. Предположим, что входное напряжение – 3 В, выходное напряжение – 5 В, выходной ток – 1 А, а энергоэффективность – 90% (как указано в таблице данных).
Чтобы выяснить это, нам нужно использовать небольшую базовую алгебру для уравнения 3, чтобы найти входную мощность:
Pin = Pout / КПД (Уравнение 5)
Мы знаем, что эффективность составляет 90% (или 0.90), и мы знаем, что выходная мощность составляет 5 В x 1 А = 5 Вт. Мы можем рассчитать, что входная мощность составляет 5 Вт / 0,9 = 5,56 Вт.
Поскольку входная мощность составляет 5,56 Вт, а выходная мощность 5 Вт, это означает, что регулятор рассеивает только 0,56 Вт.
Далее, поскольку мы знаем, что мощность равна напряжению, умноженному на ток, это означает, что входной ток равен:
Входной ток = 5,56 Вт / Vin = 5,56 Вт / 3 В = 1,85 A (Уравнение 6)
Для повышающего регулятора входной ток всегда будет выше, чем выходной ток.С другой стороны, входной ток понижающего регулятора всегда будет меньше выходного тока.
Понижающие регуляторы
Допустим, вы получаете питание от двух последовательно соединенных батареек AA. При полной зарядке две батареи AA могут выдавать около 3,2 В, но когда они почти полностью разряжены, они выдают только 2,4 В.
В этом случае напряжение вашего источника питания может находиться в диапазоне от 2,4 В до 3,2 В.
Теперь предположим, что вам нужно выходное напряжение ровно 3 В независимо от состояния батарей.Когда батареи полностью заряжены (выходное напряжение 3,2 В), вам необходимо понизить напряжение батареи с 3,2 В до 3 В.
Однако, когда батареи близки к разряду (выходное напряжение 2,4 В), вам необходимо увеличить напряжение батареи с 2,4 В до 3 В.
В этом сценарии вы должны использовать так называемый повышающий-понижающий импульсный стабилизатор, который представляет собой просто комбинацию повышающего и понижающего регуляторов.
Для решения этой проблемы потенциально можно использовать отдельный понижающий регулятор, за которым следует повышающий регулятор (или наоборот).Но обычно лучше использовать одинарный понижающе-повышающий регулятор.
Импульсный регулятор + линейные регуляторы
Помните о трех преимуществах линейных регуляторов: дешевизне, простоте и чистоте выходного напряжения.
Может быть много случаев, когда вы хотите использовать линейный стабилизатор, потому что вам нужно чистое выходное напряжение, но вы не можете, потому что они тратят слишком много энергии.
В этой ситуации вы можете использовать импульсный регулятор, за которым следует линейный регулятор.
Допустим, у вас есть входное напряжение от литий-полимерной батареи, равное 3.6 В, но вам понадобится источник clean 5 В.
Для этого вы должны использовать повышающий стабилизатор, чтобы поднять напряжение до значения чуть выше целевого выходного напряжения. Например, вы можете использовать повышающий регулятор для повышения напряжения с 3,6 В до 5,5 В.
Затем вы следуете этому с помощью линейного регулятора, который берет 5,5 В и понижает его до 5 В, а также убирает шум и пульсации для получения чистого сигнала.
Это очень распространенный метод получения КПД импульсного регулятора и бесшумного выходного напряжения линейного регулятора.
Если вы выбрали эту опцию и специально пытаетесь отфильтровать коммутационные шумы, обязательно обратите внимание на коэффициент отклонения источника питания (PSRR) линейного регулятора.
PSSR данного линейного регулятора изменяется в зависимости от частоты. Следовательно, PSSR обычно представляется в виде графика, который показывает, как линейный регулятор подавляет любые пульсации на входном питании на различных частотах.
Рисунок 5 – Коэффициент подавления помех от источника питания (PSRR) в зависимости от частоты для TPS799 от Texas Instruments.
Чтобы использовать этот график, посмотрите на частоту переключения вашего импульсного стабилизатора (или любых других источников шума в вашей цепи). Затем посмотрите на PSSR линейного регулятора на этой конкретной частоте.
Затем вы можете рассчитать, какая часть шума импульсного регулятора будет удалена линейным регулятором.
Сводка
Чтобы выбрать регулятор напряжения для вашей системы, начните с предположения, что линейный регулятор может использоваться, если входное напряжение выше, чем выходное.
Только если при этом расходуется слишком много энергии, используйте понижающий импульсный стабилизатор.
Если вам нужно выходное напряжение выше, чем входное, используйте импульсный импульсный стабилизатор.
Если у вас есть ситуация, когда входное напряжение может быть выше или ниже выходного напряжения, вам нужен импульсный импульсный стабилизатор.
Наконец, если вам нужен чистый выходной сигнал, но требуется энергоэффективность импульсного регулятора, то используйте импульсный регулятор, а затем линейный регулятор для очистки напряжения питания.
Наконец, не забудьте загрузить бесплатно PDF : Ultimate Guide to Develop and Sell Your New Electronic Hardware Product . Вы также будете получать мой еженедельный информационный бюллетень, в котором я делюсь премиальным контентом, недоступным в моем блоге.Другой контент, который может вам понравиться:
4.8 5 голоса
Рейтинг статьи
Назад к основам: выбор идеального регулятора
Регулятор напряжения выполняет две функции: изменение входного напряжения на другой уровень на выходе и регулирование (поддержание постоянного выходного напряжения, несмотря на изменение условий нагрузки).Регуляторы постоянного / постоянного тока являются ключевым компонентом любой энергосистемы, поэтому выбор правильного регулятора имеет решающее значение для разработки оптимального решения.
Хотя инженеры понимают функции регулятора, менее опытным инженерам часто бывает трудно выбрать лучший регулятор для своего применения. В этом сообщении в блоге определены критерии, которые может использовать любой, кто не является опытным разработчиком электроэнергии, чтобы выбрать идеальный регулятор.
Понижающий, повышающий или понижающий-повышающий регулятор?
Есть три основных категории:
- Buck – регуляторы с выходным напряжением ниже, чем на входе
- Boost – регуляторы с выходным напряжением выше, чем на входе
- Понижающий-повышающий – регуляторы, которые могут обеспечивать выходное напряжение, которое выше, ниже или такое же, как входное
В большинстве приложений напряжение понижается от шины к нагрузке, поэтому обычно используются понижающие стабилизаторы.Другие приложения требуют увеличения напряжения с помощью повышающего регулятора: например, если мощность постоянного тока должна передаваться по длинному кабелю, потери I 2 R могут быть уменьшены путем повышения напряжения перед передачей, а затем его повторного понижения на Загрузка. В аккумуляторных батареях пониженно-повышающие регуляторы часто используются для обеспечения постоянного стабильного напряжения, преодолевая изменение выходного напряжения, которое проявляется как зарядка и разрядка аккумуляторов.
Номинальные входы и выходы
Многие системы предъявляют четкие требования к входному и выходному напряжению – например, вам может потребоваться понизить шину 12 В до 3.3В. Для многих приложений в наличии будет подходящий регулятор, отвечающий требованиям к напряжению.
Очевидно, что регулятор должен обеспечивать мощность, требуемую нагрузкой. Мощность регулятора обычно определяется максимальным выходным током.
Диапазоны ввода и вывода
Хотя приложениям часто требуется определенное напряжение, для других требуется регулируемый выход. Это может быть связано с изменением нагрузки – например, в части испытательного оборудования – или может быть, что нагрузка питается по длинному кабелю, и напряжение необходимо подрезать немного выше, чем требуется нагрузке, чтобы компенсировать падение напряжения на кабеле.
Диапазоны входного напряжения особенно важны для таких приложений, как системы с батарейным питанием. В автомобильном применении аккумулятор с номинальным напряжением 12 В может выдавать 12,5 В при полной зарядке и падать до 10 В или меньше по мере разрядки аккумулятора. Регулятор с узким входным диапазоном может больше не работать при падении напряжения батареи, а это означает, что полная емкость батареи не может быть использована. Поэтому обеспечение достаточно широкого диапазона входных сигналов является важным критерием при выборе регулятора.
Выбор регуляторов с широким входом также имеет еще одно преимущество: они также могут снизить затраты на складские запасы, поскольку один регулятор может использоваться в различных ситуациях.
Эффективность
КПД – один из критериев для большинства проектируемых сегодня энергосистем. Выбор регулятора с высокими потерями мощности может сделать практически невозможным достижение целей эффективности. Также важно помнить, что эффективность регулятора непостоянна: обычно эффективность регулятора резко падает по мере увеличения коэффициента понижения или повышения и уменьшения тока, потребляемого на выходе.
Современные регуляторы, например, на основе топологии переключения при нулевом напряжении (ZVS) от Vicor, по своей сути обладают высокой эффективностью и более стабильны во всем рабочем диапазоне.
Шум
Импульсные регуляторы обеспечивают высокий КПД, но схема переключения генерирует шум. В некоторых системах, особенно с чувствительными аналоговыми компонентами, шум источника питания может ограничивать общую производительность. Излишний электронный шум также может затруднить получение сертификата ЭМС.
Как и в случае с эффективностью, топология регулятора является ключом к достижению низкого уровня шума: гораздо проще использовать компонент, который не генерирует шум, чем пытаться отфильтровать этот шум. ZVS, например, представляет собой топологию с мягким переключением, которая по своей сути является малошумной, что упрощает разработку высокопроизводительных систем.
Размер и упаковка
Сегодня электронные системы часто имеют ограниченное пространство. Даже если цель не состоит в том, чтобы сделать систему настолько маленькой, насколько это возможно, например, продукты, размещенные в стандартизированных 19-дюймовых стойках, уменьшение размера системы питания позволяет использовать сэкономленное пространство для добавления дополнительных функций.
При любом расчете размера следует также учитывать периферийные компоненты, необходимые для регулятора. За счет более высокого уровня интеграции и высокой частоты переключения размер и количество периферийных компонентов могут быть уменьшены, что потенциально может обеспечить большую экономию места, чем простой выбор регулятора в меньшем корпусе.
Доступные типы пакетов не только определяют необходимое пространство: часто пакеты меньшего размера могут быть расположены ближе к нагрузке, что обеспечивает более точное регулирование нагрузки и более быструю реакцию на переходные процессы.
Помимо размера, важным фактором может быть вес, особенно в тех случаях, когда оборудование может перемещаться. Примеры таких систем варьируются от переносного портативного оборудования до автомобильной электроники и дронов.
Рабочая температура и тепловые характеристики
Регуляторыне могут быть эффективными на 100%, поэтому они всегда будут рассеивать тепло, которое необходимо отводить. Если требуется радиатор, это может значительно увеличить как размер, так и вес системы питания.Неспособность рассеять тепло также может повлиять на производительность системы и другими способами: например, в системах освещения или отображения, если регулятор вызывает повышение температуры светодиодов, это снизит интенсивность и изменит длину волны и, следовательно, оттенок светодиода. генерируемый свет.
Регулятор должен надежно работать во всем диапазоне температур, которым он может подвергаться. В целом, более эффективные регуляторы смогут работать при более высоких температурах, поскольку им не нужно рассеивать столько тепла, но продукты от разных поставщиков могут сильно различаться, поэтому важно проверять технические характеристики.
Дополнительные возможности
В дополнение к критериям, описанным выше, вашему приложению может потребоваться определенная функциональность, которая может ограничить выбор. Примеры этих дополнительных функций:
- Возможность параллельного подключения: если регуляторы могут быть подключены параллельно, то могут быть получены более высокие выходные токи. Не все регуляторы могут иметь параллельные выходы, поскольку во многих топологиях это вызовет нестабильность.
- Постоянный выходной ток: в аккумуляторных батареях требуется постоянное напряжение для питания нагрузки, но для зарядки требуется постоянный ток.Некоторые регуляторы предлагают выходы, которые можно настроить как на постоянный ток, так и на постоянное напряжение, что делает их идеальными для этих систем.
- Плавный запуск: возможность медленного увеличения напряжения помогает обеспечить стабильность системы питания, даже когда к выходу регулятора подключена большая емкость.
- Защита от перенапряжения: регуляторы, которые имеют защиту, гарантирующую, что они не могут выдавать напряжение, превышающее заданное выходное напряжение, гарантируют, что нагрузка не будет повреждена даже во время неисправности.Другая схема защиты может отключить регулятор, если входное напряжение выходит за пределы допустимого диапазона.
- Переходный отклик: некоторые нагрузки быстро изменяют требуемый им ток. Быстрый переходный отклик гарантирует, что регулятор может выдавать необходимую мощность без больших выходных конденсаторов для хранения энергии.
Заключение
Хотя регуляторы концептуально являются простыми компонентами – они принимают напряжение на входе и подают другое напряжение на выходе – существует множество факторов, которые определяют лучший регулятор для вашего приложения.Тщательное рассмотрение критериев, изложенных выше, поможет выбрать идеальный регулятор для вашей системы.
Типы регуляторов напряженияи принцип работы | Статья
.СТАТЬЯ
Получайте ценные ресурсы прямо на свой почтовый ящик – рассылается раз в месяц
Мы ценим вашу конфиденциальность
Как работает регулятор напряжения?
Стабилизатор напряжения – это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.
Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.
Типы регуляторов напряжения: линейные и импульсные
Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.
Линейные регуляторы
В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.
Линейные регуляторы – это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.
Линейным регуляторам, таким как MP2018, для работы требуются только входной и выходной конденсаторы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.
Рисунок 1: Линейный регулятор MP2018
Импульсные регуляторы
Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.
Импульсные регуляторымогут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.
Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .
Рисунок 2: Импульсный регулятор HF920
Ограничения регуляторов напряжения
Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.
Важно учитывать расчетную рассеиваемую мощность линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к высокому рассеянию мощности, которое может привести к перегреву и повреждению компонентов.
Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.
Импульсные регуляторыочень эффективны, но некоторые недостатки включают то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.
Топологии импульсного регулятора: понижающий, повышающий, линейный, LDO и регулируемый
Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и понижающие-повышающие преобразователи. Каждая топология описана ниже:
Регуляторы LDO
Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.
Понижающие и повышающие преобразователи
Понижающие преобразователи(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.
Пониженно-повышающие преобразователи
Понижающий-повышающий преобразователь – это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.
Управление регулятором напряжения
Четыре основных компонента линейного регулятора – это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи резистора. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход – это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).
Для работы линейных регуляторовобычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.
С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному стабилизатору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из сети обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.
Применение линейного регулятора и импульсного регулятора
Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.
Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно так беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.
Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создавать большое рассеивание мощности, которое может повредить другие электрические компоненты.
Рисунок 3: Понижающий регулятор MPQ4430-AEC1
Каковы основные параметры микросхемы регулятора напряжения?
Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, – это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.
Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.
Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.
Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.
Напряжение обратной связи – еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.
Как правильно выбрать регулятор напряжения
Чтобы выбрать правильный регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например,грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.
После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска – ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для соответствия требуемым параметрам для вашего приложения.
Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.
MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.
Список литературы
Глоссарий по электронной инженерии
_________________________Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик – рассылайте их раз в месяц!
Получить техническую поддержку
Как мне найти подходящий регулятор напряжения?
Введение
Стабилизатор напряжения – это схема, которая генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений входного напряжения или условий нагрузки.Он преобразует нестабильное постоянное напряжение в стабильное постоянное напряжение. Его источник питания, состоящий из дискретных компонентов, имеет преимущества большой выходной мощности и широкой адаптируемости. В последние годы широкое распространение получили интегрированные регулируемые источники питания. Среди них трехконтактные регуляторы серии наиболее распространены для маломощных регулируемых источников питания. Обычно используемые встроенные регуляторы напряжения в схеме в основном включают серии 78xx, серии 79xx, регулируемый интегрированный регулятор напряжения, прецизионный интегрированный регулятор напряжения опорного напряжения и т. Д.
Что такое регулятор напряжения и как он работает?
Каталог
Ⅰ Классификация регуляторов напряжения
Регуляторы напряжения обычно делятся на линейные регуляторы напряжения и импульсные регуляторы напряжения. Линейный регулятор напряжения – это схема, используемая для поддержания постоянного напряжения, которая подразделяется на тип с низким падением напряжения и тип с общим падением напряжения. Импульсный регулятор напряжения – это тип схемы импульсного источника питания, которая предназначена для эффективного снижения постоянного напряжения с более высокого напряжения до более низкого, которое делится на понижающий тип, повышающий тип и интегрированный тип с противоположным входом и выходом. полярность.
В зависимости от количества выходных клемм и использования регулятора напряжения его можно условно разделить на трехконтактный фиксированный тип, трехконтактный регулируемый тип, многополюсный регулируемый тип и однокристальный переключатель.
Трехконтактный стабилизатор напряжения фиксированного типа объединяет в микросхеме резисторы выборки, компенсационные конденсаторы, схемы защиты, регулирующие трубки большой мощности и т. Д. Так что весь блок интегральной схемы имеет всего 3 вывода: входной, выходной и общий.Очень удобно пользоваться. Его недостаток состоит в том, что выходное напряжение фиксировано, поэтому необходимо производить серию продуктов с различными характеристиками выходного напряжения и тока для соответствия.
Трехконтактному регулируемому встроенному стабилизатору напряжения требуется только два внешних резистора для получения различных выходных напряжений.
Многополюсный регулируемый регулятор – это ранний интегрированный стабилизатор напряжения. При небольшой выходной мощности и большом количестве выводов его неудобно использовать, но зато высокая точность и низкая цена.
Монолитный интегрированный регулируемый источник питания коммутаторного типа развивается в последние годы, и его эффективность особенно высока. Его принцип работы отличается от вышеупомянутых трех типов. Это преобразователь, который преобразует постоянный ток в переменный (высокая частота), а затем в постоянный. Обычно существует два типа широтно-импульсной модуляции и частотно-импульсной модуляции, а выходное напряжение регулируется.
Ⅱ Основные параметры
1) Коэффициент стабилизации напряжения
Это важный показатель, характеризующий характеристики регулирования напряжения встроенного регулятора напряжения, также известный как коэффициент стабилизации напряжения или стабильность.Он показывает, насколько стабильно выходное напряжение V0 регулятора при изменении входного напряжения V1.
2) Коэффициент стабилизации тока
Он также известен как коэффициент стабильности тока и показывает способность регулятора подавлять колебания выходного напряжения, вызванные изменениями тока нагрузки (выходного тока), когда входное напряжение остается неизменным.
3) Коэффициент подавления пульсаций
Отражает способность регулятора подавлять пульсации напряжения сети, подаваемые на входе.
4) Температурный коэффициент выходного напряжения
Он также известен как скорость изменения температуры выходного напряжения и означает, что когда входное напряжение и выходной ток (ток нагрузки) остаются неизменными, выходное напряжение регулятора изменяется в зависимости от температуры.
5) Долговременная стабильность выходного напряжения
Это относится к величине изменения значения выходного напряжения с течением времени (когда выходной ток, входное напряжение и температура окружающей среды остаются неизменными).Обычно это максимальное изменение выходного напряжения регулятора за заданное время.
6) Выходное шумовое напряжение
Его абсолютное значение напрямую отражает шумовые характеристики регулятора. Также имеется процентное значение выходного шумового напряжения Vn и выходного напряжения V0 регулятора для характеристики шумовых характеристик.
7) Термическая стабильность
Относится к термической стабильности регулятора напряжения. Обычно это процентное значение относительного изменения выходного напряжения, вызванного его удельным энергопотреблением.
8) Температурная стабильность
Это процентное значение относительного изменения выходного напряжения регулятора в пределах указанного максимального диапазона изменения рабочей температуры.
Ⅲ Применение примечаний
① Существует много типов встроенных регуляторов напряжения. По способу регулировки бывают линейные и переключательные. В зависимости от способа вывода бывают фиксированные и регулируемые. Благодаря очевидным преимуществам трехконтактного регулятора напряжения им удобнее пользоваться и работать.
② Перед подключением к схеме необходимо различать контакты и их функции, чтобы не повредить интегрированный блок. Входной и выходной концы трехконтактного встроенного регулятора напряжения с выходным напряжением более 6В необходимо соединить с защитными диодами, чтобы предотвратить быстрый разряд выходного конденсатора, который приведет к повреждению трехконтактного встроенного регулятора напряжения при входное напряжение внезапно падает.
③ Для обеспечения стабильности выходного напряжения должна быть гарантирована минимальная разница входного напряжения.Например, минимальный перепад давления трехконтактного встроенного регулятора напряжения составляет около 2 В, и он должен быть выше 3 В при обычном использовании. При этом следует отметить, что максимальная разница напряжений на входе и выходе не превышает указанного диапазона.
④ Для увеличения выходного тока допускается параллельное использование трехконтактного встроенного регулятора напряжения.
⑤ При использовании сварка должна быть прочной и надежной. Если требуется устройство отвода тепла, оно должно соответствовать требуемым размерам.
Если у вас плохой регулятор, это может привести к неправильной работе многих компонентов, таких как топливный насос, система зажигания или другие детали, требующие минимального напряжения. Вы можете столкнуться с шумом двигателя, резким холостым ходом или просто отсутствием ускорения, когда вам это нужно.
Ⅳ Типичные примеры: LM317 и LM7805
Устройство LM317 представляет собой регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1,5 А в диапазоне выходного напряжения 1.От 25 до 37 В. Он обслуживает широкий спектр приложений, включая местные, по регулированию карт. Это устройство также можно использовать для создания программируемого выходного регулятора или, подключив постоянный резистор между регулировкой и выходом, LM317 можно использовать в качестве прецизионного регулятора тока.
LM317 Технические характеристики |
|
Регулируемое выходное напряжение до 1.2В | Выходное напряжение: 1,25-37 В постоянного тока |
Гарантированный выходной ток 1,5 А | Выходной ток: 5 мА-1,5 А |
Типичная скорость линейной регулировки: 0,01% | Максимальная разница входного и выходного напряжения: 40 В постоянного тока |
Типичный коэффициент регулирования нагрузки: 0.1% | Мин. Разница входного и выходного напряжения: 3 В постоянного тока |
Коэффициент подавления пульсаций: 80 дБ | Рабочая температура: -10 ± 85 ℃ |
Защита от короткого замыкания на выходе | Температура хранения: -65 ± 150 ℃ |
Перегрузка по току, защита от перегрева | Выходное напряжение: 1.25-37 В постоянного тока |
Регулировочная трубка, безопасная защита рабочей зоны | Выходной ток: 5 мА-1,5 А |
Линейный стабилизатор напряжения LM7805 имеет функции защиты от перенапряжения, сверхтока и перегрева, что делает его работу очень стабильной. Это регулятор на 5 В, способный достигать выходного тока выше 1 А, и имеет хороший температурный коэффициент.Таким образом, продукт имеет широкий спектр применения. Более подробную информацию смотрите в следующем видео:
Почему LM7805 – очень популярный регулятор напряжения?
Как член серии фиксированных линейных регуляторов напряжения 78xx, нижеследующее является очень хорошим обзором основ линейного регулятора напряжения 7805:
Параметр | Обозначение | Условия | Мин. | Типичный | Макс | Блок |
Выходное напряжение | Vo | Tj = 25 ℃ | 4.8 | 5,0 | 5,2 | В |
5,0 мА Po <15 Вт Vi = от 7 до 20 В | 4,75 | 5,0 | 5,25 | В | ||
Линейная корректировка | △ Влайн | Tj = 25 ℃, Vi = от 7 В до 25 В | 3.0 | 100 | мВ | |
Tj = 25 ℃ Vi = от 8 В до 12 В | 1,0 | 50 | мВ | |||
Скорость корректировки нагрузки | △ Загрузка | Tj = 25 ℃, lo = 5.От 0 мА до 1,5 А | 100 | мВ | ||
Tj = 25 ℃ lo = от 250 мА до 750 мА | 50 | мВ | ||||
Статический ток | Iq | Tj = 25 ℃ | 8 | мА | ||
Статический ток | △ Iq | lo = от 5 мА до 1.0A | 0,5 | мА | ||
Vi = от 7 В до 25 В | 0,8 | мА | ||||
Дрейф выходного напряжения | △ Vo / △ T | lo = 5 мА | -1.1 | мВ / ℃ | ||
Выходное шумовое напряжение | EN | f = от 10 Гц до 100 кГц Tj = 25 ℃ | 40 | мкВ / Vo | ||
Коэффициент подавления пульсации | СВР | f = 120 Гц, Vi = от 8 В до 18 В | 62 | дБ | ||
Дифференциальное напряжение | Vd | lo = 1.0A Tj = 25 ℃ | 2,0 | В | ||
Выходное сопротивление | Ro | f = 1 кГц | 17 | мОм | ||
Ток короткого замыкания | Isc | Vi = 35 В Tj = 25 ℃ | 750 | мА | ||
Пиковый ток | Iscp | Tj = 25 ℃ | 2.2 | А |
Если вы хотите сделать источник питания 5 В с 7805, выходные токи до 1 А могут быть получены от ИС при условии наличия надлежащего радиатора. Трансформатор на 9 В понижает основное напряжение, мост на 1 А выпрямляет его, конденсатор C1 фильтрует его, а 7805 регулирует его для получения стабильного 5 В постоянного тока. Затем вы можете проверить его, включить источник питания постоянного тока и отрегулировать выходное напряжение около 8 В или немного больше.Или, в качестве альтернативы, вы можете использовать батарею 9В-12В в качестве источника напряжения. Когда выставляете напряжение, смотрите на панель вольтметра. Подготовьте показания вольтметра постоянного тока в диапазоне напряжений 50 В для измерения выходного напряжения микросхемы IC 7805.
Часто задаваемые вопросы о регуляторе напряжения
1. Что такое регулятор напряжения и как он работает?
Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки…. Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель.
2. Для чего нужен регулятор напряжения?
Регулятор напряжения, любое электрическое или электронное устройство, поддерживающее напряжение источника питания в допустимых пределах. Стабилизатор напряжения необходим для поддержания напряжений в предписанном диапазоне, который может выдерживать электрическое оборудование, использующее это напряжение.
3.Какие три основных типа регуляторов напряжения?
Существует три типа импульсных регуляторов напряжения: повышающие, понижающие и инверторные регуляторы напряжения.
4. Что происходит при выходе из строя регулятора напряжения?
Если у вас плохой регулятор, это может привести к неправильной работе многих компонентов, таких как топливный насос, система зажигания или другие детали, требующие минимального напряжения. Вы можете столкнуться с шумом двигателя, резким холостым ходом или просто отсутствием ускорения, когда вам это нужно.
5. Где используются регуляторы напряжения?
Электронные регуляторы напряжения используются в таких устройствах, как блоки питания компьютеров, где они стабилизируют постоянное напряжение, используемое процессором и другими элементами. В автомобильных генераторах переменного тока и генераторных установках центральной электростанции регуляторы напряжения управляют производительностью установки.
Альтернативные модели
Часть | Сравнить | Производителей | Категория | Описание | |
ПроизводительНомер детали: A1020B-PG84B | Сравнить: Текущая часть | Производитель: Actel | Категория: ПЛИС | Описание: Семейство 2K Gates 547 ячеек 48 МГц 1.0um | |
Производитель Номер детали: A1020B-1PG84B | Сравнить: A1020B-PG84B VS A1020B-1PG84B | Производитель: Actel | Категория: ПЛИС | Описание: ПЛИС серии ACT 1 | |
ПроизводительНомер детали: A1020B-1PG84M | Сравнить: A1020B-PG84B VS A1020B-1PG84M | Производитель: Actel | Категория: | Описание: ПЛИС серии ACT 1 | |
ПроизводительЧасть #: TPC1020AMGB84B | Сравнить: A1020B-PG84B VS TPC1020AMGB84B | Изготовители: TI | Категория: | Описание: IC FPGA, 547 CLBS, 2000 GATES, 100 МГц, CPGA84, CERAMIC, PGA-84, программируемая вентильная матрица |
или линейный стабилизатор напряжения: что лучше? | Блог
Altium Designer| & nbsp Создано: 22 июля 2017 г. & nbsp | & nbsp Обновлено: 18 января 2021 г.
У вас когда-нибудь взрывался конденсатор перед вами? Так я начал свою карьеру в дизайне электроники.Я также испортил расчет бюджета мощности для того, что изначально было представлено как «простой» проект. Конечным результатом стал прототип печатной платы с раскаленным докрасна стабилизатором напряжения, способным поджарить яйцо … или того хуже.
С тех пор я пришел к выводу, что элегантность и изысканность дизайна мало что значат. Если вы сделаете ошибку при настройке схем управления питанием, ваша конструкция окажется практически бесполезной. Расчет бюджета мощности, температура окружающей среды и, в моем случае, выбор основного компонента управления питанием, такого как регулятор напряжения, могут сделать или сломать ваш проект печатной платы.
Функция цепи управления источником питания во встроенной системе
За более чем десять лет разработки встраиваемых систем я видел, как микроконтроллеры развиваются семимильными шагами. Они перешли от исторического Zilog к современному процессору Cortex M4. Такие технологии, как Bluetooth LE и ZigBee, совершили дальнейшую революцию в индустрии встроенных систем. Однако вам всегда понадобится хорошо спроектированная силовая схема. Без него эти крутые технологии просто ждут, чтобы растаять.
Конденсаторы в сторону, у вас есть регулятор напряжения, который лежит в основе всех хорошо спроектированных силовых схем. Как следует из названия, он обеспечивает стабильный источник напряжения, который позволяет встроенной системе стабильно работать. Стабилизаторы напряжения работают, получая входное высокое напряжение перед понижением и стабилизацией напряжения до уровня, необходимого для работы электронного устройства.
До того, как компоненты 3,3 В стали популярными, мы ограничивались микроконтроллерами (MCU) с питанием от 5 В и интегральными схемами (IC).LM7805 был популярным в то время артикулом, так как это был простой линейный стабилизатор напряжения 5 В. На самом деле, его простота довольно элегантна, что делает его популярным и сегодня. Когда 3,3 В стало основным рабочим напряжением, LM1117-33 стал довольно эффективным линейным стабилизатором напряжения.
Ограничения линейных регуляторов напряжения
Был период, когда интегральные схемы перешли на работу с напряжением 3,3 В, и за это время микроконтроллеры пережили этап быстрой эволюции.Раньше дизайнеры ориентировались на количество входов / выходов микроконтроллера. Затем они стали больше интересоваться количеством интегрированных функций, таких как UARTS, Ethernet, USB, и быстро растущей вычислительной мощностью. В конце концов, линейный регулятор напряжения был доведен до предела.
Эти удобные радиаторы для охлаждения линейных регуляторов.
Многие люди совершили ошибку новичка, имея дело с линейным регулятором напряжения, и приняли номинальный ток как абсолютный.Это было серьезной проблемой, потому что стабилизатор напряжения LM7805 рассчитан на 5 В, 1,5 А. Но это не означает, что линейный регулятор может справиться с этим напряжением, в лучшем случае не изнашиваясь или не сгорая при этом. Перед выбором линейного регулятора напряжения необходимо учесть еще как минимум три параметра.
Уровень рассеиваемой мощности рассчитывается с учетом разницы между входным и выходным напряжением; затем вы умножаете это число на ток нагрузки. Если вы регулируете напряжение с 12 В до 5 В, а ваша встроенная система потребляет 100 мА, то рассеиваемая мощность будет равна 0.7Вт. Имея это в виду, отметим, что линейный регулятор LM7805 может работать при температурах до 125 ° C. После этого вы начнете видеть нежелательные явления, такие как таяние и горение.
Но типичный LM7805 в корпусе TO-220 имеет термостойкость 65 ° C / Вт. Это означает, что на каждые 1 Вт вы увидите увеличение на 65 ° C сверх температуры окружающей среды. В некоторых регионах средняя температура составляет около 35 ° C, поэтому LM7805 будет работать при 100 ° C – немного ниже допустимой максимальной температуры, но у вас меньше 10% номинального максимального тока, равного 1.5А.
Почему переключение регулятора напряжения – лучший выбор, буквально
Характеристики линейного регулятора напряжения сделали его неидеальным кандидатом в систему питания с высокими требованиями к мощности, поскольку выделяемое тепло может повредить регулятор или снизить срок службы соседних компонентов. Это повысило интерес к импульсному регулятору. Как следует из названия, импульсный стабилизатор очень быстро включает и выключает источник питания для изменения выходного напряжения, обеспечивая стабильный и эффективный источник питания.Импульсный регулятор может довольно эффективно рассеивать тепло, снижая температуру и сводя к минимуму риск буквально расплавления.
Импульсные регуляторы – это эффективность.
Деталь, которую я использовал, – это LM2576, популярный импульсный стабилизатор, который работает с КПД 75% при регулировании при напряжении 3,3 В. Это производит часть тепла, которое вы можете увидеть от сопоставимого линейного регулятора, что делает его идеальным для приложений, в которых требуется регулирование от высокого напряжения к низкому.Он также подходит для встроенных систем, в которых вы обычно работаете с высокой производительностью.
Коммутационные и линейные регуляторы напряжения
При всей эффективности, которую обеспечивает импульсный стабилизатор напряжения, два критерия по-прежнему не позволяют использовать его по умолчанию. Стоимость импульсного регулятора и обязательных пассивных компонентов. Они могут быть значительными и в 30 раз выше, чем затраты на линейный стабилизатор напряжения и пару конденсаторов.
Кроме того, для импульсного регулятора требуется больше пассивных компонентов. Когда у вас больше пассивных компонентов, обслуживание становится намного сложнее. Вы должны убедиться, что вы тщательно выбираете номиналы катушек индуктивности и конденсаторов, и это также автоматически приводит к потребности в большем пространстве на печатной плате.
Короче говоря, если вы работаете над простым приложением, которое не потребляет много энергии, линейный стабилизатор напряжения – это логичный выбор. Но если вы работаете над мощным проектом или пытаетесь перейти с промышленного напряжения 24 В постоянного тока на 3.3 В, тогда вы можете рассмотреть возможность использования импульсного регулятора напряжения для вашего источника питания и выходного напряжения.
Есть вопросы по схемам управления питанием? Вам нужны советы и рекомендации по проектированию импульсных регуляторов напряжения? Свяжитесь с опытным разработчиком печатных плат в Altium Designer прямо сейчас.
Ознакомьтесь с Altium Designer
® в действии …Мощный дизайн печатной платы
Общие сведения о том, как работает регулятор напряжения
Регулятор напряжения генерирует фиксированное выходное напряжение заданной величины, которое остается постоянным независимо от изменений его входного напряжения или условий нагрузки.Есть два типа регуляторов напряжения: линейные и импульсные.
В линейном регуляторе используется активное (BJT или MOSFET) устройство прохода (последовательное или шунтирующее), управляемое дифференциальным усилителем с высоким коэффициентом усиления. Он сравнивает выходное напряжение с точным опорным напряжением и регулирует проходное устройство для поддержания постоянного выходного напряжения.
Импульсный стабилизатор преобразует входное постоянное напряжение в коммутируемое напряжение, подаваемое на силовой MOSFET или BJT-переключатель. Отфильтрованное выходное напряжение переключателя мощности подается обратно в схему, которая контролирует время включения и выключения питания, так что выходное напряжение остается постоянным независимо от изменений входного напряжения или тока нагрузки.
Каковы некоторые топологии импульсного регулятора?
Существует три распространенных топологии: понижающая (понижающая), повышающая (повышающая) и понижающая-повышающая (повышающая / понижающая). Другие топологии включают обратноходовые, SEPIC, Cuk, двухтактные, прямые, полномостовые и полумостовые топологии.
Как влияет на конструкцию регулятора частоты коммутации?
Более высокие частоты переключения означают, что в регуляторе напряжения можно использовать катушки индуктивности и конденсаторы меньшего размера. Это также означает более высокие коммутационные потери и больший шум в цепи.
Какие потери происходят в регуляторе переключения?
Потери возникают из-за мощности, необходимой для включения и выключения полевого МОП-транзистора, которые связаны с драйвером затвора полевого МОП-транзистора. Кроме того, потери мощности полевого МОП-транзистора возникают из-за того, что переключение из состояния проводимости в состояние непроводимости занимает конечное время. Потери также связаны с энергией, необходимой для заряда и разряда емкости затвора MOSFET между пороговым напряжением и напряжением затвора.
Каковы обычные области применения линейных и импульсных регуляторов?
Рассеиваемая мощность линейного регулятора прямо пропорциональна его выходному току для данного входного и выходного напряжения, поэтому типичный КПД может быть 50% или даже ниже.Используя оптимальные компоненты, импульсный регулятор может достичь КПД в диапазоне 90%. Однако выходной шум линейного регулятора намного ниже, чем импульсный стабилизатор с такими же требованиями к выходному напряжению и току. Обычно импульсный регулятор может управлять более высокими токовыми нагрузками, чем линейный регулятор.
Как импульсный регулятор управляет своим выходом?
Для импульсных регуляторовтребуются средства для изменения выходного напряжения в ответ на изменения входного и выходного напряжения.Один из подходов – использовать ШИМ, который управляет входом в соответствующий выключатель питания, который контролирует его время включения и выключения (рабочий цикл). Во время работы отфильтрованное выходное напряжение регулятора подается обратно на ШИМ-контроллер для управления рабочим циклом. Если отфильтрованный выходной сигнал имеет тенденцию к изменению, обратная связь, подаваемая на ШИМ-контроллер, изменяет рабочий цикл для поддержания постоянного выходного напряжения.
Какие проектные характеристики важны для ИС регулятора напряжения?
Среди основных параметров – входное напряжение, выходное напряжение и выходной ток.В зависимости от приложения могут быть важны другие параметры, такие как пульсирующее напряжение на выходе, переходная характеристика нагрузки, выходной шум и КПД. Важными параметрами для линейного регулятора являются падение напряжения, PSRR (коэффициент отклонения источника питания) и выходной шум.
использованная литература
Загрузить средства проектирования управления питанием
Положительные линейные регуляторы (LDO) | Analog Devices
Некоторые файлы cookie необходимы для безопасного входа в систему, но другие необязательны для функциональной деятельности.Сбор наших данных используется для улучшения наших продуктов и услуг. Мы рекомендуем вам принять наши файлы cookie, чтобы обеспечить максимальную производительность и функциональность нашего сайта. Для получения дополнительной информации вы можете просмотреть сведения о файлах cookie. Узнайте больше о нашей политике конфиденциальности.
Принять и продолжить Принять и продолжитьФайлы cookie, которые мы используем, можно разделить на следующие категории:
- Строго необходимые файлы cookie:
- Это файлы cookie, которые необходимы для работы аналога.com или предлагаемые конкретные функции. Они либо служат единственной цели передачи данных по сети, либо строго необходимы для предоставления онлайн-услуг, явно запрошенных вами.
- Аналитические / рабочие файлы cookie:
- Эти файлы cookie позволяют нам выполнять веб-аналитику или другие формы измерения аудитории, такие как распознавание и подсчет количества посетителей и наблюдение за тем, как посетители перемещаются по нашему веб-сайту.