Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

IntraLED- драйверы для светодиодов, источники питания для светодиодов, светодиодных лент

Драйверы (источники питания) для светодиодов 

Лампы накаливания и прочая светотехника, сделанная по устаревшим технологиям, постепенно повсеместно заменяется устройствами светодиодными. Они обладают целым рядом бесспорных преимуществ, самыми значительными из которых являются намного более долгий срок эксплуатации и возможность экономить на электроэнергии. Ведь светодиоды потребляют её во много раз меньше.

Для максимального продления срока службы светодиодов LED-устройства и приборы оборудуются специальными драйверами. Они имеют вид дополнительных электронных плат и очень важны для стабильной и адекватной работы светотехники на диодах.

К примеру, сроки эксплуатации этих технологичных устройств во многом зависят от температуры и её перепадов. Драйвера светодиодов функционируют в качестве стабилизаторов стандартных характеристик электротока при его поступлении на диоды.

Степень напряжения при этом нивелируется до наиболее приемлемой.

Благодаря работе драйверов светодиодов, КПД светодиодной светотехники значительно повышается. После подсоединения полупроводниковых световых устройств (led лент) к драйверам электропитания одинаково нормальный режим обеспечивается для каждого светодиода в цепочке.

Сроки эксплуатации светодиодного оборудования в условиях обеспечения его неизменно стабильной работы значительно возрастают. Возможность перегревания полупроводниковых элементов сводится к минимуму, ведь электроток подаётся на них в оптимально сбалансированном ритме.

Также драйвер выполняет для светодиодного / полупроводникового прибора роль стабилизатора всех основных световых параметров, не допуская эффектов пульсации и (или) мерцания даже во время существенных скачков напряжения в электросети.

Драйверы предоставляют возможность выставления необходимого режима освещения, оптимальной регулировки его яркости.

Предназначенные для питания светодиодов элементы отбираются сообразно с силой тока, напряжений на выходе и мощностным параметрам оборудования. Мощность драйверов есть возможность рассчитать при помощи спецтехнологии. Ей на экспертном уровне владеют специалисты нашей компании.

По Вашему обращению они в сжатые сроки сделают нужный расчёт параметров и дадут грамотную консультацию насчёт подбора оптимально соответствующего целям элемента питания диодов. Для того, чтобы избежать ошибок и не усложнять себе задачу по подбору устройств, есть смысл приобретать сразу и светодиодное оборудование, и драйверы к нему – в едином комплекте.

Схемы подключения светодиодов к 220В и 12В

Рассмотрим способы включения лед диодов средней мощности к наиболее популярным номиналам 5В, 12 вольт, 220В. Затем их можно использовать при изготовлении цветомузыкальных устройств, индикаторов уровня сигнала, плавное включение и выключение. Давно собираюсь сделать плавный искусственный рассвет , чтобы соблюдать распорядок дня. К тому же эмуляция рассвета позволяет просыпаться гораздо лучше и легче.

Про подключение светодиодов к 12 и 220В читайте в предыдущей статье, рассмотрены все способы от сложных до простых, от дорогих до дешёвых.

Содержание

  • 1. Типы схем
  • 2. Обозначение на схеме
  • 3. Подключение светодиода к сети 220в, схема
  • 4. Подключение к постоянному напряжению
  • 5. Самый простой низковольтный драйвер
  • 6. Драйвера с питанием от 5В до 30В
  • 7. Включение 1 диода
  • 8. Параллельное подключение
  • 9. Последовательное подключение
  • 10. Подключение RGB LED
  • 11. Включение COB диодов
  • 12. Подключение SMD5050 на 3 кристалла
  • 13. Светодиодная лента 12В SMD5630
  • 14. Светодиодная лента RGB 12В SMD5050

Типы схем

Схема подключения светодиодов бывает двух типов, которые зависят от источника питания:

  1. светодиодный драйвер со стабилизированным током;
  2. блок питания со стабилизированным напряжением.

В первом варианте применяется специализированный  источник, который имеет определенный стабилизированный ток, например 300мА. Количество подключаемых LED диодов ограничено только его мощностью. Резистор (сопротивление) не требуется.

Во втором варианте стабильно только напряжение. Диод имеет очень малое внутреннее сопротивление, если его включить без ограничения Ампер, то он сгорит. Для включения  необходимо использовать токоограничивающий резистор.
Расчет резистора для светодиода можно сделать на специальном калькуляторе.

Калькулятор учитывает 4 параметра:

  • снижение напряжения на одном LED;
  • номинальный рабочий ток;
  • количество LED в цепи;
  • количество вольт на выходе блока питания.

Разница кристаллов

Если вы используете недорогие LED элементы китайского производства, то скорее всего у них будет большой разброс параметров. Поэтому реальное значение Ампер цепи будет отличатся и потребуется корректировка установленного сопротивления. Чтобы проверить насколько велик разброс параметров, необходимо включить все последовательно. Подключаем питание светодиодов и  затем понижаем напряжение до тех пор, когда они будут едва светиться. Если характеристики отличаются сильно, то часть LED будет работать ярко, часть тускло.

Это приводит к тому, что на некоторых элементах электрической цепи мощность будет выше, из-за этого они будут сильнее нагружены.  Так же будет повышенный нагрев, усиленная деградация, ниже надежность.

Обозначение на схеме

Для обозначения на схеме используется две вышеуказанные пиктограммы. Две параллельные стрелочки указывают, что светит очень сильно, количество зайчиков в глазах не сосчитать.

Подключение светодиода к сети 220в, схема

Для подключения к сети 220 вольт используется драйвер, который является источником стабилизированного тока.

Схема драйвера для светодиодов бывает двух видов:

  1. простая на гасящем конденсаторе;
  2. полноценная с использованием микросхем стабилизатора;

Собрать драйвер на конденсаторе очень просто, требуется минимум деталей и времени. Напряжение 220В снижается за счёт высоковольтного конденсатора, которое затем выпрямляется и немного стабилизируется. Она используется в дешевых светодиодных лампах. Основным недостатком является высокой уровень пульсаций света, который плохо действует на здоровье. Но это индивидуально, некоторые этого вообще не замечают. Так же схему сложно рассчитывать из-за разброса характеристик электронных компонентов.

Полноценная схема с использованием специализированных микросхем обеспечивает лучшую стабильность на выходе драйвера. Если драйвер хорошо справляется с нагрузкой, то коэффициент пульсаций будет не выше 10%, а  в идеале 0%. Чтобы не делать драйвер своими руками, можно взять из неисправной лампочки или светильника, если проблема у них была  не с питанием.

Если у вас есть более менее подходящий стабилизатор, но сила тока меньше или больше, то её можно подкорректировать с минимум усилий. Найдите технические характеристики на микросхему из драйвера. Чаще всего количество Ампер на выходе задаётся резистором или несколькими резисторами, находящимися рядом с микросхемой. Добавив к ним еще сопротивление или убрав один из них можно получить необходимую силу тока. Единственное нельзя превышать указанную  мощность.

Подключение к постоянному напряжению

..

Далее будут рассмотрены  схемы подключения светодиодов к постоянному напряжению. Наверняка у вас дома найдутся блоки питания со стабилизированный  полярным напряжением на выходе. Несколько примеров:

  1. 3,7В – аккумуляторы от телефонов;
  2. 5В – зарядные устройства с USB;
  3. 12В – автомобиль, прикуриватель, бытовая электроника, компьютер;
  4. 19В – блоки от ноутбуков, нетбуков, моноблоков.

Самый простой низковольтный драйвер

Простейшая схема стабилизатора тока для светодиодов состоит из линейной микросхемы LM317 или его аналогов. На выходе таких стабилизаторов может быть от 0,1А до 5А. Основные недостатки это невысокий КПД и сильный нагрев. Но это компенсируется максимальной простотой изготовления.

Входное до 37В, до 1,5 Ампера для корпуса указанного на картинке.

Для рассчёта сопротивления, задающего рабочий ток используйте калькулятор стабилизатор тока на LM317 для светодиодов.

Драйвера с питанием от 5В до 30В

Если у вас есть подходящий источник питания от какой либо бытовой техники, то для включения лучше использовать низковольтный драйвер. Они бывают повышающие и понижающие.  Повышающий даже из 1,5В сделает 5В, чтобы светодиодная цепь работала. Понижающий из 10В-30В сделает более низкое, например 15В.

В большом ассортименте они продаются у китайцев, низковольтный драйвер отличается двумя регуляторами от простого стабилизатора Вольт.

Реальная мощность такого стабилизатора будет ниже, чем указал китаец. У параметрах модуля пишут характеристику микросхемы и не всей конструкции. Если стоит большой радиатор, то такой модуль потянет 70% — 80% от обещанного. Если радиатора нет, то 25% — 35%.

Особенно популярны модели на LM2596, которые уже прилично устарели из-за низкого КПД. Еще они сильно греются, поэтому без системы охлаждения не держат более 1 Ампера.

Более эффективны XL4015, XL4005, КПД гораздо выше. Без радиатора охлаждения выдерживают до 2,5А. Есть совсем миниатюрные модели на MP1584 размером 22мм на 17мм.

Включение 1 диода

Чаще всего используются 12 вольт, 220 вольт и 5В. Таким образом делается маломощная светодиодная подсветка настенных выключателей на 220В. В заводских стандартных выключателях чаще всего ставится неоновая лампа.

Параллельное подключение

При параллельном соединении  желательно на каждую последовательную цепь диодов использовать отдельный резистор, чтобы получить максимальную надежность. Другой вариант, это ставить одно мощное сопротивление на несколько LED. Но при выходе одного LED из строя увеличится ток на других оставшихся. На целых будет выше номинального или заданного, что значительно сократит ресурс и увеличит нагрев.

Рациональность применений каждого способа  рассчитывают исходя из требований к изделию.

Последовательное подключение

Последовательное подключение при питании от 220в используют в филаментных диодах и светодиодных лентах на 220 вольт.   В длинной цепочке из 60-70 LED на каждом  падает 3В, что и позволяет подсоединять напрямую  к высокому напряжению. Дополнительно используется только выпрямитель тока, для получения плюса и минуса.

Такое соединение применяют в любой светотехнике:

  1. светодиодные лампах для дома;
  2. led светильники;
  3. новогодние гирлянды на 220В;
  4. светодиодные ленты на 220.

В лампах для дома обычно используется до 20 LED включенных последовательно, напряжение на них получается около 60В. Максимальное количество используется в китайских лампочках кукурузах, от 30 до 120 штук LED. Кукурузы не имеют защитной колбы, поэтому электрические контакты на которых до 180В полностью открыты.

Соблюдайте осторожность, если видите длинную последовательную цепочку, к тому же на них не всегда есть заземление.  Мой сосед схватил кукурузу голыми руками и потом рассказывал увлекательные стихи из нехороших слов.

Подключение RGB LED

Маломощные трёхцветные RGB светодиоды состоят из трёх независимых кристаллов, находящихся в одном корпусе. Если 3 кристалла (красный, зеленый, синий) включить одновременно, то получим белый свет.

Управление каждым цветом происходит независимо от других при помощи RGB контроллера. В блоке управления есть готовые программы и ручные режимы.

Включение COB диодов

Схемы подключения такие же, как у однокристальных и трехцветных светодиодов SMD5050, SMD 5630, SMD 5730. Единственное отличие, вместо 1 диода включена последовательная цепь из нескольких кристаллов.

Мощные светодиодные матрицы имеют в своём составе множество кристаллов включенных последовательно и параллельно. Поэтому питание требуется от 9 до 40 вольт, зависит от мощности.

Подключение SMD5050 на 3 кристалла

От обычных диодов SMD5050 отличается тем, что состоит из 3 кристаллов  белого света, поэтому имеет 6 ножек.  То есть он равен трём SMD2835, сделанным на этих же кристаллах.

При параллельном включении с использованием одного резистора надежность будет ниже. Если один их кристаллов выходит из строя, то увеличивается сила тока через оставшиеся 2. Это приводит к ускоренному выгоранию оставшихся.

При использовании отдельного сопротивления для каждого кристалла, выше указанный недостаток устраняется. Но при этом в 3 раза возрастает количество используемых резисторов и схема подключения светодиода становится сложней. Поэтому оно не используется в светодиодных лентах и лампах.

Светодиодная лента 12В SMD5630

Наглядным примером подключения светодиода к 12 вольтам является светодиодная лента. Она состоит из секций по 3 диода и 1 резистора, включенных последовательно. Поэтому разрезать её можно только в указанных местах между этими секциями.

 

Светодиодная лента RGB 12В SMD5050

В RGB ленте используется три цвета, каждый управляется отдельно, для каждого цвета ставится резистор. Разрезать можно только по указанному месту, чтобы в каждой секции было по 3 SMD5050 и она могла подключатся к 12 вольт.

Драйвер для светодиодов: назначение, выбор, подключение, схемы

Широкое распространение светодиодов повлекло за собой массовое производство блоков питания для них. Такие блоки называются драйверами. Основной их особенностью является то, что они способны стабильно поддерживать на выходе заданный ток. Другими словами, драйвер для светодиодов (LED) – это источник тока для их питания.

Назначение

Поскольку светодиод — это полупроводниковые элементы, ключевой характеристикой, определяющей яркость их свечения, является не напряжение, а ток. Чтобы они гарантированно отработали заявленное  количество часов, необходим драйвер, — он стабилизирует ток, протекающий через цепь светодиодов. Возможно использование маломощных светоизлучающих диодов и без драйвера, в этом случае его роль выполняет резистор.

Применение

Драйверы применяются как при питании светодиода от сети 220В, так и от источников постоянного напряжения 9-36 В. Первые используются при освещении помещений светодиодными лампами и лентами, вторые чаще встречаются в автомобилях, велосипедных фарах, переносных фонарях и т.д.

Принцип работы

Как уже было сказано, драйвер – это источник тока. Его отличия от источника напряжения проиллюстрированы ниже.

Источник напряжения создает на своем выходе некоторое напряжение, в идеале не зависящее от нагрузки.

Например, если подключить к источнику напряжением 12 В резистор 40 Ом, через него пойдет ток 300 мА.

Если подключить параллельно два резистора, суммарный ток составит уже 600 мА при том же напряжении.

Драйвер же поддерживает на своем выходе заданный ток. Напряжение при этом может изменяться.

Подключим так же резистор 40 Ом к драйверу 300 мА.

Драйвер создаст на резисторе падение напряжения 12 В.

Если подключить параллельно два резистора, ток по-прежнему будет 300 мА, а напряжение упадет до 6 В:

Таким образом, идеальный драйвер способен обеспечить нагрузке номинальный ток вне зависимости от падения напряжения. То есть светодиод с падением напряжения 2 В и током 300 мА будет гореть так же ярко, как и светодиод напряжением 3 В и током 300 мА.

Основные характеристики

При подборе нужно учитывать три основных параметра: выходное напряжение, ток и потребляемая нагрузкой мощность.

Напряжение на выходе драйвера зависит от нескольких факторов:

  • падение напряжения на светодиоде;
  • количество светодиодов;
  • способ подключения.

Ток на выходе драйвера определяется характеристиками светодиодов и зависит от следующих параметров:

  • мощность светодиодов;
  • яркость.

Мощность светодиодов влияет на потребляемый ими ток, который может варьироваться в зависимости от требуемой яркости. Драйвер должен обеспечить им этот ток.

Мощность нагрузки зависит от:

  • мощности каждого светодиода;
  • их количества;
  • цвета.

В общем случае потребляемую мощность можно рассчитать как

где Pled — мощность светодиода,

N — количество подключаемых светодиодов.

Максимальная мощность драйвера не должна быть меньше .

Стоит учесть, что для стабильной работы драйвера и предотвращения выхода его из строя следует обеспечить запас по мощности хотя бы 20-30%.

То есть должно выполняться следующее соотношение:

где Pmax   — максимальная мощность драйвера.

Кроме мощности и количества светодиодов, мощность нагрузки зависит еще от их цвета. Светодиоды разных цветов имеют разное падение напряжения при одинаковом токе. Например, красный светодиод CREE XP-E обладает падением напряжения 1.9-2.4 В при токе 350 мА. Средняя потребляемая им мощность таким образом составляет около 750 мВт.

У XP-E зеленого цвета падение 3.3-3.9 В при том же токе, и его средняя мощность составит уже около 1.25 Вт. То есть драйвером, рассчитанным на 10 ватт, можно питать либо 12-13 красных светодиодов, либо 7-8 зеленых.

Как подобрать драйвер для светодиодов. Способы подключения LED

Допустим, имеется 6 светодиодов с падением напряжения 2 В и током 300 мА. Подключить их можно различными способами, и в каждом случае потребуется драйвер с определенными параметрами:

  1. Последовательно. При таком способе подключения потребуется драйвер напряжением 12 В и током 300 мА.
    Преимущество такого способа в том, что через всю цепь идет один и тот же ток, и светодиоды горят с одинаковой яркостью. Недостаток заключается в том, что для подключения большого числа светодиодов потребуется драйвер с очень большим напряжением. 
  2. Параллельно. Здесь уже будет достаточно драйвера на 6 В, но потребляемый ток будет примерно в 2 раза больше, чем при последовательном соединении. Недостаток: токи, текущие в каждой цепи, немного различаются из-за разброса параметров светодиодов, поэтому одна цепь будет светить несколько ярче другой. 
  3. Последовательно по два. Тут потребуется такой же драйвер, как и во втором случае. Яркость свечения будет уже более равномерная, но есть один существенный недостаток: при включении питания в каждой паре светодиодов из-за разброса характеристик один может открыться раньше другого, и через него пойдет ток, в 2 раза превышающий номинальный. Большинство светодиодов рассчитаны на такие кратковременные броски тока, но все-таки этот способ наименее предпочтителен.

Соединять таким образом параллельно 3 и более светодиодов недопустимо, так как при этом через них может пойти слишком большой ток, в результате чего они быстро выйдут из строя.

Обратите внимание, что во всех случаях мощность драйвера составляет 3.6 Вт и не зависит от способа подключения нагрузки.

Таким образом, целесообразнее выбирать драйвер для светодиодов уже на этапе закупки последних, предварительно определив схему подключения. Если же сначала приобрести сами светодиоды, а потом подбирать к ним драйвер, это может оказаться нелегкой задачей, поскольку вероятность того, что Вы найдете именно тот источник питания, который сможет обеспечить работу именно этого количества светодиодов, включенных по конкретной схеме, невелика.

Виды

В общем случае драйверы для светодиодов можно разделить на две категории: линейные и импульсные.

У линейного выходом служит генератор тока. Он обеспечивает стабилизацию выходного тока при нестабильном входном напряжении; причем подстройка происходит плавно, не создавая высокочастотных электромагнитных помех. Они просты и дешевы, но невысокий КПД (менее 80%) ограничивает сферу их применения маломощными светодиодами и лентами.

Импульсные представляют собой устройства, создающие на выходе серию высокочастотных импульсов тока.

Обычно они работают по принципу широтно-импульсной модуляции (ШИМ), то есть среднее значение выходного тока определяется отношением ширины импульсов к периоду их следования (эта величина называется коэффициентом заполнения).

На диаграмме выше показан принцип работы ШИМ-драйвера: частота импульсов остается постоянной, но изменяется коэффициент заполнения от 10% до 80%. Это ведет к изменению среднего значения тока Icp на выходе.

Такие драйверы получили широкое распространение благодаря компактности и высокому КПД (около 95%). Основным недостатком является больший по сравнению с линейными уровень электромагнитных помех.

Светодиодный драйвер на 220 В

Для включения в сеть 220 В выпускаются как линейные, так и импульсные. Существуют драйверы с гальванической развязкой от сети и без нее. Основными преимуществами первых являются высокий КПД, надежность и безопасность.

Без гальванической развязки обычно дешевле, но менее надежны и требуют осторожности при подключении, поскольку есть вероятность поражения током.

Китайские драйверы

Востребованность драйверов для светодиодов способствует их массовому производству в Китае. Эти устройства представляют собой импульсные источники тока, обычно на 350-700 мА, часто не имеющие корпуса.

Китайский драйвер для светодиода 3w

Основные их достоинства – низкая цена и наличие гальванической развязки. Недостатки следующие:

  • низкая надежность из-за использования дешевых схемных решений;
  • отсутствие защиты от перегрева и колебаний в сети;
  • высокий уровень радиопомех;
  • высокий уровень пульсаций на выходе;
  • недолговечность.

Срок службы

Обычно срок службы драйвера меньше, чем у оптической части – производители дают гарантию на 30000 часов работы. Это связано с такими факторами, как:

  • нестабильность сетевого напряжения;
  • перепады температур;
  • уровень влажности;
  • загруженность драйвера.

Самым слабым звеном светодиодного драйвера являются сглаживающие конденсаторы, которые имеют тенденцию к испарению электролита, особенно в условиях повышенной влажности и нестабильного питающего напряжения. В результате уровень пульсаций на выходе драйвера повышается, что негативно сказывается на работе светодиодов.

Также на срок службы влияет неполная загруженность драйвера. То есть если он, рассчитан на 150 Вт, а работает на нагрузку 70 Вт, половина его мощности возвращается в сеть, вызывая ее перегрузку. Это провоцирует частые сбои питания. Рекомендуем почитать про срок службы светодиодных ламп.

Схемы драйверов (микросхемы) для светодиодов

Многие производители выпускают специализированные микросхемы драйверов. Рассмотрим некоторые из них.

ON Semiconductor UC3845 – импульсный драйвер с выходным током до 1А. Схема драйвера для светодиода 10w на этой микросхеме приведена ниже.

Supertex HV9910 – очень распространенная микросхема импульсного драйвера. Ток на выходе не превышает 10 мА, не имеет гальванической развязки.

Простой драйвер тока на этой микросхеме представлен ниже.

Texas Instruments UCC28810. Сетевой импульсный драйвер, имеет возможность организовать гальваническую развязку. Выходной ток до 750 мА.

Еще одна микросхема этой фирмы, — драйвер для питания мощных светодиодов LM3404HV — описывается в этом видео:

Устройство работает по принципу резонансного преобразователя типа Buck Converter, то есть функция поддержания требуемого тока здесь частично возложена на резонансную цепь в виде катушки L1 и диода Шоттки D1 (типовая схема приведена ниже). Также имеется возможность задания частоты коммутации подбором резистора RON.

Maxim MAX16800 – линейная микросхема, работает при малых напряжениях, поэтому на ней можно построить драйвер 12 вольт. Выходной ток – до 350 мА, поэтому может использоваться как драйвер питания для мощного светодиода, фонарика, и т.д. Есть возможность диммирования. Типовая схема и структура представлены ниже.

Заключение

Светодиоды гораздо более требовательны к источнику питания, чем другие источники света. Например, превышение тока на 20% для люминесцентной лампы не повлечет за собой серьезного ухудшения характеристик, для светодиодов же срок службы сократится в несколько раз. Поэтому выбирать драйвер для светодиодов следует особенно тщательно.

Блоки питания 12V IP20, IP33 драйверы для светодиодных лент и LED модулей

Сортировать по:
  • умолчанию
  • цене
  • по наличию
Сортировать по:
  • умолчанию
  • цене
  • по наличию

Монтаж светодиодной ленты

Стандартная катушка светодиодной ленты содержит ровно 5 м. Если необходимая для установки длина ленты меньше, то её нужно разрезать. На всех лентах место, где её можно разрезать имеет чёткое обозначение, и это можно сделать обыкновенными ножницами.

Для подключения к источнику питания, на ленту припаиваются провода. Потребуется тонкий провод, сечением примерно 1 мм, и паяльник маленькой мощности, не больше 40 Вт. Провода берутся разных цветов, чтобы не возникло путаницы с полярностью, небольшой длины около 25 см. Концы проводов зачищаются, с одной стороны, на несколько миллиметров, с противоположной – около одного сантиметра.

Затем концы нужно залудить, используя припой из олова с канифолью, это нужно делать с максимальной осторожностью, тонкий провод легко пережигается. Короткие концы проводов аккуратно припаиваются к контактам ленты. Во время пайки нельзя допускать перегрева светодиодов. От высокой температуры светодиод выходит из строя.

Для цветной (RGB) ленты берётся четыре провода. Они должны соответствовать цветам светодиодов (красный, синий и зелёный). Четвёртый провод общий, любого другого цвета. Когда для установки требуется лента больше чем 5 метров, применяется несколько вариантов.

Для монохромной ленты:

1. Первый вариант состоит в последовательном подключении дополнительного отрезка. При таком способе подключения надо учитывать, что нагрузка на блок питания возрастает, необходимо увеличивать его мощность. Также чем длиннее лента, тем больше перепад напряжения на её концах. Это делает свечение диодов у основания ярче, чем на её конце. Увеличивается и сила тока протекающего по цепи, нагревая светодиоды и всю ленту.

2. Второй вариант – ленты подключаются параллельно. В этом случае, для второй ленты, питающий провод должен быть сечением около 1,5 мм, и мощный блок питания. С повышением мощности, соответственно увеличиваются его габариты.

3. Третий вариант. Подключать к разным блокам питания, с соответствующей мощностью для каждой ленты.

Для RGB ленты используются несколько иные варианты. Лента RBG подключается через контроллер, которым производится управление цветами и яркостью свечения. Контроллер имеет два контакта «+» и «-» для питающих проводов, и четыре для соответствующих цветов на ленте. Если позволяют габариты и мощность блока питания, а контроллер способен выдержать нагрузку, то второй отрезок ленты можно подключить параллельно.

Уменьшить нагрузку позволит применение второго блока питания, а для сохранения синхронизации свечения с первой лентой, подключается усилитель. Усилитель имеет два контакта подключаемых к блоку питания, и четыре пары контактов для двух RGB лент. К первой ленте провода припаиваются с обеих сторон. С одной стороны провода подсоединяются к контроллеру, соответственно цветам: красный, синий, зелёный и общий. Провода с другой стороны ленты подключаются, соответственно цветам, к входящим контактам усилителя. К выходящим контактам усилителя подключается вторая лента, также соблюдая цветность проводов.

Завершается монтаж ленты её установкой. Для этого зачищается место установки, с тыльной стороны ленты снимается защитная плёнка. Затем лента подносится к нужному месту и плотно прижимается.

Производители электрооборудования
Нажмите на логотип производителя чтобы посмотреть все его товары в этом разделе.

Внимание!
Внешний вид товара, комплектация и характеристики могут изменяться производителем без предварительных уведомлений.
Данный интернет-сайт носит исключительно информационный характер и ни при каких условиях не является публичной офертой,
определяемой положениями Статьи 437 Гражданского кодекса Российской Федерации.
Указанные цены действуют только при оформлении требуемой продукции через форму заказа сайта shop220.ru (корзину).

Светодиодный драйвер 12 В постоянного тока 18 Вт 36 Вт 72 Вт 100 Вт высококачественные Трансформаторы освещения для светодиодной ленты 12 В адаптер питания

0оценок973заказа

Светодиодный драйвер 12 В постоянного тока 18 Вт 36 Вт 72 Вт 100 Вт высококачественные Трансформаторы освещения для светодиодной ленты 12 В адаптер питания

Фото от продавца

Реальные отзывы с фото (20)

Работает отлично, подключила к светодиодной подсветке на кухне. Есть индикатор.

Блок питания не имеет зажимов для проводов, либо крепить на колодки, либо паять к плате. Я подпаял к плате. Под нагрузкой из 6*9W LED лент адаптер рассчитанный на 72W очень сильно греется. Рекомендую выбрать другой.

хороший товар. беру не первый раз

хороший товар быстрая доставка

Вторая покупка, все в порядке

приехал и норм…рабочий.

Хорошо. Супер, jeshtě nezapojeno

Небольшой, на этом был сделан главный акцент. Перед установкой по назначению, каждый день тестировался ~10 часов с метровой ультрафиолетовой светодиодной лентой, слегка нагревается, может из-за тёплого помещения, качество и цена ☆☆☆☆☆ а так же быстрая доставка в комплекте с другими посылками две недели. Very good qulity for this 12V 18W …One metre led strip correctly work both 9-10 hours per day. Can give for this store five stars and two weeks shipping time

Правильно питает светодиодные ленты. Правильный продукт.

Ок, вельвет

спасибо все получил все проверил работает

5 29 сентября 2020

Доставка была быстрой (занимает 11 дней). Товар получен в целости и сохранности, как заказано. Спасибо. Проверю электрическую производительность в свое время.

5 29 сентября 2020

Заказал 20.09.20, получил в 5-терочке 29.09.20, спасибо большое за оперативность! Пока не проверял.

Это займет много времени, прежде чем я его получу. Хорошая цена .. Еще не использовано…

Получил покупку в течение 9 дней. Я проверил ОК Я рекомендую этот магазин

Доставка быстрая. Работает

Светодиодный драйвер 12 вольт доставили почтой за 14 дней, от момента заказа. При включении в сеть горит синий светодиод, выдает 12 вольт, есть защита от короткого замыкания. Дизайн и качество сборки хорошие, материал пластик, верхняя пластина алюминевая. Продавец ответсвенный, товар хароший, рекомендую к покупке.

5 22 сентября 2020

Кажется хорошим. Я открыл чехол, чтобы проверить качество дизайна и строительства. Я не эксперт, но это правильный трансформатор и регулятор напряжения. Некоторое разделение между AC и DC сторонами дизайна. Выход открытого напряжения около 12,4 вольт с пульсацией 400 мВ pk-pk. Смотрите фото.

Драйвер и импульсный блок питания. Отличия, принцип работы. Что лучше выбрать?

Многие довольно часто путают блоки питания и драйвера, подключая светодиоды и светодиодные ленты не от тех источников что нужно.

В итоге через небольшой промежуток времени они выходят из строя, а вы и не подозреваете в чем была причина и начинаете ошибочно грешить на «некачественного» производителя.

Рассмотрим подробнее в чем их отличия и когда нужно применять тот или иной источник питания. Но для начала кратко разберемся в типах блоков питания.

Трансформаторный блок

Сегодня уже довольно редко можно встретить применение трансформаторного БП. Схема их сборки и работы довольно проста и понятна.

Самый главный элемент здесь, безусловно трансформатор. В домашних условиях он преобразует напряжение 220В в напряжение 12 или 24В. То есть, идет прямое преобразование одного напряжения в другое.

Частота сети при этом, привычные нам всем 50 Герц.

Далее за ним стоит выпрямитель. Он выпрямляет синусоиду переменного напряжения и на выходе выдает «постоянку». То есть 12В, подаваемые к потребителю, это уже постоянное напряжение 12V, а не переменное.

У такой схемы 3 главных достоинства:

  • незамысловатость конструкции
  • относительная надежность

Однако есть здесь и недостатки, которые заставили разработчиков задуматься и придумать что-то более современное.

  • во-первых это большой вес и приличные габариты
  • как следствие первого недостатка – большой расход металла на сборку всей конструкции
  • ну и ухудшает все дело низкий косинус фи и низкий КПД

Именно поэтому и были изобретены импульсные источники питания. Здесь уже несколько иной принцип работы.

Импульсные блоки питания

Во-первых, выпрямление напряжения происходит сразу же. То есть, подается на вход переменно 220В и тут же на входе преобразуется в постоянное 220V.

Далее стоит генератор импульсов. Главная его задача – создать искусственно переменное напряжение с очень большой частотой. В несколько десятков или даже сотен килогерц (от 30 до 150кГц). Сравните это с привычными нам 50 Гц в домашних розетках.

Кстати за счет такой огромной частоты, мы практически не слышим гул импульсных трансформаторов. Объясняется это тем, что человеческое ухо способно различать звук до 20кГц, не более.

Третий элемент в схеме – импульсный трансформатор. Он по форме и конструкции напоминает обычный. Однако главное его отличие – это маленькие габаритные размеры.

Это как раз таки и достигается за счет высокой частоты.

Из этих трех элементов самым главным является генератор импульсов. Без него, не было бы такого относительно маленького блока питания.

Преимущества импульсных блоков:

  • маленькая цена, если конечно сравнивать по мощности его, и такой же блок собранный на обычном трансформаторе
  • напряжение питания можно подавать в большом разбросе
  • при качественном производителе блока питания, у импульсных ИБП более высокий косинус фи

Есть и недостатки:

  • усложненность сборочной схемы
  • сложная конструкция
  • если вам попался не качественный импульсный блок, то он будет выдавать в сеть кучу высокочастотных помех, которые будут влиять на работу остального оборудования
Проще говоря, блок питания что обычный, что импульсный – это устройство у которого на выходе строго одно напряжение. Его конечно можно “подкрутить”, но в не больших диапазонах.

Для светодиодных же светильников такие блоки не подойдут. Поэтому для их питания используются драйверы.

В чем отличия драйвера от блока питания

Почему же для светодиодов нельзя применять простой БП, и для чего нужен именно драйвер?

Драйвер – это устройство похожее на блок питания.

Однако, как только в него подключаешь нагрузку, он заставляет стабилизироваться на одном уровне не напряжение, а ток!

Светодиоды “питаются” электрическим током. Также у них есть такая характеристика, как падение напряжения.

Если вы видите на светодиоде надпись 10мА и 2,7В, то это означает, что максимально допустимый ток для него 10мА, не более.

При протекании тока такой величины, на светодиоде потеряется 2,7 Вольт. Именно потеряется, а не требуется для работы. Добьетесь стабилизации тока и светодиод будет работать долго и ярко.

Более того, светодиод – это полупроводник. И сопротивление этого полупроводника зависит от напряжения, которое на него подано. Изменяется сопротивление по графику – вольтамперной характеристике.

Если на нее посмотреть, то становится видно, даже если вы не намного увеличите или уменьшите напряжение, это резко, в разы изменит величину тока.

Причем зависимость не прямо пропорциональная. 

Казалось бы, один раз выставь точное напряжение и можно получить номинальный ток, который необходим для светодиода. При этом, он не будет превышать предельные величины. Вроде бы и обычный блок с этим должен справиться.

Однако у всех светодиодов уникальные параметры и характеристики. При одном и том же напряжении они могут “кушать” разный ток.

Мало того, эти параметры еще способны меняться при изменении окружающей температуры.

А температурный диапазон работы светодиодных светильников очень большой.
Например, зимой на улице может быть -30 градусов, а летом уже все +40. И это в одном и том же месте.

Поэтому, если вы такие светильники подключите от обычного импульсного блока питания, а не от драйвера, то режим их работы будет абсолютно не предсказуем.

Работать они конечно будут, но в каком режиме светоотдачи и насколько долго неизвестно. Заканчивается такая работа всегда одинаково – выгоранием светодиода.

Кстати, при превышении температуры световой поток у светодиодных светильников всегда падает, даже у тех, которые подключены через драйвер. У некачественных экземпляров световой поток падает очень сильно, стоит им поработать около часа и нагреться.

У качественных изделий световой поток с нагревом уменьшается слабо, но все же уменьшается.

Поэтому каждому светильнику после запуска, нужно дать время, чтобы он вышел на свой рабочий режим и световой поток стабилизировался. Его изменение должно быть не более 10% от начального.

Многие недобросовестные производители хитрят и измеряют эти параметры сразу после включения, когда поток еще максимальный.

Если вам нужно соединить несколько светодиодов, то подключаются они последовательно. Это необходимо, чтобы через все элементы, несмотря на их разные ВАХ (вольт-амперные характеристики), протекал один и тот же ток.

А уже эту последовательную цепочку подключают к драйверу. Данные цепочки можно комбинировать различными способами. Создавать последовательно-параллельные или гибридные схемы.

Недостатки драйверов

Безусловно и у драйверов есть свои неоспоримые недостатки:

  • во-первых они рассчитаны только на определенный ток и мощность 

А это значит, что для каждого драйвера каждый раз придется подбирать определенное количество светодиодов. Если один из них случайно выйдет из строя в процессе работы, то драйвер весь ток запустит на оставшиеся.

Что приведет к их перегреву и последующему выгоранию. То есть потеря одного светодиода влечет за собой поломку всей цепочки.

Бывают и универсальные модели драйверов, для них не важно количество светодиодов, главное чтобы их общая мощность не превышала допустимую. Но они гораздо дороже.

  • узкоспециализированность на светодиодах 

Простые блоки питания можно использовать для разных нужд, везде где необходимы 12В и более, например для систем видеонаблюдения.

Основное же предназначение драйверов – это светодиоды.

А есть бездрайверные заводские светильники? Есть. Не так давно на рынке появилось немало таких Led светильников и прожекторов.

Однако энергоэффективность у них не очень высокая, на уровне обычных люминесцентных ламп. И как он поведет себя при возможных перепадах параметров в наших сетях, большой вопрос.

Светодиодные ленты — подключение от блока питания или драйвера?

Отдельный вопрос это светодиодные ленты. Для них вовсе не нужны драйвера, и как известно они подключаются от привычных нам блоков питания 12-36 Вольт.

Казалось бы в чем подвох? Там же тоже стоят светодиоды.

А дело в том, что драйвер уже автоматически присутствует в самой ленте.

Все вы видели на светодиодных лентах впаянные сопротивления (резисторы).

Они как раз таки и отвечают за ограничение тока до номинальной величины. Одно сопротивление устанавливается на три последовательно подключенных светодиода.

Такие участки ленты, рассчитанные на напряжение 12 Вольт называют кластерами. Эти отдельные кластеры на всем протяжении ленты подключены между собой в параллель.

И именно благодаря такому параллельному соединению, на все светодиоды подается одинаковое напряжение 12В. Благодаря кластеризации при монтаже низковольтной ленты, ее спокойно можно отрезать на мелкие кусочки, состоящие минимум из 3-х светодиодов.

Казалось бы, решение найдено и где здесь недостаток? А главный недостаток такого устройства – эти резисторы не проделывают никакой полезной работы.

Они лишь дополнительно нагревают окружающее пространство и сам светодиод возле него. Именно поэтому светодиодные ленты не светят так ярко, как нам хотелось бы. Вследствие чего, их используют лишь как дополнительный свет интерьера.

Сравните 60-70 люмен/ватт у светодиодных лент, против 120-140 лм/вт у светильников и решений на основе драйверов.

Возникает вопрос, а можно ли найти ленту без сопротивлений и подключить к ней драйвер отдельно? Да, такие устройства например применяют в светодиодных панелях.

Их часто монтируют в подвесном потолке и не только. Применяются они без сопротивлений. Еще их называют токовыми светодиодными линейками.

Именно токовыми. Здесь все отдельные участки линеек подключаются последовательно на один драйвер. И все прекрасно работает.

Блоки питания и драйверы | MarcoBravo

Блок питания SC1E-12350C предназначен для мощных светодиодных изделий со стабилизированным выходным током (не имеющих встроенного блока питания). Выходное напряжение – 12 В.

Блок питания ARPJ-SС6E-24350C предназначен для мощных светодиодных изделий со стабилизированным выходным током (не имеющих встроенного блока питания). Выходное напряжение – 350мА/24 вольт.

Драйвер для светодиодных светильников (6 Вт, 350 мА) является источником питания со стабилизированным выходным током. Используется при последовательном подключении светодиодов. Увеличивает выходное напряжение и обеспечивает постоянный ток 350 мА.

Драйвер влагозащищенный для светодиодных светильников (6 Вт, 350 мА, IP65) является источником питания со стабилизированным выходным током. Используется при последовательном подключении светодиодов. Увеличивает выходное напряжение и обеспечивает постоянный ток 350 мА. Может быть использован в условиях с повышенной влажностью (освещение плавательных бассейнов, ванных комнат и др.).

Диммируемый драйвер для светодиодных светильников является источником питания со стабилизированным выходным током. Управление осуществляется с помощью стандартного светорегулятора 220В (TRIAC). Используется для замены стандартного блока питания светодиодного светильника.

Драйвер-диммер для светодиодных светильников является источником питания со стабилизированным выходным током. Выходной ток – 600мА. Управление осуществляется с помощью стандартного светорегулятора 220В (TRIAC). Используется для замены стандартного блока питания светодиодного светильника.

Блок питания на 12 вольт 20Вт, 1. 5 Ампер предназначен для светодиодных изделий. Выходное напряжение – 12 В.

Блок питания 12 вольт 60Вт, 5 Ампер, предназначен для светодиодных изделий. Выходное напряжение – 12 В.

Блок питания на 12 вольт 80Вт, 6.7 Ампер предназначен для питания светодиодной техники. Алюминиевый корпус, влагозащищенность IP67

Блок питания 12 вольт 100Вт, 8 Ампер, предназначен для светодиодных изделий. Пластиковый корпус IP67. Выходное напряжение – 12 В.

Блок питания на 12 вольт 100Вт, 8 Ампер предназначен для питания светодиодной техники. Алюминиевый корпус, влагозащищенность IP67

Блок питания на 12 вольт 150Вт, 12.5 Ампер предназначен для питания светодиодной техники. Алюминиевый корпус, влагозащищенность IP67

Блок питания на 12 вольт 200Вт предназначен для питания светодиодной техники. Алюминиевый корпус, влагозащищенность IP67

Блок питания на 12 вольт 250Вт, 21 Ампер предназначен для питания светодиодной техники. Алюминиевый корпус, влагозащищенность IP67, задержка при включении 4-5 секунд

Блок питания на 12 вольт 300Вт предназначен для питания светодиодной техники. Алюминиевый корпус, влагозащищенность IP67

Блок питания на 0-24 вольт 672 Вт предназначен для питания светодиодной техники. Алюминиевый корпус, влагозащищенность IP20.

Драйверы светодиодов 12 В – Драйверы светодиодов постоянного напряжения 12 В

Адрес получателя

Адресная строка 2

Город

Государство / Провинция / Регион

Почтовый индекс

Страна USAAaland IslandsAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntigua И BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral Африканский RepublicChadChileChinaChristmas IslandColombiaComorosCongoCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuracaoCyprusCzech RepublicDemocratic Республика CongoDenmarkDjiboutiDominicaDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuernseyGuineaGuyanaHaitiHondurasHong KongHungaryIcelandIndiaIndonesiaIranIraqIrelandIsle из ManIsraelItalyJamaicaJapanJersey (Нормандские острова) JordanKazakhstanKenyaKiribatiKuwaitKyrgyzstanLao Народно-Демократическая RepublicLatviaLebanonLesothoLiberiaLibyaLiechtensteinLithuaniaLuxembourgMacauMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Республика ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalauPalestinePanamaPapua Нового GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarRepublic из KosovoReunionRomaniaRussiaRwandaSaint Китса и NevisSaint LuciaSaint Винсента и GrenadinesSamoa (Independent) Сан MarinoSao Тома и PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint MaartenSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузии и Южного Sandwich IslandsSouth KoreaSouth SudanSpainSri LankaSudanSurinameSvalbard и Ян Майен ОстроваСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТонгаTr Инидад и ТобагоТунисТурцияТуркменистанТуркс и Острова КайкосУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобританияУругвайУзбекистанВануатуВатикан Государство-государство (Святой Престол) ВенесуэлаВьетнамВиргинские острова (Британские) Виргинские острова (U. S.) Западная Сахара Йемен Замбия Зимбабве

Общие сведения о драйверах светодиодов от LEDSupply

Драйверы светодиодов

могут сбивать с толку светодиодную технологию. Существует так много разных типов и вариаций, что временами это может показаться немного подавляющим. Вот почему я хотел написать небольшой пост с объяснением разновидностей, чем они отличаются, и на что вы должны обратить внимание при выборе драйвера (ов) светодиодов для вашего освещения.

Что такое драйвер светодиода, спросите вы? Драйвер светодиода – это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов.Это важная часть светодиодной цепи, и работа без нее приведет к отказу системы.

Использование одного из них очень важно для предотвращения повреждения светодиодов, поскольку прямое напряжение (V f ) мощного светодиода изменяется в зависимости от температуры. Прямое напряжение – это количество вольт, которое светоизлучающий диод требует для проведения электричества и зажигания. По мере увеличения температуры прямое напряжение светодиода уменьшается, в результате чего светодиод потребляет больше тока. Светодиод будет продолжать нагреваться и потреблять больше тока, пока светодиод не перегорит сам себя, это также известно как термический побег.Драйвер светодиода – это автономный источник питания, выходы которого соответствуют электрическим характеристикам светодиода (-ов). Это помогает избежать теплового разгона, поскольку драйвер светодиода постоянного тока компенсирует изменения прямого напряжения, обеспечивая при этом постоянный ток к светодиоду.

На что следует обратить внимание перед выбором драйвера светодиода

  • Какие типы светодиодов используются и сколько?
    • Узнать прямое напряжение, рекомендуемый ток возбуждения и т. Д.
  • Нужен ли мне драйвер светодиода постоянного тока или драйвер светодиода постоянного напряжения?
    • Здесь мы сравниваем постоянный ток с постоянным напряжением.
  • Какой тип энергии будет использоваться? (Постоянный ток, переменный ток, батареи и т. Д.)
  • Какие ограничения по месту?
    • Работаете в тесноте? Не слишком много напряжения для работы?
  • Каковы основные цели приложения?
    • Размер, стоимость, эффективность, производительность и т. Д.
  • Нужны какие-то специальные функции?
    • Диммирование, импульсное, микропроцессорное управление и т. Д.

Прежде всего, вы должны знать…

Существует два основных типа драйверов: те, которые используют входное питание постоянного тока низкого напряжения (обычно 5–36 В постоянного тока), и те, которые используют входное питание переменного тока высокого напряжения (обычно 90–277 В переменного тока). Драйверы светодиодов, которые используют высокое напряжение переменного тока, называются автономными драйверами или драйверами светодиодов переменного тока. В большинстве приложений рекомендуется использовать драйвер светодиода с низким напряжением постоянного тока.Даже если ваш вход представляет собой переменный ток высокого напряжения, использование дополнительного импульсного источника питания позволит использовать входной драйвер постоянного тока. Рекомендуются низковольтные драйверы постоянного тока, поскольку они чрезвычайно эффективны и надежны. Для небольших приложений доступно больше опций регулирования яркости и вывода по сравнению с высоковольтными драйверами переменного тока, поэтому у вас есть больше возможностей для работы в вашем приложении. Однако, если у вас есть большой проект общего освещения для жилого или коммерческого освещения, вы должны увидеть, какие драйверы переменного тока могут быть лучше для этого типа работы.

Вторая вещь, которую вы должны знать

Во-вторых, вам нужно знать ток возбуждения, который вы хотите подать на светодиод. Более высокие токи возбуждения приведут к большему количеству света от светодиода, а также потребуют большей мощности для освещения. Важно знать характеристики своего светодиода, чтобы знать рекомендуемые токи возбуждения и требования к радиатору, чтобы не сжечь светодиод слишком большим током или чрезмерным нагревом. Наконец, хорошо знать, что вы ищете от своего осветительного приложения. Например, если вы хотите регулировать яркость, вам нужно выбрать драйвер с возможностью регулировки яркости.

Немного о затемнении

Регулировка яркости светодиодов зависит от используемой мощности; поэтому я рассмотрю варианты диммирования постоянного и переменного тока, чтобы мы могли лучше понять, как регулировать яркость всех приложений, будь то постоянный или переменный ток.

Диммирование постоянного тока

Низковольтные драйверы с питанием от постоянного тока могут легко регулироваться несколькими способами. Самым простым решением для этого является использование потенциометра.Это дает полный диапазон затемнения от 0 до 100%.

Потенциометр 20 кОм

Обычно это рекомендуется, когда у вас есть только один драйвер в вашей схеме, но если несколько драйверов диммируются от одного потенциометра, значение потенциометра можно найти из – KΩ / N – где K – значение вашего потенциометра, а N количество используемых вами драйверов. У нас есть подключенные BuckPucks, которые поставляются с потенциометром с поворотной ручкой 5K для регулирования яркости, но у нас также есть потенциометр 20K, который можно легко использовать с нашими драйверами BuckBlock и FlexBlock. Просто подключите провод заземления затемнения к центральному штырю, а провод затемнения к одной или другой стороне (выбор стороны просто определяет, каким образом вы поворачиваете ручку, чтобы уменьшить яркость).

Второй вариант регулировки яркости – использование настенного светорегулятора 0–10 В, например, нашего низковольтного регулятора яркости A019. Это лучший способ диммирования, если у вас несколько устройств, поскольку диммер 0-10 В может работать с несколькими драйверами одновременно. Просто подключите диммерные провода прямо ко входу драйвера, и все готово.

Диммирование переменного тока

Для высоковольтных драйверов переменного тока существует несколько вариантов регулировки яркости в зависимости от вашего драйвера. Многие драйверы переменного тока работают с регулировкой яркости 0-10 В, как мы уже говорили выше. У нас также есть светодиодные драйверы Mean Well и Phihong, которые предлагают диммирование TRIAC, поэтому они работают со многими передними и задними диммерами. Это полезно, поскольку позволяет светодиодам работать с очень популярными системами затемнения в жилых помещениях, такими как Lutron и Leviton.

Сколько светодиодов можно запустить с драйвером?

Максимальное количество светодиодов, которое вы можете запустить от одного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов.При использовании драйверов LuxDrive максимальное выходное напряжение определяется путем вычитания 2 вольт из входного напряжения. Это необходимо, потому что драйверы нуждаются в накладных расходах 2 вольта для питания внутренней схемы. Например, при использовании драйвера Wired 1000mA BuckPuck со входом 24 В у вас будет максимальное выходное напряжение 22 В.

Что мне нужно для питания?

Это приводит нас к определению того, какое входное напряжение нам нужно для наших светодиодов. В конце концов, входное напряжение равно нашему максимальному выходному напряжению для нашего драйвера после того, как мы учтем служебное напряжение схемы драйвера. Убедитесь, что вы знаете минимальное и максимальное входное напряжение для драйверов светодиодов. В качестве примера мы возьмем Wired 1000mA BuckPuck, который может принимать входное напряжение от 7 до 32 В постоянного тока. Чтобы определить, каким должно быть ваше входное напряжение для приложения, вы можете использовать эту простую формулу.

V o + (V f x LED n ) = V дюйм

Где:

В o = Накладные расходы по напряжению для драйверов – 2, если вы используете драйвер DC LuxDrive или 4, если вы используете драйвер AC LuxDrive

В f = прямое напряжение светодиодов, которые вы хотите запитать

LED n = количество светодиодов, которые вы хотите запитать

В в = Входное напряжение на драйвер

Технические характеристики продукта со страницы продукта Cree XPG2

Например, если вам нужно запитать 6 светодиодов Cree XPG2 от источника постоянного тока, и вы используете проводную BuckPuck, указанную выше, то V в должно быть не менее 20 В постоянного тока на основе следующего расчета.

2 + (3,0 х 6) = 20

Определяет минимальное необходимое входное напряжение. Нет никакого вреда в использовании более высокого напряжения вплоть до максимального номинального входного напряжения драйвера, поэтому, поскольку у нас нет источника питания на 20 В постоянного тока, вы, вероятно, будете использовать источники питания 24 В постоянного тока для работы этих светодиодов.

Теперь это помогает нам убедиться, что напряжение работает, но для того, чтобы найти правильный источник питания, нам также необходимо определить мощность всей цепи светодиода.Расчет мощности светодиода:

В f x Управляющий ток (в амперах)

Используя 6 светодиодов XPG2 сверху, мы можем определить наши ватты.

3,0 В x 1 А = 3 Вт на светодиод

Общая мощность цепи = 6 x 3 = 18 Вт

При расчете мощности блока питания, подходящей для вашего проекта, важно предусмотреть 20% «амортизатора» при расчете мощности. Добавление этой 20% -ной подушки предотвратит перегрузку источника питания.Перегрузка блока питания может вызвать мерцание светодиодов или преждевременный выход блока питания из строя. Просто рассчитайте подушку, умножив общую мощность на 1,2. Таким образом, для нашего примера выше нам потребуется не менее 21,6 Вт (18 x 1,2 = 21,6). Ближайший общий размер блока питания будет 25 Вт, поэтому в ваших интересах получить блок питания на 25 Вт и выходное напряжение 24 В.

Что делать, если у меня недостаточно напряжения?

Использование LED Boost Driver (FlexBlock)

Драйверы светодиодов FlexBlock – это повышающие драйверы, что означает, что они могут выдавать более высокое напряжение, чем то, которое им подается.Это позволяет подключать больше светодиодов последовательно с одним драйвером светодиода. Это очень полезно в приложениях, где ваше входное напряжение ограничено, и вам нужно получить

FlexBlock На

больше мощности для светодиодов. Как и в случае с драйвером BuckPuck, максимальное количество светодиодов, которое вы можете подключить с помощью одного последовательно подключенного драйвера, определяется делением максимального выходного напряжения драйвера на прямое напряжение ваших светодиодов. FlexBlock может быть подключен в двух различных конфигурациях и может варьироваться в зависимости от входного напряжения.В режиме Buck-Boost (стандартный) FlexBlock может обрабатывать светодиодные нагрузки, которые находятся выше, ниже или равны напряжению источника питания. Вы найдете максимальное выходное напряжение драйвера в этом режиме по следующей формуле:

48 В постоянного тока – В в

Итак, при использовании источника питания 12 В постоянного тока и светодиодов XPG2 сверху, сколько мы могли бы работать с 700 мА FlexBlock? Максимальное выходное напряжение составляет 36 В постоянного тока (48–12), а прямое напряжение XPG2, работающего при 700 мА, составляет 2,9, поэтому, разделив 36 В постоянного тока на это, мы видим, что этот драйвер может питать 12 светодиодов.В режиме Boost-Only FlexBlock может выдавать до 48 В постоянного тока от всего лишь 10 В постоянного тока. Таким образом, если вы были в режиме Boost-Only, вы могли включить до 16 светодиодов (48 / 2,9). Здесь мы рассмотрим использование повышающего драйвера FlexBlock для более глубокого питания ваших светодиодов.

Проверка мощности для входных драйверов переменного тока большой мощности

Теперь с драйверами входа переменного тока они выделяют определенное количество ватт для работы, поэтому вам нужно определить мощность ваших светодиодов. Вы можете сделать это по следующей формуле:

[Vf x ток (в амперах)] x LEDn = мощность

Итак, если мы пытаемся запитать те же 6 светодиодов Cree XPG2 на 700 мА, ваша мощность будет…

[2.9 x 0,7] x 6 = 12,18

Это означает, что вам нужно найти драйвер переменного тока, который может работать до 13 Вт, как наш светодиодный драйвер Phihong 15 Вт.

ПРИМЕЧАНИЕ: При разработке приложения важно учитывать минимальное выходное напряжение автономных драйверов. Например, приведенный выше драйвер имеет минимальное выходное напряжение 15 вольт. Поскольку минимальное выходное напряжение больше, чем у нашего одиночного светодиода XPG2 (2,9 В), для работы с этим конкретным драйвером вам потребуется соединить не менее 6 из них последовательно.

Инструменты для понимания и поиска правильного драйвера светодиода

Итак, теперь у вас должно быть довольно хорошее представление о том, что такое драйвер светодиода и на что нужно обращать внимание при выборе драйвера с источником питания, достаточным для вашего приложения. Я знаю, что вопросы по-прежнему будут, и для этого вы можете связаться с нами по телефону (802) 728-6031 или [email protected].

У нас также есть этот инструмент выбора драйверов, который помогает рассчитать, какой драйвер будет лучше всего, введя спецификации вашей схемы.

Если ваше приложение требует нестандартного размера и вывода, обратитесь в LEDdynamics. Их подразделение LUXdrive быстро разработает и изготовит нестандартные светодиодные драйверы прямо здесь, в Соединенных Штатах.

Спасибо за внимание, и я надеюсь, что этот пост поможет всем, кто интересуется, что такое светодиодные драйверы.

Magnitude M60L12DC-AR (60 Вт, 12 В постоянного тока) Магнитный светодиодный драйвер с регулируемой яркостью – Heraco Lights

Описание продукта

Magnitude M60L12DC-AR – это самый компактный светодиодный драйвер на рынке с сердечником магнитного трансформатора. Он оснащен двумя автоматическими выключателями с автоматическим сбросом, один на входе и один на выходе, которые защищают как нагрузку, так и драйвер. Драйвер заключен в металлическую коробку с покрытием, в которой есть 2 заглушки, по одной с каждой стороны, для облегчения установки в соответствии с требованиями электротехнических норм.

Мы сотрудничаем с производителем этих потрясающих драйверов, чтобы предложить вам самую низкую, максимально близкую к оптовой цене, возможную. Обратите внимание, что они отправляются напрямую от производителя, и из-за их популярности и спроса производитель обычно отправляет их через 2-5 дней после того, как вы разместите свой заказ.Они определенно стоят лишних нескольких дней! Мы отправим вам электронное письмо о статусе доставки и отправим отслеживание, как только оно будет у нас.

МЕЖДУНАРОДНЫЕ ПОКУПАТЕЛИ: Обратите внимание, что за доставку товаров Magnitude за пределы США взимается дополнительная плата. После совершения покупки вы получите счет / счет на доставку по электронной почте.
[two_fourth last = “нет”]

Атрибут Спецификация
Макс.нагрузка 60 Вт
Входное напряжение 120 В переменного тока
Входной ток при полной нагрузке 760 мА
Выходное напряжение при полной нагрузке 10.8 В постоянного тока
Максимальный выходной ток 5,9 А
Выходное напряжение разомкнутой цепи 11,9 В постоянного тока
Средняя эффективность 80%
Автоматические выключатели Первичный и вторичный автоматический сброс
Размеры 6,55 x 2,25 x 2,55 дюйма
Масса 50 унций

[/ two_fourth] [two_fourth class = ”” last = ”yes”]
  • Диммируется любым стандартным диммером MLV TRIAC
  • Двойная защита – первичный и вторичный автоматические выключатели с самовозвратом
  • Корпус Nema 3R – для наружного применения
  • Две заглушки по одной с каждой стороны
  • Класс 2
  • Зарегистрировано в ETL
  • Сертифицировано в соответствии со стандартом CSA

M60L12DC-AR Спецификация

Руководство по установке

Список совместимых диммеров
[/ two_fourth]

Драйверы питания светодиодов

Драйверы электронного светодиодного освещения

Эти драйверы представляют собой компактное решение для питания светодиодов. Электронный драйвер светодиода, как правило, меньше, легче и дешевле, чем магнитные драйверы, и может быть предпочтительным для установок, где пространство ограничено.

Драйверы для жестких кабелей и подключаемые модули различной мощности доступны как в моделях постоянного тока, так и в моделях постоянного напряжения. Чтобы настроить систему освещения, поищите в драйвере функции, такие как удаленный монтаж, или специальные элементы управления освещением, такие как регулировка яркости, которые совместимы с вашим драйвером.

Драйверы магнитных светодиодов

Эти магнитные драйверы светодиодов доступны как в моделях с постоянным током, так и с постоянным напряжением и имеют различные номинальные мощности.

Хотя магнитный драйвер может быть более громоздким и в некоторых случаях более дорогим, чем электронный драйвер, он, как правило, является более прочным и надежным вариантом для питания вашей светодиодной системы освещения.

Драйверы светодиодов на 12 Вольт

Основное назначение драйвера светодиода – преобразование входного переменного напряжения в низкое постоянное напряжение. Драйвер светодиодов на 12 вольт выходит за рамки простого ввода напряжения.

Он также фиксирует выходное напряжение источника питания на стабильном уровне 12 вольт, позволяя при этом изменять мощность нагрузки.По мере добавления светодиодных нагрузок выходное напряжение остается прежним (12 вольт), а выходной ток увеличивается до тех пор, пока драйвер не достигнет максимальной нагрузки.

Драйверы постоянного напряжения обычно используются в коммерческих приложениях, таких как архитектурные вывески, где несколько светодиодов соединены вместе, а также в светодиодных ленточных огнях, полосовых световых индикаторах и шайбах.

Драйверы светодиодов на 24 В

светодиодных светильников, которым требуется фиксированное выходное напряжение 24 В, но переменная величина выходного тока требует 24-вольтового драйвера светодиодов.Эти драйверы постоянного напряжения сочетают стабильное выходное напряжение 24 В с различными мощностями светодиодных осветительных систем, таких как ленточные фонари, ленточные фонари, шайбовые фонари и т. Д.

Когда вы добавляете светодиоды в схему освещения, драйвер будет выдавать больший выходной ток, пока он не достигнет максимальной доступной мощности.

Что такое светодиодный драйвер?

Независимо от того, встроен ли он прямо в лампу, светильник или отдельный компонент, драйвер светодиодов является источником энергии для вашей системы светодиодного освещения.

Чтобы обеспечить правильную работу светодиодов, драйвер преобразует сетевое питание переменного тока (120 В или 277 В) в соответствующее напряжение постоянного тока (чаще всего 12 В постоянного тока или 24 В постоянного тока) или регулирует ток (чаще всего 350 или 700 миллиампер или мА) для ваших фонарей. .По сути, он контролирует диапазон напряжений, поступающих от ваших источников питания.

Драйверы светодиодов

также могут включать в себя компоненты, позволяющие регулировать яркость света. Но независимо от того, добавляете ли вы диммирование, важен компонент контроля напряжения.

Типы светодиодных драйверов

Есть два основных различия между электронными и магнитными драйверами светодиодов: драйверы постоянного тока и драйверы постоянного напряжения. Вы должны выбрать драйвер в зависимости от электрических требований вашей светодиодной системы.

Драйверы светодиодов постоянного тока фиксируют ток, подаваемый на осветительную арматуру, но позволяют изменять диапазон напряжений в зависимости от нагрузки.

Драйверы постоянного напряжения подают фиксированное напряжение, обычно 12 В или 24 В постоянного тока, и используют серию резисторов или встроенных регуляторов.

Поскольку не все драйверы светодиодов созданы одинаково, качество вашего источника питания будет иметь значительное влияние на эффективность и срок службы светодиодов. Чтобы обеспечить стабильный световой поток и отсутствие отклонений от света, убедитесь, что вы используете правильный тип драйвера.

Выбор подходящего зависит от постоянного выходного напряжения или постоянного тока и общей мощности вашей системы.

Одно очень важное замечание. Независимо от того, какой тип драйвера вы выберете, общая мощность осветительных приборов, подключенных к драйверу, никогда не должна превышать максимально допустимую мощность. В противном случае защита не принесет никакой пользы.

Особенности

Если вы хотите интегрировать регулировку яркости или другие специализированные средства управления освещением, такие как средства коррекции или изменения цвета, датчики присутствия, фотоэлементы, пульты дистанционного управления или средства автоматизации, обязательно проверьте в листе технических данных производителя, что драйвер, который вы планируете использовать совместим.

Большинство драйверов светодиодов, особенно новые электронные, должны работать с этими имеющимися в продаже устройствами управления 0–10 В. Регулировка яркости 0-10 В осуществляется путем изменения напряжения от 0 до 10 по мере необходимости.

Universal Lighting Technologies Everline D12V60UNV-A Светодиодный драйвер 120-277 В, вход 5000 мА, макс. Выходная мощность 60 Вт

Выбирать … Acuity – Освещение Юноны Acuity – Освещение Lithonia Органы управления Acuity – сенсорный переключатель Aleddra Американская сушилка Американское освещение Атлас Освещение Бостонский склад Брайант Электрик CAO Освещение Деко Освещение Земляне Освещение EarthTronics Эйко Инкапсулит Фулхэм GE Освещение GKI / Bethlehem Lighting GM Освещение Хорошее земное освещение Зеленый креатив Halco Lighting Technologies Освещение люка Ховард Лайтнинг Корпорация Ilsco ИНТЕРМАТИЧЕСКИЙ Keystone Technologies Светодиоды KolourOne Лорен Иллюминация Легкий эффективный дизайн LiteTronics Светодиодные фонари Lotus Люминара Lutron Electronics Величина освещения MaxLite MCLED Освещение Продукты Морриса Никор NUVO Освещение Optilumen Орион Освещение Пасс и Сеймур Philips Освещение Точность Rize Enterprises Satco Сайлит Sigma Luminous Симкар Особое распоряжение Sunlite Сильвания Освещение TCP TechBrite Действительно зеленые решения Универсальное освещение Венчурное освещение Verilux

Светодиодный драйвер Решение для источника питания

РС-15

РС-15-3. 3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3. 3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3. 3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3. 3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3. 3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

РС-15

РС-15-3.3 РС-15-5 РС-15-12 РС-15-15 РС-15-24 РС-15-48

Какой светодиодный драйвер мне нужен?

Как выбрать правильный драйвер для вашей светодиодной установки

Когда дело доходит до выбора правильного Совместимость светодиодных драйверов имеет решающее значение. Использование неправильного драйвера в светодиодной системе может привести к отказу и даже повреждению используемых компонентов. Как отраслевые эксперты и один из крупнейших поставщиков Великобритании, наша дружная техническая команда Ultra LEDs всегда готова проконсультировать вас по всем вопросам, связанным со светодиодами, и помочь вам найти продукт, который подходит именно вам. Вот наше руководство по драйверам, вопросы, которые вам нужно задать при их покупке, и наши основные советы по их правильной установке.

Что такое драйвер?

Драйверы светодиодов – это устройства, которые регулируют и подают мощность, используемую для «запуска» светодиодных лент.Подобно традиционным трансформаторам, они преобразуют переменный ток сетевого напряжения (240 В переменного тока) в более низкое напряжение. Однако драйверы светодиодов также преобразуют ток сетевого напряжения в постоянный постоянный ток (DC), который требуется светодиодам. Регулируя свою мощность в соответствии с электрическими свойствами светодиодной ленты, которая изменяется при нагревании, драйверы регулируют мощность, подаваемую на светодиоды, на постоянное значение, обычно равное 12 В или 24 В постоянного тока.

Поскольку светодиоды требуют постоянного постоянного тока 12 В или 24 В, драйверы светодиодов требуются во всех светодиодных системах (за исключением тех, которые специально разработаны для управления источниками питания с сетевым напряжением, такими как лента сетевого напряжения или светодиодные лампы).Но со светодиодами Ultra купить подходящий драйвер очень просто – ответьте на 5 простых вопросов:

1. Какое напряжение?

Для питания всех светодиодных лент требуется 12 В или 24 В, как указано в спецификации. Обязательно купите драйвер с тем же выходным напряжением, что и для ленты. Запуск ленты 12 В с драйвером 24 В приведет к тому, что светодиоды станут ярче в краткосрочной перспективе, но более высокое напряжение в конечном итоге сожжет ленту. Запуск ленты 24 В с драйвером 12 В приведет к тому, что светодиоды вообще не загорятся.

2. Какая мощность?

Количество потребляемой мощности светодиодной ленты зависит от ее длины. Мощность ленты – это количество энергии, потребляемой лентой. на метр . Чтобы определить, сколько ватт требуется вашей ленте, просто умножьте мощность ленты на количество метров, которые вы пробегаете. Как только вы узнаете мощность ленты, вы можете выбрать подходящий драйвер.

Мощность драйвера указывает на его максимальную выходную мощность.Мы рекомендуем выбирать драйвер с мощностью, по крайней мере, на 10% выше, чем мощность, необходимая для светодиодной ленты, чтобы обеспечить более длительный срок службы.

Например, для 5-метровой светодиодной ленты мощностью 6 Вт требуется 30 Вт. Мы рекомендуем использовать драйвер с выходной мощностью 33 Вт или более для питания этой ленты.

3. Ваш драйвер должен быть водонепроницаемым?

Если вы устанавливаете светодиодную ленту на открытом воздухе, на кухне или в ванной, важно использовать водостойкий драйвер.Чтобы узнать, является ли драйвер водонепроницаемым, посмотрите его степень защиты от проникновения или степень защиты IP. Брызгозащищенные драйверы имеют степень защиты IP 65 и лучше всего подходят для использования в ванных комнатах и ​​кухнях. Водонепроницаемые драйверы имеют степень защиты IP 67 или выше и лучше всего подходят для использования на открытом воздухе.

4. Хотите иметь возможность затемнять светодиоды?

Если вы хотите иметь возможность затемнять светодиоды, обязательно купите драйвер с возможностью затемнения. Они работают за счет уменьшения мощности, подаваемой на светодиод, и бывают двух разных типов: драйверы с регулируемой яркостью задней кромки (также известные как драйверы ELV) и передняя кромка. диммируемые драйверы (также известные как драйверы TRIAC).Чтобы узнать больше о различиях между двумя различными технологиями затемнения, щелкните здесь.

5. Plug and Play или профессиональный?

Если вы устанавливаете светодиодное освещение самостоятельно, мы рекомендуем наш стандартный набор светодиодных драйверов; Они оснащены инновационной технологией plug and play с предварительно подключенными кабелями и розетками для сетевого напряжения, что делает установку проще, чем когда-либо.

Для тех, у кого есть опыт работы с электрикой, которым требуется доступ к портам драйвера или вы ищете драйвер для более сложных ситуаций, например, в розничной или коммерческой среде, мы рекомендуем нашу линейку драйверов Tagra® Professional.Благодаря их исключительной надежности, высококачественным внутренним компонентам и беспрецедентной 5-летней гарантии не нужно беспокоиться о поломке. Они также имеют несколько клемм для более универсальной установки, требующей жесткой проводки.

Для получения дополнительной информации о драйверах, пожалуйста, свяжитесь с нашим техническим специалистом по электронной почте [email protected] или позвоните в наш офис по телефону 01625 611 611.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *