Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Схема генератора импульсов

Поделиться ссылкой:

 

   

Существует довольно много схем генераторов импульсов. Многие радиолюбители их переделывают с целью улучшения характеристик. Для тех, кому нужна простая, но функциональная схема генератора прямоугольных импульсов с регулировкой частоты и скважности в довольно широких пределах схема представлена ниже. Кроме того эту схему можно использовать как ШИМ для регулировки мощности нагрузки или регулятор оборотов двигателя, увеличив мощность выходного каскада. У меня такая схема применяется для регулировки оборотов лодочного электромотора, который потребляет 30 ампер.

Схема генератора основана на одной из самых распространенных микросхем – таймер NE555. Ее отечественный и импортный аналоги КР1006ВИ1 и LM555.

Рассмотрим работу схемы более подробно. Сама схема генератора организована в соответствии со стандартом по даташиту. Резистором R2 регулируется частота импульсов, а с помощью R3 ширина. При этом диапазон регулировки периода длительности лежит в пределах 10-100 микросекунд, а период следования в пределах 50-100 микросекунд. Кроме того эти параметры можно изменять с помощью задающего конденсатора C1.

Электролитический конденсатор C3 сглаживает пульсации от источника питания, если же для питания используется аккумулятор или батарейки, то необходимость в нем отпадает и его можно не устанавливать.

После сборки ни требуется, ни какой наладки, и в случае безошибочной сборки схемы она начинает работать сразу, как только будет подано питание.

Питание генератора то же можно установить в довольно широких пределах без стабилизатора. Оно составляет от 4,5 вольт до 16. Но есть все-таки один недостаток, при изменении напряжения питания немного изменяется частота, если это критично для применяемой схемы, то следует поставить стабилизатор.

Для осуществления более точной и плавной регулировки выходных параметров резисторы R2 и R3 следует использовать многооборотные с линейной характеристикой.

Максимальный выходной ток таймера составляет 250 миллиампер. Если этого недостаточно, то для умощнения выхода целесообразно установить мощный полевой транзистор рассчитанный на необходимый ток. Они характеризуются малым проходным сопротивление в открытом состоянии, порядка нескольких млОм. Что позволяет при малых размерах коммутировать мощную нагрузку до сотен ампер. И кроме того требуется малое управляющее напряжение. В случае если нагрузка будет индуктивной, например коллекторный двигатель, на выходе нужно установить быстродействующий диод Шоттки в обратной полярности рассчитанный на выходной ток.

 

Анекдот:

Вовочка подходит к бабушке и говорит: 
– Бабушка, нас в школе учат говорить только правду, вот я и решил тебе сознаться. В прошлом году я съел банку варенья, а чтоб ты не заметила я в нее насрал… 
Дед резко вскакивает со стула бабке дает по голове и орет: 
– Я же тебе говорил что говно, а ты засахарилось, засахарилось… 

     
   
   

Биполярные транзисторы

Полевые транзисторы

Содержимое 2

Транзисторы GBT

Содержимое 3

Цифровые микросхемы

Аналоговые микросхемы

Содержимое 5

Конденсаторы

Содержимое 7

Устроства для начинающих

Электроника для авто

Устройства для дома

Источники питания

Устройства на микроконтроллерах

Ремонт бытовой аппаратуры

Содержимое 6

Разное

Содержимое 7

 

Здесь может быть Ваша реклама

Схемы генераторов с регулировкой скважности импульсов

Автор admin На чтение 10 мин Просмотров 1 Опубликовано Обновлено

Содержание

  1. Генераторы импульсов на цифровых КМОП микросхемах. Онлайн калькулятор расчёта элементов генераторов с несимметричной формой сигнала и генераторов с изменяемой скважностью выходных импульсов.
  2. Схема генератора импульсов
  3. Генератор прямоугольных импульсов с регулируемой скважностью
  4. Генератор с независимой регулировкой ширины и частоты импульсов
  5. Texas Instruments LM555
  6. Материалы по теме
  7. Генератор импульсов с регулируемой скважностью и частотой

Генераторы импульсов на цифровых КМОП микросхемах.


Онлайн калькулятор расчёта элементов генераторов с несимметричной формой
сигнала и генераторов с изменяемой скважностью выходных импульсов.

Так, товарищи! Заканчиваем банкет, убираем рыбные закуски.
Не забываем, что на сегодняшнем мероприятии, посвящённом Дню пивовара России, мы обсуждаем наболевшее: «Исследование разнообразных схемотехнических построений и характеристик генераторов на ИМС структуры КМОП».

Развиваем сюжетную линию, плавно переходим к генераторам прямоугольных импульсов с несимметричной формой сигнала, а также генераторам с изменяемой скважностью выходных импульсов.

Для начала определимся — для чего, собственно, когда и с чем потреблять само понятие «скважность импульсного сигнала»?

Тут как нельзя всё просто: Скважность = Т/tи, где
Т-полный период колебаний,
tи — длительность импульса,
tп — длительность паузы.

При величине скважности, равной 2, импульсный сигнал имеет симметричную форму (меандр), во всех остальных случаях — несимметричную (не меандр).
Рис.1

Теперь также плавно, без рывков и резких падений, переходим с схемотехническим изыскам.

Отличие несимметричных генераторов от устройств, описанных на предыдущей странице, как правило, сводится к утяжелению схемы дополнительным резистором и парой диодов для разделения цепей заряда конденсатора разнополярными токами.

На Рис.2 приведена схема генератора импульсов с раздельной установкой длительности импульса и паузы между ними.
Параметры выходных импульсов генератора описываются следующими приблизительными формулами:

F = 0,77/((R1+R2)×C1))
Скважность импульсов = (R1+R2)/R1

Схема обладает весомым параметром потребления тока.
Значения этого параметра находятся в диапазоне от единиц до десятков мА, в зависимости от величин напряжения питания и частоты генерации.

Именно из-за этих соображений, рекомендуется собирать подобные схемы генераторов на цифровых микросхемах, представляющих собой триггер Шмитта (Рис.3).
Мало того, что они просты в реализации, так ещё и исключительно экономичны — при напряжении питания менее 6 В ток потребления составляет всего несколько десятков микроампер.
Частота генерации и скважность для приведённой схемы:

F = 0,86/((R1+R2)×C1))
Скважность импульсов = (R1+R2)/R1

В случае необходимости получить плавную регулировку скважности при неизменной частоте имеет смысл обратить внимание на схему, приведённую на Рис. 4.
F = 0,77/((2*R1+R2)×C1))
Макс. скважность импульсов = R2/R1+2
Мин. скважность импульсов = 1+R1/(R1+R2)

Точно таким же образом реализуется плавная регулировка скважности для схем, построенных на триггере Шмитта (Рис.5).

F = 0,86/((2*R1+R2)×C1))
Макс. скважность импульсов = R2/R1+2
Мин. скважность импульсов = 1+R1/(R1+R2)


Рис.2

Рис.3

Рис.4

Рис.5

Формулы для расчёта частоты рассматриваемых генераторов соответствуют напряжению питания 5В и температуре окружающей среды 25°С.

Все представленные схемы могут быть реализованы на элементах И—НЕ, ИЛИ—НЕ, триггерах Шмитта, или инверторах.

Идём дальше к таблице для расчёта номиналов элементов генераторов, исходя из заданной частоты генерации и скважности выходных импульсов.

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ БЕЗ ПЛАВНОЙ РЕГУЛИРОВКИ СКВАЖНОСТИ.

Бросив беглый взгляд на Рис.1, легко заметить, что значение скважности импульсов должно быть больше 1.
Теоретически величины сопротивлений резисторов R1 и R2 должны быть не менее 1кОм, однако на практике, для минимизации влияния выходного сопротивления микросхемы на частоту сигнала, рекомендуется выбирать значения сопротивления этих резисторов — не менее 10кОм. Поэтому послеживайте за рассчитанным значением R2, если оно не вписывается в нужный диапазон — повышайте номинал R1.

ТАБЛИЦА РАСЧЁТА НОМИНАЛОВ ЭЛЕМЕНТОВ ГЕНЕРАТОРОВ НА КМОП МИКРОСХЕМАХ C ПЛАВНОЙ РЕГУЛИРОВКОЙ СКВАЖНОСТИ.

R1 — не менее 1кОм, желательно — не менее 10кОм.
Пределы изменения длительности импульса — больше 1.

Источник

Схема генератора импульсов

Существует довольно много схем генераторов импульсов. Многие радиолюбители их переделывают с целью улучшения характеристик. Для тех, кому нужна простая, но функциональная схема генератора прямоугольных импульсов с регулировкой частоты и скважности в довольно широких пределах схема представлена ниже. Кроме того эту схему можно использовать как ШИМ для регулировки мощности нагрузки или регулятор оборотов двигателя, увеличив мощность выходного каскада. У меня такая схема применяется для регулировки оборотов лодочного электромотора, который потребляет 30 ампер.

Схема генератора основана на одной из самых распространенных микросхем — таймер NE555. Ее отечественный и импортный аналоги КР1006ВИ1 и LM555.

Рассмотрим работу схемы более подробно. Сама схема генератора организована в соответствии со стандартом по даташиту. Резистором R2 регулируется частота импульсов, а с помощью R3 ширина. При этом диапазон регулировки периода длительности лежит в пределах 10-100 микросекунд, а период следования в пределах 50-100 микросекунд. Кроме того эти параметры можно изменять с помощью задающего конденсатора C1.

Электролитический конденсатор C3 сглаживает пульсации от источника питания, если же для питания используется аккумулятор или батарейки, то необходимость в нем отпадает и его можно не устанавливать.

После сборки ни требуется, ни какой наладки, и в случае безошибочной сборки схемы она начинает работать сразу, как только будет подано питание.

Питание генератора то же можно установить в довольно широких пределах без стабилизатора. Оно составляет от 4,5 вольт до 16. Но есть все-таки один недостаток, при изменении напряжения питания немного изменяется частота, если это критично для применяемой схемы, то следует поставить стабилизатор.

Для осуществления более точной и плавной регулировки выходных параметров резисторы R2 и R3 следует использовать многооборотные с линейной характеристикой.

Максимальный выходной ток таймера составляет 250 миллиампер. Если этого недостаточно, то для умощнения выхода целесообразно установить мощный полевой транзистор рассчитанный на необходимый ток. Они характеризуются малым проходным сопротивление в открытом состоянии, порядка нескольких млОм. Что позволяет при малых размерах коммутировать мощную нагрузку до сотен ампер. И кроме того требуется малое управляющее напряжение. В случае если нагрузка будет индуктивной, например коллекторный двигатель, на выходе нужно установить быстродействующий диод Шоттки в обратной полярности рассчитанный на выходной ток.

Вовочка подходит к бабушке и говорит:
— Бабушка, нас в школе учат говорить только правду, вот я и решил тебе сознаться. В прошлом году я съел банку варенья, а чтоб ты не заметила я в нее насрал.
Дед резко вскакивает со стула бабке дает по голове и орет:
— Я же тебе говорил что говно, а ты засахарилось, засахарилось.

Источник

Генератор прямоугольных импульсов с регулируемой скважностью

Принципиальная электрическая схема генератора прямоугольных импульсов показана на рисунке. Используя ШИМ-регулятор KA7500В (TL494 немного хуже, так как нет 100% регулировки ШИМ), можно изготовить неплохой генератор прямоугольных импульсов (20 Гц. 200 кГц) с регулировкой скважности 0. 100%. При этом можно использовать две независимых схемы коммутации с применением схемы с общим эмиттером или общим коллектором (до 250 мА и 32 В), или параллельное включение (до 500 мА). Если вывод 13 переключить с «земляного» на 14-й (стабилизированное 5 В), то выходы будут включаться попеременно.

Согласно документации, КА7500В должна работать при напряжении от 7 до 42 В и токе на каждом выходе до 250 мА. Однако у автора при напряжении выше 35 В микросхемы «стреляли». По току микросхемы на верхних пределах не проверялись из-за боязни сжечь их. Имевшиеся экземпляры микросхем работали и в диапазоне частот от долей герц до 500. 1000 кГц (в верхнем диапазоне ШИМ, естественно, хуже из-за увеличения общей доли времени на переключение компараторов и выходных ключей).

Сопротивление резистора на входе генератора должно быть в пределах от 1 кОм до 100 МОм, но изменение частоты нелинейное. А вот изменение частоты от емкости на входе линейное, по крайней мере, до 10 мкФ большие значения автор не пробовал). Точность установки или больший диапазон (от долей герц до 500. 1000 кГц) можно расширить, применив большее количество диапазонов.

Источник

Генератор с независимой регулировкой ширины и частоты импульсов

Texas Instruments LM555

Автоколебательный мультивибратор является популярным источником прямоугольных импульсов, полезным для многих приложений, таких как схемы синхронизации и звуковые извещатели. Один из наиболее распространенных способов генерации прямоугольных сигналов основан на использовании недорогого таймера 555. Иногда возникает необходимость в прямоугольных импульсах с фиксированной частотой, но переменной шириной импульса, или наоборот. Выполнить эти требования с помощью обычной автоколебательной схемы на основе 555 достаточно трудно. На Рисунке 1 показана модификация базовой схемы мультивибратора на таймере 555. Эту схему можно использовать для формирования стабильных импульсов, ширина и частота которых не зависят друг от друга и регулируются с помощью отдельных элементов управления. Выход 3 микросхемы таймера заряжает и разряжает конденсатор C1. Диоды D1 и D2 обеспечивают индивидуальные пути для зарядного и разрядного тока, соответственно. Два времязадающих потенциометра P1 и P2 управляют постоянной времени RC1 в течение циклов заряда и разряда.

Рисунок 1. Регулируя два потенциометра, можно независимо управлять шириной
и частотой импульсов.

При высоком уровне на выводе 3 микросхемы 555 конденсатор заряжается через R2 (часть P1, сопротивление которой зависит от положения движка потенциометра). Когда C1 заряжается до двух третей VCC, напряжение на выводе 3 опускается, и C1 разряжается через D2, P2 (сопротивление R1) и P1 (сопротивление R3). Когда напряжение на C1 достигает одной трети VCC, выходной уровень на выводе 3 вновь становится высоким. Процесс попеременного заряда и разряда С1 периодически повторяется, и результатом является выходной сигнал с требуемой шириной и частотой импульса. Поскольку прямое сопротивление диодов незначительно, ширина импульса равна

Период импульсов (величина, обратная частоте) равен

Таким образом, ширина импульса не зависит от положения движка потенциометра P2, а частота не зависит от положения движка потенциометра P1.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Генератор импульсов с регулируемой скважностью и частотой

Иногда в радиолюбительском деле нужен генератор с изменяемым коэффициентом заполнения (КЗ) для проверки различных схем, силовых выходных каскадов ИИП и тп. А также для проверки самой микросхемы ШИМ.

Генератор собран на распространённом ШИМе UC3843 компании Unitrode или аналогичном.

Для увеличения надёжности по питанию на входе стоит интегральный стабилизатор LM7812, так как потребляемый ток непосредственно самим генератором (без нагрузки) не превышает 25..30мА, я применил стабилизатор в ТО92 исполнении.

Диод D1 защита от дурака (или просто невнимательности).

Резистор R5 ограничивает выходной ток, защищая микросхему в случае короткого замыкания выхода. Резистор R1 ограничивает максимальную частоту и является времязадающим вместе с конденсатором С1. Конденсаторы С4, С5 шунтируют питание стабилизатора, С3 питание ШИМа, а конденсатор С2 фильтрует выходное напряжение источника опорного напряжения, которое при исправной микросхеме должно быть около 5 вольт.

Далее, переменники:
RV1 (50 кОм) — является частью времязадающей RC цепочки и, соответственно, регулирует частоту генератора, в верхнем положении частота минимальна.
RV2 (5 кОм) — регурирует коэффициент заполнения генератора (КЗ, скважность).
RV3 (1 кОм) — позволяет подстроить более точно рабочую точку цепи обратной связи для того, чтобы регулятор RV2 позволял регулировать КЗ от минимума до максимума.

Конструкция в налаживании не нуждается и при исправных деталях и правильном монтае начинает работать сразу. Буржуйский 2N2222 можно заменить на наш КТ3102 или любой подобный. Конденсаторы С2, С3, С4 и С5 являются не обязательными для работоспособности схемы, как впрочем и R5.

При указанных на схеме номиналах частота генератора регулируется примерно от 16,9 кГц до 250 кГц, ближе к максимальной частоте фронты немного пологие и составляют около 0.2мксек, максимальная скважность ограничена примерно на уровне 90%

Схема работоспособна в диапазоне от 12 до 30в, если удалить стабилизатор, то нижняя граница расширится до 9в, но тогда будет опасно питать конструкция напряжением выше 20в: как показала практика при 30в питания UC3843 разлетается на куски, стараясь попасть в глаза или лицо. Я выполнил конструкцию на одностороннем стеклотекстолите толщиной 1,5мм при помощи ЛУТ, размеры платы 30х37мм, перемычек нет.

После распайки компонентов и промывки от флюса рекомендую покрыть сторону с дорожками цапонлаком.

Я применял как smd, так и классически компоненты, желающие могут изменить разводку, как им будет удобнее.
Микросхема вставляется в DIP8 панельку, что позволяет проверять микросхемы, ничего не перепаивая. Плату в формате lay для Sprint Layout можно скачать по этой ссылке.

Источник

555 Схема генератора ШИМ с таймером

ШИМ (широтно-импульсная модуляция) является важной особенностью каждого современного микроконтроллера из-за его требований для управления многими устройствами почти во всех областях электроники. ШИМ широко используется для управления двигателем, освещением и т. д. Иногда мы не используем микроконтроллер в наших приложениях, и если нам нужно генерировать ШИМ без микроконтроллера , тогда мы предпочитаем некоторые микросхемы общего назначения, такие как операционные усилители, таймеры, генераторы импульсов и т. д. Здесь мы используем 555 Таймер IC для генерации ШИМ. ИС таймера 555 — очень полезная ИС общего назначения, которую можно использовать во многих приложениях.

 

Требуемые компоненты:

  1. Таймер 555 IC -1
  2. Горшок 10K -1
  3. Резистор 100 Ом -1
  4. Конденсатор 0,1 мкФ -1
  5. Резистор 1 кОм -1 (дополнительно)
  6. Доска для хлеба -1
  7. Аккумулятор 9В -1
  8. Светодиод -1
  9. Мультиметр
  10. или КРО-1
  11. Проводная перемычка –
  12. Разъем аккумулятора -1

 

Что такое ШИМ-сигнал?

Широтно-импульсная модуляция (ШИМ) — это цифровой сигнал, который чаще всего используется в схемах управления. Этот сигнал устанавливается высоким (5 В) и низким (0 В) в заранее определенное время и скорость. Время, в течение которого сигнал остается высоким, называется «время включения», а время, в течение которого сигнал остается низким, называется «время выключения». Ниже приведены два важных параметра ШИМ:

 

Рабочий цикл ШИМ:

Процент времени, в течение которого сигнал ШИМ остается ВЫСОКИМ (время), называется рабочим циклом. Если сигнал всегда включен, это означает, что рабочий цикл равен 100 %, а если он всегда выключен, то это означает, что рабочий цикл равен 0 %.

Рабочий цикл = время включения/(время включения + время выключения)

 

Частота ШИМ:

Частота ШИМ-сигнала определяет, как быстро проходит один период сигнала ШИМ. Один период завершается включением и выключением ШИМ-сигнала, как показано на рисунке выше. В нашем уроке мы установим частоту 5 кГц.

 

Мы можем заметить, что светодиод выключен на полсекунды, а светодиод горит еще полсекунды. Но если частота включения и выключения увеличилась с «1 в секунду» до «50 в секунду». Человеческий глаз не может уловить эту частоту. Для обычного глаза светодиод будет виден как светящийся с половинной яркостью. Таким образом, при дальнейшем уменьшении времени включения светодиод становится намного светлее.

Ранее мы использовали ШИМ во многих наших проектах, проверьте их ниже:

  • Широтно-импульсная модуляция с ATmega32
  • ШИМ с Arduino Uno
  • Генерация ШИМ с помощью микроконтроллера PIC
  • Учебное пособие по ШИМ Raspberry Pi
  • Управление двигателем постоянного тока с Raspberry Pi
  • Светодиодный диммер мощностью 1 Вт
  • Светодиодный диммер на базе Arduino с ШИМ

 

555 Схема генератора ШИМ с таймером и объяснение:

В этой схеме генератора ШИМ , , как мы упоминали выше, мы использовали ИС таймера 555 для генерации сигнала ШИМ . Здесь мы регулировали выходную частоту ШИМ-сигнала подбором резистора RV1 и конденсатора С1. Мы использовали переменный резистор вместо постоянного резистора для изменения рабочего цикла выходного сигнала. Зарядка конденсатора через диод D1 и разрядка через диод D2 будут генерировать ШИМ-сигнал на выходе таймера 555.

 

Приведенная ниже формула используется для получения частоты сигнала ШИМ:

F = 0,693*RV1*C1

Вся работа и демонстрация генерации ШИМ приведены в Видео в конце, где можно найти эффект ШИМ на светодиоде и проверить его на мультиметре.

Моделирование генерации ШИМ с использованием 555 таймера IC:

Ниже приведены несколько снимков:

Arduino – Фиксированный импульс с 555 Timer

9130

. \$\начало группы\$

новый здесь. У меня есть вопрос относительно отправки сигнала ШИМ на бесщеточный двигатель ESC с использованием таймера 555. В настоящее время я использую Arduino Uno для управления им, но я хотел бы упростить настройку. У меня есть подводный двигатель, который я хочу включать и выключать только с постоянной заданной скоростью, и в настоящее время я использую библиотеку сервоприводов Arduino для отправки фиксированной ширины импульса 2 мс при частоте 50 Гц (рабочий цикл 10%). Я видел схемы в других сообщениях здесь, используя 555, набор деталей и потенциометр для модуляции ширины импульса. Кто-нибудь знает, как будет выглядеть схема, чтобы выполнить то, что я сейчас делаю, но с таймером 555? Любая помощь приветствуется.

  • ардуино
  • ШИМ
  • 555

\$\конечная группа\$

5

\$\начало группы\$

Если все, что вам нужно, это импульс в 2 мс каждые 20 мс, вы можете использовать стандартную схему нестабильного мультивибратора 555 и рассчитать для этого значения времязадающих конденсаторов и резисторов.

С конденсатором 0,1 мкФ сопротивление R1 составляет 230880 Ом, сопротивление R2 — 28860 Ом.

Формула для импульса с: Tимпульс / (0,693 * C1)


R2 = 0,002 / (0,693 * 0,1E-6) = 28860

Для общего времени цикла это (Tцикл / (0,693 * C1) ) - (2 * R2)
R1 = (0,02 / (0,693 * 0,1E-6)) – 57720 = 230880

каждый, чтобы обрезать значения до того, что вам нужно.

Это даст вам выход, где импульсы 2 мс будут отрицательными, поэтому вам нужно будет инвертировать выход, если вы хотите, чтобы импульсы были положительными. Я добавил транзисторный инвертор на выходе 555 в качестве базового примера, но вам нужно будет разработать что-то, что даст вам правильную полярность и уровень сигнала, необходимые для управления вашим ESC.

Схема в LTspice с инвертированным выходом:

\$\конечная группа\$

3

\$\начало группы\$

Проблема с ответом, опубликованным GodJihyo.

Q1, вероятно, будет гореть постоянно, а не пульсировать. Верхняя половина выходного каскада NE555 представляет собой пару Дарлингтона. Это не может подтянуться к положительной шине достаточно близко, чтобы отключить Q1. Согласно техническому описанию, минимальный выходной запас составляет 0,9.V, более чем достаточно, чтобы Q1 оставался включенным во время высоких частей выходных циклов.

Отдельно от этого, если вы установите R1 и R5 на ближайшее стандартное значение допуска 1% (E-96), форма выходного сигнала изменится с 90% до 90,08%.

Ваша текущая система имеет отношение метки/пробела, равное 9. Вы не говорите, какой диапазон регулировки вы хотите для ширины выходного импульса, и есть несколько способов модифицировать схему для этого. Самый простой — заменить R5 двумя последовательными резисторами, одним постоянным и одним переменным. Например, резистор 24K 5% в сочетании с потенциометром 10K дает диапазон регулировки соотношения метка/промежуток от 7,824 до 10,67.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *