Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Усилитель мощности звуковой частоты на микросхеме TDA2050 класса AB

 TDA2050 (усилитель класса AB)

 Тест, обзор, осциллограммы


Усилитель мощности звуковой частоты на микросхеме TDA2050 класса AB (1×32 W) – вечная молодость классической технологии!
 

Обзор посвящен одноплатному усилителю мощности звуковой частоты (УМЗЧ, УНЧ) класса AB на основе микросхемы TDA2050 номинальной мощностью 1×32 Вт.

В обзоре будут приведены технические характеристики микросхемы усилителя низкой частоты TDA2050, кратко разобрана схемотехника тестируемого одноплатного усилителя, показаны осциллограммы работы усилителя, а также сделаны полезные выводы и критические замечания.

Купить плату усилителя на основе TDA2050 можно на Алиэкспресс, например, здесь

. Цена на дату обзора – около $3.5 с учётом доставки.

(усилитель низкой частоты на TDA2050 и схема его подключения; изображение с официального сайта AliExpress)

Небольшие пояснения к схеме подключения платы.

Ключевой элемент платы, усилитель мощности TDA2050, может работать как с однополярным, так и с двухполярным питанием.

Поскольку эта плата рассчитана на однополярный источник питания, то контакты “Power IN-“, “Audio IN-” и “Speaker-” соединены вместе, это – “Земля”.

Усилитель (микросхема) TDA2050 – технические характеристики:

Вариант подключения TDA2050 Однополярное питание Двухполярное питание
Максимальная выходная мощность на канал (RMS)*  32 Вт (VS = 44 V, RL = 8 Ohm)  32 Вт (VS = ±22, V RL = 8 Ohm)
Номинальное напряжение питания  9. ..50 В  ±4.5…±25 В
Максимально-допустимый пиковый ток выхода  5 А  5 А
Рекомендуемое сопротивление нагрузки  4…8 Ом  4…8 Ом
Коэффициент нелинейных искажений < 0.5% (PO = 0.1…24 W, RL = 4 Ohm) < 0.5% (PO = 0.1…24 W, RL = 4 Ohm)
Шум, приведённый ко входу  10 мкВ (макс.), 4…5 мкВ (тип)  10 мкВ (макс.), 4…5 мкВ (тип)
Полоса пропускания  20 Гц – 80 кГц  20 Гц – 80 кГц

Примечание:
  * RMS (Rated Maximum Sinusoidal) – Максимальная (предельная) синусоидальная мощность – мощность, при которой усилитель или колонка может работать в течение одного часа без физического повреждения.

Обычно именно она указывается как номинальная “приличными” производителями (а не пиковая – PMPO).

В дополнение к этим параметрам надо сказать, что максимальная мощность микросхемы может доходить до 35 Вт, но при нагрузке 4 Ом и коэффициенте нелинейных искажений 10%, что вряд ли заинтересует пользователей.

Нижнюю границу полосы пропускания (20 Гц) производитель микросхемы указал чисто формально. Фактически микросхема представляет собой низкочастотный операционный усилитель и может использоваться в качестве усилителя постоянного напряжения с полосой частот от 0 Гц.

Микросхема выпускается в двух модификациях в зависимости от направления изгиба выводов: TDA2050V – с вертикальной ориентацией (как в тестируемой версии) и TDA2050H – с горизонтальной ориентацией.

Эта микросхема имеет глубокую историю (выпускается уже около 20 лет) и позитивную репутацию, что и позволило ей столь долгое время оставаться актуальной.

Её историческая предшественница, TDA2030, имеет ещё более древнюю историю и совместима с TDA2050 по выводам, но имеет меньшую мощность.

Полностью все характеристики и типовая схема включения TDA2050 с однополярным и двухполярным питанием указаны в техническом описании (datasheet) TDA2050 (PDF, 3.2 Mb).

Теперь – углубимся в практику и обратимся к внешнему виду тестируемого усилителя.
 

Внешний вид и конструкция одноплатного одноканального усилителя класса AB на микросхеме TDA2050 с однополярным питанием

Никакой документации в комплекте усилителя не было, но осмотр показал полное совпадение схемы с той, которая приведена в datasheet на микросхему для варианта с однополярным питанием; добавлен только переменный резистор регулировки громкости.

Со схемой, приведённой в datasheet, совпадает даже нумерация резисторов. Нумерация конденсаторов, вероятно, тоже совпадает; но она на плате расположена под конденсаторами и различить её невозможно.

Посмотрим на плату усилителя в двух наклонно-диагональных ракурсах:

(кликнуть для увеличения, откроется в новом окне)

Вид с противоположной диагонали:

Здесь надо обратить внимание на несколько моментов.

Микросхема прикреплена к теплоотводу через прокладку. Это означает, что теплоотвод изолирован и на нём не будет того потенциала, который есть на металлической части микросхемы. В данном случае это – потенциал “Земли”, но в двухполярном варианте это был бы потенциал источника отрицательного питания.

Все внешние подключения осуществляются без помощи пайки – с помощью клеммников под винт.

Задняя сторона платы:

Площадь радиатора составляет около 59 кв. см. Это – не так уж и много с учетом того, что с древних времён считается соответствующей манерам хорошего тона площадь в 10 кв. см на каждый Ватт рассеиваемой мощности.

Обратная сторона платы:

Обратная сторона платы почти полностью покрыта слоем металлизации, соединённым с “землёй” – это очень полезно для защиты от помех.

К сожалению, флюс отмыт не очень хорошо. Но мешать работе УНЧ это не должно.

В нижних углах платы видны отверстия для прикрепления платы в используемой конструкции.

Лучше было бы, если бы этих отверстий было не 2, а 4 (по всем углам), но так – тоже сгодится.

В середине платы внизу видны 5 отверстий, расположенных под радиатором теплоотвода для улучшения циркуляции воздуха.

Сам радиатор закреплён на плате с помощью двух штырьков, припаянных к плате.

В следующей главе разберём, что к чему и зачем на этой плате усилителя.
 

Схемотехника одноплатного одноканального усилителя класса AB на микросхеме TDA2050 с однополярным питанием

Перед анализом схемы посмотрим на плату усилителя вертикально сверху:

Здесь отметим, что регулятор громкости припаян слегка кривовато. При наличии паяльника и “прямых рук” это – легко поправимо.

Теперь посмотрим на схему усилителя из даташит на микросхему TDA2050 (по сравнению с ней на плате добавлен только переменник регулировки громкости):

схема включения TDA2050 с однополярным питанием

Теперь – пробежимся по основным элементам платы.

1. R1, R2, C2 – схема создания искусственной средней точки питания (при двухполярном питании не требуется).

2. C3, C5 – блокировочные конденсаторы по питанию.

3. R5, C4, R4 – отрицательная обратная связь с выхода на инвертирующий вход TDA2050. Задаёт коэффициент усиления схемы. Рассчитывается как R5/R4 + 1, и в данном случае составляет 33.4.

   Конденсатор C4 предотвращает смещение уровня на инвертирующем входе относительно середины питания и заодно ограничивает полосу пропускания снизу. В данном случае полоса цепи обратной связи по уровню -3 дБ составляет около 11 Гц, что не будет критичным. Этот конденсатор должен присутствовать и в схеме с двухполярным питанием; иначе, из-за усиления постоянной составляющей возможно сильное смещение нуля на выходе.

4. Цепь R6C6 служит для предотвращения самовозбуждения усилителя.

5. C7 – конденсатор развязки между выходом микросхемы TDA2050 и нагрузкой. Необходим для предотвращения попадания постоянного напряжения с выхода микросхемы (равно половине питания) в нагрузку.
   Этот конденсатор попутно выполняет зловредную функцию: “режет” низкие частоты.
   При нагрузке 4 Ом частота среза по уровню -3 дБ составит 40 Гц, при нагрузке 8 Ом – 20 Гц.
   При двухполярном питании этот конденсатор не требуется.
 

Испытания УНЧ на микросхеме TDA2050

При измерениях использовались лабораторный блок питания LW-K3010D (обзор) и DDS-генератор сигналов FY6800 (обзор). Номинально источник питания может отдавать напряжение 30 В при токе до 10 А, но по факту напряжение может может составлять до 32 В.

Сначала было замерено потребление усилителя без подачи сигнала с установленным в “ноль” регулятором громкости. Ток потребления холостого хода менялся в зависимости от напряжения питания и составлял следующие значения:
     9 В – 14.5 мА
   12 В – 15.6 мА,
   20 В – 17.5 мА,
   32 В – 19.6 мА.
   Такие значения тока покоя – очень небольшие.

Шумы усилителя оказались очень малы и практически не заметны. Но надо отметить, что ручка регулятора громкости собирает наводки “из воздуха”, поэтому желательно корпус этого переменника заземлить.

Малосигнальные испытания (амплитуда на выходе до 2 В, нагрузка 4 Ом)

Испытания проводились при напряжении питания 32 В.

Синус 20 кГц:

Синус – практически идеальный.

Повышаем частоту – синус 100 кГц:

На частоте 100 кГц заметны небольшие неровности вблизи перехода отрицательного спада через ноль. Также немного упала амплитуда.

Повышаем частоту до 200 (!) кГц:

Неровности уже очень хорошо заметны; они принимают выраженную пилообразную форму.

Этот же сигнал, растянутый по горизонтали:

Искажения видны уже очень хорошо, но они находятся далеко за пределами слышимого диапазона. То есть, этих страшных зазубрин совсем не надо пугаться. 🙂

Несколько слов о происхождении таких несимметричных искажений (только на спаде, на подъёме их нет).

Они связаны с тем, что в усилителях на обычных биполярных транзисторах все транзисторы усилителя не могут быть одной и той же полярности (n-p-n), в схеме должен быть хотя бы один транзистор другой полярности (p-n-p).

Транзисторы разных типов проводимости формируются на кристалле микросхемы по-разному. Чаще всего транзисторы p-n-p формируются в виде т.н. “боковых” транзисторов.

По этой причине эти транзисторы по-разному ведут себя в предельных режимах и возникают несимметричные искажения в разных полуволнах или на разных фронтах.

По итогам этой части испытаний можно сказать, что полоса пропускания усилителя в области высоких частот составила чуть более 200 кГц, что значительно превышает требования к аппаратуре высокого класса.

Теперь переходим на прямоугольный сигнал.

Частота сигнала – 10 кГц; вершины – плоские (как и должно быть), но фронты – явно не бесконечно-короткие.

Посмотрим на передний и задний фронт в увеличенном виде.

Передний фронт:


 

Теперь – задний фронт:

Здесь можно видеть те же пилообразные искажения, которые присутствовали на синусе 200 кГц.

В целом поведение усилителя на прямоугольном сигнале можно оценить положительно: “шероховатости” хотя и имеются, но сколь-нибудь существенно на воспроизведении сигналов звуковой часты не отразятся.
 

Испытания на сигналах высокой амплитуды (сравнимой с напряжением питания), нагрузка 4 Ом

Начать надо с того, что попытка раскачать максимум амплитуды при напряжении питания 32 В и сопротивлении нагрузки 4 Ом оказалась неудачной.

После 2-3 секунд работы в таком режиме в микросхеме TDA2050 срабатывала защита от перегрева, сигнал искажался, а затем амплитуда резко падала:


 

Проблема – не столько в малой площади радиатора, сколько в повышенном тепловом сопротивлении от микросхемы к радиатору, поскольку между ними находятся два препятствия: изолирующая прокладка и слой чёрной краски на радиаторе.

Стабильной работы с нагрузкой 4 Ом удалось добиться при напряжении питания 20 В:

В таком режиме мощность на выходе составила 5. 3 Ватт.

Кстати, на осциллограмме заметна небольшая несимметричность ограничения сигнала: верхняя полуволна уже немного ограничивается (клиппинг), а нижняя – ещё нет.

Тем не менее, и в таком режиме через несколько минут пришлось тест прекратить из-за подозрительно высокого нагрева радиатора.

Но в режиме прослушивания музыки перегрева быть не должно, поскольку средняя мощность музыкального сигнала ниже мощности синуса при равном пиковом уровне.

Подытоживая эту часть испытаний надо сказать, что работа с нагрузкой 4 Ом оказалась тяжела для усилителя.

И вот тут самое время проверить, как он будет работать с нагрузкой 8 Ом.
 

Испытания на сигналах высокой амплитуды (сравнимой с напряжением питания), нагрузка 8 Ом

На этот раз работа с напряжением питания 32 В оказалась успешной, поэтому именно при таком питании и проведены тесты.

Начинаем с банального синуса:

Здесь тоже заметна несимметричность ограничения сигнала.

За счёт увеличения напряжения питания увеличилась и мощность, отдаваемая в нагрузку, в данном тесте она составила 11 Вт.

Можно было бы, теоретически, и ещё больше поднять мощность, увеличив напряжение питания. Но дальше повышать напряжение питания нельзя: “большие” электролиты на плате имеют номинальное напряжение 35 В, и может получиться хороший “бабах!”.

Теперь – прямоугольник с размахом “под потолок”:

Здесь тоже всё довольно красиво.

Рассмотрим детально фронты:

Здесь всё красиво.
 

А на этой осциллограмме видны всё те же зазубрины, которые мы уже видели раньше.

Нагрев радиатора через несколько минут снова дошел до опасной величины, тест был прекращён.

Последний эксперимент – определение минимального напряжения питания, при котором усилитель работоспособен. Оно составило 4.5 В (мощность в нагрузке не проверялась).

 

Промежуточный диагноз одноплатного усилителя мощности звуковой частоты на микросхеме TDA2050

Почему диагноз – промежуточный? Потому, что далее последует доработка усилителя, призванная устранить некоторые его недостатки. Но это – потом.

А сейчас начнём с того, что разберёмся, почему усилитель не смог отдать мощность, заявленную в технических параметрах на TDA2050.

Основных причин – две: недостаточно высокое напряжение питания и откровенно слабый теплоотвод.

По результатам испытаний можно рекомендовать использовать протестированный усилитель с напряжением питания до 32 Вольт при нагрузке в 8 Ом; а при использовании нагрузки 4 Ом – с питанием до 20 Вольт. В последнем случае можно, естественно, подключать и нагрузку 8 Ом, но мощность в нагрузке тогда будет значительно ниже.

Усилитель имеет крайне малые искажения в области звуковых частот и подходил бы для работы в составе высококачественных систем, если бы не ограничения полосы в области низких частот, что определяется используемыми компонентами.

В принципе, можно полосу поправить, установив разделительный конденсатор на выходе с большей ёмкостью, но для этого придётся доработать плату (подобрать совместимый по габаритам электролит и произвести перепайку).

В области высоких частот, наоборот, характеристика усилителя – очень хорошая и имеет хороший запас полосы пропускания.
 

Модернизация одноплатного усилителя мощности звуковой частоты на микросхеме TDA2050

Как отмечалось в разделе испытаний, усилитель плохо работает с нагрузкой 4 Ом при высокой выходной мощности; а причина этого – перегрев микросхемы и, как следствие, включение защиты от перегрева.

Для борьбы с этим усилитель был модернизирован: вместо штатного радиатора был применён другой, более крупный со значительно более высокой площадью оребрения.

В качестве такового радиатора был использован массивный кулер от процессора Intel Pentium IV со снятым вентилятором.

Микросхема TDA2050 была прикручена к радиатору без прокладки и с применением термопасты:


 

Теперь снова было установлено напряжение питания 32 В и подан сигнал на грани ограничения на выходе:

Теперь в таком режиме микросхема уже оказалась способной работать длительное время, не впадая в термозащиту.

Амплитуда сигнала на выходе составила 10.5 В, мощность на нагрузке – 13.8 Вт.

Несмотря на это, работу в таком режиме нельзя назвать успешной.

Остаточное напряжение на выходных транзисторах было довольно большим, из-за чего КПД остался низким (менее 50%), а нагрев даже нового массивного радиатора – высоким (разве что не доходил до срабатывания термозащиты).
 

Окончательный диагноз одноплатного усилителя мощности звуковой частоты на микросхеме TDA2050

Теперь уже можно подвести окончательные итоги тестирования.

Усилитель хотя и оказался работоспособен с нагрузкой 4 Ом, это – явно не его епархия. Низкий КПД и высокий нагрев – это не то, что украсит радиолюбительскую конструкцию.

В тоже время работа на нагрузке 8 Ом – весьма позитивна, и именно такой вариант применения усилителя можно рекомендовать.

В качестве философской части диагноза надо отметить, что самое лучшее применение микросхемы TDA2050 – в УНЧ с двухполярным питанием. В этом случае можно отказаться от разделительного конденсатора на выходе, что исправит характеристику в области низких частот и сделает усилитель вполне пригодным для истинно высококачественного воспроизведения.

А вариант с однополярным питанием следует оставить для тех случаев, когда нет возможности организовать двухполярное подключение.

Ещё одна возможность отказа от разделительного конденсатора на выходе – это построение усилителя на основе другой микросхемы, имеющей мостовой выход. В этом случае возможна работа и с однополярным питанием. Например, по такой схеме построен усилитель-плеер Kentiger HY-502S (обзор), в котором применёна микросхема УНЧ TDA7297SA c мостовым выходом.

Где купить УНЧ на TDA2050

Купить плату протестированного в этом обзоре усилителя на основе TDA2050 можно на Алиэкспресс по этой ссылке. Цена на дату обзора – около $3.5 с учётом доставки (в дальнейшем может меняться).

На Алиэкспресс есть ещё один интересный вариант усилителя 2.1 (стерео + сабвуфер + темброблок) на микросхемах TDA2030 (2 шт.) и TDA2050 (1 шт.) по этой ссылке. Но он требует двухполярного питания; либо может питаться непосредственно от трансформатора с отводом от средней точки выходной обмотки. Цена – около $11.5. Внимание – усилитель не протестирован!

Кроме того, можно купить отдельно микросхемы TDA2050 и впаять их в свой собственный вариант усилителя, благо расположение выводов – удобное для ручной пайки. Приобрести можно здесь, цена – $1.8 за десяток (!) с учётом доставки.
 

Обзоры других усилителей класса AB – здесь.
 

Обзоры усилителей класса D – здесь.
 

Весь раздел “Сделай сам! (DIY)” – здесь.

Вступайте в группу SmartPuls.Ru  Контакте! Анонсы статей и обзоров, актуальные события и мысли о них.

   Искренне Ваш,
   Доктор
  
16 августа 2020 г.

 

                Порекомендуйте эту страницу друзьям и одноклассникам                      

 

 

При копировании (перепечатке) материалов активная ссылка на источник (сайт SmartPuls. ru) обязательна!

Как я делал бюджетный усилитель на TDA2050 для старых колонок / Хабр

Под катом фото, описание процесса, немного схем и детальное описание некоторых моментов создания этого чуда.

Вот попали ко мне старые советские колонки S-50(если руки дойдут – хочу модернизировать их, но пока что есть, то есть), их ТХ:

  • Паспортная электрическая мощность не менее 50 Вт
  • Номинальная электрическая мощность 25 Вт
  • Номинальное электрическое сопротивление 8 Ом
  • Диапазон воспроизводимых частот не уже 40-20000 Гц

И в комплекте с ними мне достался великолепный усилитель Одиссей У-010, который сгорел. Разобрав его, понял, что с моим-то мизерным опытом, ничего не сделаю. Немного помучил гугл, посмотрел на профильных сайтах и вот оно решение — сделаем себе сами усилитель на базе микросхемы TDA2050, как замену старому. Ибо «Handmade и DIY навеки», да и не так уж сложно. ТХ TDA2050:

  • Номинальная выходная мощность 32Вт
  • Интегрированная защита от КЗ
  • Интегрированная защита от перегрева
  • Питание до 50В от однополярного БП

(Сразу замечание, возможно, мне попалась подделка, однако при КЗ, одна TDA2050 взорвалась так, что осколком микросхемы оставила на моем предплечье довольно глубокую рану, повезло, что не в глаз, будьте внимательны, Техника безопасности превыше всего!)

Корпус

Для начала определимся с корпусом. Как вариант, использование корпуса от сгоревшего Одиссей У-010, отпал сразу, по причине размера того корпуса с небольшую тумбочку (460х360х120). Нам же подойдет что-то более компактное. Сначала смотрел в сторону алюминиевых корпусов, но быстро отказался от затеи ввиду цены этих самых корпусов. Те, что мне нравились от 100$, что уже никак не вписывается в «бюджетный усилитель». Поэтому был выбран промежуточный вариант «временного» самого дешевого корпуса, в котором он стоит уже как 6 месяцев. Этим корпусом стал «Z16 Черный» (легко находится в гугле по этому запросу).
Габариты (H/W/L): 89 x 257 x 148

Схема

Далее надо было определиться с самой схемой, ведь под TDA2050 их огромное количество. Выбор пал на так называемую «схему Скифа». Да и обычные компоненты, не SMD, для меня стали плюсом, ведь опыта в пайке SMD и самой паяльной станции не было, только обычный паяльник на 40Вт.
Итак, сама схема (рисунок платы для этой схемы можно скачать по ссылке в конце статьи):

Обращаю ваше внимание на то, что для этой схемы нужно ДВУПОЛЯРНОЕ питание.
Размер готовой платы под один канал усилителя: 35х45мм (а их нужно 2), что вполне компактно в результате.

Блок питания

Итак, для питания 2-х каналов по 32 Вт, нам нужно 64 Вт(хотя это все условно и можно меньше). По счастливой случайности в закромах валялся без дела трансформатор ТПП-287-220-50 мощностью 90 ВА, и с него как раз легко снять двуполярное питание. Фото и схема:

Для того, что бы снять с него по 35,26 В переменного тока со средней точкой, необходимо соединить выводы с номерами: 12-15, 11-20, 13-18, 14-21, 17-16, а снимать напряжение мы будем с 16, 19, 21 выводов.
Далее схема выпрямителя:

Вот пример самой платы. Хотя я её сделал, просто нарисовав перманентным маркером на текстолите, и вытравив, без всякого ЛУТа. Все довольно просто.

В случае с трансформатором ТПП-287-220-50 нужно соединить 16 вывод трансформатора с входом «средняя точка» платы выпрямителя. 19 и 21 в оставшиеся два, какой куда решать вам, и припаять перемычку от входа средней точки к площадке между конденсаторами. После подключения можно проверять напряжения на выходах выпрямителя. Между + и – должно быть от 42 до 50 В, в зависимости от напряжения в сети. Между «+» и землей, а так же землей и «-» должны быть одинаковые значения. Если у вас нет в наличии чего-то из элементов для выпрямителя, то не спешите, как разберемся с платой усилителя, поедем на радиорынок брать все кучей. Список всех элементов будет далее по тексту.

Усилитель

Для начала травим две вот такие платы:

И пока они травятся, можем съездить в ближайший магазин радиокомпонентов или радиорынок.

Итак, нам понадобятся на весь усилитель:

Блок питания:

  • Эл. литические конденсаторы минимум 10 000 мкФ х 25 (или больше) В
  • Диодный мост практически любой, до 10А (с огромным запасом) и более 50 В. (я взял на 10А и 400В – стоит копейки)

Сами усилители (все посчитано на 1 плату, соответственно берете в 2 раза больше):
Конденсаторы эл. литические:

  • С7, С8 – 1000мкФ x 25 В
  • С3 – 22мкФ x 25 В

Конденсаторы керамические:

  • С2- 220пФ

Конденсаторы пленочные:

  • С1, С4, С6 – 4,7мкФ
  • С5 — 0,47мкФ

Резисторы (все по 0.125 Вт, а R6 и R7 2Вт):

  • R1, R3 – 2,2k
  • R2, R5 – 22k
  • R4 – 680
  • R6 – 2,2
  • R7 – 10

Ну и конечно сама TDA2050, возьмите штуки 3, что бы запас был, а то мало ли.
Ещё вам понадобится:

  • 2 RCA входа,
  • 4 зажима под выход на колонки
  • выключатель
  • и сдвоенный переменный резистор на 50 кОм
  • ручка регулятора на этот самый резистор (но я просто снял алюминиевую со старого радио)
  • Радиатор от старого процессора (если у вас нет ненужного)

После чего сверлим и собираем по схеме. У меня все заработало сразу, вот только был треск в динамиках, но об этом я расскажу позже. Единственное, что хочу заметить, так это радиаторы. Я пошел легким путем и просто разрезал, обычной ножовкой, старый радиатор от какого-то AMD пополам, и на каждую половину прикрутил микросхему, предварительно просверлив и нарезав резьбу. Вот только мои микросхемы не на самих платах расположены, а на отдельно стоящих радиаторах, соединены с платами небольшими шлейфами примерно вот так:

А катушка L1 по схеме мотается очень просто, берете одну жилу с витой пары, и мотаете 5 витков прямо на резисторе R7, концы припаиваете к выводам этого же резистора.
Вот и все, с электроникой закончили, к этому моменту у вас должны быть готовы 3 платы: выпрямитель и 2 одинаковые платы усилителя на оба канала.

Компоновка и сборка

А после этого можем приступать к сборке всего этого уже в корпусе. Итак, для начала лучше разметить и высверлить отверстия для крепления плат, трансформатора, радиаторов охлаждения микросхем, входов-выходов. Кстати, если вы купили прямоугольный выключатель для своего усилителя, есть маленький хинт, как под него легко сделать отверстие на панели. Для начала размечаете размеры вашего будущего отверстия прямо на панели, и сверлите тонким сверлом аккуратную дырочку внутри периметра этого самого отверстия. А теперь самое интересное: возьмите самую обычную хлопковую нить (желательно потолще, тонкая часто рвется в процессе), проденьте в отверстие и, натянув нить, можно, как полотном лобзика, вырезать любую форму. Вот только лобзиком вы вырезаете, а здесь, как бы «расплавляете». Именно поэтому лучше вырезать немного меньшее отверстие, что бы потом надфилем довести его до ровного. Ещё желательно сделать вентиляционные отверстия недалеко от радиаторов. Я перестраховался и ставил ещё кулер, который оказался бесполезен, усилитель сильно не греется даже на максимальной громкости. Включаю только тогда, когда усилитель летом на улице работает.

Моя компоновка выглядит так (и хотя куча проводов и вообще не красиво, но все работает как часы уже полгода при регулярном использовании):

Крайняя слева плата – выпрямитель, остальные 2 – усилители.

Вот и все, можно начинать собирать и спаивать. Я спаивал прямо в корпусе, без всяких зажимов, штекеров и прочего. Возможно, кто-то захочет сделать все удобнее.

Схема подключения регулятора громкость (два резистора — это один сдвоенный):

Основные рекомендации:

  • Выходы с усилителей лучше выполнить как можно более толстым кабелем.
  • Если после сборки и спайки в колонках слышите отчетливый шум – проверяйте конденсаторы на платах усилителя
  • Если треск в колонках, то проверяйте дорожки питания на усилителях – я плохо отмыл флюс кислотный, и если присмотреться в темноте были видны маленькие искры между дорожками, как только отмыл плату от флюса, треск пропал.

В итоге выглядит все так:

Расходы:

  • Все конденсаторы и резисторы в сумме – 4$
  • Микросхемы TDA2050(3 шт) – 2$
  • Корпус – 3$
  • Все штекера, гнезда, ручки, выключатели – 7-8$

Итого 17$ и куча положительных эмоций «Оно работает!»

Архив со всеми схемами и рисунками плат в формате Sprint-Layout 6: dl. dropbox.com/u/47591852/usilitjel_habr.rar

PS Это мое первое рабочее устройство, собранное для проверки работоспособности и надежности. В ближайшее время планирую его переработать в новом корпусе и в более аккуратном исполнении. Если Вам будет интересно — то будет продолжение.

Купить TDA2050 3 TR 2.1 Печатная плата аудиоусилителя для домашнего кинотеатра

TDA2050 3 TR 2.1 Печатная плата аудиоусилителя для домашнего кинотеатра

Это плата усилителя среднего размера. Имеет 3 встроенных транзистора. Эта плата работает с TDA2050 IC. Он подходит для больших нагрузок звуковых систем домашнего кинотеатра 2.1. К этой плате также прикреплен алюминиевый радиатор для отвода тепла.

Преимущества:-
  1. Используется для усиления низких входных сигналов до более высоких выходных сигналов
  2. Для улучшения качества звука
  3. Используется для одновременного управления двумя динамиками.

Социальные ссылки:

Добавить отзыв

Ваш отзыв

Ваш отзыв

Имя *

Электронная почта *

На основании 3 отзывов

4. 3

всего

  • 205

  • 55

  • 23

  • 4

Купить TDA2050 32 Вт Усилитель мощности аудиосигнала 5-контактный ИС, упаковка из 2 шт.

Есть вопросы? Свяжитесь с нами.

  • Рабочее напряжение: от -25 В до +25 В
  • Выходная мощность: 28 Вт с динамиком 4 Ом
  • Коэффициент усиления по напряжению: 80 дБ
  • Отклонение напряжения питания: 45 дБ
  • Выходная мощность: до 50 Вт
  • Защита от короткого замыкания и тепловая защита
  • Доступно в упаковке:

    Артикул : 10476CM

    MRP рупий. 56,35

    рупий. 49.00 (включая налоги)

    рупий. 41,53 (+18% НДС дополнительно)

    41,53 рупий / 2 шт. = 20,77 рупий за штуку

    Количество

    Купить

    • Описание
    • Отзывы

    TDA2050 32 Вт Усилитель мощности аудиосигнала 5-контактная микросхема, упаковка из 2 шт. Его максимальная выходная мощность составляет 32 Вт. Эта ИС имеет высокое рабочее напряжение 50В. Он обычно используется в аудиоусилителях классов A и B и может передавать музыкальную мощность до 50 Вт на динамик с сопротивлением 4 Ом. Это также может быть использовано в схемах проектирования стерео или моно аудио. Усилитель может выдавать ток до 5А для управления динамиками без каких-либо повреждений. Он также может справляться с короткими замыканиями как в шине переменного, так и в постоянном токе, не убивая себя.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *