Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Создан материал, превращающий тепло в электричество с рекордной эффективностью

Исследователи из Австрии, Японии и Китая представили термоэлектрический преобразователь с эффективностью почти в два раза выше существующих аналогов. Статья исследователей была опубликована в журнале Nature.

Термоэлектрические материалы могут преобразовывать тепло в электрическую энергию . Это связано с так называемым эффектом Зеебека: если существует разница температур между двумя концами такого материала, то он может создавать электрический ток в цепи, в которую включен. Количество электрической энергии, которое может быть произведено при заданной разности температур, измеряется значением добротности ZT: чем выше этот показатель, тем лучше его термоэлектрические свойства.

Лучшие термоэлектрики на сегодняшний день имеют значение ZT от 2,5 до 2,8. Разработанный учеными новый материал в два раза превышает эти показатели: его ZT колеблется от 5 до 6. Этот рекордный композит представляет собой тонкие слои железа, ванадия, вольфрама и алюминия, нанесенные на кристалл кремния.

«Хороший термоэлектрический материал должен демонстрировать сильный эффект Зеебека, и он должен отвечать двум важным требованиям, которые очень трудно совместить, — подчеркивает один из исследователей, профессор Института физики твердого тела Венского технического университета Эрнст Бауэр. — С одной стороны, он должен как можно лучше проводить электричество, а с другой — как можно хуже переносить тепло. Это сложная задача, поскольку электропроводность и теплопроводность обычно тесно связаны».

Атомы в слоях этого материала расположены в регулярной гранецентрированной кубической решетке. Однако при нанесении тонкого слоя на кристалл кремния наблюдается удивительный эффект: их структура радикально меняется. Хотя атомы все еще имеют кубическую решетку, теперь она оказывается объемно-центрированной, и распределение различных типов атомов становится совершенно случайным. Эта смесь регулярности и нерегулярности расположения атомов также изменяет электронную структуру, которая определяет движение электронов в твердом теле.

Электрический заряд движется через материал особыми порциями — фермионами Вейля — безмассовыми частицами, переносящими возмущение кристаллической решетки и электроны. С другой стороны, колебания решетки, которые переносят тепло из мест с высокой температурой в места с низкой температурой, замедляются из-за неравномерностей в кристаллической структуре. Поэтому теплопроводность материала уменьшается.

Новый материал, по словам ученых, настолько эффективен, что его можно было бы использовать для обеспечения энергией датчиков или даже небольших компьютерных процессоров. Вместо того чтобы подключать небольшие устройства к кабелям, они могли бы генерировать свое собственное электричество из перепадов температур.

indicator.ru

Термоэлектрический генератор - конвертируем тепло в электричество термогенератором

Я расскажу как получить электричество из тепла и как построить своими руками термоэлектрогенератор средних размеров, который можно использовать в походах и на открытой природе, а также просто так, для зарядки электронных устройств, посредством зарядки перезаряжаемых батарей от любого источника огня. При использовании ракетной печи или походной печки и газа для более быстрого сгорания, сгенерируется больше энергии.

Термоэлектрический генератор идеально подходит для выживания в случае стихийных бедствий, поскольку позволяет производить электроэнергию из легкодоступного источника — огня. Солнечную энергию можно получить только днем, а сбор лунного света неэффективен и требует создания дорогой линзы, энергию ветра возможно получить не в любой день. Огонь — это мощный и опасный источник энергии, поэтому будьте осторожны при использовании устройства и остерегайтесь горячей части радиатора и т.д.

Шаг 1: Необходимые детали

  1. 1х Элемент Пельтье (термоэлектрический преобразователь)
  2. Алюминиевый радиатор среднего размера (я достал свой из старого ПК)
  3. Толстый электрический кабель двух цветов (опционально)
  4. Входные и выходные разъемы/гнезда, предварительно купленные или изготовленные (для ввода и вывода энергии) (опционально)
  5. Проектный корпус, частично теплозащищенный, если возможно. Используйте изоляционный материал, металл, фольгу и т.д. (опционально)
  6. Термопаста (опционально), алюминиевая фольга (желательно)
  7. Резак для резки тонких металлов
  8. Ножницы по металлу
  9. Разные отвертки (для закручивания винтов корпуса и входов/выходов)
  10. Разные винты и болты (для крепления металлических пластин и радиатора)
  11. Паяльник и припой (опционально) для надежного крепления
  12. Аккумуляторная батарея низкой или средней мощности (для подзарядки)
  13. Термоусадочные трубки для защиты проводов от тепла (необходимо)
  14. 1х блокирующий диод, чтобы предотвратить обратную зарядку.
  15. 2 алюминиевые банки (металлическая пластина)
  16. Толстая медная проволока
  17. Цифровой мультиметр

Все, что отмечено как опциональное, не обязательно к сборке термогенератора, но будет полезным, например корпус для аккумулятора и блокирующий диод.


Шаг 2: Конструирование

Построить корпус и тепловой генератор электричества довольно просто.

Во-первых, отрежьте от алюминиевых банок дно и крышку и разрежьте получившиеся куски пополам. Сложите 4 куска вместе и, прижав, вырежьте отверстия в углах для гаек. Прижмите листы гайками. Основа для устройства готова.

Если имеется термопаста, намажьте её на радиатор и основу, используя старую кредитку. Вам нужен квадрат размером с элемент Пельтье для выработки электричества. Поместите элемент Пельтье холодной стороной к радиатору, а горячей к алюминию. Проверить стороны можно подключив модуль к двум батареям 1.5v и потрогав каждую из сторон.

Нужно положить модуль между радиатором и алюминиевыми листами и немного вдавить в термопасту. Теперь, используя плоскогубцы, нужно обернуть медную проволоку вокруг выпирающих частей радиатора и под болтами на алюминиевой основе. Это соединит радиатор, основу и элемент Пельтье друг с другом. Основной блок сделан.

Шаг 3: Тестирование теплогенератора

Я использовал для теста термоэлектрического генераторного модуля одну маленькую свечку внутри оловянной банки, покрытой изоляционной лентой и подставку из металлического корпуса компьютерного вентилятора. В зависимости от количества тепла, мощность будет медленно подниматься и продолжать расти до заданного напряжения.

Также на эффективность влияет охлаждение радиатора, в холодный день радиатор будет остывать быстрее. К устройству могут быть подключены топливная или ракетная печь, этим можно заряжать аккумуляторы или электронные устройства.

На самом деле эта вещь не подходит для повседневного использования, поскольку элемент Пельтье рано или поздно сломается и сделает устройство неэффективным. В любом случае, оно может использоваться для получения электроэнергии в походе, при экстренных случаях и т.д.

Смотрите видео для тестов и показаний напряжения и скорости его подъема. Тест дома с питанием от свечки. Второй тест с маленькой печкой, в котором видно, что если непрерывно подавать топливо, то за 3-4 минуты можно зарядить батарею или две.

Файлы

Шаг 4: Улучшения

Возможные следующие модернизации устройства:

  1. Добавьте еще одну ячейку Пельтье чтобы удвоить выход напряжения.
  2. Подключите Joule Thief или несколько для небольшого увеличения напряжения.
  3. Используйте более качественные теплопроводные материалы, больший радиатор и более толстую алюминиевую или медную плиту в качестве основы.
  4. Можно качественнее закрепить ячейку Пельтье при помощи медной проволоки или термопасты, что улучшит перенос тепла.
  5. Используйте ракетную печь вместо открытых источников огня. Жар ракетных печей локализован, что будет эффективнее заряжать устройства.
  6. Используйте несколько связанных друг с другом устройств, соединив их последовательно над источником огня, чтобы увеличить выход напряжения.
  7. Можно улучшить термоизоляцию на проводах, фольге и изоляционной ленте (ракетные печи, как правило, немного плавят провода)
  8. Сделать запас компонентов и деталей (если что-то сломается или прогорит, всегда можно будет починить устройство)

masterclub.online

Термогенератор, получаем электричество из тепла

Для того, чтобы получить электричество непосредственно от газовой горелки или другого источника тепла, применяется термогенератор. Так же, как и у термопары, его принцип действия основан на эффекте Зеебека, открытом в 1821 году. Упомянутый эффект состоит в том, что в замкнутой цепи из двух разнородных проводников появляется ЭДС, если места спаев проводников находятся при разных температурах. Например, один спай находится в сосуде с кипящей водой, а другой в чашке с тающим льдом.

Эффект возникает от того, что энергия свободных электронов зависит от температуры. При этом электроны начинают перемещаться от проводника, где они имеют более высокую энергию в проводник, где энергия зарядов меньше. Если один из спаев нагрет больше другого, то разность энергий зарядов на нем, больше, чем на холодном. Поэтому, если цепь замкнута, в ней возникает ток, именно та самая термоэдс. 

Приблизительно величину термоэдс можно определить по простой формуле:

E = α * (T1 – T2). Здесь α — коэффициент термоэдс, который зависит только от металлов, из которых составлена термопара или термоэлемент. Его значение обычно выражается в микровольтах на градус. Разность температур спаев в этой формуле (T1 – T2): T1 – температура горячего спая, а T2, соответственно, холодного.

Приведенную формулу достаточно наглядно иллюстрирует рис. 1.

   Рис. 1. Принцип работы термопары

Рисунок этот классический, его можно найти в любом учебнике физики. На рисунке показано кольцо, составленное из двух проводников А и Б. Места соединения проводников называются спаями. Как показано на рисунке, в горячем спае T1 термоэдс имеет направление из металла Б в металл А. А в холодном спае Т2 из металла А в металл Б. Указанное на рисунке направление термоэдс справедливо для случая, когда термоэдс металла А положительна по отношению к металлу Б.

Как определить термоэдс металла

Термоэдс металла определяется по отношению к платине. Для этого термопара, одним из электродов которой является платина (Pt), а другим испытуемый металл, нагревается до 100 градусов Цельсия. Полученное значение в милливольтах для некоторых металлов, показано ниже. Причем следует обратить внимание на то, что изменяется не только величина термоэдс, но и ее знак по отношению к платине.

Платина в этом случае играет такую же роль, как 0 градусов на температурной шкале, а вся шкала величин термоэдс выглядит следующим образом:

  • Сурьма   +4,7
  • Железо   +1,6
  • Кадмий   +0,9
  • Цинк   +0,75
  • Медь   +0,74
  • Золото   +0,73
  • Серебро   +0,71
  • Олово   +0,41
  • Алюминий   +0,38
  • Ртуть   0
  • Платина   0

После платины идут металлы с отрицательным значением термоэдс:

  • Кобальт   -1,54
  • Никель   -1,64
  • Константан (сплав меди и никеля)   -3,4
  • Висмут   -6,5

Пользуясь этой шкалой очень просто определить значение термоэдс развиваемое термопарой, составленной из различных металлов. Для этого достаточно подсчитать алгебраическую разность значений металлов, из которых изготовлены термоэлектроды. Например, для пары сурьма – висмут это значение будет +4,7 – ( — 6,5) = 11,2 мВ. Если в качестве электродов использовать пару железо – алюминий, то это значение составит всего +1.6 – (+0,38) = 1,22 мВ, что меньше почти в десять раз, чем у первой пары.

Если холодный спай поддерживать в условиях постоянной температуры, например 0 градусов, то термоэдс горячего спая будет пропорциональна изменению температуры, что и используется в термопарах.

Как создавались термогенераторы

Уже в середине 19 века делались многочисленные попытки для создания термогенераторов – устройств для получения электрической энергии, то есть для питания различных потребителей. В качестве таких источников предполагалось использовать батареи из последовательно соединенных термоэлементов. Конструкция такой батареи показана на рис. 2.

   Рис. 2. Термобатарея, схематическое устройство

Первую термоэлектрическую батарею создали в середине 19 века физики Эрстед и Фурье. В качестве термоэлектродов использовались висмут и сурьма, как раз та самая пара из чистых металлов, у которой максимальная термоэдс. Горячие спаи нагревались газовыми горелками, а холодные помещались в сосуд со льдом. В процессе опытов с термоэлектричеством позднее были изобретены термобатареи, пригодные для использования в некоторых технологических процессах и даже для освещения. В качестве примера можно привести батарею Кламона, разработанную в 1874 году, мощности которой вполне хватало для практических целей: например для гальванического золочения, а также применения в типографии и мастерских гелиогравюры. Примерно в то же время исследованием термобатарей занимался и ученый Ноэ, его термобатареи в свое время также были распространены достаточно широко.

Но все эти опыты, хотя и удачные, были обречены на провал, поскольку термобатареи, созданные на основе термоэлементов из чистых металлов, имели весьма низкий КПД, что сдерживало их практическое применение. Чисто металлические пары имеют КПД лишь несколько десятых долей процента. Намного большим КПД обладают полупроводниковые материалы: некоторые окислы, сульфиды и интерметаллические соединения.

Полупроводниковые термоэлементы

Подлинную революцию в создании термоэлементов произвели труды академика А.И. Иоффе. В начале 30 – х годов XX столетия он выдвинул идею, что с помощью полупроводников возможно превращение тепловой энергии, в том числе и солнечной, в электрическую. Благодаря проведенным исследованиям уже в 1940 году был создан полупроводниковый фотоэлемент для преобразования световой солнечной энергии в электрическую. Первым практическим применением полупроводниковых термоэлементов следует считать, по-видимому, «партизанский котелок», позволявший обеспечить питанием некоторые портативные партизанские радиостанции.

Основой термогенератора служили элементы из константана и SbZn. Температура холодных спаев стабилизировалась кипящей водой, в то время как горячие спаи нагревались пламенем костра, при этом обеспечивалась разница температур не менее 250…300 градусов. КПД такого устройства был не более 1,5…2,0 %, но мощности для питания радиостанций вполне хватало. Конечно, в те военные времена конструкция «котелка» была государственным секретом, и даже сейчас на многих форумах в интернете обсуждается его устройство.

Бытовой термогенератор

Уже в послевоенные пятидесятые годы советская промышленность начала выпускать термогенератор ТГК – 3. Основное его назначение состояло в питании батарейных радиоприемников в не электрифицированной сельской местности. Мощность генератора составляла 3 Вт, что позволяло питать батарейные приемники, такие как «Тула», «Искра», «Таллин Б-2», «Родина – 47», «Родина – 52» и некоторые другие.

Внешний вид термогенератора ТГК-3 показан на рис. 3.

 
   Рис. 3. Термогенератор ТГК-3

Конструкция термогенератора

Как уже было сказано, термогенератор предназначался для использования в сельской местности, где для освещения использовались керосиновые лампы «молния». Такая лампа, оснащенная термогенератором, становилась не только источником света, но и электричества. При этом дополнительных затрат топлива не требовалось, ведь в электричество превращалась именно та часть керосина, которая просто улетала в трубу. К тому же, такой генератор был всегда готов к работе, конструкция его была такова, что ломаться в нем просто нечему. Генератор мог просто лежать без дела, работать без нагрузки, не боялся коротких замыканий. Срок службы генератора, по сравнению с гальваническими батареями, казался просто вечным.

Роль вытяжной трубы у керосиновой лампы «молния» играет удлиненная цилиндрическая часть стекла. При использовании лампы совместно с термогенератором стекло делалось укороченным, и в него вставлялся металлический теплопередатчик 1, как показано на рис. 4.

   Рис. 4. Керосиновая лампа с термоэлектрическим генератором

Внешняя часть теплопередатчика имеет форму многогранной призмы, на которой установлены термобатареи. Чтобы увеличить эффективность теплоотдачи теплопередатчик внутри имел несколько продольных каналов. Проходя по этим каналам горячие газы уходили в вытяжную трубу 3, попутно нагревая термобатарею, точнее, ее горячие спаи. Для охлаждения холодных спаев использовался радиатор воздушного охлаждения. Он представляет собой металлические ребра, прикрепленные к внешним поверхностям блоков термобатарей.

Термогенератор – ТГК3 состоял из двух независимых секций. Одна из них вырабатывала напряжение 2В при токе нагрузки до 2А. Эта секция использовалась для получения анодного напряжения ламп с помощью вибропреобразователя. Другая секция при напряжении 1,2В и токе нагрузки 0,5А использовалась для питания нитей накала ламп.

Нетрудно подсчитать, что термогенератор имел мощность не превышающую 5 Ватт, но для приемника ее вполне хватало, что позволяло скрашивать долгие зимние вечера. Сейчас, конечно, это кажется просто смешным, но в те далекие времена такое устройство было, несомненно, чудом техники.

Видео

 

Смотрите также по теме:

   Ветрогенератор. Как выбрать, смонтировать и избежать разочарования?

   Безлопастной ветрогенератор. Устройство и принцип работы.

 

Будем рады, если подпишетесь на наш Блог!

[wysija_form id=»1″]

powercoup.by

tPOD1 — эффективный преобразователь тепловой энергии в электричество / Habr

То, что тепловую энергию можно преобразовывать в электричество, известно очень давно. Существует и целый спектр портативных устройств, которые совершают подобные преобразования без большого числа промежуточных этапов. Но вскоре может появиться устройство, которое окажется практически идеальным преобразователем тепловой энергии в электрическую для охотников, туристов, путешественников и жителей отдаленных регионов. tPOD1 достаточно эффективен — тепла, выделяемого одной маленькой свечкой (знаете, такие мини-свечки в металлической крышечке, они еще по воде могут плавать) хватит для обеспечения энергией светодиодной лампы (на 25 светодиодов) вплоть до четырех часов.

Этот проект разработан компанией Tellurex, которая в настоящее время собирает средства на реализацию своей идеи в промышленном масштабе на Kickstarter. Всего для начала массового производства tPOD1 нужно 85 тысяч долларов США. 40 тысяч долларов США уже собрано.

Разработчики считают, что их устройство может быть полезным, в первую очередь, для жителей удаленных регионов Африки. Та же мобильная связь добралась и туда, однако иногда жителям приходится проходить несколько километров в день, только для того, чтобы зарядить свой телефон где-нибудь в более цивилизованном районе. А теперь заряжать телефон можно будет буквально «из костра». Вероятно, жители смогут и просто класть tPOD1 куда-нибудь на темный камень, нагревающийся на солнце до 70 градусов (и даже выше).

Правда, стоимость девайса чрезмерно велика для африканца — выложить придется 69-79 долларов США. Так что пока tPOD1, вероятно, станет раскупаться только туристами, рыбаками и прочими категориями граждан, регулярно совершающих путешествия.

На видео, размещенном ниже, показан принцип действия устройства. Там вначале девочка вещает, но с 20-й секунды начинается сама презентация.

Via mashable

habr.com

Физики в тысячи раз улучшили процесс превращения тепла в электричество

Как объясняют физики, ферромагнетики содержат в себе две группы электронов, обладающих разным спином - квантовой характеристикой электрона. Скорость движения и другие физические свойства частиц зависят от спина. Из-за этого при появлении разницы в температуре внутри ферромагнетика возникает любопытный эффект - в нем появляются два "канала", по каждому из которых двигаются электроны с разным спином. Разная скорость движения частиц позволяет превращать поток электронов с разным спином в электрический ток.

Хэрэманс и его коллеги обнаружили, что данный эффект возможен не только в ферромагнетиках, но и в других типах проводников, изучая свойства полупроводникового сплава индия и олова.

В ходе своих экспериментов авторы статьи выяснили, что внешнее магнитное поле превращает фрагменты полупроводника в преобразователь тепла в электричество, если температура окружающей среды близка к абсолютному нулю. По расчетам физиков, напряжение тока увеличивается на восемь милливольт при повышении разницы в температуре полюсов устройства на один градус Кельвина. Это примерно в тысячу раз больше, чем удавалось достичь на самых эффективных преобразователях тепла на основе ферромагнетиков.

"На самом деле, это новое поколение теплового двигателя. В 18 веке у нас были паровые двигатели, в 19 веке - двигатели внутреннего сгорания, а в 20 веке появились первые термоэлектрические материалы. Теперь мы пытаемся приспособить для этих целей и магнитное поле", - пояснил Хэрэманс.

Физики полагают, что их открытие будет в конечном итоге использовано для создания генераторов, преобразующих тепло в электричество. Такие устройства не будут иметь движущихся и ломающихся частей, благодаря чему они будут работать практически вечно. Тем не менее, до их появления физикам и инженерам предстоит решить массу проблем - пока такие устройства работают только при низкой температуре и в присутствии сильного магнитного поля.

ria.ru

Термоэлектрический генератор своими руками: видео, фото, инструкция

Многих электриков интересует один очень популярный вопрос – как автономно и бесплатно получить небольшое количество электроэнергии. Очень часто, к примеру, при выезде на природу или походе катастрофически не хватает розетки для подзарядки телефона либо включения светильника. В этом случае Вам поможет самодельный термоэлектрический модуль, собранный на базе элемента Пельтье. С помощью такого устройства можно генерировать ток, напряжением до 5 Вольт, чего вполне хватит для зарядки девайса и подключения лампы в экстренной ситуации. Далее мы расскажем, как сделать термоэлектрический генератор своими руками, предоставив простой мастер-класс в картинках и с видео примерами!

Кратко о принципе действия

Чтобы в дальнейшем Вы понимали, для чего нужны те или иные запчасти при сборке самодельного термоэлектрического генератора, сначала поговорим об устройстве элемента Пельтье и о том, как он работает. Данный модуль состоит из последовательно соединенных полупроводников – pn переходов, находящихся между керамическими пластинами, как показано на картинке ниже.

Схема работы модуля Пельтье

Когда через такую цепь проходит электрический ток, происходит так называемый эффект Пельтье — одна сторона модуля нагревается, а вторая – охлаждается. Для чего это нам нужно? Все очень просто, данный эффект работает и в обратном направлении: если одну сторону пластины нагреть, а второю охладить, то можно получить электроэнергию небольшого напряжения и силы тока. Огромное преимущество данного метода в том, что можно использовать любой источник тепла, будь то костер, или горячая кружка с кипятком, остывающая плита и так далее. Для охлаждения можно применять воздух или для более мощных вариантов – обыкновенную воду, которая обязательно найдется даже в условиях похода. Далее переходим к мастер-классам, которые наглядно покажут из чего и как сделать термоэлектрический генератор своими руками.

Мастер-класс по сборке

У нас есть очень подробная и в то же время простая инструкция по сборке самодельного генератора электроэнергии на базе мини-печи и элемента Пельтье. Она пригодится каждому путешественнику в походе. Для начала Вам необходимо подготовить следующие материалы:

  • Непосредственно сам элемент Пельтье с параметрами: максимальный ток 10 А, напряжение 15 Вольт, размеры 40*40*3,4 мм. Маркировка – TEC 1-12710.
  • Старый нерабочий блок питания от компьютера (с него нужен только металлический корпус).
  • Стабилизатор напряжения, со следующими техническими характеристиками: входное напряжение 1-5 Вольт, на выходе – 5 Вольт. В данной инструкции по сборке термоэлектрического генератора используется модуль с USB выходом, что упростит и сделает безопасным процесс подзарядки современного телефона либо планшета. Эту деталь можно приобрести в магазине радиокомпонентов или в интернете.
  • Радиатор. Можно взять от процессора сразу с кулером (вентилятором), как показано на фото.
  • Термопаста, продается в компьютерном магазине.

Исходные материалыРадиатор с куллером фото

Подготовив все материалы, можно переходить к изготовлению устройства своими руками. Итак, чтобы Вам было понятнее, как самому сделать генератор, предоставляем пошаговый мастер-класс с картинками и подробным объяснением:

  1. Разберите старый блок питания и оставьте только корпус. Он будет использоваться, как место розжига огня (так называемая печь). Будьте внимательны, даже на старых блоках питания в высоковольтной части на конденсаторах может остаться опасное для жизни напряжение. Поэтому перед работой оденьте диэлектрические перчатки, убедитесь в отсутствии потенциала на конденсаторе, для уверенности замкните его контакты, и будьте предельно осторожны во время разборки!
  2. На радиатор нанесите термопасту тонким, однородным слоем и прислоните элемент Пельтье. Устанавливать нужно маркировкой к радиатору, это будет холодная сторона. Если Вы перепутаете стороны местами, в дальнейшем нужно будет поменять полярность проводов, чтобы термоэлектрический генератор работал правильно и не испортил преобразователь. Вместо термопасты вы можете использовать специальный теплопроводный клей, это будет даже лучше: не придется дополнительно крепить радиатор к корпусу.
    Первый шаг сборки
  3. К обратной стороне модуля прислоните корпус блока питания, как показано на фото ниже.
  4. Прикрепите радиатор к корпусу с помощью металлической проволоки.
  5. К выводам элемента припаяйте стабилизатор напряжения с выходом USB. Кстати, для этого можно сделать паяльник сделать своими руками.Следующий этап
  6. Аккуратно поместите 5-вольтовый преобразователь в радиаторе и переходите к испытаниям самодельного термоэлектрического генератора. Не забудьте заизолировать преобразователь с помощью изоленты.
    Итог работыПояснение

Работает термоэлектрический генератор следующим образом: внутрь печи Вы засыпаете дрова, мелкие щепки, поджигаете их и ждете несколько минут, пока одна из сторон термоэлемента не нагреется. Параллельно можно вскипятить воду на решетке. Для подзарядки телефона нужно, чтобы разница между температурами разных сторон была около 100оС. Если охлаждающая часть (радиатор) будет нагреваться, его нужно будет остужать – аккуратно поливать водой, поставить на него кружку с жидкостью, льдом и т.д. Лучше крепить радиатор так, чтобы его ребра были расположены вертикально, это улучшает отдачу тепла воздуху.

А вот и видео, на котором наглядно показывается, как работает самодельный электрогенератор на дровах:

Генерация электричества из огня

Также можно установить на холодную сторону устройства вентилятор от компьютера, что несколько изменит его конструкцию. Давайте рассмотрим этот вариант по подробнее:Самодельный аппарат с системой охлаждения

В этом случае кулер будет затрачивать небольшую долю мощности генераторной установки, но в итоге система будет работать с более высоким КПД. Помимо телефонной зарядки модуль Пельтье можно использовать в качестве источника электроэнергии для фонарика, что не менее полезный вариант применения генератора. Еще одна особенность данной конструкции — это способность регулировать высоту над огнем. Для этого автор использует деталь от CD-ROMа (на одном из фото хорошо видно, как самому можно изготовить конструкцию).

Автономное электричество на даче

Конструкция самодельного электрогенератора

Регулятор высоты печки

Если сделать термоэлектрический генератор своими руками по такой методике, на выходе у Вас может быть до 8 Вольт напряжения, поэтому для подзарядки телефона, нужно подключить понижающий преобразователь, который сделает на выходе стабильные 5 В.

Ну и последний вариант самодельного источника электроэнергии для дома может быть представлен такой схемой: элемент между двух алюминиевых «кирпичиков», медная трубка (водяное охлаждение) и конфорка. Как результат – эффективный генератор, позволяющий получить бесплатное электричество в домашних условиях! Например, при остывании конфорки, когда ей никто не пользуется. Или очень часто люди используют печь для обогрева, так вот часть этой энергии может пойти на зарядку вашего гаджета.

Электрогенератор из подручных материалов

Оригинальная идея — горячая вода, как источник тепла

Второй эксперимент с водой

Вот мы и предоставили три простых варианта самодельного аппарата, который можно собрать из подручных средств. Теперь Вы знаете как сделать термоэлектрический генератор своими руками, на чем основан принцип работы элемента Пельтье и для чего его можно использовать!

Будет интересным к прочтению:

samelectrik.ru

прозаичные тепло и электричество для космических аппаратов / Habr

Так получилось, что в серии «Мирный космический атом» мы движемся от фантастического к распространенному. В прошлый раз мы поговорили об энергетических реакторах, очевидный следующий шаг — рассказать о радиоизотопных термоэлектрических генераторах. Недавно на Хабре был отличный пост про РИТЭГ зонда «Кассини», а мы рассмотрим эту тему с более широкой точки зрения.

Физика процесса

Производство тепла

В отличие от ядерного реактора, который использует явление цепной ядерной реакции, радиоизотопные генераторы используют естественный распад радиоактивных изотопов. Вспомним, что атомы состоят из протонов, электронов и нейтронов. В зависимости от количества нейтронов в ядре конкретного атома, он может быть стабильным, или же проявлять тенденцию к самопроизвольному распаду. Например, атом кобальта 59Co с 27 протонами и 32 нейтронами в ядре стабилен. Такой кобальт использовался человечеством со времен Древнего Египта. Но если мы добавим к 59Co один нейтрон (например, поместив «обычный» кобальт в атомный реактор), то получится 60Co, радиоактивный изотоп с периодом полураспада 5,2 года. Термин «период полураспада» означает, что через 5,2 года один атом распадется с вероятностью 50%, а от ста атомов останется примерно половина. У всех «обычных» элементов есть свои изотопы с разным периодом полураспада:


3D карта изотопов, спасибо ЖЖ пользователю crustgroup за картинку.

Подбирая подходящий изотоп, можно получить РИТЭГ с требуемым сроком службы и другими параметрами:

Изотоп Способ получения Удельная мощность, Вт/г Объёмная мощность, Вт/см³ Период полураспада Интегрированная энергия распада изотопа, кВт·ч/г Рабочая форма изотопа
60Со (кобальт-60) Облучение в реакторе 2,9 ~26 5,271 года 193,2 Металл, сплав
238Pu (плутоний-238) атомный реактор 0,568 6,9 86 лет 608,7 Карбид плутония
90Sr (стронций-90) осколки деления 0,93 0,7 28 лет 162,721 SrO, SrTiO3
144Ce (церий-144) осколки деления 2,6 12,5 285 дней 57,439 CeO2
242Cm (кюрий-242) атомный реактор 121 1169 162 дня 677,8 Cm2O3
147Pm (прометий-147) осколки деления 0,37 1,1 2,64 года 12,34 Pm2O3
137Cs (цезий-137) осколки деления 0,27 1,27 33 года 230,24 CsCl
210Po (полоний-210) облучение висмута 142 1320 138 дней 677,59 сплавы со свинцом, иттрием, золотом
244Cm (кюрий-244) атомный реактор 2,8 33,25 18,1 года 640,6 Cm2O3
232U (уран-232) облучение тория 8,097 ~88,67 68,9 лет 4887,103 диоксид, карбид, нитрид урана
106Ru (рутений-106) осколки деления 29,8 369,818 ~371,63 сут 9,854 металл, сплав

То, что распад изотопов происходит самостоятельно, означает, что РИТЭГом нельзя управлять. После загрузки топлива он будет нагреваться и производить электричество годами, постепенно деградируя. Уменьшение количества делящегося изотопа означает, что будет меньше ядерных распадов, меньше тепла и электричества. Плюс, падение электрической мощности усугубит деградация электрического генератора.
Существует упрощённая версия РИТЭГа, в котором распад изотопа используется только для обогрева, без получения электричества. Такой модуль называется блоком обогрева или RHG (Radioisotope Heat Generator).
Превращение тепла в электричество

Как и в случае атомного реактора, на выходе у нас получается тепло, которое надо каким-либо образом преобразовать в электричество. Для этого можно использовать:
  • Термоэлектрический преобразователь. Соединив два проводника из разных материалов (например, хромеля и алюмеля) и нагрев один из них, можно получить источник электричества.
  • Термоэмиссионный преобразователь. В этом случае используется электронная лампа. Её катод нагревается, и электроны получают достаточно энергии чтобы «допрыгнуть» до анода, создавая электрический ток.
  • Термофотоэлектрический преобразователь. В этом случае к источнику тепла подсоединяется фотоэлемент, работающий в инфракрасном диапазоне. Источник тепла испускает фотоны, которые улавливаются фотоэлементом и преобразуются в электричество.
  • Термоэлектрический конвертер на щелочных металлах. Здесь для превращения тепла в электричество используется электролит из расплавленных солей натрия и серы.
  • Двигатель Стирлинга — тепловая машина для преобразования разности температуры в механическую работу. Электричество получается из механической работы с использованием какого-либо генератора.
История

Первый экспериментальный радиоизотопный источник энергии был представлен в 1913 году. Но только со второй половины XX века, с распространением ядерных реакторов, на которых можно было получать изотопы в промышленных масштабах, РИТЭГи стали активно использоваться.
США

В США РИТЭГами занималась уже знакомая вам по прошлому посту организация SNAP.
SNAP-1.
Это был экспериментальный РИТЭГ на 144Ce и с генератором на цикле Ренкина (паровая машина) со ртутью в качестве теплоносителя. Генератор успешно проработал 2500 часов на Земле, но в космос не полетел.

SNAP-3.
Первый РИТЭГ, летавший в космос на навигационных спутниках Transit 4A и 4B. Энергетическая мощность 2 Вт, вес 2 кг, использовал плутоний-238.

Sentry
РИТЭГ для метеорологического спутника. Энергетическая мощность 4,5 Вт, изотоп — стронций-90.

SNAP-7.
Семейство наземных РИТЭГов для маяков, световых буев, погодных станций, акустических буев и тому подобного. Очень большие модели, вес от 850 до 2720 кг. Энергетическая мощность — десятки ватт. Например, SNAP-7D — 30 Вт при массе 2 т.

SNAP-9
Серийный РИТЭГ для навигационных спутников Transit. Масса 12 кг, электрическая мощность 25 Вт.

SNAP-11
Экспериментальный РИТЭГ для лунных посадочных станций Surveyor. Предлагалось использовать изотоп кюрий-242. Электрическая мощность — 25 Вт. Не использовались.

SNAP-19
Серийный РИТЭГ, использовался во множестве миссий — метеорологические спутники Nimbus, зонды «Пионер» -10 и -11, марсианские посадочные станции «Викинг». Изотоп — плутоний-238, энергетическая мощность ~40 Вт.

SNAP-21 и -23
РИТЭГи для подводного применения на стронции-90.

SNAP-27
РИТЭГи для питания научного оборудования программы «Аполлон». 3,8 кг. плутония-238 давали энергетическую мощность 70 Вт. Лунное научное оборудование было выключено ещё в 1977 году (люди и аппаратура на Земле требовали денег, а их не хватало). РИТЭГи на 1977 год выдавали от 36 до 60 Вт электрической мощности.

MHW-RTG
Название расшифровывается как «многосотваттный РИТЭГ». 4,5 кг. плутония-238 давали 2400 Вт тепловой мощности и 160 Вт электрической. Эти РИТЭГи стояли на Экспериментальных Спутниках Линкольна (LES-8,9) и уже 37 лет обеспечивают теплом и электричеством «Вояджеры». На 2014 год РИТЭГи обеспечивают около 53% своей начальной мощности.

GPHS-RTG
Самый мощный из космических РИТЭГов. 7,8 кг плутония-238 давали 4400 Вт тепловой мощности и 300 Вт электрической. Использовался на солнечном зонде «Улисс», зондах «Галилео», «Кассини-Гюйгенс» и летит к Плутону на «Новых горизонтах».

MMRTG
РИТЭГ для «Кьюриосити». 4 кг плутония-238, 2000 Вт тепловой мощности, 100 Вт электической.

Тёплый ламповый кубик плутония.


РИТЭГи США с привязкой по времени.

Сводная таблица:

Название Носители (количество на аппарате) Максимальная мощность Изотоп Вес топлива, кг Полная масса, кг
Электрическая, Вт Тепловая, Вт
MMRTG MSL/Curiosity rover ~110 ~2000 238Pu ~4 <45
GPHS-RTG Cassini (3), New Horizons (1), Galileo (2), Ulysses (1) 300 4400 238Pu 7.8 55.9–57.8
MHW-RTG LES-8/9, Voyager 1 (3), Voyager 2 (3) 160 2400 238Pu ~4.5 37.7
SNAP-3B Transit-4A (1) 2.7 52.5 238Pu  ? 2.1
SNAP-9A Transit 5BN1/2 (1) 25 525 238Pu ~1 12.3
SNAP-19 Nimbus-3 (2), Pioneer 10 (4), Pioneer 11 (4) 40.3 525 238Pu ~1 13.6
модификация SNAP-19 Viking 1 (2), Viking 2 (2) 42.7 525 238Pu ~1 15.2
SNAP-27 Apollo 12–17 ALSEP (1) 73 1,480 238Pu 3.8 20
СССР/Россия

В СССР и России космических РИТЭГов было мало. Первым экспериментальным генератором стал РИТЭГ «Лимон-1» на полонии-210, созданный в 1962 году:
.

Первыми космическими РИТЭГами стали «Орион-1» электрической мощностью 20 Вт на полонии-210 и запущенные на связных спутниках серии «Стрела-1» — «Космос-84» и «Космос-90». Блоки обогрева стояли на «Луноходах» -1 и -2, и РИТЭГ стоял на миссии «Марс-96»:

В то же время РИТЭГи очень активно использовались в маяках, навигационных буях и прочем наземном оборудовании — серии «БЭТА», «РИТЭГ-ИЭУ» и многие другие.

Конструкция

Практически все РИТЭГи используют термоэлектрические преобразователи и поэтому имеют одинаковую конструкцию:
Перспективы

Все летавшие РИТЭГи отличает очень низкий КПД — как правило, электрическая мощность меньше 10% от тепловой. Поэтому в начале XXI века в NASA был запущен проект ASRG — РИТЭГ с двигателем Стирлинга. Ожидалось повышение КПД до 30% и 140 Вт электрической мощности при 500 Вт тепловой. К сожалению, проект был остановлен в 2013 году из-за превышения бюджета. Но, теоретически, применение более эффективных преобразователей тепла в электричество способно серьезно поднять КПД РИТЭГов.
Достоинства и недостатки

Достоинства:
  1. Очень простая конструкция.
  2. Может работать годами и десятилетиями, деградируя постепенно.
  3. Может использоваться одновременно для обогрева и электропитания.
  4. Не требует управления и присмотра.

Недостатки:
  1. Требуются редкие и дорогие изотопы в качестве топлива.
  2. Производство топлива сложное, дорогое и медленное.
  3. Низкий КПД.
  4. Мощность ограничивается сотнями ватт. РИТЭГ киловаттной электрической мощности уже слабо оправдан, мегаваттной — практически не имеет смысла: будет слишком дорогим и тяжелым.

Сочетание таких достоинств и недостатков означает, что РИТЭГи и блоки обогрева занимают свою нишу в космической энергетике и сохранят её и далее. Они позволяют просто и эффективно обогревать и питать электричеством межпланетные аппараты, но от них не стоит ждать какого-либо энергетического прорыва.

Источники

Кроме Википедии использовались:

habr.com

Отправить ответ

avatar
  Подписаться  
Уведомление о