Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Электродвигатели постоянного тока. Устройство и работа. Виды

Электрические двигатели, приводящиеся в движение путем воздействия постоянного тока, применяются значительно реже, по сравнению с двигателями, работающими от переменного тока. В бытовых условиях электродвигатели постоянного тока используются в детских игрушках, с питанием от обычных батареек с постоянным током. На производстве электродвигатели постоянного тока приводят в действие различные агрегаты и оборудование. Питание для них подводится от мощных батарей аккумуляторов.

Устройство и принцип работы

Электродвигатели постоянного тока по конструкции подобны синхронным двигателям переменного тока, с разницей в типе тока. В простых демонстрационных моделях двигателя применяли один магнит и рамку с проходящим по ней током. Такое устройство рассматривалось в качестве простого примера. Современные двигатели являются совершенными сложными устройствами, способными развивать большую мощность.

Главной обмоткой двигателя служит якорь, на который подается питание через коллектор и щеточный механизм. Он совершает вращательное движение в магнитном поле, образованном полюсами статора (корпуса двигателя). Якорь изготавливается из нескольких обмоток, уложенных в его пазах, и закрепленных там специальным эпоксидным составом.

Статор может состоять из обмоток возбуждения или из постоянных магнитов. В маломощных двигателях используют постоянные магниты, а в двигателях с повышенной мощностью статор снабжен обмотками возбуждения. Статор с торцов закрыт крышками со встроенными в них подшипниками, служащими для вращения вала якоря. На одном конце этого вала закреплен охлаждающий вентилятор, который создает напор воздуха и прогоняет его по внутренней части двигателя во время работы.

Принцип действия такого двигателя основывается на законе Ампера. При размещении проволочной рамки в магнитном поле, она будет вращаться. Проходящий по ней ток создает вокруг себя магнитное поле, взаимодействующее с внешним магнитным полем, что приводит к вращению рамки. В современной конструкции мотора роль рамки играет якорь с обмотками. На них подается ток, в результате вокруг якоря создается магнитное поле, которое приводит его во вращательное движение.

Для поочередной подачи тока на обмотки якоря применяются специальные щетки из сплава графита и меди.

Выводы обмоток якоря объединены в один узел, называемый коллектором, выполненным в виде кольца из ламелей, закрепленных на валу якоря. При вращении вала щетки по очереди подают питание на обмотки якоря через ламели коллектора. В результате вал двигателя вращается с равномерной скоростью. Чем больше обмоток имеет якорь, тем равномернее будет работать двигатель.

Щеточный узел является наиболее уязвимым механизмом в конструкции двигателя. Во время работы медно-графитовые щетки притираются к коллектору, повторяя его форму, и с постоянным усилием прижимаются к нему. В процессе эксплуатации щетки изнашиваются, а токопроводящая пыль, являющаяся продуктом этого износа, оседает на деталях двигателя. Эту пыль необходимо периодически удалять. Обычно удаление пыли выполняют воздухом под большим давлением.

Щетки требуют периодического их перемещения в пазах и продувки воздухом, так как от накопившейся пыли они могут застрять в направляющих пазах. Это приведет к зависанию щеток над коллектором и нарушению работы двигателя. Щетки периодически требуют замены из-за их износа. В месте контакта коллектора со щетками также происходит износ коллектора. Поэтому при износе якорь снимают и на токарном станке протачивают коллектор. После проточки коллектора изоляция, находящаяся между ламелями коллектора стачивается на небольшую глубину, чтобы она не разрушала щетки, так как ее прочность значительно превышает прочность щеток.

Виды
Электродвигатели постоянного тока разделяют по характеру возбуждения:
Независимое возбуждение

При таком характере возбуждения обмотка подключается к внешнему источнику питания. При этом параметры двигателя аналогичны двигателю на постоянных магнитах. Обороты вращения настраиваются сопротивлением обмоток якоря. Скорость регулируют специальным регулировочным реостатом, включенным в цепь обмоток возбуждения. При значительном снижении сопротивления или при обрыве цепи ток якоря повышается до опасных величин.

Электродвигатели с независимым возбуждением запрещается запускать без нагрузки или с небольшой нагрузкой, так как его скорость резко возрастет, и двигатель выйдет из строя.

Параллельное возбуждение

Обмотки возбуждения и ротора соединяются параллельно с одним источником тока. При такой схеме ток обмотки возбуждения значительно ниже тока ротора. Параметры двигателей становятся слишком жесткими, их можно применять для привода вентиляторов и станков.

Регулировка оборотов двигателя обеспечивается реостатом в последовательной цепи с обмотками возбуждения или в цепи ротора.

Последовательное возбуждение

В этом случае возбуждающая обмотка подключается последовательно с якорем, в результате чего по этим обмоткам проходит одинаковый ток. Обороты вращения такого мотора зависят от его нагрузки. Двигатель нельзя запускать на холостом ходу без нагрузки. Однако такой двигатель обладает приличными пусковыми параметрами, поэтому подобная схема используется в работе тяжелого электротранспорта.

Смешанное возбуждение

Такая схема предусматривает применение двух обмоток возбуждения, находящихся парами на каждом полюсе двигателя. Эти обмотки можно соединять двумя способами: с суммированием потоков, либо с их вычитанием. В итоге электродвигатель может обладать такими же характеристиками, как у двигателей с параллельным или последовательным возбуждением.

Чтобы заставить двигатель вращаться в другую сторону, на одной из обмоток изменяют полярность. Для управления скоростью вращения мотора и его запуском используют ступенчатое переключение разных резисторов.

Особенности эксплуатации

Электродвигатели постоянного тока отличаются экологичностью и надежностью. Их главным отличием от двигателей переменного тока является возможность регулировки оборотов вращения в большом диапазоне.

Такие электродвигатели постоянного тока можно также применять в качестве генератора. Изменив направление тока в обмотке возбуждения или в якоре, можно изменять направление вращения двигателя. Регулировка оборотов вала двигателя осуществляется с помощью переменного резистора. В двигателях с последовательной схемой возбуждения это сопротивление расположено в цепи якоря и позволяет уменьшить скорость вращения в 2-3 раза.

Этот вариант подходит для механизмов с длительным временем простоя, так как при работе реостат сильно нагревается. Повышение оборотов создается путем включения в цепь возбуждающей обмотки реостата.

Для моторов с параллельной схемой возбуждения в цепи якоря также применяются реостаты для уменьшения оборотов в два раза. Если в цепь обмотки возбуждения подключить сопротивление, то это позволит повышать обороты до 4 раз.

Применение реостата связано с выделением тепла. Поэтому в современных конструкциях двигателей реостаты заменяют электронными элементами, управляющими скоростью без сильного нагревания.

На коэффициент полезного действия мотора, работающего на постоянном токе, влияет его мощность. Слабые электродвигатели постоянного тока обладают малой эффективностью, и их КПД около 40%, в то время, как электродвигатели мощностью 1 МВт могут обладать коэффициентом полезного действия до 96%.

Преимущества электродвигателей постоянного тока
  • Небольшие габаритные размеры.
  • Легкое управление.
  • Простая конструкция.
  • Возможность применения в качестве генераторов тока.
  • Быстрый запуск, особенно характерный для моторов с последовательной схемой возбуждения.
  • Возможность плавной регулировки скорости вращения вала.
Недостатки
  • Для подключения и эксплуатации необходимо приобретать специальный блок питания постоянного тока.
  • Высокая стоимость.
  • Наличие расходных элементов в виде медно-графитных быстроизнашивающихся щеток, изнашивающегося коллектора, что значительно снижает срок эксплуатации, и требует периодического технического обслуживания.
Сфера использования
Широко популярными двигатели постоянного тока стали в электрическом транспорте. Такие двигатели обычно входят в конструкции:
  • Электромобилей.
  • Электровозов.
  • Трамваев.
  • Электричек.
  • Троллейбусов.
  • Подъемно-транспортных механизмов.
  • Детских игрушек.
  • Промышленного оборудования с необходимостью управлением скорости вращения в большом диапазоне.
Похожие темы:

Типы и виды электродвигателей — переменного и постоянного тока, коллекторные, асинхронные, прямого привода

Одним из основных стимулов к широкой электрификации, начавшейся в XX веке, стала возможность легкого преобразования энергии электрического тока в механическую — к тому времени уже был известен коллекторный электродвигатель, изобретенный Якоби еще в первой половине XIX века.

Изобретение асинхронного двигателя переменного тока стало еще большим шагом вперед.

Электромотор лишился механически трущихся и искрящих узлов (щеток и коллектора), превзойдя по бесшумности и ресурсу любой другой существовавший в то время тип привода.

Независимо от конструкции, любой электродвигатель устроен одинаково: внутри цилиндрической проточки в неподвижной обмотке (статоре) вращается ротор, в котором возбуждается магнитное поле, приводящее к отталкиванию его полюсов от статора.

Поддержание постоянного отталкивания требует:

  • перекоммутации обмоток ротора, как это делается на коллекторных электродвигателях;
  • создания вращающегося магнитного поля в самом статоре (классический пример – асинхронный трехфазный двигатель).

Достоинства электродвигателей переоценить трудно. Это:

Крайняя простота.
Электродвигатель состоит из минимального количества узлов, поэтому ломаться в нем практически нечему.
Самостоятельный запуск.
Электродвигателю не нужен пусковой импульс, он начинает вращаться сам при включении питания (исключение – однофазные электродвигатели с пусковой обмоткой, но они практически вышли из употребления). Это позволяет отказаться от холостого хода, включая электромотор только при необходимости.
Отсутствие вибраций.
Так как в электродвигателях энергия магнитного поля непосредственно преобразуется во вращение, при должной балансировке ротора они полностью бесшумны и не создают вибрации.
Легкость управления оборотами и крутящим моментом.
Несмотря на то, что на разных типах электродвигателей это достигается разными способами, управление ими в любом случае достаточно просто и надежно.
Возможность реверса.
На коллекторном двигателе достаточно поменять местами полюса якоря, на трехфазном электромоторе – изменить порядок включения фаз.
Обратимость.
Коллекторные электродвигатели при внешнем приводе начинают работать как электрогенераторы, что позволяет использовать их для рекуперации энергии при торможении электротранспорта.

ЭЛЕКТРОДВИГАТЕЛИ ПЕРЕМЕННОГО ТОКА

Благодаря удобству передачи на большие расстояния и легкости преобразования переменный ток успешно стал стандартом электроснабжения.

В сфере же производства электродвигателей его способность возбуждать переменное магнитное поле в статоре и соответственно индуцировать ток в короткозамкнутой обмотке ротора позволила создать асинхронные электродвигатели. В этом типе двигателей единственным испытывающим трение узлом остаются коренные подшипники якоря.

Ротор такого электродвигателя – это металлический цилиндр, в пазы которого под углом к оси вращения запрессованы или залиты токопроводящие жилы, на торцах ротора объединенные кольцами в одно целое. Переменное магнитное поле статора возбуждает в роторе, напоминающем беличье колесо, противоток и, соответственно, отталкивающее его от статора магнитное поле.

В зависимости от числа обмоток статора асинхронный двигатель может быть:

Однофазным – в этом случае главным недостатком двигателя становится невозможность самостоятельного запуска, так как вектор силы отталкивания проходит строго через ось вращения.

Для начала работы двигателю необходим или стартовый толчок, или включение отдельной пусковой обмотки, создающей дополнительный момент силы, смещающий их суммарный вектор относительно оси якоря.

Двухфазный электродвигатель имеет две обмотки, в которых фазы смещены на угол, соответствующий геометрическому углу между обмотками. В этом случае в электродвигателе создается так называемое вращающееся магнитное поле (спад напряженности поля в полюсах одной обмотки происходит синхронно с нарастанием его в другой).

Такой двигатель становится способным к самостоятельному запуску, однако имеет трудности с реверсом. Поскольку в современном электроснабжении не используются двухфазные сети, фактически электродвигатели этого рода применяются в однофазных сетях с включением второй фазы через фазовращающий элемент (обычно – конденсатор).

Трехфазный асинхронный электродвигатель – наиболее совершенный тип асинхронного мотора, так как в нем появляется возможность легкого реверса – изменение порядка включения фазных обмоток изменяет направление вращения магнитного поля, а соответственно и ротора.

Коллекторные двигатели переменного тока используются в тех случаях, когда требуется получение высоких частот вращения (асинхронные электродвигатели не могут превышать скорость вращения магнитного потока в статоре – для промышленной сети 50 Гц это 3000 об/мин).

Кроме того, они выигрывают в пусковом крутящем моменте (здесь он пропорционален току, а не оборотам) и имеют меньший пусковой ток, меньше перегружая электросеть при запуске. Также они позволяют легко управлять своими оборотами.

Обратной стороной этих достоинств становится дороговизна (требуется изготовление ротора с наборным сердечником, несколькими обмотками и коллектором, который к тому же сложнее балансировать) и меньший ресурс. Помимо необходимости в регулярной замене стирающихся щеток, со временем изнашивается и сам коллектор.

Синхронный электродвигатель имеет ту особенность, что магнитное поле ротора индуцируется не магнитным полем статора, а собственной намоткой, подключенной к отдельному источнику постоянного тока.

Благодаря этому частота его вращения равна частоте вращения магнитного поля статора, откуда и происходит сам термин «синхронный».

Как и двигатель постоянного тока, синхронный двигатель переменного тока является обратимым:

  • при подаче напряжения на статор он работает как электродвигатель;
  • при вращении от внешнего источника он сам начинает возбуждать в фазных обмотках переменный ток.

Основная область использования синхронных электродвигателей – высокомощные приводы. Здесь увеличение КПД относительно асинхронных электромоторов означает значительное снижение потерь электроэнергии.

Также синхронные двигатели используются в электротранспорте. Однако, для управления скоростью в этом случае требуются мощные частотные преобразователи, зато при торможении возможен возврат энергии в сеть.

ЭЛЕКТРОДВИГАТЕЛИ ПОСТОЯННОГО ТОКА

Так как постоянный ток не способен создать изменяющееся магнитное поле, обеспечение непрерывного вращения ротора требует принудительной перекоммутации обмоток, или дискретного изменения направления магнитного поля.

Старейший из известных способов – это использование электромеханического коллектора. В этом случае якорь электродвигателя имеет несколько разнонаправленных обмоток, соединенных с находящимися в соответствующем положении относительно щеток ламелями коллектора.

В момент включения питания возникает импульс в обмотке, соединенной со щетками, после чего ротор проворачивается, и в том же месте относительно полюсов статора включается новая обмотка.

Так как намагниченность статора во время работы коллекторного электродвигателя постоянного тока не изменяется, вместо сердечника с обмотками могут использоваться мощные постоянные магниты, что сделает мотор компактнее и легче.

Коллекторный двигатель не лишен ряда недостатков. Это:

  • высокий уровень помех, как передаваемых в питающую сеть при переключении обмоток якоря, так и возбуждаемых искрением щеток;
  • неизбежный износ коллектора и щеток;
  • повышенная шумность при работе.

Современная силовая электроника позволила избавиться от этих недостатков, применяя так называемый шаговый двигатель – в нем ротор имеет постоянную намагниченность, а внешнее устройство последовательно меняет направление тока в нескольких обмотках статора.

Фактически за единичный импульс тока ротор проворачивается на фиксированный угол (шаг), откуда и пошло название электромоторов такого типа.

Шаговые электродвигатели бесшумны, а также позволяют в широчайших пределах регулировать как крутящий момент (амплитудой импульсов), так и обороты (частотой), а также легко реверсируются изменением порядка следования сигналов.

По этой причине они широко используются в сервоприводах и автоматике, однако их максимальная мощность определяется возможностями силовой управляющей схемы, без которой шаговые двигатели неработоспособны.

© 2012-2020 г. Все права защищены.

Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов


Виды и типы электродвигателей / Статьи и обзоры / Элек.ру

Электрический двигатель

Электродвигатель представляет собой электрическую машину, которая преобразовывает электроэнергию в энергию вращения вала с незначительными тепловыми потерями. Главный принцип работы любого электродвигателя заключается в использовании электромагнитной индукции в качестве основной движущей силы. Для этого конструкция электродвигателя включает:

  • Неподвижную часть (статор или индуктор).
  • Подвижную часть (ротор или якорь).

В зависимости от предназначения, применяемого рода тока и конструктивных особенностей электрические двигатели имеют большое количество разновидностей.

Двигатели постоянного тока

Электродвигатели постоянного тока объединяют широкий ассортимент устройств, обеспечивающих высокий КПД при трансформации электрической энергии в механическую. Для надежного соединения электрической цепи подвижной и неподвижной части электропривода постоянного тока используют щеточно-коллекторный узел. В зависимости от конструктивных особенностей щеточно-коллекторного узла, все электрические машины постоянного тока подразделяют на следующие группы:

  • Коллекторные.
  • Бесколлекторные.

В свою очередь коллекторные электродвигатели условно разделяют на следующие виды:

  • Самовозбуждающиеся.
  • С возбуждением от электромагнитов постоянного действия.

Устройства с независимым возбуждением характеризуются низкой мощностью, поэтому данные электроприводы используют для не ответственных операций с низкой нагрузкой. Машины с самовозбуждением подразделяют на:

  • Устройства с последовательным возбуждением, где якорь подключается последовательно обмотке возбуждения.
  • Электродвигатели с параллельным возбуждением, где якорь включается параллельно обмотке возбуждения.
  • Электропривод смешанного возбуждения, который характеризуется наличием параллельных и последовательных соединений.

Двигатели переменного тока

Электродвигатели переменного тока представлены широкой номенклатурой устройств, которые различают по многочисленным конструктивным и эксплуатационным характеристикам. В зависимости от скорости вращения ротора выделяют электрические машины синхронного и асинхронного типа.

Синхронные двигатели характеризуются одинаковой скоростью вращения ротора и магнитного поля питающего напряжения. Подобный тип электрических двигателей используют для изготовления устройств с высокой мощностью. Кроме этого существует еще одна разновидность синхронного привода — шаговые двигатели. Они имеют строго заданное в пространстве положение ротора, которое фиксируется подачей питания на обмотку статора. При этом переход из одного положения в другое осуществляется посредством подачи напряжения на требуемую обмотку.

Асинхронный электрический двигатель имеет частоту вращения ротора отличную от частоты вращения магнитного поля питающего напряжения. В настоящее время этот тип электродвигателей получил самое широкое распространение как на производстве, так и в быту.

В зависимости от количества фаз питающего напряжения электропривод принадлежит к одной из групп:

  • 1-нофазные;
  • 2-хфазные;
  • 3-хфазные;
  • многофазные.

Категория размещения и климатическое исполнение

Все электродвигатели производят с учетом воздействия во время эксплуатации определенных факторов окружающей среды. По этой причине все электрические машины подразделяют на следующие категории размещения:

  • Для помещений с высоким уровнем влажности.
  • Для помещений закрытого типа с вентиляцией естественного типа без искусственного регулирования климатических параметров. При этом ограничено воздействие пыли, влаги и УФ- излучения.
  • В условиях открытого пространства.
  • Для помещений закрытого типа с искусственным регулированием климатических параметров. При этом ограничено воздействие пыли, влаги и УФ-излучения.
  • Для помещений с изменением влажности и температуры, которые не отличаются от изменений на улице.

В зависимости от климатического исполнения в соответствии с требованиями ГОСТ 15150 — 69 все электрические двигатели подразделяют на следующие типы исполнения:

  • Все возможные макроклиматические районы (В).
  • Холодный (ХЛ).
  • Все морские районы (ОМ).
  • Сухой тропический (ТС).
  • Общий (О).
  • Умеренный (У).
  • Умеренный морской (М).
  • Влажный тропический (ТВ).

Категория размещения и климатическое исполнение указывают в условном обозначении электродвигателя на его бирке и в паспорте.

Степень защиты корпуса

Для условного обозначения степени защиты корпуса электрической машины от воздействия вредных факторов окружающей среды используют аббревиатуру IP. При этом на корпусе электропривода указывают следующую информацию:

  • Высокий уровень защиты от пыли — IP65, IP66.
  • Защищенные — не ниже IP21, IP22.
  • С защитой от влаги — IP55, IP5.
  • С защитой от брызг и капель — IP23, IP24.
  • Закрытое исполнение — IP44 — IP54.
  • Герметичные — IP67, IP68.

При подборе электрического двигателя для эксплуатации в условиях воздействия определенных вредных факторов, необходимо тщательно подходить к выбору степени защиты его корпуса.

Общие требования безопасности при монтаже и эксплуатации

При монтаже электрического двигателя необходимо придерживаться следующих требований:

  • Перед подключением проверить соответствие частоты и напряжения питающей сети с информацией на паспорте электрического двигателя.
  • Перед установкой электрической машины обязательно проводят измерение сопротивления электрической изоляции обмотки статора относительно корпуса. При неудовлетворительных значениях проводят просушивание изоляции до достижения требуемого значения.
  • При сопряжении валов необходимо точно соблюдать соосность с допустимым отклонением не более 0,2 мм.
  • Для заземления корпуса электродвигателя используют только специальные заземляющие устройства, предусмотренные инструкцией завода производителя.
  • Строго запрещен монтаж электропривода под напряжением.

В процессе эксплуатации электрических машин следует придерживаться следующих основных правил:

  • Регулярный осмотр состояния электродвигателя является залогом своевременного определения неисправностей.
  • Регулярно на протяжении всего срока эксплуатации проводят проверку исправности токовой и тепловой защиты, чистку и смазку, проверку контактных соединений и надежности заземления.
  • При наличии повышенного шума или стука, проводят вибродиагностику с целью определения состояния подшипников и других вращающихся деталей.
  • Следует исключить длительную работу однофазного электродвигателя в режиме холостого хода, что негативно влияет на срок его службы.
  • Запрещается эксплуатация электрического двигателя с неисправной защитой от перегрева, перегрузки или завышенным значением сопротивления контура заземления.

Крановые электродвигатели

Крановые электродвигатели представляют собой асинхронные устройства переменного тока или двигатели постоянного тока с параллельным или последовательным возбуждением.

В отличие от других категорий электродвигателей, крановые электроприводы имеют следующие особенности:

  • Большинство крановых электрических двигателей имеет закрытое исполнение корпуса.
  • Момент инерции на роторе составляет минимально возможное значение, что обеспечивает минимальные потери энергии во время переходных процессов.
  • Кратковременная перегрузка по моменту для крановых двигателей постоянного тока составляет 2,0 — 5,0, а для электромоторов переменного тока 2,3 — 3,5.
  • Класс нагревостойкости изоляционных материалов не менее F.
  • У кранового электропривода переменного тока в номинальном режиме ПВ составляет не менее 80 минут.
  • С целью получения большой перегрузочной способности по моменту добиваются высоких значений магнитного потока.
  • Отношение максимально допустимой частоты вращения к номинальному значению для электродвигателей постоянного тока составляет 3,5 — 4,9, а для машин переменного тока 2,5.

Эксплуатация кранового привода характеризуется следующими условиями эксплуатации:

  • Частые пуски, реверсы и торможения.
  • Регулирование частоты вращения в широком диапазоне значений.
  • Повышенная вибрация и тряски.
  • Повторно-кратковременный режим работы.
  • Воздействие высокой температуры, газа, пыли и пара.
  • Значительная перегрузка во время работы.

Общепромышленные электрические двигатели

Электродвигатели общепромышленного исполнения применяют для привода механизмов, которые не предъявляют особых требований к показателям КПД, энергосбережения, скольжению и пусковым характеристикам. Они характеризуются повторно-кратковременным режимом работы и изоляцией с классом нагревостойкости класса F. Наиболее популярными в этой категории являются асинхронные электрические двигатели марки АИР с короткозамкнутым ротором. Благодаря многочисленным достоинствам, этот тип электропривода с успехом применяется на всех производственных предприятиях. От продукции других торговых марок его отличает:

  • Простая конструкция с отсутствием подвижных контактов.
  • Низкая стоимость в сравнении с электрическими машинами других типов.
  • Высокая ремонтопригодность всех главных узлов и рабочих элементов.
  • Использование напряжения сети 380 В без дополнительных регуляторов или фильтров.
  • Монтаж двигателя осуществляется на лапах или фланцах, поэтому происходит в минимально короткий срок.

Электрические машины общепромышленного исполнения находят применение в сферах деятельности, где нет необходимости в высоких эксплуатационных параметрах: вентиляционные системы, насосные станции, станочное оборудование, компрессорные установки и др. Эксплуатация общепромышленных электродвигателей осуществляется в двух основных режимах: генераторный и двигательный. При этом в генераторном режиме электрические двигатели являются источником электроэнергии за счет преобразования механической энергии вращения вала. В двигательном режиме привод общепромышленного исполнения потребляет электроэнергию и превращает её в механическую энергию вращения вала.

Электрические двигатели с электромагнитным тормозом

Электрический привод с электромагнитным тормозом предназначен для эксплуатации в повторно-кратковременном или кратковременном режиме. Он разработан специально для механизмов, которые требуют форсированной остановки в строго регламентированное время. К таким механизмам относят: электрические тали, автоматизированные складские системы, обрабатывающие станки и др. Тормозной механизм, как правило, располагают со стороны противоположной валу двигателя. Он обеспечивает быстрое торможение электрического привода при отключении питания, а при повторной подаче напряжения растормаживает его.

Электрические машины со встроенным электромагнитным тормозом работают по следующему принципу:

  1. Электромагнитную катушку тормоза подключают последовательно к одной из фазных обмоток электродвигателя.
  2. Катушка получает постоянное напряжение посредством выпрямляющего устройства, которое располагают возле коробки с выводами или переменное напряжение непосредственно с обмотки электродвигателя.
  3. При отсутствии фазного напряжения катушка обесточивается, и якорь прочно зажимает блокировочный механизм.
  4. После восстановления электрического питания катушка подтягивает якорь, что позволяет валу двигателя свободно перемещаться.

В зависимости от способа монтажа электромоторы со встроенным электромагнитным тормозом изготавливают в следующих исполнениях:

  • С горизонтальным валом.
  • С вертикальным валом.

Благодаря своим преимуществам по времени остановки вала электродвигателя, этот тип электропривода обеспечивает надежную и безопасную эксплуатацию устройств с высокими требованиями к позиционированию или аварийной остановке.

Источник: Технический отдел ЗАО «КранЭлектроМаш»

Типы электродвигателей - Однофазные электродвигатели , электродвигатели постоянного тока, асинхронные двигатели

Электродвигатель – это электрическая машина, служащая для преобразования электрической энергии в механическую энергию. Электродвигатель работает на основе  принципа электромагнитной индукции.

Существует множество видов электродвигателей, различающихся по конструкции, принципу действия, исполнению и другим характеристикам. Различают основные виды электродвигателей:

По типу протекающего тока двигатели различают:

  • Электродвигатели постоянного тока. Широко используют в качестве промышленного оборудования, привода электротранспорта и микропривода исполнительных механизмов.
  • Электродвигатели переменного тока. Нашли широкое применение для приводов всех типов технологического оборудования, автоматических регуляторов, электроинструментов. 

По конструкции электрические машины различают с вертикально и горизонтально расположенным валом. Электродвигатели также классифицируют по мощности, климатическому исполнению, степени защиты, назначению и другим характеристикам.

Со всеми типами электродвигателей вы можете познакомиться на информационном портале по электродвигателям electrodvigatel.com. Здесь вы найдете преимущества и недостатки, того или иного электродвигателя, полный список производителей электродвигателей, а также сможете узнать стоимость на электродвигатели.

Виды электродвигателей

Стоимость электродвигателя в основном зависит от следующих параметров:

  • Габарит (высота оси вращения)
  • Мощность
  • Климатическое исполнение

Стоит отметить, что с увеличением габарита электродвигателя усложняется технология изготовления электрических машин, уменьшается серийность выпуска и, соответственно, меняется экономика и ценообразование двигателей. Чем больше габарит двигателя – тем меньше производителей на рынке.

Конструкция электродвигателя

Вращающийся электродвигатель состоит из двух главных деталей:

  • статора - неподвижная часть
  • ротора - вращающаяся часть

У большинства двигателей внутри статора располагается ротор. Электродвигатели у которых ротор находится снаружи статора называются электродвигателями обращенного типа.

Электродвигатель в разрезе - 1 статор, 2 ротор, 3 подшипник

 

Условное обозначение электродвигателей

1 – тип электродвигателя:
общепромышленные электродвигатели:
АИ - обозначение серии общепромышленных электродвигателей
Р, С (АИР и АИС) - вариант привязки мощности к установочным размерам, т.е.
АИР (А, 5А, 4А, АД) - электродвигатели, изготавливаемые по ГОСТ
АИС (6А, IMM, RA) - электродвигатели, изготавливаемые по евростандарту DIN (CENELEC)
взрывозащищенные электродвигатели: ВА, АВ, АИМ, АИМР, 2В, 3В и др

2 - электрические модификации:

Электрические модификации

Определение

М

модернизированный электродвигатель: 5АМ

Н

электродвигатель защищенного исполнения с самовентиляцией: 5АН

Ф

электродвигатель защищенного исполнения с принудительным охлаждением: 5АФ

К

электродвигатель с фазным ротором: 5АНК

С

электродвигатель с повышенным скольжением: АС, 4АС  и др.

Е

однофазный электродвигатель 220V: АДМЕ, 5АЕУ

В

встраиваемый электродвигатель: АИРВ 100S2

П

электродвигатель для привода осевых вентиляторов в птицеводческих хозяйствах и т. д.

3 - габарит электродвигателя (высота оси вращения):
габарит электродвигателя равен расстоянию от низа лап до центра вала в миллиметрах 
50, 56, 63, 71, 80, 90, 100, 112, 132, 160, 180, 200, 225, 250, 280, 315, 355, 400, 450 и выше

4 - длина сердечника и/или длина станины:

Длина сердечника

Определение

А, В, С

длина сердечника (первая длина, вторая длина, третья длина) 

XK, X, YK, Y

длина сердечника статора высоковольтных двигателей 

S, L, М

установочные размеры по длине станины

 

5 - количество полюсов электродвигателя:
2, 4, 6, 8, 10, 12, 4/2, 6/4, 8/4, 8/6, 12/4, 12/6, 6/4/2, 8/4/2, 8/6/4, 12/8/6/4 и др.

6 - конструктивные модификации электродвигателя:

Модификации электродвигателя

Определение

Л

электродвигатель для привода лифтов: 5АФ 200 МА4/24 НЛБ УХЛ4

Е

электродвигатель с встроенным электромагнитным тормозом и ручкой расторможения: АИР 100L6 Е2 У3

Е2

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Б

со встроенным датчиком температурной защиты: АИР 180М4 БУ3 

Ж

электродвигатель со специальным выходным концом вала для моноблочных насосов: АИР 80В2 ЖУ2

П

электродвигатель повышенной точности по установочным размерам: АИР 180М4 ПУ3 

Р3

электродвигатель для мотор-редукторов: АИР 100L6 Р3

С

электродвигатель для станков-качалок: АИР 180М8 СНБУ1 

Н

электродвигатель малошумного исполнения: 5АФ 200 МА4/24 НЛБ УХЛ4 

7 - климатическое исполнение электродвигателя:

Категория размещения

Определение

У

умеренного климатического исполнения

Т

тропического исполнения 

УХЛ

умеренно холодного климата 

ХЛ

холодного климата 

ОМ

для судов морского и речного флота

8 - категория размещения: 

Категория размещения

Определение

1

на открытом воздухе

2

на улице под навесом 

3

в помещении 

4

в помещении с искусственно регулируемыми климатическими условиями 

5

в помещении с повышенной влажностью 

9 - степень защиты электродвигателя:
первая цифра: защита от твердых объектов

  вторая цифра: защита от жидкостей

Степень защиты IP

Определение первой цифры  -

защита от твердых объектов

Определение второй цифры  - защита от жидкостей

0

без защиты

без защиты

1

защита от твердых объектов размерами свыше 50мм (например, от случайного касания руками)

защита от вертикально падающей воды (конденсация)

2

защита от твердых объектов размерами свыше 12 мм (например, от случайного касания пальцами)

защита от воды, пдпющей под углом 15º к вертикали

3

защита от твердых объектов размерами свыше 2,5 мм (например, инструментов, проводов)

защита от воды, падающей под углом 60º к вертикали

4

защита от твердых объектов размерами свыше 1мм (например, тонкой проволоки)

защита от водяных брызг со всех сторон

5

защита от пыли (без осаждения опасных материалов)

защита от водяных струй со всех сторон

10 – мощность электродвигателя

11 – обороты электродвигателя

12 - Монтажное исполнение электродвигателя

Двигатели переменного тока

            Двигатели переменного тока подразделяются на две группы: асинхронные и синхронные. Синхронные двигатели в свою очередь делятся на основные исполнения групп двигателей:

  • общепромышленное
  • специальное (крановые, для дробилок, лифтовые и другие)
  • взрывозащищенное. Дальнейшее подразделение - для химической отрасли и рудничные, рудничные специальные.

Асинхронными двигателями (АД) называют машины переменного тока, в которых основное магнитное поле создается переменным током и частота вращения ротора, не связанная жестко с частотой тока в обмотке статора, меняется с нагрузкой. Наибольшее применение получили бесколлекторные асинхронные машины, используемые главным образом в качестве электродвигателей. Значительно реже применяются коллекторные асинхронные электродвигатели — более дорогие и менее надежные в эксплуатации, чем бесколлекторные.

По количеству фаз двигатели переменного тока подразделяются:

Асинхронные двигатели наиболее распространены в настоящее время, чем другие виды электродвигателей.

Синхронные и асинхронные машины переменного тока обладают свойством обратимости — они могут работать как в режиме генератора, так и в режиме двигателя.

Классификация электродвигателей - Электрический двигатель

По принципу возникновения вращающего момента электродвигатели можно разделить на гистерезисные и магнитоэлектрические. У двигателей первой группы вращающий момент создается вследствие гистерезиса при перемагничивании ротора. Данные двигатели не являются традиционными и не широко распространены в промышленности.

Наиболее распространены магнитоэлектрические двигатели, которые по типу потребляемой энергии подразделяется на две большие группы — на двигатели постоянного тока и двигатели переменного тока (также существуют универсальные двигатели, которые могут питаться обоими видами тока).

Двигатели постоянного тока

Двигатель постоянного тока — электрический двигатель, питание которого осуществляется постоянным током. Данная группа двигателей в свою очередь по наличию щёточно-коллекторного узла подразделяется на:

  1. коллекторные двигатели;
  2. бесколлекторные двигатели.

Щёточно-коллекторный узел обеспечивает электрическое соединение цепей вращающейся и неподвижной части машины и является наиболее ненадежным и сложным в обслуживании конструктивным элементом.

По типу возбуждения коллекторные двигатели можно разделить на:

  1. двигатели с независимым возбуждением от электромагнитов и постоянных магнитов;
  2. двигатели с самовозбуждением .

Двигатели с самовозбуждением делятся на:

  1. Двигатели с параллельным возбуждением;(обмотка якоря включается параллельно обмотке возбуждения)
  2. Двигатели последовательного возбуждения;(обмотка якоря включается последовательно обмотке возбуждения)
  3. Двигатели смешанного возбуждения.(обмотка возбуждения включается частично последовательно частично параллельно обмотке якоря)

Бесколлекторные двигатели (вентильные двигатели) — электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора, системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора). Принцип работы данных двигателей аналогичен принципу работы синхронных двигателей.

Двигатель постоянного тока в разрезе. Справа расположен коллектор с щётками

Двигатели переменного тока

Двигатель переменного тока — электрический двигатель, питание которого осуществляется переменным током. По принципу работы эти двигатели разделяются на синхронные и асинхронные двигатели. Принципиальное различие состоит в том, что в синхронных машинах первая гармоника магнитодвижущей силы статора движется со скоростью вращения ротора (благодаря чему сам ротор вращается со скоростью вращения магнитного поля в статоре), а у асинхронных — всегда есть разница между скоростью вращения ротора и скоростью вращения магнитного поля в статоре (поле вращается быстрее ротора).

Синхронный электродвигатель — электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения. Данные двигатели обычно используются при больших мощностях (от сотен киловатт и выше).

Существуют синхронные двигатели с дискретным угловым перемещением ротора — шаговые двигатели. У них заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие. Ещё один вид синхронных двигателей — вентильный реактивный электродвигатель, питание обмоток которого формируется при помощи полупроводниковых элементов.

Асинхронный электродвигатель — электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением. Эти двигатели наиболее распространены в настоящее время.

По количеству фаз двигатели переменного тока подразделяются на:

однофазные — запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь;

двухфазные — в том числе конденсаторные;

трёхфазные;

многофазные;


Универсальный коллекторный электродвигатель

Универсальный коллекторный электродвигатель — коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе. Изготавливается только с последовательной обмоткой возбуждения на мощности до 200 Вт. Статор выполняется шихтованным из специальной электротехнической стали. Обмотка возбуждения включается частично при переменном токе и полностью при постоянном. Для переменного тока номинальные напряжения 127,220., для постоянного 110.220. Применяется в бытовых аппаратах, электроинструментах. Двигатели переменного тока с питанием от промышленной сети 50 гц не позволяют получить частоту вращения выше 3000 об/мин. Поэтому для получения высоких частот применяют коллекторный электродвигатель, который к тому же получается легче и меньше двигателя переменного тока той же мощности или применяют специальные передаточные механизмы, изменяющие кинематические параметры механизма до необходимых нам (мультипликаторы). При применении преобразователей частоты или наличии сети повышенной частоты (100, 200, 400 Гц) двигатели переменного тока оказываются легче и меньше коллекторных двигателей (коллекторный узел иногда занимает половину пространства). Ресурс асинхронных двигателей переменного тока гораздо выше, чем у коллекторных, и определяется состоянием подшипников и изоляции обмоток.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

Электродвигатели, их классификация

Электрический двигатель — электрическая машина (электромеханический преобразователь), в которой электрическая энергия преобразуется в механическую.

В зависимости от назначения, от предполагаемых режимов и условий работы, от типа питания и т. д., все электродвигатели можно классифицировать по нескольким параметрам: по принципу получения рабочего момента, по способу работы, по роду тока питания, по способу управления фазами, по типу возбуждения и т. д. Давайте же рассмотрим классификацию электродвигателей более подробно.

Возникновение вращающего момента

Вращающий момент в электродвигателях может быть получен одним из двух способов: по принципу магнитного гистерезиса либо чисто магнитоэлектрически. Гистерезисный двигатель получает вращающий момент посредством явления гистерезиса во время перемагничивания магнитно-твердого ротора, в то время как у магнитоэлектрического двигателя вращающий момент является результатом взаимодействия явных магнитных полюсов ротора и статора.

Магнитоэлектрические двигатели по праву составляют сегодня львиную долю всего обилия электродвигателей, применяемых в очень многих областях. Они подразделяются по роду питающего тока на: двигатели постоянного тока, двигатели переменного тока и универсальные двигатели.

В отличие от магнитоэлектрического двигателя, в гистерезисном двигателе допускается перемещение намагниченности ротора относительно его геометрических осей, и именно данная особенность не позволяет распространять на синхронный режим работы гистерезисного двигателя общие закономерности магнитоэлектрического преобразования.

Двигатели постоянного тока

У двигателя, который питается постоянным током, за переключение фаз отвечает сам двигатель. Это значит, что хотя на электрическую машину и подается постоянный ток, тем не менее, благодаря действию внутренних механизмов устройства, магнитное поле оказывается движущимся и становится в состоянии поддерживать вращающий момент ротора (как будто в обмотке статора действует переменный ток).

По способу создания движущегося магнитного поля, двигатели постоянного тока подразделяются на вентильные (бесколлекторные) и коллекторные. Бесколлекторные двигатели имеют в своей конструкции электронные инверторы, которые и осуществляют переключение фаз. Коллекторные же двигатели традиционно оснащены щеточно-коллекторными узлами, которые призваны чисто механически синхронизировать питание обмоток двигателя с вращением его движущихся частей.

Возбуждение коллекторных двигателей

Коллекторные двигатели по способу возбуждения бывают следующих видов: с независимым возбуждением от постоянных магнитов или от электромагнитов, либо с самовозбуждением. Двигатели с возбуждением от постоянных магнитов содержат магниты на роторе. Двигатели с самовозбуждением имеют на роторе специальную якорную обмотку, которая может быть включена параллельно, последовательно или смешано со специальной обмоткой возбуждения.

Двигатель пульсирующего тока

На двигатель постоянного тока похож двигатель пульсирующего тока. Отличие заключается в наличии шихтованных вставок на остове, а также дополнительных шихтованных полюсов. Кроме того, у двигателя пульсирующего тока имеется компенсационная обмотка. Применение такие двигатели находит в электровозах, где они обычно питается выпрямленным переменным током.

Двигатель переменного тока

Двигатели переменного тока, как ясно из названия, питаются током переменным. Бывают они синхронными и асинхронными.

У синхронных двигателей переменного тока магнитное поле статора движется с той же угловой скоростью, что и ротор, а у асинхронных всегда есть некое отставание (характеризующееся величиной скольжения s) — магнитное поле статора в своем движении как бы опережает ротор, который в свою очередь все время стремится его догнать.

Синхронные двигатели больших мощностей (мощностью в сотни киловатт) имеют на роторе обмотки возбуждения. Роторы менее мощных синхронных двигателей оснащены постоянными магнитами, которые и образуют полюса. Гистерезисные двигатели тоже в принципе относятся к синхронным.

Шаговые двигатели — это особая категория синхронных двигателей с высокой точностью управления скоростью вращения, вплоть до дискретного счета шагов.

Вентильные синхронные реактивные двигатели получают питание через инвертор.

Асинхронные двигатели переменного тока отличаются тем, что у них угловая скорость вращения ротора всегда меньше чем угловая скорость вращения магнитного поля статора. Асинхронные двигатели бывают однофазными (с пусковой обмоткой), двухфазными (к ним относится и конденсаторный двигатель), трехфазными и многофазными.

Универсальные коллекторные двигатели

Универсальный коллекторнй двигатель может работать хоть от постоянного, хоть от переменного тока (50 Гц). Имеет последовательное возбуждение, используется в бытовых электроприборах, где требуется скорость вращения более высокая чем максимальные для обычных двигателей переменного тока 3000 об/мин. Как правило, мощность таких двигателей не превышает 200 Вт. Встречается тиристорное управление скоростью вращения универсального двигателя.

Усовершенствованная разновидность универсального двигателя — синхронный двигатель с датчиком положения ротора, где роль коллектора выполняет электронный инвертор.

Ранее ЭлектроВести писали, что американский стартап Malta получил $26 млн на создание системы хранения избыточной возобновляемой энергии в отдельных емкостях с расплавленной солью и жидкостью, подобной антифризу. Разработку поддержал фонд Breakthrough Energy Ventures, инвесторами которого являются Джефф Безос и Майкл Блумберг, а председателем Билл Гейтс.

По материалам: electrik.info.

Двигатель постоянного тока асинхронный или синхронный. Типы электродвигателей и принципы работы

Электродвигатель переменного тока

Электродвигатели разной мощности (750 Вт, 25 Вт, к CD-плееру, к игрушке, к дисководу)

Электрический двигатель - это, электрическая машина , в которой электрическая энергия преобразуется в механическую, побочным эффектом является выделение тепла.

Классификация электродвигателей

  • Двигатель постоянного тока постоянным током ;
    • Коллекторные двигатели постоянного тока. Разновидности:
    • Бесколлекторные двигатели постоянного тока (вентильные двигатели) с электронным переключателем тока;
  • Двигатель переменного тока - электрический двигатель, питание которого осуществляется переменным током , имеет две разновидности:
    • Синхронный электродвигатель - электродвигатель переменного тока, ротор которого вращается синхронно с магнитным полем питающего напряжения;
    • Асинхронный электродвигатель - электродвигатель переменного тока, в котором частота вращения ротора отличается от частоты вращающего магнитного поля, создаваемого питающим напряжением.
  • Однофазные - запускаются вручную, или имеют пусковую обмотку, или имеют фазосдвигающую цепь
  • Многофазные
  • Шаговые двигатели - Электродвигатели, которые имеют конечное число положений ротора. Заданное положение ротора фиксируется подачей питания на соответствующие обмотки. Переход в другое положение осуществляется путём снятия напряжения питания с одних обмоток и передачи его на другие.
  • Вентильные двигатели - Электродвигатели, выполненные в виде замкнутой системы с использованием датчика положения ротора (ДПР), системы управления (преобразователя координат) и силового полупроводникового преобразователя (инвертора).
  • Универсальный коллекторный двигатель (УКД) - коллекторный электродвигатель, который может работать и на постоянном токе и на переменном токе.

Из-за связи с низкой частотой сети (50 Герц) асинхронные и синхронные двигатели имеют больший вес и размеры, чем коллекторный двигатель постоянного тока и универсальный коллекторный двигатель той же мощности. При применении выпрямителя и инвертора с частотой значительно большей 50 Гц вес и размеры асинхронных и синхронных двигателей приближаются к весу и размерам коллекторного двигателя постоянного тока и универсального коллекторного двигателя той же мощности.

Синхронный двигатель с датчиком положения ротора и инвертором является электронным аналогом коллекторного двигателя постоянного тока.

История.

Принцип преобразования электрической энергии в механическую энергию электромагнитным полем был продемонстрирован британским учёным Майклом Фарадеем в 1821 и состоял из свободно висящего провода, окунающегося в пул ртути. Постоянный магнит был установлен в середине пула ртути. Когда через провод пропускался ток, провод вращался вокруг магнита, показывая, что ток вызывал циклическое магнитное поле вокруг провода. Этот двигатель часто демонстрируется в школьных классах физики, вместо токсичной ртути используют рассол. Это - самый простой вид из класса электрических двигателей. Последующим усовершенствованием является Колесо Барлова. Оно было демонстрационным устройством, непригодным в практических применениях из-за ограниченной мощности.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое "Электродвигатель переменного тока" в других словарях:

    электродвигатель переменного тока - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN ас motor …

    Рис. 1 Устройство простейшего коллекторного двигателя постоянного тока с двухполюсным статором и с двухполюсным ротором Двигатель постоянного тока электрическая машина, ма … Википедия

    Машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… …

    Электрическая машина, применяемая для получения переменного тока (генератор) или для преобразования электрической энергии в механическую (двигатель) либо в электрическую энергию другого напряжения или частоты (преобразователь) П. т. м.… … Большая советская энциклопедия

    Машина перем. тока, предназнач. для работы в режиме двигателя. П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели применяют в электроприводах в осн. тогда, когда требуется постоянство угловой скорости. Из асинхронных… … Большой энциклопедический политехнический словарь

    электропривод переменного тока - электропривод постоянного [переменного] тока Электропривод, содержащий электродвигатель постоянного [переменного] тока. [ГОСТ Р 50369 92] Тематики электропривод EN ac drivealternating current drive DE Wechselstromantrieb … Справочник технического переводчика

    электропривод постоянного (переменного) тока - 3.1.3 электропривод постоянного (переменного) тока: Привод, содержащий электродвигатель постоянного (переменного) тока и редуктор;

Явление электромагнитной индукции стало основой возникновения и развития всех электрических машин. Первооткрывателем этого явления в конце 19 века был Майкл Фарадей, английский учёный — экспериментатор. Он провёл опыты с первыми электрическими машинами. Сейчас без них невозможно представить нашу жизнь. Электродвигатели стали одними из самых распространённых электрических машин.

Для работы электромотора необходимо напряжение, свойства которого определяют его конструкцию. На переменном напряжении и токе работают такие электродвигатели:

на постоянном напряжении и токе работают:

  • коллекторные;
  • униполярные;
  • шаговые.

Синхронные и асинхронные электродвигатели

Синхронные и асинхронные электромоторы имеют общие условия для своей работы. Для этого необходимо магнитное поле, максимальная величина которого перемещается в пространстве. Такое поле может быть создано двумя или большим числом обмоток. Обычные конструкции синхронных и асинхронных электромоторов содержат две или три обмотки.

Они размещаются на массивных ферримагнитных сердечниках, усиливающих магнитное поле. Для трёх обмоток применяется трёхфазное напряжение, для двух обмоток – двухфазное или одна фаза с фазосдвигающим конденсатором. Но с таким конденсатором к однофазной сети можно подключить и трёхфазные двигатели.

Если ротор электромотора создаёт постоянное магнитное поле, либо от постоянных магнитов, либо от встроенного в ротор источника питания постоянного тока, либо от внешнего источника питания постоянного тока через кольца со щётками такой двигатель является синхронным. В нём частота оборотов и частота напряжения источника питания одинаковы. В асинхронных двигателях используется немагнитный ротор без явно выраженных полюсов, колец со щётками, встроенных выпрямителей и комбинированных деталей из различных материалов. Исключением является синхронный гистерезисный двигатель.


Ротор асинхронного двигателя работает как вторичная обмотка трансформатора, которая замкнута накоротко. Но ток в его роторе может возникнуть только при более медленном вращении в сравнении с магнитным полем статора. Такое различие скоростей называется скольжением. Простота конструкции и соответствующая надёжность делают асинхронный электромотор наиболее широко используемым.

Коллекторные машины

Однако у синхронных и асинхронных электромоторов есть один непреодолимый недостаток – частота питающего напряжения. Она определяет скорость вращения магнитного поля и вала в этих двигателях. Никакими конструктивными изменениями в них при заданной частоте питающего напряжения невозможно получить частоту вращения вала большую, чем частота питающего напряжения. При необходимости большего числа оборотов используются коллекторные электромоторы.


В этих двигателях происходит постоянное переключение обмоток ротора коллектором. Каждая обмотка по сути это рамка с током, которая, как известно из опытов Фарадея, поворачивается в магнитном поле. Но одна рамка повернётся и остановится. Поэтому рамок — обмоток сделано несколько и каждой из них соответствует пара пластин в коллекторе. Ток подаётся через щётки, скользящие по коллектору.

Конструкция такого электромотора позволяет работать от источника либо постоянного, либо переменного напряжения, который обеспечивает ток и в статоре и в роторе. При переменном напряжении направление тока в статоре и роторе изменяется одновременно и поэтому направление действия силы вращающей ротор сохраняется. Частота питающего напряжения никак не влияет на частоту вращения ротора. Она зависит только от величины напряжения, питающего электромотор. Скользящий контакт щётки с коллектором ограничивает возможности этих электродвигателей по сроку службы и месту применения, поскольку искрение в щётках довольно быстро разрушает скользящий контакт и недопустимо в условиях повышенной взрывоопасности.

Униполярные и шаговые варианты

Однако есть такие конструкции электромоторов постоянного тока, в которых коллектора нет. Это униполярные электромоторы.


В этих электродвигателях ротор выполнен в виде диска, расположенного между полюсами постоянных магнитов. Щётки расположенные диаметрально противоположно питают током диск – ротор. Под воздействием силы Лоренца диск вращается. Несмотря на привлекательную простоту конструкции, такой электромотор не имеет широкого практического использования, поскольку требует слишком больших значений тока и магнитного поля. Тем не менее, существуют уникальные лабораторные разработки униполярных электромоторов со щётками из жидкого металла, которые развивают обороты немыслимые для иных конструкций двигателей.

Шаговый двигатель это ещё одна конструкция, работающая на постоянном токе.


В целом этот двигатель подобен синхронному электромотору с ротором из постоянных магнитов. Отличие в том, что число обмоток здесь больше, и они управляются ключами, которые подают на каждую обмотку питающее напряжение. В результате ротор меняет своё положение, притягиваясь к подключенной обмотке. Число обмоток определяет минимальный угол поворота ротора, а коммутаторы – скорость вращения ротора. В шаговом двигателе ротор может вращаться почти как угодно, поскольку ключи связаны с электронной схемой управления.

Рассмотренные конструкции электромоторов являются базовыми. На их основе для решения определённых задач создано много специальных разновидностей электромоторов. Но это уже совсем другая история…

В быту, коммунальном хозяйстве, на любом производстве двигатели электрические являются неотъемлемой составляющей: насосы, кондиционеры, вентиляторы и пр. Поэтому важно знать типы наиболее часто встречающихся электродвигателей.

Электродвигатель является машиной, которая преобразует в механическую энергию электрическую. При этом выделяется тепло, являющееся побочным эффектом.

Видео: Классфикация электродвигателей

Все электродвигатели разделить можно на две большие группы:

  • Электродвигатели постоянного тока
  • Электродвигатели переменного тока.

Электродвигатели, питание которых осуществляется переменным током, называются двигателями переменного тока, которые имеют две разновидности:

  • Синхронные – это те, у которых ротор и магнитное поле питающего напряжения вращаются синхронно.
  • Асинхронные . У них отличается частота вращения ротора от частоты, создаваемого питающим напряжением магнитного поля. Бывают они многофазными, а также одно-, двух- и трехфазными.
  • Электродвигатели шаговые отличаются тем, что имеют конечное число положений ротора. Фиксирование заданного положения ротора происходит за счет подачи питания на определенную обмотку. Путем снятия напряжения с одной обмотки и передачи его на другую осуществляется переход в другое положение.


К электродвигателям постоянного тока относят те, которые питаются постоянным током. Они, в зависимости от того, имею или нет щёточно-коллекторный узел, подразделяются на:

Коллекторные также, в зависимости от типа возбуждения, бывают нескольких видов:

  • С возбуждением постоянными магнитами.
  • С параллельным соединением обмоток соединения и якоря.
  • С последовательным соединением якоря и обмоток.
  • Со смешанным их соединением.


Электродвигатель постоянного тока в разрезе. Коллектор со щетками – справа

Какие электродвигатели входят в группу «электродвигатели постоянного тока»

Как уже говорилось, электродвигатели постоянного тока составляют группу, в которую входят коллекторные электродвигатели и бесколлекторные, которые выполнены в виде замкнутой системы, включающей датчик положения ротора, систему управления и силовой полупроводниковый преобразователь. Принцип работы бесколлекторных электродвигателей аналогичен принципу работы двигателей асинхронных. Устанавливают их в бытовых прибора, например, вентиляторах.

Что собой представляет коллекторный электродвигатель

Длина электродвигателя постоянного тока зависит от класса. Например, если речь идет о двигателе 400 класса, то его длина составит 40 мм. Отличием коллекторных электродвигателей от бесколлектрных собратьев является простота в изготовлении и эксплуатации, следовательно, и стоимость его будет более низкой. Их особенность - наличие щеточно-коллекторного узла, при помощи которого осуществляется соединение цепи ротора с расположенными в неподвижной части мотора цепями. Состоит он из расположенных на роторе контактов – коллектора и прижатых к нему щеток, расположенных вне ротора.


Ротор


Используют эти электродвигатели в радиоуправляемых игрушках: подав на контакты такого двигателя напряжение от источника постоянного тока (той же батарейки), вал приводится в движение. А, чтобы изменить его направление вращения, достаточно изменить полярность, подаваемого напряжения питания. Небольшой вес и размеры, низкая цена и возможность восстановления щеточно-коллекторного механизма делают эти электродвигатели наиболее используемыми в бюджетных моделях, несмотря на то, что он значительно уступает по надежности бесколлекторному, поскольку не исключено искрение, т.е. чрезмерный нагрев подвижных контактов и их быстрый износ при попадании пыли, грязи или влаги.

На коллекторный электродвигатель нанесена, как правило, маркировка, указывающая на число оборотов: чем оно меньше, тем скорость вращения вала больше. Она, к слову, очень плавно регулируется. Но, существуют и двигатели этого типа высокооборотистые, не уступающие бесколлекторным.

Преимущества и недостатки бесколлекторных электродвигателей

В отличие от описанных, у этих электродвигателей подвижной частью является статор с постоянным магнитом (корпус), а ротор с трехфазной обмоткой – неподвижен.

К недостаткам этих двигателей постоянного тока отнести можно менее плавную регулировку скорости вращения вала, но зато они способны за доли секунды набрать максимальные обороты.


Бесколлекторный электродвигатель помещен в закрытый корпус, поэтому он более надежен при неблагоприятных условиях эксплуатации, т.е. ему не страшны пыль и влага. К тому же, его надежность возрастает благодаря отсутствию щеток, как и скорость, с которой вращается вал. При этом, по конструкции мотор более сложен, следовательно, не может быть дешевым. Стоимость его в сравнении с коллекторным, выше в два раза.

Таким образом, коллекторный электродвигатель, работающий на переменном и на постоянном токе, является универсальным, надежным, но более дорогим. Он и легче, и меньше по размерам двигателя переменного тока той же мощности.

Поскольку электродвигатели переменного тока, питающиеся от 50 Гц (питание промышленной сети) не позволяют получать высокие частоты (выше 3000 об/мин), при такой необходимости, используют коллекторный двигатель.

Между тем, его ресурс ниже, чем у асинхронных электродвигателей переменного тока, который зависит от состояния подшипников и изоляции обмоток.

Как работает синхронный электродвигатель

Синхронные машины применяют часто в качестве генераторов. Он синхронно работают с частотой сети, поэтому он с датчиком положения инвертора и ротора, является электронным аналогом коллекторного электродвигателя постоянного тока.

Строение синхронного электродвигателя

Свойства

Эти двигатели не являются механизмами самозапускающимися, а требуют внешнего воздействия для того, чтобы набрать скорость. Применение они нашли в компрессорах, насосах, прокатных станках и подобном оборудовании, рабочая скорость которого не превышает отметки пятьсот оборотов в минуту, но требуется увеличение мощности. Они достаточно большие по габаритам, имеют «приличный» вес и высокую цену.

Запустить синхронный электродвигатель можно несколькими способами:

  • Используя внешний источник тока.
  • Пуск асинхронный.

В первом случае, с помощью мотора вспомогательного, в качестве которого выступать может электродвигатель постоянного тока или индукционный трехфазный мотор. Изначально ток постоянный на мотор не подается. Он начинает вращаться, достигая близкой к синхронной скорости. В этот момент подается постоянный ток. После замыкания магнитного поля, разрывается связь с вспомогательным двигателем.

Во втором варианте необходима установка в полюсные наконечники ротора дополнительной короткозамкнутой обмотки, пересекая которую магнитное вращающееся поле индуцирует токи в ней. Они, взаимодействуя с полем статора, вращают ротор. Пока он не достигнет синхронной скорости. С этого момента крутящий момент и ЭДС уменьшаются, магнитное поле замыкается, сводя к нулю крутящий момент.

Эти электродвигатели менее чувствительны, чем асинхронные, к колебаниям напряжения, отличаются высокой перегрузочной способностью, сохраняют неизменной скорость при любых нагрузках на валу.

Однофазный электродвигатель: устройство и принцип работы

Использующий после пуска только одну обмотку статора (фазу) и не нуждающийся в частном преобразователе электродвигатель, работающий от электросети однофазного переменного тока, является асинхронным или однофазовым.

Однофазовый электродвигатель имеет вращающуюся часть – ротор и неподвижную – статор, который и создает магнитное поле, необходимое для вращения ротора.


Из двух, расположенных в сердечнике статора друг к другу под углом 90 градусов обмоток, рабочая занимает 2/3 пазов. Другая обмотка, на долю которой приходится 1/3 пазов, называется пусковой (вспомогательной).


Ротор – это тоже короткозамкнутая обмотка. Его стержни из алюминия или меди замкнуты с торцов кольцом, а пространство между ними залито алюминиевым сплавом. Может быть выполнен ротор в виде полого ферромагнитного или немагнитного цилиндра.


Однофазный электродвигатель, мощность которого может быть от десятков ватт до десятка киловатт, применяются в бытовых приборах, устанавливаются в деревообрабатывающих станках, на транспортерах, в компрессорах и насосах. Преимущество их – возможность использования в помещениях, где нет трехфазной сети. По конструкции они не сильно отличаются от электродвигателей асинхронных трехфазного тока.

Для того чтобы понять принцип работы электродвигателя переменного тока, поместим изогнутый проводник в равномерном магнитном поле, создаваемом полюсами магнита.

Разница между генераторами переменного и постоянного тока заключается в отсутствии коллектора.

Асинхронные трехфазные электродвигатели являются прямыми энергетическими потребителями трехфазного тока. Такие модели применяются во многих отраслях производства.

На рисунке 2 изображена схема электродвигателя переменного тока. Синхронный генератор имеет такой же статор рис. 1. Питание обмотки статора переменным током происходит от трехфазной сети.

Изменение тока в фазах будет происходить также в фазах генератора. На рис. 2 ротор представлен как цилиндр с пазами, который установлен на медные либо алюминиевые стержни, связанные между собой кольцами на поверхностях ротора с торца.

Ток проходит в замкнутых проводниках. Вращение ротора асинхронного устройства различно от частоты магнитного поля.

Рис. 1 Принцип работы генератора переменного тока.

При одинаковом вращении проводники роторной обмотки перестают пересекать магнитное поле, и тогда исчезает вращающий момент. Потому электродвигатель переменного тока и получил название асинхронного (т.е. несинхронного). Круговое вращающее магнитное поле условно представляют полем полюсов постоянных магнитов, которые вращаются с частотой . Помещая в поле статора асинхронного трехфазного прибора ротор, у которого короткозамкнута обмотка (рис. 3), вращающееся поле статора проходит через проводники обмотки ротора и направляет них э.д.с . Направление э.д.с обусловливаться правилом правой руки. Когда обмотка ротора замкнута, то в ее проводниках появляются токи . Ток любого проводника ротора, взаимодействуя с полем статора, формирует электромагнитную силу , течение которой обусловливается правилом левой руки.

Группа электромагнитных сил формирует электромагнитный момент , который приводит ротор в обращение с частотой в направлении поля вращения. Электрическая энергия, которая поступает в обмотку статора из сети, реорганизуется в механическую энергию верчения ротора.

Рис. 2 Трехфазный асинхронный двигатель

Рис. 3 Схема однофазного электродвигателя

Частота верчения электродвигателя переменного тока всегда меньше частоты верчения поля статора , от чего и его название - асинхронный. Когда ротор АД вращается с частотой , тогда проводники обмотки ротора не пересекают поле статора. Следовательно, в них не наводятся э.д.с, не возникают токи, не создается вращающий момент.

Отличие между частотами вращения ротора и поля статора имеет название частота скольжения . На практике чаще используется понятие скольжения - отношение частоты вращения поля статора к частоте скольжения:

Между частотой вращения ротора и скольжением также имеется связь:

Когда работает АД, частота вращения ротора изменяется от при пуске двигателя до на идеальном холостом ходу. Следовательно, двигательному режиму работы асинхронной машины отвечает широта изменений скольжения от 1 до 0. Частота верчения ротора, а следовательно и скольжение находятся в зависимости от нагрузки на валу (внешнего момента сопротивления ). При увеличении нагрузки уменьшается частота вращения ротора, а скольжение возрастает. В асинхронных приборах общего применения начальное скольжение составляет , т.е. при начальной нагрузке ротор АД крутится с частотой, которая близка к частоте вращения поля. Частота э.д.с и токов, наводимых в проводах ротора, определяется частотой скольжения. Учитывая, что определим .

Постоянное переключение батареи равносильно питанию оборудования переменным током. Разница лишь в том, что у такого переменного тока низкая частота, так как за секунду можно 3-5 раз перевернуть батарейку, а у переменного тока направление изменяется 100 раз в секунду.

Если от понижающего трансформатора присоединить два проводника к зажимам прибора с одинаковым с батареей напряжением, то устройство электродвигателя переменного тока будет работать. Однако якорь его будет крутиться несколько медленнее, чем, если бы было питание постоянным током. При переменном токе появляется индуктивное сопротивление обмоток электродвигателя. Прикоснувшись рукой спустя 10-15 мин к его корпусу, можно заметить, что он нагрелся.

А при работе от батареи этого не происходит. При питании переменным током в стенках корпуса и в полюсах появляются потери от перемагничивания переменным потоком и вихревых токов. Для снижения этих потерь, корпус и полюсы однофазной коллекторной модели переменного тока собираются из штампованных листов электротехнической стали, которые изолированы пленкой лака один от другого и скреплены заклепками (рис. 4).

Рис. 4 Статор коллекторного электродвигателя

1 - Катушка; 2 - наконечник полюса; 3 - заклепка.

Коллекторные электродвигатели переменного тока работают только с последовательным возбуждением, и благодаря катушке параллельного возбуждения имели бы огромное индуктивное сопротивление при переменном токе.

Механические качества однофазного устройства подобны качествам двигателя постоянного тока с последовательным возбуждением. Вследствие этого они применяются тогда, когда от прибора требуется большая пусковая и высокая перегрузочная способность.

Применение коллекторных электродвигателей рассчитано на любую частоту вращения, тогда как у асинхронных, питающихся переменным током частотой 50 Гц, имеется максимальная синхронная частота вращения 3000 об/мин. Этот признак делает незаменимыми коллекторные модели для бытовых приборов, в частности для пылесосов. Коллекторные устройства легче асинхронных однофазовых в 2-3 раза.

Такие электродвигатели изготавливаются для низкого напряжения и питаются они от понижающего трансформатора и для напряжения сети 127 или 220 В. Для снижения опасности поражения электрическим током эти приборы используют в движущихся игрушках (электрические железные дороги, подъемные краны).

Электрические двигатели, питаемые от сети переменного тока, используются в пылесосах, швейных машинках, электробритвах и других электробытовых приборах.


Посредством электродвигателя электрическая энергия преобразуется в механическую. Мощность, количество оборотов в минуту, напряжение и тип питания являются основными показателями электродвигателей. Также, большое значение имеют массогабаритные и энергетические показатели.

Электродвигатели обладают большими преимуществами. Так, по сравнению с тепловыми двигателями сопоставимой мощности, по размеру электрические двигатели намного компактнее. Они прекрасно подходят для установки на небольших площадках, например в оборудовании трамваев, электровозов и на станках различного назначения.

При их использовании не выделяется пар и продукты распада, что обеспечивает экологическую чистоту. Электродвигатели делятся на двигатели постоянного и переменного тока, шаговые электродвигатели, серводвигатели и линейные.

Электродвигатели переменного тока, в свою очередь, подразделяются на синхронные и асинхронные.

Электродвигатели постоянного тока

Используются для создания регулируемых электроприводов с высокими динамическими и эксплуатационными показателями. К таким показателям относятся высокая равномерность вращения и перезагрузочная способность. Их используют для комплектации бумагоделательных, красильно-отделочных и подъемно-транспортных машин, для полимерного оборудования, буровых станков и вспомогательных агрегатов экскаваторов. Часто они применяются для оснащения всех видов электротранспорта.

Электродвигатели переменного тока

Пользуются более высоким спросом, чем двигатели постоянного тока. Их часто используют в быту и в промышленности. Их производство намного дешевле, конструкция проще и надежнее, а эксплуатация достаточно проста. Практически вся домашняя бытовая техника оборудована электродвигателями переменного тока. Их используют в стиральных машинах, кухонных вытяжных устройствах и т.д. В крупной промышленности с их помощью приводится в движение станковое оборудование, лебедки для перемещения тяжелого груза, компрессоры, гидравлические и пневматические насосы и промышленные вентиляторы.

Шаговые электродвигатели

Действуют по принципу преобразования электрических импульсов в механическое перемещение дискретного характера. Большинство офисной и компьютерной техники оборудовано ими. Такие двигатели очень малы, но высокопродуктивны. Иногда и востребованы в отдельных отраслях промышленности.

Серводвигатели

Относятся к двигателям постоянного тока. Они высокотехнологичны. Их работа осуществляется посредством использования отрицательной обратной связи. Такой двигатель отличается особой мощностью и способен развивать высокую скорость вращения вала, регулировка которого осуществляется с помощью компьютерного обеспечения. Такая функция делает его востребованным при оборудовании поточных линий и в современных промышленных станках.

Линейные электродвигатели

Обладают уникальной способностью прямолинейного перемещения ротора и статора относительно друг друга. Такие двигатели незаменимы для работы механизмов, действие которых основано на поступательном и возвратно-поступательном движении рабочих органов. Использование линейного электродвигателя способно повысить надежность и экономичность механизма благодаря тому, что значительно упрощает его деятельность и почти полностью исключает механическую передачу.

Синхронные двигатели

Являются разновидностью электродвигателей переменного тока. Частота вращения их ротора равняется частоте вращения магнитного поля в воздушном зазоре. Их используют для компрессоров, крупных вентиляторов, насосов и генераторов постоянного тока, так как они работают с постоянной скоростью.

Асинхронные двигатели

Также, относятся к категории электродвигателей переменного тока. Частота вращения их ротора отличается от частоты вращения магнитного поля, которое создается током обмотки статора. Асинхронные двигатели разделяются на два типа, в зависимости от конструкции ротора: с короткозамкнутым ротором и фазным ротором. Конструкция статора в обоих видах одинакова, различие только в обмотке.

Электродвигатели незаменимы в современном мире. Благодаря им значительно облегчается работа людей. Их использование помогает снизить затрату человеческих сил и сделать повседневную жизнь намного комфортнее.

Различные типы электродвигателей и их применение

Как мы знаем, электродвигатель играет жизненно важную роль во всех секторах промышленности, а также в широком диапазоне применений. На рынке доступно множество типов электродвигателей. Выбор этих двигателей может быть сделан в зависимости от режима работы, напряжения и применения. Каждый двигатель состоит из двух основных частей: обмотки возбуждения и обмотки якоря. Основная функция обмотки возбуждения - создание фиксированного магнитного поля, тогда как обмотка якоря выглядит как проводник, расположенный внутри магнитного поля.Из-за магнитного поля обмотка якоря использует энергию для создания крутящего момента, необходимого для вращения вала двигателя. В настоящее время классификация двигателей постоянного тока может быть сделана на основе соединений обмоток, что означает, как две катушки в двигателе связаны друг с другом.

Типы электродвигателей

Типы электродвигателей доступны в трех основных сегментах, таких как электродвигатели переменного тока, электродвигатели постоянного тока и электродвигатели специального назначения.


типов двигателей

Двигатели постоянного тока

Типы двигателей постоянного тока в основном включают в себя серийные двигатели, шунтирующие двигатели и двигатели с комбинированной обмоткой и постоянным током постоянного тока.

двигатель постоянного тока
1). Шунтирующий двигатель постоянного тока

Шунтирующий двигатель постоянного тока работает от постоянного тока, и обмотки этого электродвигателя, такие как обмотки якоря и обмотки возбуждения, соединены параллельно, что называется шунтом. Этот тип двигателя также называется двигателем постоянного тока с шунтирующей обмоткой, а тип обмотки известен как шунтирующая обмотка. Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе параллельного двигателя постоянного тока и приложениях

2). Двигатель с раздельным возбуждением

В двигателе с раздельным возбуждением соединение статора и ротора может быть выполнено с использованием другого источника питания.Таким образом, двигателем можно управлять с помощью шунта, а обмотку якоря можно усилить для создания магнитного потока.

3). Двигатель постоянного тока

В двигателе постоянного тока обмотки ротора соединены последовательно. Принцип работы этого электродвигателя во многом зависит от простого электромагнитного закона. Этот закон гласит, что всякий раз, когда магнитное поле может быть сформировано вокруг проводника, оно взаимодействует с внешним полем, создавая вращательное движение. Эти двигатели в основном используются в стартерах, которые используются в лифтах и ​​автомобилях.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о работе двигателей постоянного тока и его применениях

Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о ДВИГАТЕЛЯХ постоянного тока - Основы, типы и применение

4). Двигатель PMDC

Термин PMDC означает «двигатель постоянного тока с постоянными магнитами». Это один из видов двигателей постоянного тока, в который может быть встроен постоянный магнит для создания магнитного поля, необходимого для работы электродвигателя. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о двигателе PMDC: конструкция, работа и применение

5).Составной двигатель постоянного тока

Как правило, составной двигатель постоянного тока представляет собой гибридный компонент последовательного и параллельного двигателей постоянного тока. В этом типе двигателя присутствуют оба поля, такие как последовательный и шунтирующий. В этом типе электродвигателя статор и ротор могут быть соединены друг с другом через соединение последовательных и шунтирующих обмоток. Последовательная обмотка может быть спроектирована с несколькими витками широких медных проводов, что дает небольшой путь сопротивления. Шунтирующая обмотка может быть спроектирована с несколькими обмотками из медного провода для получения полного i / p напряжения.

Двигатели переменного тока

Типы двигателей переменного тока в основном включают синхронные, асинхронные и асинхронные двигатели.

двигатель переменного тока
1). Синхронный двигатель

Работа синхронного двигателя в основном зависит от трехфазного источника питания. Статор электродвигателя генерирует ток возбуждения, который вращается со стабильной скоростью в зависимости от частоты переменного тока. Так же как и ротор, от аналогичной скорости зависит ток статора. Между скоростью тока статора и ротора нет воздушного зазора.При высоком уровне точности вращения эти двигатели применимы в автоматизации, робототехнике и т. Д. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о типах синхронных двигателей и их применениях.

2). Асинхронный двигатель

Электродвигатель, работающий с асинхронной скоростью, известен как асинхронный двигатель, и альтернативное название этого двигателя - асинхронный двигатель. Асинхронный двигатель в основном использует электромагнитную индукцию для изменения энергии с электрической на механическую. По конструкции ротора эти двигатели подразделяются на два типа: с короткозамкнутым ротором и с фазовой обмоткой.Пожалуйста, обратитесь к этой ссылке, чтобы узнать больше о типах и преимуществах асинхронных двигателей.

Двигатели специального назначения

Двигатели специального назначения в основном включают серводвигатель, шаговый двигатель, линейный асинхронный двигатель и т. Д.

Электродвигатель специального назначения
1) . Шаговый двигатель

Шаговый двигатель может использоваться для обеспечения углового шага вращения в качестве альтернативы стабильному вращению. Мы знаем, что для любого ротора полный угол вращения составляет 180 градусов. Однако в шаговом двигателе полный угол вращения может быть разделен на множество шагов, например, 10 градусов X 18 шагов.Это означает, что за полный цикл оборота ротор совершит ступенчатое движение восемнадцать раз, каждый раз на 10 градусов. Шаговые двигатели применимы в плоттерах, производстве схем, инструментах управления технологическим процессом, генераторах обычного движения и т. Д. Пожалуйста, обратитесь по этой ссылке, чтобы узнать больше о типах шаговых двигателей и их применениях

2). Бесщеточные двигатели постоянного тока

Бесщеточные двигатели постоянного тока были впервые разработаны для достижения превосходных характеристик на меньшем пространстве, чем щеточные двигатели постоянного тока. Эти двигатели меньше по размеру по сравнению с моделями переменного тока.Контроллер встроен в электродвигатель, чтобы облегчить процесс за счет отсутствия коммутатора и контактного кольца. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше о бесщеточном двигателе постоянного тока - преимущества, применение и управление

3). Гистерезисный двигатель

Гистерезисный двигатель работает исключительно уникально. Ротор этого двигателя может быть вызван гистерезисом и вихревым током для создания необходимой задачи. Работа двигателя может зависеть от конструкции, однофазное питание или трехфазное питание.Эти двигатели обеспечивают очень плавный процесс со стабильной скоростью, как и другие синхронные двигатели. Уровень шума этого двигателя довольно мал, по этой причине они применимы во многих сложных приложениях, где бы ни использовался звуконепроницаемый двигатель, например, в аудиоплеере, аудиомагнитофоне и т. Д.

4). Реактивный электродвигатель

В основном, резистивный электродвигатель представляет собой однофазный синхронный электродвигатель, и эта конструкция электродвигателя аналогична асинхронному электродвигателю, например, клеточного типа. Ротор в двигателе похож на короткозамкнутый ротор, а статор двигателя включает в себя наборы обмоток, такие как вспомогательная и основная обмотка.Вспомогательная обмотка очень полезна при запуске двигателя. Поскольку они предлагают ровную работу со стабильной скоростью. Эти двигатели обычно используются в приложениях синхронизации, которые включают генераторы сигналов, записывающие устройства и т. Д.

5). Универсальный двигатель

Это особый тип двигателя, который работает от одного источника переменного тока, иначе от источника постоянного тока. Универсальные двигатели имеют последовательную намотку, при этом обмотки возбуждения и якоря соединены последовательно и, таким образом, создают высокий пусковой момент.Эти двигатели в основном предназначены для работы на высоких оборотах свыше 3500 об / мин. Они используют источник переменного тока при низкой скорости и источник постоянного тока аналогичного напряжения. Пожалуйста, перейдите по этой ссылке, чтобы узнать больше об универсальном двигателе

Таким образом, речь идет о типах электродвигателей. В настоящее время существуют разные и гибкие. Мотор предназначен для управления движением, это лучший выбор. Двигатель должен поддерживать использование и общее функционирование системы. Вот вам вопрос, что такое моторы особого типа?

Двигатели переменного и постоянного тока: различия и преимущества

Электродвигатели играют важную роль почти во всех отраслях промышленности.Использование правильного типа двигателя с высококачественными деталями и регулярным обслуживанием обеспечивает бесперебойную работу вашего предприятия и предотвращает повреждение оконечного оборудования из-за износа или скачков напряжения.

Gainesville Industrial Electric может помочь вашей компании выбрать правильные промышленные электродвигатели и детали для ваших приложений.

A Primer on Electric Motors

Электродвигатели - это машины, которые преобразуют электрическую энергию - из накопленной мощности или прямого электрического соединения - в механическую энергию за счет создания вращательной силы.Два основных типа электродвигателей :

  • Двигатели переменного тока , которые питаются от переменного тока
  • Двигатели постоянного тока , которые питаются постоянным током

Как работают электродвигатели

И переменного тока, и Электродвигатели постоянного тока используют электрический ток для создания вращающихся магнитных полей, которые, в свою очередь, создают вращательную механическую силу в якоре, расположенном на роторе или статоре, вокруг вала. В различных конструкциях двигателей используется одна и та же базовая концепция для преобразования электрической энергии в мощные всплески силы и обеспечения динамических уровней скорости или мощности.

Компоненты главного двигателя

Хотя электродвигатели могут отличаться от одной конструкции или типа к другому, многие из них содержат эти детали и узлы (расположены от центра, обращенного наружу):

  • Центральный вал двигателя
  • Обмотки
  • Подшипники (для уменьшения трения и износа)
  • Якорь (расположен на роторе, вращающейся части или статоре, неподвижной части)
  • Щетки (в двигателях постоянного тока)
  • Клеммы
  • Рама и торцевые щитки

Типы электродвигателей: AC vs.Двигатели постоянного тока

Двигатели переменного и постоянного тока - это широкие категории двигателей, которые включают меньшие подтипы. Например, асинхронные двигатели, линейные двигатели и синхронные двигатели - это все типы двигателей переменного тока. Двигатели переменного тока могут также включать частотно-регулируемые приводы для управления скоростью и крутящим моментом двигателя, тогда как двигатели постоянного тока доступны в моделях с самовозбуждением и с раздельным возбуждением.

Привод с регулируемой скоростью переменного тока

Преимущества электродвигателя переменного тока по сравнению с электродвигателем постоянного тока

Каждый тип электродвигателя имеет различные преимущества, которые делают их наиболее подходящими для различных коммерческих и промышленных применений.Например, электродвигатели переменного тока отличаются гибкостью и простотой управления. Некоторые из их других преимуществ включают:

  • Низкие требования к пусковой мощности, которые также защищают компоненты на принимающей стороне
  • Контролируемые уровни пускового тока и ускорения
  • Надстройки частотно-регулируемого привода или частотно-регулируемого привода, которые могут контролировать скорость и крутящий момент на разных этапах используйте
  • Высокая надежность и более длительный срок службы
  • Возможности для многофазных конфигураций

Двигатели постоянного тока также обладают собственными преимуществами , такими как:

  • Более простая установка и обслуживание
  • Высокая пусковая мощность и крутящий момент
  • Быстрое время отклика на запуск, остановку и ускорение
  • Доступность для нескольких стандартных напряжений

Какой двигатель более мощный: переменного или постоянного тока?

Двигатели переменного тока обычно считаются более мощными, чем двигатели постоянного тока, поскольку они могут создавать более высокий крутящий момент за счет использования более мощного тока.Однако двигатели постоянного тока обычно более эффективны и лучше используют входную энергию. Двигатели переменного и постоянного тока бывают разных размеров и мощностей, которые могут удовлетворить любые отраслевые требования к питанию.

Применение двигателей переменного и постоянного тока

Двигатели переменного и постоянного тока находят применение в технологических процессах и объектах практически во всех отраслях промышленности. Некоторые из наиболее распространенных промышленных применений для двигателей переменного тока включают:

  • Приборы
  • Приводы и системы компрессоров
  • Компьютеры
  • Конвейерные системы
  • Вентиляторы и кондиционеры
  • Гидравлические и ирригационные насосы
  • Транспортное оборудование

Типичные промышленные применения двигателей постоянного тока включают:

  • Производство и производственные единицы
  • Оборудование, требующее постоянной мощности, такое как пылесосы, лифты и швейные машины
  • Складское сортировочное оборудование


Выбор правильного электрического Электродвигатель для вашего промышленного применения

Установка и обслуживание правильных электродвигателей на предприятиях и оборудовании вашей компании является важным шагом к обеспечению бесперебойной работы и производства.

Gainesville Industrial Electric продает и обслуживает двигатели переменного и постоянного тока, запчасти и многое другое. Мы также являемся авторизованным заводским гарантийным центром. Чтобы получить помощь в выборе подходящего электродвигателя или промышленной сборки для вашего применения, свяжитесь с нами или запросите дополнительную информацию сегодня, чтобы получить ценовое предложение.


Связанное содержание:

В чем разница между двигателями переменного тока и двигателями постоянного тока?

Между двигателями переменного и постоянного тока существует много различий.Наиболее очевидное различие - это тип тока, который каждый двигатель превращает в энергию: переменный ток в случае двигателей переменного тока и постоянный ток в случае двигателей постоянного тока. Двигатели переменного тока известны своей повышенной выходной мощностью и эффективностью, в то время как двигатели постоянного тока ценятся за их контроль скорости и диапазон выходной мощности. Двигатели переменного тока доступны в одно- или трехфазной конфигурации, тогда как двигатели постоянного тока всегда однофазные.

Подробнее о электродвигателях переменного тока

В двигателе переменного тока энергия поступает из магнитных полей, создаваемых через катушки, намотанные вокруг выходного вала.Двигатели переменного тока состоят из нескольких частей, включая статор и ротор. Двигатели переменного тока эффективны, долговечны, бесшумны и универсальны, что делает их жизнеспособным решением для многих потребностей в производстве электроэнергии.

К двум типам двигателей переменного тока относятся:

  • Синхронный: Синхронный двигатель вращается с той же скоростью, что и частота тока питания, что и дало ему название. Синхронные двигатели состоят из статора, ротора и синхронных двигателей, которые используются в широком спектре приложений.
  • Индукция: Асинхронные двигатели - это самый простой и самый надежный из имеющихся электродвигателей. Эти электродвигатели переменного тока состоят из двух электрических узлов: статора с обмоткой и узла ротора. Электрический ток, необходимый для вращения ротора, создается за счет электромагнитной индукции, создаваемой обмоткой статора. Асинхронные двигатели являются одними из наиболее часто используемых типов двигателей в мире.

Электродвигатели переменного тока используются в различных сферах применения, включая насосы для предприятий общественного питания, водонагреватели, оборудование для газонов и сада и многое другое.

Подробнее о двигателях постоянного тока

Энергия, используемая двигателем постоянного тока, поступает от батарей или другого генерируемого источника энергии, обеспечивающего постоянное напряжение. Двигатели постоянного тока состоят из нескольких частей, наиболее известными из которых являются подшипники, валы и редуктор или шестерни. Двигатели постоянного тока обеспечивают лучшее изменение скорости и управление, а также обеспечивают больший крутящий момент, чем двигатели переменного тока.

К двум типам двигателей постоянного тока относятся:

  • Матовый: Один из самых старых типов двигателей, щеточные двигатели - это электродвигатели с внутренней коммутацией, работающие от постоянного тока.Щеточные двигатели состоят из ротора, щеток, оси, а заряд и полярность щеток контролируют направление и скорость двигателя.
  • Бесщеточные: В последние годы бесщеточные двигатели приобрели популярность во многих сферах применения, в основном из-за их эффективности. Бесщеточные двигатели устроены так же, как и щеточные двигатели, за исключением, конечно, щеток. Бесщеточные двигатели также включают специализированную схему для управления скоростью и направлением. В бесщеточных двигателях вокруг ротора установлены магниты, что повышает эффективность.

Двигатели постоянного тока используются в широком диапазоне применений, включая электрические инвалидные коляски, ручные распылители и насосы, кофеварки, внедорожное оборудование и многое другое.

В чем разница между двигателями переменного, постоянного тока и ЕС?

Кратко:

  • По мере того, как конечные пользователи пользуются преимуществами более мощных ПЛК, они также должны учитывать безопасность.
  • Увеличив общую вычислительную мощность ПЛК, поставщики контроллеров предоставили место для дополнительных возможностей.
  • Повышение вычислительной мощности позволило создать сложный ПЛК, который может синхронизировать сервоприводы или управлять сложными контурами процессов при передаче данных и поддержке HMI.

Любой, кто служил в армии или даже в большой компании, понимает концепцию иерархии - она ​​определяет, кто главный, порядок подчинения и то, как каждый человек вписывается в эту структуру. Некоторые люди находят безопасность в структуре, в то время как другие с амбициями могут чувствовать себя подавленными.Подобные ситуации применяются в промышленной автоматизации. Иерархическая структура определяет, какой тип оборудования куда направляется и какие действия должны выполняться на каждом уровне. Этот подход подробно объясняется в эталонной архитектуре Purdue Enterprise (рис. 1) .

1. Архитектура Purdue очерчивает четко определенные слои, отражая устаревшее мышление, основанное на доступных технологиях. AutomationDirect

Он помещает технологические и полевые устройства внизу, управляющее оборудование на среднем уровне и системы информационных технологий предприятия наверху .Операционная технология (OT) с ее ПЛК обычно существует на базовом уровне управления, где они взаимодействуют с полевыми устройствами, выполняют контуры управления и управляют движением. Когда есть необходимость отправить данные в системы более высокого уровня, они должны быть переданы вверх по цепочке команд, переходя от уровня к уровню.

В этой ситуации есть две основные ошибки:

  1. Она требует больших усилий разработчика и дополнительных затрат вычислительных ресурсов при использовании нескольких протоколов связи.
  2. Он не распознает и не использует растущие возможности ПЛК сегодняшнего поколения.

Классические архитектуры промышленной автоматизации отражают концепции и ограничения оборудования 1990-х годов. ПЛК той эпохи были менее мощными и поэтому должны были быть специализированными и ориентированными на выполнение определенных функций высокоскоростного управления. Системы более высокого уровня требовались для обеспечения более совершенных возможностей обработки данных. Но перемещение данных между нижним и верхним уровнями потребовало значительных усилий.

Пользователи генерировали пользовательские конфигурации кода для выбора, упорядочивания и управления данными.Часто было задействовано множество деталей и программ: ПЛК, шлюзы, ПК, пакеты программного обеспечения, конфигурация сети и вспомогательный код. Даже когда возможность подключения данных могла быть исправлена, это часто происходило в ущерб безопасности. Традиционно в ПЛК было мало (если вообще было) положений о кибербезопасности, особенно для подключенных к Интернету систем.

Изменения и улучшения

Многое изменилось в промышленном пространстве за последние несколько десятилетий. Одна проблема заключается в том, что накладные расходы остаются проблемой.Заводы хотят более плоские и менее сложные системы управления процессами и машинами. Концепция наличия такого количества уровней специализированного оборудования расточительна, но ее можно оптимизировать с помощью более универсальных контроллеров, способных выполнять несколько дублирующих ролей. Старые ПЛК не могли удовлетворить свои требования к высокой скорости, будучи отвлеченными другими функциями управления данными.

Повышение вычислительной мощности (Рис. 2) означает, что современные ПЛК теперь могут синхронизировать сервоприводы или управлять сложными контурами процессов при передаче данных и поддержке человеко-машинного интерфейса (HMI).Сложный ПЛК может охватывать более одного уровня.

2. Некоторые современные ПЛК также включают расширенные функции обработки данных и протоколы связи, поэтому они могут легко связывать полевые данные OT с ИТ-системами предприятия. AutomationDirect

Во-вторых, как только что было отмечено, ПЛК прошли долгий путь, но внедрение всех улучшения не являются единообразными для разных поставщиков. Некоторые компании решили, что традиционные структуры безопасны, и предпочли не выходить за рамки этих ограничений, даже несмотря на то, что ограниченные возможности связи затрудняют интеграцию с вышестоящим и последующим оборудованием.Синхронизация по-прежнему возможна, но она сложна в реализации и требует дополнительных накладных расходов.

Реализовав технологические усовершенствования и увеличив общую вычислительную мощность своих ПЛК для выполнения основных функций с гораздо меньшими затратами, некоторые поставщики предоставили место для дополнительных возможностей. Например, за счет включения более длинного списка вариантов протокола связи, ПЛК может соединять промежуточные сетевые уровни и уменьшать сложность взаимодействия с предприятием.Даже относительно простой ПЛК может работать в среде, где преобладает оборудование от другого производителя. Кроме того, он может взаимодействовать с ИТ-ориентированными активами с помощью прикладного программного интерфейса репрезентативной передачи состояния (REST API) или безопасного транспорта телеметрии с очередями сообщений (MQTT / S) по проводным или беспроводным сетям. Это далеко от старых ПЛК, которые говорят только на MODBUS.

Эта возможность может быть расширена еще больше с возможностью подключения к Интернету вещей непосредственно в облако. Даже небольшой или средний ПЛК может быть сертифицирован для подключения к платформе Microsoft Azure.Сертификация гарантирует пользователям, что устройство протестировано для работы с инфраструктурой Azure, и предоставляет четкую документацию о том, как подключиться. Azure предлагает множество возможностей промышленного Интернета вещей, чтобы помочь пользователям визуализировать и оптимизировать свои операции, в том числе:

  • Cosmos DB для хранения данных
  • Power Apps для простого создания решений с низким уровнем кода
  • Веб-визуализация и мобильная визуализация
  • Машинное обучение и аналитика для создания Расширенные модели прогнозирования

Рассмотрим такую ​​ситуацию: ПЛК должен передавать данные восходящему потоку в корпоративную сеть для расширенной обработки.Используя традиционный подход, он перемещается по цепочке через все уровни, возможно, конвертируется в другой протокол раз или два, и в конечном итоге достигает места назначения. Альтернативой является сертифицированный для Azure ПЛК, способный взаимодействовать с центром Интернета вещей Azure без шлюза: прямое соединение, менее сложное и с гораздо меньшими накладными расходами.

Применение стандартов

Некоторые из наиболее популярных последовательных протоколов и протоколов Ethernet для целей OT включают ASCII, Modbus RTU, K-Seq, Modbus TCP и EtherNet / IP.С другой стороны, ИТ-системы используют такие протоколы, как SNTP DNS, MQTT, SMTP, SSL и веб-службы. ПЛК, объединяющий эти возможности вместе, становится мостом от ОТ к ИТ, создавая множество способов подключения нового и устаревшего заводского оборудования к сегодняшним корпоративным системам.

Когда все элементы интеграции данных встроены и изначально находятся в ПЛК, настройка выполняется намного быстрее. ИТ-пользователи обычно предпочитают решения с открытым исходным кодом, потому что они уже знакомы с этим подходом, а не специализированные среды, характерные для промышленных продуктов.

3. ПЛК серии AutomationDirect BRX включают несколько вариантов подключения к данным, каждое из которых является сертифицированным устройством Microsoft Azure.AutomationDirect

Когда эти технологии доступны, пользователи могут выбирать из ряда вариантов в зависимости от требований процесса (рис. 3 ) . Они могут:

  • Хранить данные в ПЛК и пересылать их в другие системы с помощью FTP
  • Представлять информацию в виде веб-страниц, размещенных на внутреннем веб-сервере
  • Предоставлять данные внешним клиентам с помощью REST API
  • Обмениваться данными с другими системами использование MQTT поверх TLS

Последний из этих вариантов, MQTT, стал популярным стандартом для обмена данными между ПЛК и облаком.ПЛК в полевых условиях инициирует разговоры как исходящие сообщения с централизованным брокером, который может находиться локально, но чаще всего находится в облаке. Это обеспечивает двустороннюю связь, избегая проблем с брандмауэром и ИТ-управлением, которые могут возникнуть при многих типах входящей связи.

Связь MQTT быстро реагирует, но в то же время может выдерживать сбои сети и связи, обычно встречающиеся на периферии. ПЛК, использующий MQTT, идеально подходит для передачи данных на платформу IIoT, расположенную в службе облачных вычислений, такой как Microsoft Azure.Пользователи могут получать доступ к данным с помощью корпоративных или мобильных клиентов, или они могут создавать другие приложения для использования этих данных MQTT, полученных из ПЛК.

Безопасность и гибкость

Улучшение подключения к ПЛК, к сожалению, ведет к большим рискам кибербезопасности. Следовательно, новые ПЛК должны включать в себя встроенные функции безопасности, такие как:

  • По умолчанию закрыто для запросов из внешнего мира
  • Встроенное хранилище учетных данных имени пользователя и пароля, управляемое персоналом ОТ
  • Внесение в белый список IP-адресов для контроля внешних клиентам разрешено связываться с ПЛК.
  • По возможности защищенная связь через TLS.

По мере того, как конечные пользователи пользуются преимуществами более мощных ПЛК, они должны убедиться, что эти возможности безопасности доступны и настроены должным образом.

Вчерашние ПЛК и другие продукты для промышленной автоматизации были в значительной степени неспособны выполнять сложные вычислительные задачи, которые пользователи хотят и в которых нуждаются сегодня, потому что они были специализированными и ограниченными с точки зрения обработки данных. Вычислительная мощность, заложенная в сегодняшние цифровые устройства OT, обеспечивает более широкие возможности для поддержки IoT и аналитических усилий на уровне предприятия и в облаке. Объединение проверенных технологий на основе OT с тщательно скоординированными коммуникациями и безопасностью, удобными для ИТ, приводит к эффективному сочетанию ПЛК.Современные ПЛК могут напрямую подключаться к облаку, что упрощает преодоление традиционных ограничений.

Дэймон Первис (Damon Purvis) - менеджер по продукции ПЛК в AutomationDirect.com. Он обладает более чем 22-летним опытом промышленной автоматизации. Предыдущие должности включали разработку и развертывание автоматизированных решений в различных отраслях, а также управление разработкой продуктов для управления производственными данными и приложений бизнес-аналитики.

Двигатели переменного тока и двигатели постоянного тока

Между двигателями переменного тока и двигателями постоянного тока есть несколько ключевых различий, помимо очевидного, которое связано с тем, как каждый из этих компонентов получает питание.Ниже приводится краткое описание каждого из этих типов двигателей с кратким описанием различий между ними.

Чтобы узнать больше о различных типах двигателей, обратитесь к нашему руководству по покупке двигателей.

Что такое двигатели переменного тока?

Двигатели переменного тока

- это электромеханические устройства, преобразующие электрическую энергию в виде переменного напряжения и тока в механическую энергию. Асинхронные двигатели бывают разных типов, которые можно охарактеризовать как асинхронные двигатели или синхронные двигатели, которые содержат статор и ротор.Асинхронные двигатели могут быть однофазными или многофазными, в то время как синхронные двигатели включают электродвигатели с сопротивлением и электродвигатели с гистерезисом. См. Соответствующее руководство «Типы двигателей переменного тока», чтобы узнать больше о каждом из них.

Что такое двигатели постоянного тока?

Двигатели постоянного тока могут преобразовывать электрическую энергию, подаваемую на них в виде постоянного тока, в механическую энергию вращения. То же устройство можно использовать в обратном направлении для выработки электроэнергии постоянного тока от вращения вала двигателя. При таком использовании устройство работает как генератор.Доступно несколько основных типов двигателей постоянного тока. К ним относятся двигатели постоянного тока с постоянным магнитом, двигатели постоянного тока с последовательной обмоткой, шунтирующие двигатели постоянного тока, комбинированные двигатели постоянного тока и бесщеточные двигатели постоянного тока. В нашем соответствующем руководстве «Типы двигателей постоянного тока» содержится дополнительная информация о каждом из этих типов.

Чем электродвигатели переменного и постоянного тока отличаются друг от друга?

Хотя двигатели переменного и постоянного тока вырабатывают механическую энергию в виде вращающегося вала двигателя, между ними есть несколько ключевых отличий:

Входная мощность

Двигатели переменного тока

работают от входного электрического сигнала, представляющего собой переменный ток и напряжение, которые меняются по амплитуде и направлению по мере завершения цикла входной формы волны переменного тока.Двигатели переменного тока могут работать как от однофазного источника питания, так и от многофазного источника с несколькими входами напряжения, которые работают с разностью фаз друг от друга (обычно 120 o или 2π / 3 радиана в случае трехфазного мощность). Двигатели постоянного тока питаются от однонаправленного тока (который не меняет направление со временем), подаваемого от источника постоянного тока. Общая значимость мощности переменного тока означает, что может возникнуть необходимость в преобразовании в мощность постоянного тока при использовании двигателя постоянного тока, например при использовании преобразователя переменного тока в постоянный или источника питания постоянного тока.

Магнитное поле

В многофазных двигателях переменного тока, поскольку катушки статора питаются переменным током, создается вращающееся магнитное поле, или RMF, которое, согласно закону индукции Фарадея, генерирует ЭДС в катушках ротора. Эта ЭДС приводит к возникновению тока в роторе и приложенного чистого крутящего момента, заставляющего его вращаться, а также генерирующего вращающееся магнитное поле. Асинхронные двигатели демонстрируют явление, известное как скольжение, при котором скорость ротора (N r ) меньше синхронной скорости вращающегося поля статора (N s ).Сдвиг математически выражается как:

В двигателе постоянного тока постоянный магнит или набор катушек возбуждения создают магнитное поле, которое не вращается. На катушки якоря подается ток, в результате чего якорь вращается.

Конструкция с прямым и косвенным подключением

В двигателе переменного тока подача питания на катушки статора через прямое подключение к многофазному источнику питания переменного тока - это все, что необходимо для вращения ротора.Принцип электромагнитной индукции генерирует ток в роторе без необходимости прямого электрического подключения.

Для двигателя постоянного тока ток должен подаваться как на катушки постоянного возбуждения (если не используется постоянный магнит), так и на якорь. Для этого в щеточных двигателях постоянного тока используется набор подпружиненных угольных щеток, которые прижимаются к кольцу коммутатора, которое передает ток на катушки якоря и катушки возбуждения при вращении якоря.В зависимости от того, выполняется ли соединение катушки возбуждения параллельно с катушкой якоря (параллельный двигатель) или последовательно с катушкой якоря (двигатель с последовательной обмоткой), результирующая конфигурация двигателя постоянного тока будет иметь разные рабочие характеристики.

Использование щеток и коммутатора оказывает несколько влияний на работу двигателей постоянного тока:

  • Щетки подвержены износу из-за механического трения, а это означает, что ремонт и замена щеток неизбежны, что влияет на размещение двигателя из-за необходимости доступа.
  • Контакт щетки с коммутатором может вызвать искры и дугу, которые могут вызвать точечную коррозию и повреждение коммутатора, а также могут быть источником воспламенения - проблема в некоторых средах, где существует риск воздействия легковоспламеняющихся паров или газов.
  • Трение щетки является причиной снижения эффективности двигателей постоянного тока, которые их используют, поскольку часть входящей энергии расходуется на трение и не используется для создания движения.
  • Щеточные двигатели постоянного тока создают больше шума и образуют пыль из-за износа щетки, которая обычно представляет собой углерод или графит.

Контроль скорости

В двигателе переменного тока скорость двигателя регулируется входной частотой переменного тока, подаваемого на катушки статора, и прямо пропорциональна. По мере увеличения частоты увеличивается скорость двигателя. Контроллеры частотно-регулируемого привода используются для регулировки входной частоты по желанию для достижения желаемой скорости вращения двигателя.

Для двигателей постоянного тока скорость устройства регулируется путем изменения напряжения и тока, которые прикладываются к катушкам или обмоткам якоря, или путем регулирования тока, протекающего по катушкам возбуждения (следовательно, влияя на силу магнитного поля для катушка возбуждения).Соотношение скорости и тока снова пропорционально.

Механизм запуска

Многофазные двигатели переменного тока считаются самозапускающимися и не требуют дополнительной электроники, кроме частотно-регулируемого управления скоростью. Как однофазные двигатели переменного тока, так и двигатели постоянного тока требуют пускового механизма для управления условиями пуска. Например, в больших двигателях постоянного тока обратная ЭДС, генерируемая в якоре, пропорциональна скорости якоря и поэтому мала при запуске.Это состояние может вызвать сильный ток через якорь, потенциально вызывающий выгорание. Таким образом, для этих двигателей необходимо контролировать нарастание входного напряжения при запуске.

Производительность

Двигатели переменного тока

часто используются из-за их высокоскоростного и переменного крутящего момента, но обычно крутящий момент будет падать с увеличением скорости двигателя. Двигатели постоянного тока могут обеспечивать высокий крутящий момент и полезны там, где требуется регулирование скорости. Двигатели постоянного тока могут обеспечивать более постоянный крутящий момент во всем диапазоне скоростей и, как правило, обеспечивать более быструю реакцию на изменения нагрузки, чем двигатели переменного тока.В зависимости от конфигурации соединения катушек (последовательное или параллельное) для двигателей постоянного тока могут быть получены разные характеристики в зависимости от значения нагрузки. Серийные двигатели демонстрируют более высокий пусковой крутящий момент, но имеют более резкое падение скорости при увеличении нагрузки. Параллельные или параллельные двигатели постоянного тока обеспечивают более низкий пусковой момент, но имеют более плоское соотношение скорости и нагрузки и, следовательно, могут обеспечивать постоянную скорость почти независимо от приложенной нагрузки.

Двигатели переменного тока

страдают от проблем с эффективностью из-за потерь индукционного тока и скольжения, упомянутых ранее.Двигатели постоянного тока, в которых используются постоянные магниты, могут быть примерно на 30% эффективнее, поскольку им не нужно потреблять энергию для создания электромагнита, но есть некоторая потеря эффективности из-за потерь энергии из-за трения щеток. Бесщеточные двигатели постоянного тока более эффективны, чем двигатели со щетками, но выигрыш в эффективности достигается в основном на участках кривой производительности двигателя с низкой или нулевой нагрузкой.

Прочие соображения

Для данного количества механической работы двигатели переменного тока обычно больше, чем двигатели постоянного тока, а бесщеточные конструкции постоянного тока являются наименьшими.Двигатели переменного тока имеют длительный срок службы, в то время как двигатели постоянного тока требуют большего обслуживания для тех конструкций, в которых используются щетки и коммутаторы, которые имеют механический износ. Двигатели с электронной коммутацией (ЭСУД) представляют собой бесщеточные двигатели постоянного тока, которые исключают механическую коммутацию и использование щеток в пользу электронной коммутации и управления, тем самым увеличивая срок службы, снижая энергопотребление, обеспечивая охлаждение и улучшая производительность.

Сводка

В этой статье представлено краткое обсуждение разницы между двигателями переменного и постоянного тока.Для получения информации о других продуктах обратитесь к нашим дополнительным руководствам или посетите платформу Thomas Supplier Discovery Platform, чтобы найти потенциальные источники поставок или просмотреть подробную информацию о конкретных продуктах.

Источники:
  1. http://www.ohioelectricmotors.com/2015/07/what-is-the-difference-between-an-ac-motor-and-a-dc-motor/
  2. https://www.precision-elec.com/difference-between-ac-and-dc-motors/
  3. https://www.powerelectric.com/motor-resources/motors101/ac-motors-vs-dc-motors
  4. https: // физикаоб.com / двигатель переменного тока и двигатель постоянного тока /
  5. https://www.orientalmotor.com/brushless-dc-motors-gear-motors/technology/AC-brushless-brasted-motors.html
  6. https://www.machinedesign.com/motion-control/what-s-difference-between-ac-dc-and-ec-motors
  7. http://electricalacademia.com/electrical-comparisons/difference-between-ac-motor-and-dc-motor/
  8. https://www.veichi.org/solutions/related-articles/what-is-the-difference-between-ac-and-dc-motors.html

Прочие изделия из двигателей

Больше от Machinery, Tools & Supplies

В чем разница между двигателем переменного и постоянного тока?

Электромеханическая машина, преобразующая электрическую энергию в механическую, называется электродвигателем.Это устройства, которые создают вращающую силу, которая обрабатывается посредством оперативной автоматизации.

Работа электродвигателя в основном зависит от взаимодействия магнитного и электрического полей. Обычно используемые детали, используемые в электродвигателях, - это центральный вал двигателя, обмотки, подшипники (для уменьшения трения и износа), якорь (расположенный на роторе, вращающейся части или статоре, неподвижная часть), щетки (в двигателях постоянного тока). , Клеммы, рама и торцевые щитки.

Электродвигатели в основном подразделяются на два типа.Это двигатель переменного тока и двигатель постоянного тока. Двигатель переменного тока принимает переменный ток в качестве входа, тогда как двигатель постоянного тока принимает постоянный ток.

Двигатель переменного тока и его механизм:

В двигателе переменного тока есть цепь электромагнитов, расположенных снаружи (составляющих статор). Который может быть разработан для создания вращающегося магнитного поля. Внутри статора находится ось из цельного металла, проволочная петля, катушка, беличья клетка из металлических стержней и межсоединения.Есть также другие свободно вращающиеся металлические части, которые могут проводить электричество.

Ротор, подвешенный внутри магнитного поля, работает как электрический проводник. Из-за своего вращения магнитное поле постоянно меняется. Согласно закону электромагнетизма Фарадея, магнитное поле производит (или индуцирует) электрический ток внутри ротора. Если проводник представляет собой кольцо или провод, ток течет вокруг него по петле. Если проводник представляет собой просто цельный кусок металла, вместо этого вокруг него циркулируют вихревые токи.

В любом случае индуцированный ток создает собственное магнитное поле и, согласно другому закону электромагнетизма (закон Ленца), пытается остановить то, что вызывает вращающееся магнитное поле, - тоже вращаясь. Двигатели переменного тока предлагают относительно эффективный метод производства механической энергии из простого входного электрического сигнала.

Двигатель постоянного тока и его механизм:

Эти двигатели основаны на куске проволоки, согнутой в прямоугольную петлю.Эта петля подвешена между полюсами магнита. Подсоединив провод к батарее, через него протекает постоянный ток (DC), и, таким образом, вокруг него создается временное магнитное поле. Это временное поле отталкивает исходное поле от постоянного магнита, что приводит к переворачиванию провода.

Обычно провод останавливается в этой точке, а затем снова переворачивается. Но если использовать оригинальное вращающееся соединение (которое называется коммутатором), ток можно менять на противоположное каждый раз, когда провод переворачивается.Это означает, что провод будет вращаться в одном и том же направлении до тех пор, пока течет ток. Суть этого простого электродвигателя постоянного тока была задумана в 1820-х годах Майклом Фарадеем и примерно десять лет спустя превратилась в практическое изобретение Уильямом Стердженом.

Разница между двигателем переменного и постоянного тока

Без основного различия, то есть вход двигателей переменного и постоянного тока переменного и постоянного тока имеет несколько других отличий.

Типы двигателей постоянного тока и их применение

Сегодня в серии Linquip мы обсудим все, что касается двигателей постоянного тока, их типов и областей применения.Как вы, возможно, знаете, двигатель постоянного тока или двигатель с прямым подключением относится к любому типу вращающихся электродвигателей, которые преобразуют прямую электрическую энергию в механическую. Существует четыре основных типа двигателей постоянного тока, каждый из которых используется для различных целей. Если вы хотите знать все о двигателях постоянного тока, типах двигателей постоянного тока и их использовании.

Что такое двигатель постоянного тока?

Интересно знать, что двигатели постоянного тока повсюду. В отличие от своего причудливого названия, двигатели прямого подключения есть повсюду вокруг нас, и они делают нашу жизнь намного более комфортной.Короче говоря, любое устройство, которое использует электричество для обеспечения различных движений, делает это с помощью двигателей постоянного тока.

Теперь, когда вы знаете, что такое двигатель с прямым подключением, давайте углубимся в концепцию и обсудим типы двигателей с прямым подключением и их применение в промышленности.

Подробнее о деталях, конструкции, конструкции и преимуществах электродвигателя постоянного тока Linquip

Щеточный двигатель постоянного тока: подробное объяснение принципа работы, деталей и типов

Сколько типов двигателей постоянного тока существует?

Если вы хотите понять, как работают двигатели с прямым подключением и какое у них использование, вам необходимо ознакомиться с их различными типами.

Существует четыре основных типа двигателей с прямым подключением:

1. Двигатель постоянного тока с постоянным магнитом

Двигатели с постоянными магнитами работают с помощью постоянного магнита, создавая магнитный поток. Двигатель прямого подключения с постоянными магнитами не имеет обмотки возбуждения на раме статора. Вместо этого он использует постоянные магниты для создания магнитного поля, с которым поле ротора взаимодействует, создавая крутящий момент.

Этот тип двигателя с прямым подключением обеспечивает отличный пусковой момент и хорошую регулировку скорости.

2. Двигатели постоянного тока серии

В серийных двигателях постоянного тока или в двигателях постоянного тока с последовательной обмоткой весь ток якоря протекает через обмотку возбуждения. Обычно этот тип двигателя постоянного тока создает большой пусковой крутящий момент, но он не может регулировать скорость, и даже работа без нагрузки может повредить его. Следовательно, эти ограничения делают серийные двигатели постоянного тока не лучшим вариантом для приводов с регулируемой скоростью.

3. Параллельные двигатели постоянного тока

Шунтирующие двигатели постоянного тока - это тип двигателей с прямым подключением, в которых шунтирующая обмотка возбуждения параллельна только обмотке якоря, а не последовательной обмотке возбуждения.Шунтирующие двигатели постоянного тока также известны как двигатели постоянного тока с составной обмоткой. Шунтирующие двигатели постоянного тока обеспечивают отличное регулирование скорости, так как шунтирующее поле можно возбуждать отдельно от обмоток якоря. Эта особенность двигателей с параллельным прямым подключением обеспечивает упрощенное управление реверсированием.

4. Составные двигатели постоянного тока

Двигатели постоянного тока с комбинированной обмоткой или электродвигатели с комбинированной обмоткой имеют как последовательные, так и шунтирующие обмотки возбуждения. Эти типы двигателей обладают хорошим пусковым моментом, но могут иметь проблемы с управлением в приводах с регулируемой скоростью.Эти двигатели могут быть подключены к двум схемам: кумулятивно и дифференциально. Накопительный тип подключает последовательное поле, чтобы помочь шунтирующему полю, обеспечивая более высокий пусковой момент, но меньшее регулирование скорости. Дифференциальный тип имеет хорошее регулирование скорости и обычно работает с постоянной скоростью.

Подробнее о комбинированных двигателях постоянного тока Linquip

: все, что вы должны знать о комбинированных двигателях постоянного тока

Различные применения двигателей постоянного тока

Обычно двигатели постоянного тока используются в качестве приводов с регулируемой скоростью и для приложений, в которых происходят серьезные изменения крутящего момента.Теперь, когда вы знакомы с различными типами двигателей постоянного тока, давайте рассмотрим их использование и применение.

Двигатели постоянного тока серии

обычно используются там, где требуется высокий пусковой момент и возможны изменения скорости. Эти типы двигателей прямого подключения используются, например, в тяговых системах, кранах, воздушных компрессорах, пылесосах, швейных машинах и т. Д.

Электродвигатели постоянного тока

используются в приложениях, где требуется постоянная скорость и нетяжелые условия запуска.Электродвигатели с параллельным прямым подключением применяются в токарных станках, центробежных насосах, вентиляторах, воздуходувках, конвейерах, подъемниках, поворотных машинах, прядильных машинах и т. Д.

Двигатели с комбинированной обмоткой обычно используются там, где требуется более высокий пусковой момент и относительно постоянная скорость. Составные двигатели постоянного тока применяются в прессах, ножницах, конвейерах, элеваторах, прокатных станах, тяжелых проектировщиках и т. Д.

Подробнее о синхронных двигателях Linquip

: определение, принцип работы, типы и применение

Каковы преимущества двигателей постоянного тока?

По сравнению с двигателями переменного тока, которые преобразуют переменный ток в механическую энергию, двигатели постоянного тока имеют некоторые преимущества, которые вы, возможно, захотите рассмотреть.

Обычно двигатели с прямым подключением имеют более высокий пусковой момент, чем двигатели переменного тока. Эта функция упрощает перемещение вещей. Единственная проблема этой функции заключается в том, что вы не можете запустить их, если они не находятся под нагрузкой. Если двигатель постоянного тока не имеет нагрузки для запуска, он может быстро сгореть.

Другое преимущество различных типов двигателей постоянного тока состоит в том, что они генерируют более линейную кривую скорость-крутящий момент, чем двигатели переменного тока. Эта особенность на самом деле связана с графиком кривой между крутящим моментом и скоростью двигателя, которая объясняет взаимосвязь между скоростью вращения двигателя и тем, какой крутящий момент он может создать.

Еще одним преимуществом двигателей с прямым подключением является способность управлять скоростью. Если вы работаете с системами с большой нагрузкой, способность контролировать скорость становится очень важной, и от нее зависит, получите ли вы в итоге успешную работу или сгоревший двигатель. Таким образом, двигатели постоянного тока идеально подходят для любой работы, требующей постоянного или переменного крутящего момента на низкой скорости.

Еще один важный момент, который следует учитывать, заключается в том, что двигатели постоянного тока легче устанавливать по сравнению с двигателями переменного тока. Они также требуют меньше обслуживания и их легче ремонтировать.Если ваше промышленное оборудование настроено на использование двигателей постоянного тока, заменить сломанный двигатель на двигатель постоянного тока можно быстро и легко. Замена его на двигатель переменного тока заставит вас перепроектировать всю схему двигателя.

Заключительные мысли

В этой статье мы рассмотрели все важные моменты, касающиеся двигателей с прямым подключением. Различные типы двигателей постоянного тока предлагают вам различные применения, и вам нужно выбрать те, которые наиболее соответствуют вашим требованиям.

Если вы хотите купить двигатель с прямым подключением, помимо цены на двигатель постоянного тока, вам необходимо изучить все характеристики, которые мы обсуждали в этой статье, и осознанно выбрать один из них.Вы всегда можете оставаться на связи с командой Linquip для получения дальнейших консультаций. Для этого вы можете Зарегистрироваться на Linquip и получить эксклюзивную консультацию.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *