Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

TL431, что это за “зверь” такой? – Начинающим – Теория

Николай Петрушов

 


Рис. 1 TL431.

TL431 была создана в конце 70-х и по настоящее время широко используется в промышленности и в радиолюбительской деятельности.
Но не смотря на её солидный возраст, не все радиолюбители близко знакомы с этим замечательным корпусом и его возможностями.
В предлагаемой статье я постараюсь ознакомить радиолюбителей с этой микросхемой.

Для начала давайте посмотрим, что у неё внутри и обратимся к документации на микросхему, “даташиту” (кстати, аналогами этой микросхемы являются – КА431, и наши микросхемы КР142ЕН19А, К1156ЕР5х).
А внутри у неё с десяток транзисторов и всего три вывода, так что же это такое?


Рис. 2 Устройство TL431.

Оказывается всё очень просто. Внутри находится обычный операционный усилитель ОУ (треугольник на блок-схеме) с выходным транзистором и источником опорного напряжения.
Только здесь эта схема играет немного другую роль, а именно – роль стабилитрона. Ещё его называют “Управляемый стабилитрон”.

Как он работает?
Смотрим блок-схему TL431 на рисунке 2. Из схемы видно, ОУ имеет (очень стабильный) встроенный источник опорного напряжения 2,5 вольт (маленький квадратик) подключенный к инверсному входу, один прямой вход (R), транзистор на выходе ОУ, коллектор (К) и эмиттер (А), которого объединены с выводами питания усилителя и защитный диод от переполюсовки. Максимальный ток нагрузки этого транзистора до 100 мА, максимальное напряжение до 36 вольт.


Рис. 3 Цоколёвка TL431.

Теперь на примере простой схемы, изображенной на рисунке 4, разберём, как это всё работает.
Мы уже знаем, что внутри микросхемы имеется встроенный источник опорного напряжения – 2,5 вольт. У первых выпусков микросхем, которые назывались TL430 – напряжение встроенного источника было 3 вольта, у более поздних выпусков, доходит до 1,5 вольта.
Значит для того, чтобы открылся выходной транзистор, необходимо на вход (R) операционного усилителя, подать напряжение – чуть превышающее опорное 2,5 вольт, (приставку “чуть” можно опустить, так как разница составляет несколько милливольт и в дальнейшем будем считать, что на вход нужно подать напряжение равное опорному), тогда на выходе операционного усилителя появится напряжение и выходной транзистор откроется.

Если сказать по простому, TL431 – это что то типа полевого транзистора (или просто транзистора), который открывается при напряжении 2,5 вольта (и более), подаваемого на его вход. Порог открытия-закрытия выходного транзистора здесь очень стабильный из-за наличия встроенного стабильного источника опорного напряжения.


Рис. 4 Схема на TL431.

Из схемы (рис. 4) видно, что на вход R микросхемы TL431, включен делитель напряжения из резисторов R2 и R3, резистор R1 ограничивает ток светодиода.
Так как резисторы делителя одинаковые (напряжение источника питания делится пополам ), то выходной транзистор усилителя (ТЛ-ки) откроется при напряжении источника питания 5 вольт и более ( 5/2=2,5). На вход R в этом случае с делителя R2-R3 будет подаваться 2,5 вольт.

То есть светодиод у нас загорится (откроется выходной транзистор) при напряжении источника питания – 5 вольт и более. Потухнет соответственно при напряжении источника менее 5-ти вольт.
Если увеличить сопротивление резистора R3 в плече делителя, то необходимо будет увеличить и напряжение источника питания больше 5 вольт, для того, что-бы напряжение на входе R микросхемы, подаваемое с делителя R2-R3 опять достигло 2,5 вольт и открылся выходной транзистор ТЛ-ки.

Получается, что если данный делитель напряжения (R2-R3) подключить на выход БП, а катод ТЛ-ки к базе или затвору регулирующего транзистора БП, то изменением плеч делителя, например изменяя величину R3 – можно будет изменять выходное напряжение данного БП, потому что при этом будет изменяться и напряжение стабилизации ТЛ-ки (напряжение открытия выходного транзистора) – то есть мы получим управляемый стабилитрон.

Или если подобрать делитель не изменяя его в дальнейшем – можно сделать выходное напряжение БП строго фиксированным при определённом значении.

Вывод; – если микросхему использовать как стабилитрон (основное её назначение), то мы можем с помощью подбора сопротивлений делителя R2-R3 сделать стабилитрон с любым напряжением стабилизации в пределах 2,5 – 36 вольт (максимальное ограничение по “даташиту”).
Напряжение стабилизации в 2,5 вольта – получается без делителя, если вход ТЛ-ки подключить к её катоду, то есть замкнуть выводы 1 и 3.

Тогда возникают ещё вопросы. можно ли например заменить TL431 обычным операционником?
– Можно, только если есть желание конструировать, но необходимо будет собрать свой источник опорного напряжения на 2,5 вольт и подать питание на операционник отдельно от выходного транзистора, так как ток его потребления может открыть исполнительное устройство. В этом случае можно сделать опорное напряжение какое угодно (не обязательно 2,5 вольта), тогда придётся пересчитать сопротивления делителя, используемое совместно с TL431, чтобы при заданном выходном напряжении БП – напряжение подаваемое на вход микросхемы было равно опорному.

Ещё один вопрос – а можно использовать TL431, как обычный компаратор и собрать на ней, допустим, терморегулятор, или что то подобное?

– Можно, но так как она отличается от обычного компаратора уже наличием встроенного источника опорного напряжения, схема получится гораздо проще. Например такая;


Рис. 5 Терморегулятор на TL431.

Здесь терморезистор (термистор) является датчиком температуры, и он уменьшает своё сопротивление при повышении температуры, т.е. имеет отрицательный ТКС (Температурный Коэффициент Сопротивления). Терморезисторы с положительным ТКС, т.е. сопротивление которых при увеличении температуры увеличивается – называются позисторы.

В этом терморегуляторе при превышении температуры выше установленного уровня (регулируется переменным резистором), сработает реле или какое либо исполнительное устройство, и контактами отключит нагрузку (тэны), или например включит вентиляторы в зависимости от поставленной задачи.
Эта схема обладает малым гистерезисом, и для его увеличения, необходимо вводить ООС между выводами 1-3, например подстроечный резистор 1,0 – 0,5 мОм и величину его подобрать экспериментальным путём в зависимости от необходимого гистерезиса.
Если необходимо, чтобы исполнительное устройство срабатывало при понижении температуры, то датчик и регуляторы нужно поменять местами, то есть термистор включить в верхнее плечо, а переменное сопротивление с резистором – в нижнее.
И в заключении, Вы уже без труда разберётесь, как работает микросхема TL431 в схеме мощного блока питания для  трансивера, которая приведена на рисунке 6, и какую роль здесь играют резисторы R8 и R9, и как они подбираются.

Рис. 6 Мощный блок питания на 13 вольт, 22 ампера.

 

Всё про TL431 . Практическое применение | А.Барышев. Страна разных советов

Ну, не всё, конечно. Самое основное и принципиальное…

“ TL431 — интегральная схема (ИС) трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.
TL431 впервые появилась в каталогах Texas Instruments в 1977 году. В XXI веке TL431 и её функциональные аналоги выпускаются множеством производителей в различных вариантах (TL432, ATL431, KA431, LM431, TS431, 142ЕН19 и другие), различающихся топологиями кристаллов, точностными и частотными характеристиками, минимальными рабочими токами и областями безопасной работы… ” (справка из Википедии)

TL431 представляет собой трёхвыводной элемент, своего рода аналог идеального транзистора с порогом переключения ≈ 2,5 В. Современные экземпляры имеют этот порог уже на уровне 1, 5 вольт. «База», «коллектор» и «эмиттер» TL431 традиционно именуются соответственно управляющим входом (R), катодом (C) и анодом (A). Положительное управляющее напряжение Uref прикладывается между управляющим входом и анодом, а выходным сигналом служит ток катод-анод (Iка).

Здесь и далее – рисунки и схемы автора

Здесь и далее – рисунки и схемы автора

Выходной каскад TL431, непосредственно управляющий током нагрузки, представляет собой транзистор Дарлингтона npn-структуры с открытым коллектором, защищённый обратным диодом. Каких-либо “встроенных” средств защиты от перегрева или перегрузки по току не предусмотрено. Отечественным аналогом TL431 является МС К142ЕН19 ( но питающее напряжение на ней не должно быть больше 30 вольт!)

Как проверить исправность TL431?

Для этого достаточно замкнуть катод и управляющий электрод. В результате мы получим аналог стабилитрона с напряжением стабилизации 2,5 вольта.

Соответственно, проверить можно будет как обычный стабилитрон с помощью источника напряжения порядка 5 вольт или выше и обычного тестера (вольтметра) (как проверить стабилитрон тестером – статья). Температурный дрейф микросхемы (а TL431 является микросхемой) не превышает нескольких десятков милливольт как при повышенной, так и при пониженной температурах окружающей среды. Предельно допустимое напряжение на катоде ограничено значением +37 В.

Как можно использовать TL431?

1. Как линейный стабилизатор напряжения 2,5 … 38 вольт:

Балластное сопротивление Rб выбирается в зависимости от значения входного напряжения

Балластное сопротивление Rб выбирается в зависимости от значения входного напряжения

Выходное стабилизированное напряжение Uстаб в этом случае задаётся делителем на резисторах R1 и R2 (их сопротивления могут выбираться в диапазоне от 1 до 50 кОм).

2. Последовательный стабилизатор с умощнением при помощи эмиттерного повторителя:

Здесь TL431 работает в качестве стабилитрона, задающего напряжение.

3. Индикатор точного напряжения:

Когда контролируемое напряжение превышает заданное значение – светится красный светодиод, а если напряжение понижено, то горит зеленый. Нужное значение контролируемого напряжения задаётся резистором R2 (можно поставить переменный резистор на 10-50 кОм). В этом схеме можно применить и один двухцветный светодиод .

4. Универсальный датчик изменения параметров:

Синим цветом выделены различные “датчики”, которые могут быть использованы.

Синим цветом выделены различные “датчики”, которые могут быть использованы.

На схеме показано сразу несколько датчиков. Если подключить фототранзистор, то получится фотореле. Пока освещенность большая, фототранзистор открыт, и его сопротивление невелико. Поэтому напряжение на управляющем выводе TL431 будет меньше порогового, вследствие этого светодиод не светится. Настройка порога срабатывания устройства производится в этом случае резистором R1.

По мере снижения освещенности сопротивление фототранзистора увеличивается, что приводит к возрастанию напряжения на управляющем выводе. Когда это напряжение превысит пороговое (2,5 В), стабилитрон открывается и зажигается светодиод.

Если вместо фототранзистора к входу устройства подключить терморезистор, например серии ММТ, получится индикатор температуры: при понижении температуры светодиод будет загораться.

Эту же схему можно применить в качестве датчика влажности, например, земли. Для этого вместо терморезистора или фототранзистора следует подключить электроды из нержавеющей стали, которые на некотором расстоянии друг от друга воткнуть в землю. При высыхании земли до уровня, определенного при настройке, светодиод зажжется.

Если в схеме вместо цепочки со светодиодом и резистором R4 включить реле, то его контактами можно управлять мощными нагрузками, например: лампы уличного освещения, электронасосы и т.д.

Вообще, способов и вариантов практического использования этой микросхемы существует великое множество, но в одной статье невозможно “объять необъятное”. Поэтому, при желании, вы можете без труда найти нужные вам схемы в этих ваших интернетах :-))

При написании статьи использовалась информация из доступных справочных источников, в частности – публикации под авторством Никулина С.А., Повный А.В “Энциклопедия начинающего радиолюбителя” (СПб.: Наука и Техника, 2011. – 384с.)

Благодарю за уделённое время. Полезность статьи Вы можете оценить лайками или высказать своё мнение в комментариях.

С уважением, Андрей Барышев

Также, Вам может быть интересно:

Двуполярный стабилизатор на однополярной КРЕНке

Типовой металлоискатель с двумя генераторами – «биенщик»

Эквиваленты (аналоги) некоторых радиоэлементов

Простой ламповый усилитель с качественным звучанием

Как сделать вольтметр с «растянутой» шкалой на 10 … 15 вольт

Программируемый стабилитрон TL431 и несколько его применений | Электронные схемы

программируемый стабилизатор напряжения TL431

программируемый стабилизатор напряжения TL431

Наверняка многим известна такая деталь,похожа на транзистор с тремя выводами,на корпусе надпись-TL431 и обитает в основном в импульсных блоках питания.Называется эта деталь программируемый стабилизатор напряжения или регулируемый стабилитрон или стабилизатор напряжения.

распиновка расположение выводов стабилитрона tl431

распиновка расположение выводов стабилитрона tl431

У стабилитрона три вывода:катод,анод и вывод управления.Эта микросхема содержит одиннадцать транзисторов и состоит из трех основных узлов:источника опорного напряжения около 2.5В,операционного усилителя и биполярного транзистора.Применяют микросхему в основном в линейных стабилизаторах напряжения с мощным транзистором(лучше с истоковым повторителем на полевом транзисторе),в импульсных источниках питания и в качестве переключателя-компаратора.

В мощных линейных стабилизаторах напряжения микросхема применяется как стабильный источник напряжения,напряжение которого можно регулировать.Напряжение стабилизации можно изменять делителем напряжения на двух резисторах,напряжение с которых поступает на вывод управления.Напряжение стабилизации можно выставить от 2.5 до 36В при токе до 100мА.

источник опорного напряжения,операционный усилитель стабилизатора tl431

источник опорного напряжения,операционный усилитель стабилизатора tl431

В качестве компаратора микросхема нашла применение в различных индикаторах напряжения,в зарядных устройств аккумуляторов,в датчиках температуры и т.д. В индикаторе изменения напряжения один из светодиодов начнет светить при напряжении от 4 до 7.8В. Далее идет промежуток между 7.8 и 8.8 В когда светодиоды не светят, после 8.8В начинает светить другой светодиод.Изменяя сопротивление резистора R2 ,можно изменять напряжение срабатывания свечения светодиодов.

индикатор изменения напряжения на tl431

индикатор изменения напряжения на tl431

На основе полевого транзистора и TL431 можно собрать регулируемый стабилизированный источник питания от 2.5 до 12В. Регулировка напряжения на выходе производиться резистором R3,полевой транзистор установлен на радиатор.Нагрузку подключал галогенную лампу 12В*3А и устройство нормально работало с такой нагрузкой,но будет сильно нагреваться транзистор.

регулируемый источник питания 12В на полевом транзисторе и tl431

регулируемый источник питания 12В на полевом транзисторе и tl431

краткое описание, назначение, технические характеристики

Микросхема TL431 datasheet создана в конце 70-х годов, однако и по сегодняшний день она широко применяется в радиолюбительской деятельности и в промышленности. Эта микросхема представляет собой интегральный регулируемый стабилизатор, который нашел широкое применение в различных блоках питания.

Описание работы

TL431 datasheet имеет всего три вывода, однако в ее корпусе спрятано десять транзисторов (компаратор). Функции этого устройства и обычного стабилизатора похожи. Однако, благодаря подобному усложнению, микросхема имеет более высокий уровень термостабильности, а также повышенную крутизну характеристики. Главной особенностью такого прибора является способность при помощи внешнего делителя изменять напряжение стабилизации в пределах 2,5-30 В. У некоторых моделей нижний порог может составлять 1,25 В. Схема компаратора, интегрированного в изделие datasheet TL431, состоит из следующих компонентов:

  • встроенный источник (весьма стабильный) опорного напряжения 2,5 В, который подключается к инверсному входу компаратора;
  • один вход прямого уровня;
  • на выходе компаратора транзистор, эмиттер и коллектор которого объединены с контактами питания;
  • диод для защиты от переполюсовки.

Транзистор имеет максимальный ток нагрузки 100 мА, а максимальное напряжение – 36 В. Для того чтобы сработал встроенный компаратор (соответственно, открылся транзистор на выходе микросхемы), необходимо на его вход подать напряжение выше опорного. На входе микросхемы включен делитель напряжения, состоящий из двух резисторов, он делит величину напряжения пополам. Это значит, что компаратор откроется при поступлении на вход схемы 5 В, на выходе делителя же получаем 2,5 В. Если увеличивать сопротивление резистора, то необходимо также увеличивать и напряжение питания. Получается, что данная микросхема может работать в качестве стабилитрона в пределах 2,5-36 В.

Назначение и сфера применения

Не существует ни одного компьютерного блока питания, в котором бы не было микросхемы TL431 datasheet. Также ее можно встретить практически во всех импульсных маломощных источниках питания, например, в зарядках для мобильных телефонов. Эти микросхемы можно использовать не только по прямому назначению (стабилитрон для блоков питания), но и создавать на их базе различные световые индикаторы и звуковые сигнализаторы. С помощью таких приборов отслеживают множество различных параметров (но основным все-таки является напряжение). Существует множество схем на базе TL431 datasheet, благодаря которым можно собрать устройства, контролирующие уровень жидкости в емкости, влажность и температуру, давление газа или жидкости, освещенность. Перечисленные варианты – не единственно возможные, применение данной микросхемы на самом деле весьма широко, все зависит от желания конструктора.

Очень часто начинающие радиолюбители интересуются, чем можно заменить TL431. Аналог, конечно, существует. Так, можно использовать импортные изделия КА431 и отечественные устройства КР142ЕН19А, К1156ЕР5х.

Подведем итоги

Интегральная микросхема компании “TEXAS INSTRUMENTS” весьма надежна, имеет широкий рабочий диапазон, проста в эксплуатации, а самое главное, имеет доступную цену. Благодаря своим характеристикам, она выпускается более сорока лет и до сих пор остается востребованной.

Необычное применение микросхемы КР142ЕН19А – RadioRadar

   Как известно, микросхема КР142ЕН19А — прецизионный аналог стабилитрона с регулируемым напряжением стабилизации, поэтому обычно используется в различных блоках питания. Однако она способна работать и в других радиолюбительских конструкциях, о которых рассказывается в статье.


   Возможности использования указанной микросхемы в несколько иных режимах, по сравнению с основным назначением, обусловлены тем, что в ее состав входят такие узлы, как источник образцового напряжения и операционный усилитель с выходным каскадом на транзисторе. Функциональная схема ее приведена на рис. 1 [1], а условное обозначение и цоколевка выводов — соответственно на рис. 2,а и 2,б [2].

Рис.1. Функциональная схема КР142ЕН19А

Рис.2. КР142ЕН19А: а) Условное обозначение, б) Цоколевка выводов

   Схема простейшего усилительного каскада, который можно выполнить на указанной микросхеме, приведена на рис. 3, а его передаточная характеристика — на рис. 4. Если нагрузочный резистор R2 выбран сравнительно большого сопротивления (несколько кило-ом), характеристика оказывается пологой из-за того, что узлы микросхемы потребляют ток около 1 мА. В случае же использования резистора сопротивлением менее килоома характеристика станет крутой и более линейной.

Рис.3. Усилительный каскад

Рис.4. Передаточная характеристика усилительного каскада

   При работе микросхемы в линейном режиме она может быть использована в стабилизаторе напряжения (ее основное назначение), стабилизаторе тока, различных генераторах и усилителях. В нелинейном режиме она выполняет функцию компаратора с напряжением срабатывания около 2,5 В. Причем такой компаратор обладает стабильным напряжением срабатывания, определяемым источником образцового напряжения.

   Несколько слов о самой микросхеме. К сожалению, один из ее недостатков, ограничивающий сферы применения, — небольшая допустимая мощность рассеяния. Так, при напряжении стабилизации 20 В максимальный ток не должен превышать 20 мА. Устранить этот недостаток нетрудно “умощнением” микросхемы с помощью транзистора (рис. 5). Основные характеристики будут определяться микросхемой, а максимальные ток и мощность — транзистором. Для указанного на схеме они составляют соответственно 4 А и 8 Вт. В случае, если на корпусе конструкции минусовое напряжение, транзистор допустимо смонтировать непосредственно на нем.

Рис.5. Умощнение микросхемы с помощью транзистора (VT1)

   На рис. 6,а приведена схема маломощного стабилизатора тока. Работает он так. Ток нагрузки протекает через резистор R1. Как только напряжение на резисторе превысит 2,5 В, ток через микросхему и резистор R3 возрастет. Напряжение на нагрузке уменьшится до такого значения, при котором напряжение на входе управления микросхемы установится равным 2,5В.

Рис.6. а) Маломощный стабилизатор тока, б) Стабилизатор с транзисторным ‘усилителем’ тока

   Стабилизируемый ток задается резистором R1, сопротивление которого определяют по формуле
    R1 = 2,5/Iн,
где 2,5 — падение напряжения на резисторе, В; Iн — ток через нагрузку, А, который не должен превышать 0,1 А. Зная напряжение питания Uпит и указанный максимальный ток нагрузки, подсчитывают сопротивление резистора R3:
    R3 = (Uпит – 2,5)/Iн.

   Причем напряжение питания следует выбирать таким, чтобы на нагрузке было обеспечено требуемое напряжение, поэтому подобное устройство рекомендуется использовать, например, для зарядки аккумуляторов емкостью до 0,75 А-ч.

   Эта формула нужна для определения минимального сопротивления резистора R3 для случая, когда Rн = 0 (например, КЗ). Тогда стабилизация будет, но она не нужна.

   Гораздо большие возможности у другого стабилизатора (рис. 6,б) с транзисторным “усилителем” тока. Здесь сопротивление резистора R1 определяют по вышеприведенной формуле, а мощность его — исходя из протекающего максимального тока нагрузки, который может достигать 4 А с указанным на схеме транзистором.

   Наличие у микросхемы высокой крутизны и удовлетворительной линейности передаточной характеристики позволяет выполнить на ее основе усилитель ЗЧ, нагрузкой которого может стать динамическая головка сопротивлением не менее 50 Ом (рис. 7,а). Хотя он не отличается высокой экономичностью, но весьма прост в изготовлении и обеспечивает выходную мощность до 150 мВт, достаточную для озвучивания небольшого помещения.

Рис.7. а) Усилитель ЗЧ, б) Предварительный усилитель

   В другом усилителе (рис. 7,б), который обладает усилением около 100 раз (40 дБ) и может стать предварительным, в качестве нагрузки использован резистор R4. Коэффициент усиления здесь регулируют подстроенным резистором R1, а подбором резистора R3 в обоих усилителях устанавливают оптимальную рабочую точку, обеспечивающую максимальное неискаженное выходное напряжение.

   Большой коэффициент усиления микросхемы КР142ЕН19А позволяет собирать на ней различные генераторы. В качестве примера на рис.8,а приведена схема RC-генератора, частота выходного сигнала которого близка к 1000 Гц, — она задается фазосдвигающей цепочкой C1R3C2R4C4. Цепь обратной связи R1R2C3R5 обеспечивает автоматическую установку режима по постоянному току.

   На рис. 8,б показана схема другого генератора ЗЧ и одновременно акустического сигнализатора. Частотозадающим элементом в нем служит пъезоизлучатель BQ1 типа ЗП-1 (подойдет другой аналогичный). Отрицательная обратная связь по напряжению через резистор R1 обеспечивает режим по постоянному току. Генерация возникает на резонансной частоте пъезоизлучателя.

Рис.8. а) RC-генератор, б) Генератор ЗЧ и одновременно акустический сигнализатор

   Преобразователь сигнала синусоидальной формы в прямоугольную допустимо выполнить по схеме, приведенной на рис. 9,а. Его чувствительность устанавливают подстроечным резистором R1 от нескольких милливольт до 2,5 В. Питают преобразователь напряжением 4…30 В, при этом амплитуду выходного сигнала можно получить от 1 В почти до половины напряжения питания, а на вход подавать сигнал частотой до 50 кГц.

Рис.9. а) Преобразователь сигнала синусоидальной формы в прямоугольную, б) Мультивибратор на двух микросхемах

   На двух микросхемах удастся построить мультивибратор (рис. 9,б), на выходе которого формируется сигнал прямоугольной формы. Частота колебаний определяется емкостью конденсатора С1, номиналами резисторов R3, R4 и может лежать в широких пределах — от долей герц до десятков килогерц.

   Конечно, возможности “нестандартного” использования микросхемы КР142ЕН19А не ограничиваются приведенными примерами.

Источники

  1. Янушенко Е. Микросхема КР142ЕН19.— Радио, 1994, №4, с. 45, 46.
  2. Нечаев И. Стабилизаторы напряжения с микросхемой КР142ЕН19А. — Радио, 2000, №6, с. 57, 58.

Автор: И.НЕЧАЕВ, г. Курск

Чем отличаются сборка 431 от 331. Стабилитрон TL431: схема включения

Есть много известных, знаковых, новаторских и одновременно простых конструкций интегральных схем, которые превзошли ожидания своих создателей, стали популярными и даже как-то повлияли на развитие электроники. Одна из них управляемый стабилитрон tl431. Сделанная в 1978 году микросхема tl431 до сих пор широко применяется во многих профессиональных и любительских проектах.

Эксплуатационные характеристики tl431

Чтобы составить представление о конструкции tl431, надо изучить datasheet устройства или описание микросхемы на русском языке, которое можно найти в сети.

Часто tl431-ая система представлена в виде компаратора или конкретного транзистора с опорным напряжением 2,5 В и напряжением насыщения около 2 В. Транзистор открывается в момент достижения напряжения между анодной (Anode) и входной (Reference) клеммой 2,5 В, ток начинает протекать от анода к катоду. Если напряжение ниже величины открытия, транзистор запирается. Интерпретация схемы тл в виде такого транзистора облегчает понимание ее работы.

Фактически, это интегральная схема с расширенной внутренней структурой, состоящей из нескольких транзисторов, резисторов и конденсаторов.

В «даташите» представлены различные параметры системы, главными рабочими характеристиками являются:

  1. Максимальное катодное напряжение 36 В;
  2. Источник очень стабилен, имеет температурный дрейф обычно около 3-7 мВ;
  3. Входной ток (Ref) составляет 1-5 мкА;
  4. Минимальное значение катодного тока рекомендуется 1 мА, максимальное 100 мА.

Преимущества tl431 :

  • регулируемое напряжение;
  • потребляет мало энергии;
  • защищает аккумулятор от глубокой разрядки;
  • может использоваться, как регулируемый Z-диод и как управляемый усилитель;
  • обладает только тремя контактами;
  • низкая стоимость.

Цоколевка микросхемы зависит от фирмы-изготовителя и может различаться. Если радиолюбители выпаивают tl431 из какой-либо платы, то распиновка будет на ней видна.

Цоколёвка tl431 с несколькими разновидностями исполнения представлена на рисунке.

Схема включения

Для tl431 схема включения зависит от того, для каких целей предназначается устройство. Простейшее его применение стабилизация напряжения заданной величины.

На вход tl431 подключается делитель напряжения, выполненный с помощью пары резисторов. С учетом технических данных микросхемы можно вычислить требуемые сопротивления.

Допустим, на выходе необходимо получить 5 В. Расчеты ведутся на основании формулы:

Vout = (1 + R1/R2) x Vref.

Полная формула записывается в виде:

Vout = (1 + R1/R2) x Vref + (Iref x R1), но вторую часть уравнения можно игнорировать, так как это очень маленькое значение, хотя все будет зависеть от используемой схемы.

  1. 5 В = (1 + R1/R2) х 2,5;
  2. R1/R2 = 1.

Так как соотношение сопротивлений равно 1, должны использоваться два резистора с одинаковым сопротивлением.

Второй пример для выходного напряжения 2,75 В:

  1. 2,75 В = (1 + R1/R2) х 2,5;
  2. R1/R2 = 0,1.

Например, если один резистор взят сопротивлением 1 кОм, то другой должен быть 10 кОм.

В результате опорное напряжение сохраняется на уровне 2,5 В, останавливая свой выбор на различных сопротивлениях делителя, можно создать стабилизатор заданного значения напряжения.

Важно! В случае необходимости стабилизировать напряжение 2,5 В делитель не используется, а входной вывод tl431 соединяется с катодом.

Микросхема tl431 находит применение и как стабилизатор тока. Здесь для расчета сопротивления при желаемом токе применяется формула:

R2 = Vref/Io, где:

  • R2 – сопротивление,
  • Io – желаемый ток.

Так как напряжение Vref = 2,5 В, то R2 = 2,5/Io. При этом через сопротивление R2 выполняется обратная связь для сохранения уровня входного напряжения Vref.

Схемы с датчиками

Во многих схемах необходимо контролировать параметры при помощи различных датчиков (фоторезисторов, терморезисторов). Общая схема получается похожей, как для делителя, за исключением замены одного из сопротивлений. На его месте устанавливается, например, терморезистор, а катод tl431 подключается к катушке реле. Значение температуры устанавливается при помощи потенциометра. Когда температура превышает предел срабатывания, соотношение сопротивлений изменяется, напряжение на контакте управления tl431 превышает уровень открывания, ток пропускается на катушку реле, имеющую замыкающие контакты в цепи нагрузки.

Зарядное устройство

Для зарядных устройств важно ограничивать параметры тока и напряжения заряда во избежание повреждения аккумуляторов. Такая схема легко может быть реализована с применением интегральной микросхемы tl 431 и других элементов:

  1. Если выходное напряжение не достигло показателя 4,2 В, регулирование зарядного тока осуществляется посредством транзисторов и резисторов;
  2. По достижении значения 4,2 В выходное напряжение ЗУ контролируется tl431, не позволяя ему повышаться дальше.

Проверка микросхемы

Радиолюбители задаются вопросом, как проверить tl431 мультиметром? Простая прозвонка микросхемы невозможна, ведь она содержит много элементов. Но есть способ, как проверить работоспособность устройства, собрав специальную схему из резисторов, кнопки и самой ТЛ-схемы. Подключение мультиметра на выход схемы теперь поможет определить исправность tl431.

Сразу оговорюсь, что данная статья не панацея. У кого-то это может не пройти.

Для начала я расскажу о TL431, и для чего она служит. TL431 это управляемый стабилитрон с помощью которого можно получить стабилизированное напряжения в широких пределах от 2,5 вольта до 36 вольт. Применяя эту микросхему можно сделать источник опорного напряжения для блоков питания, а также для различных измерительных схем.

Рисунок взят из даташита компании ON Semiconductor

Ниже приведены два варианта даташит для этой микросхемы

  1. Даташит компании ON Semiconductor https://www.onsemi.com/pub/Collateral/TL431-D.PDF
  2. Даташит компании Texas Instruments http://www.ti.com/lit/ds/symlink/tl431.pdf

Цоколевка этой микросхемы наилучшим образом отображена в даташите компании ON Semiconductor

В даташите Texas Instruments обнаружена одна небольшая деталь

На всех рисунках есть одна надпись «top view» это переводится как «вид сверху» при невнимательном просмотре даташит, не зная, что это может обозначать, можно неправильно распаять на плате.

В одной из своих схем я применил микросхему TL431, и она оказалась неисправной. Поискав по форумам я нашел способ проверки этой микросхемы. А в некоторых местах я видел как вызванивают эту микросхему с помощью мультиметра но, увы, все это не то. Я тоже сначала попытался проверить мультиметром но сразу отложил в сторону это мероприятие. И решил попробовать проверить с помощью универсального тестера компонентов , который был ранее приобретен на алиэкспресс.

Во время проверки составил таблицу. Сначала проверил в режиме двухполюсника (если в таблице указаны два вывода, просто необходимо объединить оба вывода вместе).

Результаты измерения первого экземпляра

Измерение 1 – REF; 2 – катод.

Измерение 1 – анод; 2 – катод.

Измерение 1 – REF, катод; 2 – анод.

Измерение 1 – REF; 2 – катод, анод.

Измерение 1 – REF, 2 – анод, 3 – катод.

Результаты измерения второго экземпляра.

Небольшая разница присутствует. Глядя на таблицу замечаешь определенную закономерность. Например, в 4 строке это фактически режим работы TL431 для получения 2,5 вольта. Но самое интересное режим измерения в режиме трехполюсника. В одном случае определяется как транзистор, а во втором случае как отсутствует деталь. Самое интересное в случае когда транзистор определяется: определятся транзистор структуры NPN, вывод REF определятся как эмиттер, анод как база, а катод как коллектор. Между REF и катодом диод катод, которого направлен в сторону катода.

На основании этих данных уже можно судить исправлена микросхема или нет, а также определить цоколевку.

TL431- это интегральный стабилитрон. В цепи он играет роль источника опорного напряжения. Используется представленный элемент, как правило, в блоках питания. Устройство у стабилитрона довольно простое. Всего у модели используется три выхода. В зависимости от модификации в корпусе могут располагаться до десяти транзисторов. Отличительной чертой TL431 считается хорошая термостабильность.

Схема включения на 2.48 В

У стабилитрона TL431 схема включения на 2.48 В имеет одноступенчатый преобразователь. В среднем рабочий ток в системе достигает уровня 5.3 А. Резисторы для передачи сигнала могут использоваться с различной проводимостью напряжения. Точность стабилизаций в указанных устройствах колеблется в районе 2 %.

Для повышения чувствительности стабилитрона используются различные модуляторы. Как правило, подбираются именно дипольного типа. В среднем емкость их не более 3 пФ. Однако в данном случае многое зависит от проводимости тока. Чтобы снизить риск перегрева элементов, используются расширители. Подключение стабилитронов осуществляется через катод.

Включение устройства на 3.3 В

У стабилитрона TL431 схема включения на 3.3В подразумевает использование одноступенчатого преобразователя. Резисторы для передачи импульса применяются селективного типа. Еще у стабилитрона TL431 схема включения 3.3 вольта имеет модулятор небольшой емкости. Чтобы снизить риск применяют предохранители. Устанавливаются они, как правило, за стабилитронами.

Для усиления сигнала не обойтись без фильтров. В среднем пороговое напряжение колеблется в районе 5 Вт. Рабочий ток системы составляет не более 3.5 А. Как правило, точность стабилизации не превышает 3%. Также важно отметить, что подключение стабилитрона может осуществляться через векторный переходник. В этом случае транзистор подбирается резонного типа. В среднем емкость модулятора должна составлять 4.2 пФ. Тиристоры используются как фазового, так и открыто типа. Чтобы увеличить проводимость тока, необходимы триггеры.

На сегодняшний день указанные элементы оснащаются усилителями разной мощности. В среднем пороговое напряжение в системе достигается 3.1 Вт. Показатель рабочего тока колеблется в районе 3.5 А. Также важно учитывать выходное сопротивление. Представленный параметр обязан составлять не более 80 Ом.

Подключение к цепи 14 В

У стабилитрона TL431 схема включения 14V подразумевает использование скалярного преобразователя. В среднем пороговое напряжение равняется 3 Вт. Как правило, рабочий ток не превышает 5 А. При этом допустимая перегрузка колеблется в районе 4 Ач. Также у стабилитрона TL431 схема включения 14V имеет усилители как однополюсного, так и двухполюсного типа. С целью улучшения проводимости не обойтись без тетрода. Использоваться он может с одним или двумя фильтрами.

Стабилитроны серии A

Для блоков питания и инверторов используются серии A TL431. Как проверить правильность подключения элемента? На самом деле это можно сделать при помощи тестера. Показатель порогового сопротивления обязан составлять 80 Ом. Работать устройство способно через преобразователи одноступенчатого и векторного типа. Резисторы в данном случае используются с обкладкой.

Если говорить про параметры, то цепи не превышает 5 Вт. В данном случае рабочий ток колеблется в районе 3.4 А. Чтобы снизить риск перегревов транзисторов, применяются расширители. Для моделей серии A они подходят только коммутируемого типа. Чтобы увеличить чувствительность устройства, необходимы мощные модуляторы. В среднем параметр выходного сопротивления не превышает 70 Ом.

Устройства серии CLP

Стабилитронов TL431 схема включения имеет одноступенчатые преобразователи. Встретить модель CLP можно как в инверторах, так и во многих бытовых устройствах. Пороговое напряжение стабилитрона колеблется в районе 3 Вт. Непосредственно рабочий ток составляет 3.5 А. Точность стабилизации у элементов не превышает 2.5%. Для регулировки выходного сигнала используются модуляторы разных типов. Триггеры в данном случае подбираются с усилителями.

Стабилитроны серии ACLP

Стабилитронов TL431 схема включения имеет векторные или скалярные преобразователи. Если рассматривать первый вариант, то уровень рабочего тока составляет не более 4 А. В данном случае точность стабилизации составляет примерно 4%. Для усиления сигнала используются триггеры, а также тиристоры.

Если рассматривать схему подключения со скалярным преобразователем, то модуляторы применяются с емкостью около 6 пФ. Непосредственно транзисторы используются резонансного типа. Для усиления сигнала подойдут обычные триггеры. Также важно отметить, что показатель чувствительности устройства колеблется в районе 20 мВ.

Модели AC

Для дипольных инверторов часто используются чери АС стабилитроны TL431. Как проверить работоспособность подсоединенного элемента? Сделать это можно при помощи обычного тестера. Параметр выходного сопротивления обязан составлять не более 70 Ом. Также важно отметить, что устройства этой серии включаются через векторный преобразователь.

В данном случае скалярные модификации не подходят. Во многом это связано с низким порогом проводимости тока. Также важно отметить, что показатель номинального напряжения не превышает 4 Вт. Рабочий ток в цепи поддерживается на уровне 2 А. Для понижения тепловых потерь используются различные тиристоры. На сегодняшний день выпускаются расширительные и фазовые модификации.

Модели с корпусом КТ-26

В бытовых электроприборах часто встречаются с корпусом КТ-26 стабилитроны TL431. Схема включения подразумевает использование дипольных модуляторов. Производятся они с различной проводимостью тока. Параметр предельной чувствительности системы колеблется в районе 430 мВ.

Непосредственно выходное сопротивление достигает не более 70 Ом. Триггеры в данном случае используются лишь с усилителями. Для уменьшения риска возникновения коротких замыканий применяются фильтры открытого и закрыто типа. Непосредственно подключение стабилитрона осуществляется через катод.

Корпус КТ-47

TL431 (стабилизатор) с корпусом КТ-47 можно встретить в блоках питания различной мощности. Схема включения элемента подразумевает использование векторных преобразователей. Модулятор для цепей подходит емкостью до 4 пФ. Непосредственно выходное сопротивление устройств составляет примерно 70 Ом. Для улучшения проводимости стабилитронов используются тетроды только лучевого типа. Как правило, точность стабилизации не превышает 2%.

Для блоков питания на 5 В

В блоках питания 5 В включение TL431 осуществляется через усилители с различной проводимостью тока. Непосредственно преобразователи используются одноступенчатого типа. Также в некоторых случаях применяются векторные модификации. В среднем выходное сопротивление составляет около 90 Ом. Показатель точности стабилизации в устройствах составляет 2%. Расширители для блоков используются как коммутируемого, так и открыто типа. Триггеры можно использовать только с фильтрами. На сегодняшний день они производятся с одним и несколькими элементами.

Схема включения для блоков на 10 В

Схема включения стабилитрона в блок питания подразумевает использование одноступенчатого либо векторного преобразователя. Если рассматривать первый вариант, то модулятор подбирается с емкостью на уровне 4 пФ. В данном случае триггер используется лишь с усилителями. Иногда для повышения чувствительности стабилитрона применяются фильтры. Пороговое напряжение цепи в среднем составляет 5.5 Вт. Рабочий ток системы колеблется в районе 3.2 А.

Параметр стабилизации, как правило, не превышает 3%. Если рассматривать схему с векторным преобразователем, то тут не обойтись без трансивера. Использоваться он может либо открытого, либо хроматического типа. Модулятор устанавливается с емкостью на уровне 5.2 пФ. Расширитель встречается довольно редко. В некоторых случаях он способен повысить чувствительность стабилитрона. Однако важно учитывать, что тепловые потери элемента значительно возрастают.

Схема для блоков на 15 В

Стабилитрона TL431 схема включения через блок на 15 В осуществляется при помощи одноступенчатого преобразователя. В свою очередь, модулятор подходит с емкостью на уровне 5 пФ. Резисторы применяются исключительно селективного типа. Если рассматривать модификации с триггерами, то параметр порогового напряжения не превышает 3 Вт. Точность стабилизации находится в районе 3%. Фильтры для системы подходят как открытого, так и закрытого типа.

Также важно отметить, что в цепи может устанавливаться расширитель. На сегодняшний день модели выпускаются в основном коммутируемого типа. У модификаций с трансиверами проводимость тока не превышает 4 мк. В данном случае показатель чувствительности стабилитрона колеблется в районе 30 мВ. Выходное сопротивление при этом достигает примерно 80 Ом.

Для автомобильных инверторов

Для часто используются серии АС стабилитроны TL431. Схема включения в данном случае подразумевает использование двухразрядных триодов. Непосредственно фильтры применяются открытого типа. Если рассматривать схемы без расширителя, то пороговое напряжение колеблется в районе 10 Вт.

Непосредственно рабочий ток составляет 4 А. Параметр перегрузки системы допускается в 3 мА. Если рассматривать модификации с расширителями, то в данном случае устанавливаются высокоемкостные модуляторы. Резисторы используются стандартно селективного типа.

В некоторых случаях применяются разной мощности усилители. Параметр порогового напряжения, как правило, не превышает 12 Вт. Выходное сопротивление системы может колебаться от 70 до 80 Ом. Показатель точности стабилизации равняется примерно 2%. Рабочий ток у систем составляет не более 4.5 А. Непосредственно подключение стабилитронов происходит через катод.

При ремонте была явная необходимость в первую очередь проверить исправность источника опорного напряжения, но не проверял, откладывал на потом и занимался тем, с чем можно было повременить. Понимал, что «туплю», но ничего поделать не мог. Тестера для проверки TL431 не было. В очередной раз подпаивать «на коленке» детальки проверочной схемы уже было невмоготу. И как не хотелось отвлекаться от начатого ремонта, но пришлось. Душу согревало, что в следующий раз, когда понадобиться проверить Т-эльку проблем не будет.

Схема электрическая тестера

В виртуальном пространстве интернета схем для такой проверки множество. Разницу между ними усмотрел в том, что одни сообщают – сигнализируют о исправности электронного компонента миганием – загоранием светодиодов, другие создают предпосылки для измерения напряжения на выходе, по величине которого и следует судить о исправности TL431. С одной стороны первые вроде как самодостаточны, в дополнение же ко вторым необходим вольтметр. С другой стороны первым нужно «верить на слово», вторые же сами ничего «не решают», а выдают объективную информацию для принятия решения. К тому-же вольтметр всегда под рукой. Выбрал второй вариант, он к тому же ещё и проще, «цена вопроса» – три постоянных резистора.

За подходящим корпусом, для помещения в него всего необходимого, дело не встанет, на сайте есть статья «Изготовление сетевой вилки с нестандартным корпусом». Начал с оборудования верхней крышки корпуса, для этого понадобились трёхвыводная панелька, кнопка нажимного действия и тетрадный лист в клеточку на котором был начерчен круг в соответствии с диаметром крышки и шилом намечены места установки панельки и кнопки. Вырезанный круг уже стал шаблоном, был помещён на крышку и на ней произведена шилом соответствующая разметка. Далее, тем-же шилом, были проколоты отверстия необходимого диаметра под контакты панельки и кнопки.

Так на верхнюю крышку установлены панелька и кнопка (их контакты загнуты изнутри и пропаяны оловом), на среднюю часть корпуса, в качестве разъёма питания, встал «тюльпан», на нижней крышке разместились штыри для подключения к мультиметру. То, что в качестве корпуса выступили некоторые части (две крышки и горлышко) пластиковой ёмкости (молочной бутылки) вероятно ясно и без пояснений.

Осталось с внутренней стороны крышки, на контактах панельки и кнопки смонтировать саму схему, в первую очередь установил три резистора, во вторую были припаяны все соединительные провода. Проводов получилось неожиданно много, тут спешить не надо – немудрено и перепутать.

В этот раз не стал для дополнительного крепления применять клей, а «посадил» всё на меленькие саморезы. По три штуки на каждом элементе. Так более ремонтопригодно, хотя и ремонтировать тут навряд ли, что-то понадобиться. Пробник собран, раз и на всегда. Осталось проверить его работу и соответственно исправность имеющихся в наличии источников опорного напряжения TL431.

Видео

Раз дело «выгорело» и пробник теперь есть, осталось помнить об этом и суметь в случае необходимости быстро его идентифицировать из числа других в таких, же корпусах, что лежат в предназначенной для этого коробке. А ещё нужно помнить, что рабочее напряжение пробника 12 вольт, что при не подключённом TL431 мультиметр будет показывать напряжение 10 вольт, при подключённом 5 вольт, а при нажатой кнопке 2,5 вольта и вдобавок правильно установить проверяемый компонент в панельку. А можно особо и не запоминать, а оформить соответствующим образом лицевую панель. Автор проекта: Babay iz Barnaula .

Обсудить статью ПРОВЕРКА ИСТОЧНИКА ОПОРНОГО НАПРЯЖЕНИЯ TL431

TL 431 это программируемый шунтирующий регулятор напряжения. Хотя, эта интегральная схема начала выпускаться в конце 70-х она до сих пор не сдаёт своих позиций на рынке и пользуется популярностью среди радиолюбителей и крупных производителей электротехнического оборудования. На плате этого программируемого стабилизатора находится фоторезистор, датчик измерения сопротивления и терморезистор. TL 431 повсеместно используются в самых разных электрических приборах бытовой и производственной техники. Чаще всего этот интегральный стабилитрон можно встретить в блоках питания компьютеров, телевизоров, принтеров и зарядок для литий-ионных аккумуляторов телефонов.

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи . При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания . Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока . В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн , они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Реверс-инжиниринг TL431, крайне распространенной микросхемы, о которой вы и не слышали

Кен, как и планировал, провёл реверс-инжиниринг микросхемы по фотографиям, сделанным BarsMonster. Барс в статье упомянул своё общение с Кеном, но этой переводимой статьи тогда еще не было.

Фото кристалла интересной, но малоизвестной, микросхемы TL431, используемой в блоках питания, даёт возможность разобраться в том, как аналоговые схемы реализуются в кремнии. Несмотря на то, что схема на фото выглядит как какой-то лабиринт, сама микросхема относительно проста, и может быть исследована без большого труда. В своей статье я попытаюсь объяснить каким образом транзисторы, резисторы и другие радиодетали запакованы в кремний для выполнения своих функций.


Фото кристалла TL431. Оригинал Zeptobars.

TL431 является «программируемым прецизионным источником опорного напряжения» [1] и обычно используется в импульсных источниках питания для реализации обратной связи в случае, когда выходное напряжение слишком велико или, наоборот, мало. Используя участок цепи, называемый бандгапом (источник опорного напряжения, величина которого определяется шириной запрещённой зоны), TL431 предоставляет стабильный источник опорного напряжения в широком температурном диапазоне. На блок-схеме TL431 видны 2.5-вольтовый источник опорного сигнала и компаратор, но, глядя на фото кристалла, можно заметить, что внутреннее устройство микросхемы отличается от чертежа.


Блок-схема TL431, взятая из даташита.

У TL431 длинная история: он был выпущен еще в 1978 [2] году и с тех пор побывал во множестве устройств. Он помогал стабилизировать напряжение в блоке питания для Apple II, а сейчас используется в большинстве ATX блоков питания [3] и даже в зарядных устройствах для iPhone и прочих девайсов. И MagSafe-коннекторы, и адаптеры для ноутбуков, и микрокомпьютеры, LED драйверы, блоки питания для аудиотехники, видеоприставки, телевизоры [4]. Во всей этой электронике присутствует TL431.

Фотографии ниже показывают TL431 внутри шести различных БП. TL431 выпускается самых разных форм и размеров. Два наиболее популярных форм-фактора показаны ниже. [5] Возможно, причина того, что TL431 не привлекает особого внимания, заключается в том, что он больше похож на обычный транзистор чем на микросхему.


Шесть примеров схем БП, использующих TL431. Верхний ряд: дешёвый 5-вольтовый БП, дешёвое ЗУ для телефона, ЗУ для Apple iPhone (на фото можно еще заметить GB9-вариацию). Нижний ряд: MagSafe адаптер, ЗУ KMS USB, Dell ATX БП (на переднем плане — оптопары)

Как же радиоэлектронные компоненты выглядят в кремнии?

TL431 очень простая микросхема, и вполне возможно понять её логику на кремниевом уровне пристальным изучением фото. Я покажу, каким же образом транзисторы, резисторы, перемычки и конденсаторы реализованы. А затем уже проведу полный реверс-инжиниринг данной микросхемы.

Реализация транзисторов различных типов

Микросхема использует как n-p-n, так и p-n-p биполярные транзисторы (в отличие от микросхем навроде

6502

, в которых использовались MOSFET). Если вы изучали электронику в школе или в университете, вы возможно видели схему n-p-n транзистора (вроде той, что ниже), на которой показаны коллектор (обозначен как C), база (B) и эмиттер (E). Транзистор изображен в виде своеобразного бутерброда с P-слоем между двумя N-слоями, такое расположение слоёв характеризует транзистор как n-p-n. Однако, выясняется, что в микросхеме нет совершенно ничего схожего с этой схемой. Даже база находится не в центре!



Символьное обозначение и структура n-p-n транзистора.

На фотографии ниже можно рассмотреть один из транзисторов TL431. Цветовые различия в розовых и фиолетовых регионах вызваны разным легированием кремния, для формирования N и P областей. Светло-желтые области — металлический слой микросхемы, располагающийся поверх кремниевого. Такие области нужны для обеспечения возможности подключения проводников к коллектору, эмиттеру и базе.

В нижней части фотографии нарисовано поперечное сечение, примерно изображающее как конструируется транзистор. [6] Можно заметить, что на нём куда больше деталей, чем в n-p-n бутерброде из книг, Однако, если внимательно присмотреться, то в поперечном сечении под эмиттером (E) можно найти то самое n-p-n, которое формирует транзистор. Проводник эмиттера соединяется с N+ кремнием. Под ним располагается P-слой, подключенный к контакту базы. Еще ниже — слой N+, соединенный с коллектором (не напрямую). [7] Транзистор заключен в P+ кольцо для изоляции от соседних компонентов. Так как большинство транзисторов в TL431 принадлежат к n-p-n типу, то, после того как разобрались в первый раз, их очень просто находить на фотографии и определять нужные контакты.


n-p-n транзистор из фотографии кристалла TL431, и его структура в кремнии.

Выходной n-p-n транзистор намного больше остальных, так как ему необходимо выдерживать полную нагрузку по току. Большинство транзисторов работает с микроамперами, а этот выходной транзистор поддерживает ток до 100 миллиампер. Для работы с такими токами он и сделан более крупным (занимает 6% всего кристалла), и имеет широкие металлические коннекторы на эмиттере и коллекторе.

Топология выходного транзистора сильно отличается от других n-p-n транзисторов. Он создаётся, так сказать, боком, планарная структура вместо глубинной, и база располагается между эмиттером и коллектором. Металл слева подсоединён к десяти эмиттерам (синеватый кремний N-типа), каждый из которых окружен розовым P-слоем, который является базой (средний проводник). Коллектор (правая часть) имеет только один большой контакт. Проводники эмиттера и базы образуют вложенную «гребёнку». Обратите внимание, что металл коллектора становится шире сверху вниз для того, чтобы поддерживать большие токи на нижней части транзистора.



Транзисторы p-n-p типа имеют совершенно другое строение. Они состоят из округлого эмиттера (P), окруженного кольцом базы (N), которую, в свою очередь, обступает коллектор (P). Таким образом, получается горизонтальный бутерброд, вместо обычной вертикальной структуры n-p-n транзисторов. [8]

Схема снизу показывает один из таких p-n-p транзисторов, а поперечное сечение изображает кремниевую структуру. Стоит отметить то, что хотя металлический контакт для базы находится в углу транзистора, он электрически соединен через N и N+ области с активным кольцом, пролегающим между коллектором и эмиттером.


Структура p-n-p транзистора.

Реализация резисторов в микросхеме

Резисторы являются ключевым компонентом почти в любой аналоговой схеме. Они реализованы как длинная полоса легированного кремния. (Похоже, что в этой микросхеме использовался кремний P-типа). Различные сопротивления достигаются использованием различной площади материала — сопротивление пропорционально площади.

Снизу заметно три резистора — их формируют три длинных горизонтальных полоски кремния. Желтоватые металлические проводники проходят через них. Места соединения металлического слоя и резистора выглядят как квадраты. Расположение этих контактов и задаёт длину резистора и, соответственно, его сопротивление. К примеру, сопротивление нижнего резистора немного больше остальных потому, что контакты расположены на большем расстоянии. Верхние два резистора объединены в пару металлическим слоем сверху слева.


Резисторы.

Резисторы в микросхемах имеют очень плохой допуск — сопротивление может различаться на 20% между микросхемами из-за вариаций в производственном процессе. Очевидно, что это серьезная проблема для таких точных микросхем, как TL431. Поэтому TL431 спроектирован таким образом, что важной характеристикой является не конкретное сопротивление, а отношение сопротивлений. Конкретные значения сопротивлений не сильно важны, если сопротивления меняются в одной пропорции. Вторым методом уменьшения зависимости от эффекта изменчивости является сама топология микросхемы. Резисторы располагаются на параллельных дорожках одинаковой ширины для снижения эффекта от любой асимметрии в сопротивлении кремния. Кроме того, они размещены рядом друг с другом для минимизации отклонений в свойствах кремния между разными частями микросхемы. Помимо всего этого, в следующей главе я расскажу о том, как перед корпусированием кристалла можно настроить сопротивления для регулирования производительности микросхемы.

Кремниевые перемычки для настройки сопротивлений

Вот чего я не ожидал в TL431, так это перемычек для подстройки сопротивлений. Во время производства микросхем эти перемычки могут быть удалены для того, чтобы отрегулировать сопротивления и повысить точность микросхемы. На некоторых

более дорогих микросхемах

есть сопротивления, которые могут быть удалены лазером, просто выжигающим часть резистора перед корпусированием. Точность настройки таким методом куда выше чем у перемычек.

Цепь с перемычкой показана на фото снизу. Она содержит параллельных два резистора (на фото они выглядят как один элемент) и перемычку. В обычном состоянии, эта перемычка шунтирует резисторы. При изготовлении микросхемы, её характеристики могут быть замерены, и если требуется большее сопротивление, то два щупа подсоединяются к площадкам и подаётся высокий ток. Этот процесс сжигает перемычку, добавляя немного сопротивления цепи. Таким образом, сопротивление всей схемы может быть немного подкорректировано для улучшения характеристик микросхемы.


Перемычка для настройки сопротивления

Конденсаторы

TL431 содержит всего два внутренних конденсатора, но они выполнены в двух совершенно разных манерах.

Первый конденсатор (под текстом «TLR431A») сформирован обратносмещенным диодом (красноватые и фиолетовые полосы). У инверсного слоя в диоде есть ёмкостное сопротивление, которое может быть использовано для формирования конденсатора (подробнее). Главное ограничение такого типа конденсаторов в том, что ёмкостное сопротивление разнится в зависимости от напряжения, потому что меняется ширина инверсного слоя.


Конденсатор, образованный p-n переходом. Вендорная строка написана с помощью металла, нанесенного поверх кремния.

Второй конденсатор сконструирован совершенно другим методом, и больше похож на обычный конденсатор с двумя пластинами. Даже не на что поглядеть — он состоит из большой металлической пластины с подложкой из N+ кремния в качестве второй пластины. Для того чтобы уместиться рядом с другими частями цепи, он имеет неправильную форму. Данный конденсатор занимает около 14% площади кристалла, иллюстрируя то, что конденсаторы в микросхемах очень неэффективно используют пространство. В даташите упоминается, что оба конденсатора по 20 пикоФарад, но я не знаю насколько этому можно верить.


Конденсатор.

Реверс-инжиниринг TL431



Промаркированный кристалл TL431.

На схеме сверху выделены и поименованы элементы на кристалле, и затем перенесены на чертеж снизу. После всех разъяснений ранее, я думаю, структура любого элемента должна быть ясна. Три пина микросхемы подсоединены к площадкам «ref», «anode» и «cathode». Микросхема имеет один уровень металлизации (светло-желтый) для соединения компонентов. На чертеже сопротивление задаётся относительно неизвестного R. Наверное, 100 Ом вполне подходит, но я не знаю точного значения. Самым большим сюрпризом было то, что характеристики элементов сильно отличились от тех, что были опубликованы ранее в других схемах. Данные характеристики фундаментально сказываются на том, как в целом работает стабилитрон с напряжением запрещённой зоны.

[9]


Чертеж TL431

Как работает микросхема?

Работа TL431 извне выглядит довольно незатейливо — если на контакт «ref» подаётся напряжение выше 2.5 вольт, то выходной транзистор проводит ток между катодом и анодом. В блоке питания это увеличивает ток, идущий к управляющей микросхеме (косвенно), и влечёт за собой уменьшение мощности БП, после чего происходит спад напряжения до нормального уровня. Таким образом, БП используют TL431 для того, чтобы стабильно держать необходимое выходное напряжение.

Наиболее интересная часть микросхемы это источник опорного напряжения, равного ширине запрещённой зоны. [10]. Ключевые элементы видны на фото кристалла: область эмиттера транзистора Q5 в 8 раз больше чем у Q4, поэтому два транзистора по-разному реагируют на температуру. Выходные сигналы с транзисторов объединяются через резисторы R2, R3, R4 в нужной пропорции для компенсации температурных эффектов, и формируют стабильный опорный сигнал. [11] [12]

Напряжения из стабилизированного по температуре бандгапа посылаются в компаратор, входом которого являются Q6 и Q1, а Q8 и Q9 управляют им. Наконец, выход компаратара проходит через Q10 для управления выходным транзистором Q11.

«Открываем» микросхему низко-технологичным методом

Получение фотографии кристалла микросхемы обычно требует её растворения в опасных кислотах, и фотографирование самого кристалла с помощью дорогого металлографического микроскопа. (Zeptobars описывал этот процесс

здесь

). Мне было интересно что получится, если я просто разломаю TL431 зажимными щипцами и взгляну на него в дешёвый микроскоп. В процессе я переломил кристалл пополам, но всё равно получил интересные результаты. На изображении виден большой медный анод внутри корпуса, который еще работает и как радиатор. Рядом с ним кристалл (по крайней мере, большая его часть), который был установлен на аноде внутри белого круга. Заметили, насколько сам кристалл меньше своего корпуса?


Корпус TL431, внутренний анод и большая часть от кристалла.

Используя простой микроскоп, я получил фото снизу. Несмотря на то, что, очевидно, я не получил такого же качественного снимка как у Zeptobars, структура микросхемы видна значительно лучше чем я ожидал. Данный эксперимент показывает, что вы можете проводить снятие корпуса микросхем и фотографирование кристалла даже не касаясь разных опасных кислот. Сравнивая свой снимок дешевого TL431, заказанного на eBay, с TL431, сфотографированного Zeptobars, вижу их идентичность. Так как его микросхема не совпадает с опубликованными чертежами, то я гадаю, не прекратили ли они в определенный момент производство того странного варианта микросхемы. Но думаю, что это предположение неверно.


Кусок кристалла, сфотографированный через микроскоп.

Заключение

На самом ли деле TL431 наиболее распространенная микросхема о которой не слышали люди? Нет надежного способа проверить, но я думаю что это хороший кандидат. Похоже, никто не публиковал данные, в которых другая микросхема была бы произведена в больших количествах. Некоторые источники утверждают что таймер 555 является наиболее распространенной микросхемой с миллиардными тиражами каждый год (не очень мне верится в такое большое число). Но TL431 точно располагается достаточно высоко в списке по распространенности. Вы, скорее всего, имеете TL431 в каком-то устройстве на расстоянии вытянутой руки прямо сейчас (ЗУ для телефона, адаптер питания для ноутбука, блок питания PC или монитора). Разница между 555 или 741 и TL431 в том, что эти микросхемы настолько широко известны, что уже стали чуть ли не частью поп-культуры —

книги

,

майки

и даже

кружки

. Но если вы не работаете с блоками питания, достаточно высоки шансы, что вы никогда и не слышали о TL431. Таким образом, я отдаю свой голос TL431 в такой странной номинации. Если у вас есть какие-то другие варианты микросхем, которые незаслуженно обошли вниманием, оставляйте комментарии.

Признательности

Снимки кристалла сделаны

Zeptobars

(за исключением моего). Чертёж и анализ основываются на работе

Cristophe Basso[12]

Кроме того, я значительно улучшил свой анализ с помощью дискуссий с Михаилом из Zeptobars и

Visual 6502 group

, в частности B. Engl.

Заметки и ссылки

1. Из-за того, что у TL431 не самая обычная функция, стандартного названия для элемента такого рода не существует. Разные даташиты дают такие имена:

«регулируемый шунтирующий стабилизатор»

,

«программируемый прецизионный источник опорного напряжения»

,

«программируемый шунтирующий источник опорного напряжения»

,

«программируемый стабилитрон»

.


2. Я раскопал истоки возникновения TL431 в

Voltage Regulator Handbook

, опубликованным Texas Instruments в 1977 году. Предшественником этой микросхемы был TL430, выпущенный как регулируемый шунтирующий стабилизатор в 1976. TL431 был создан в том же 1976 как обновление для TL430 с улучшенной точностью и стабильностью, и поэтому был назван как регулируемый прецизионный шунтирующий стабилизатор. В 1977 его анонсировали как один из будущих продуктов TI, а выпустили в продажу уже в 1978. Другим анонсом являлся TL432, который должен был бы называться «Компоновочный блок из таймера/стабилизатора/компаратора» и состоять из источника опорного напряжения, компаратора и транзисторного усилителя, согласно

предварительному даташиту

. Но на момент выпуска TL432, план по предоставлению «компоновочных блоков» был забыт. TL432 превратился в аналог TL431 с другими расположением контактов для более удобной разводки плат (

даташит

).


3. Современные ATX блоки питания (

пример раз

,

пример два

) зачастую содержат по три TL431. Один для обратной связи при резервном питании, второй для обратной связи в основной схеме питания, а третий берётся в качестве линейного регулятора для 3.3В выходного напряжения.


4. Интересно взглянуть на импульсные БП, которые не используют TL431. Более ранние модели использовали опорный стабилитрон в качестве источника опорного напряжения. Например, такое практиковалось в первых экземплярах блоков питания для Apple II (Astec AA11040), но вскорости в них сделали замену стабилитрона на TL431 —

Astec AA11040, ревизия B

. В Commodore CBM-II, модель B, применялось необычное решение — TL430 вместо TL431. Оригинальный блок питания для IBM PC использовал опорный стабилитрон (вместе с кучей операционных усилителей). Позднее БП для PC часто использовали ШИМ-контроллер

TL494

, который уже содержал источник опорного напряжения для вторичной цепи. Другие БП могли содержать

SG6105

, уже включающий в себя два TL431.

В зарядных устройствах для телефонов обычно применяют TL431. Редко можно встретить дешёвую подделку этого элемента: проще взять опорный стабилитрон вместо него и сэкономить пару центов. Другим исключением могут являться такие зарядные устройства,

как для iPad’a

. В них реализована стабилизация в первичной цепи и не требуется совсем никакой обратной связи от выходного напряжения.

В своей статье про блоки питания

я описал это подробнее.


5. TL431 доступен в большем числе вариантов корпуса чем я думал. На двух фотографиях TL431 выполнен в «транзисторном» корпусе с тремя ножками (TO-92). На остальных фотографиях показан SMD-вариант в SOT23-3. TL431 также может быть в 4-контактном, 5-контактном, 6-контактном и 8-контактном SMD-корпусе (SOT-89, SOT23-5, SOT323-6, SO-8 или MSOP-8). Кроме того, его можно встретить в более крупном варианте TO-252 или даже в виде 8-контактного микросхемы (DIP-8). (

картинки

).


6. Более детальную информацию о том, как устроен в кремнии биполярный транзистор, можно найти много где.

Semiconductor Technology

даёт неплохой обзор об устройстве n-p-n транзистора. Презентация

Basic Integrated Circuit Processing

очень детально описывает производство микросхем. Даже схемы с

википедии

очень интересны.


7. Возможно, вы гадаете, почему это идёт терминологическое разделение на коллектор и эмиттер, если в нашей простой схеме транзистора они абсолютно симметричны? Ведь оба подключаются к N-слою, чему там различаться? Но как можете видеть на фото кристалла, коллектор и эмиттер не только сильно отличаются по размеру, но и легирование проходит по-разному. Если поменять коллектор и эмиттер местами, по у транзистора будет очень

слабый коэффициент передачи

.


8. p-n-p транзисторы в TL431 имеют круговую структуру, которая их очень сильно отличает от n-p-n. Эта круговая структура проиллюстрирована в книге

Designing Analog Chips

от Hans Camenzind, автора таймера 555. Если вы хотите узнать больше о том, как работают аналоговые микросхемы, то я рекомендую эту книгу, в которой детально разъясняется этот вопрос с минимумом математики.

Бесплатный PDF

или

бумажная версия

.

Кроме того, о структуре p-n-p транзисторов можно почитать в

«Principles of Semiconductor»

. А книга

«Analysis and Design of Analog Integrated Circuits»

рассказывает о детальных моделях биполярных транзисторов и о том, как они имплементируются в микросхемах.


9. Транзисторы и резисторы на кристалле, который я исследовал, имеют совершенно другие характеристики по сравнению с теми, что публиковались ранее. Эти характеристики фундаментально задают работу стабилитрона с напряжением запрещённой зоны. Конкретно говоря, на предыдущих схемах R2 и R3 были в отношении 1 к 3, а у Q5 зона эмиттера была в два раза больше чем у Q4. Глядя на фото кристалла, я вижу что R2 и R3 имеют одинаковое сопротивление, а Q5 имеет зону эмиттера в 8 раз большую по сравнению с Q4. Исходя из таких отношений между характеристиками, мы получим другое ΔVbe. Для того чтобы компенсировать разницу между фактическими характеристиками и вычисленными, в прошлых схемах R1 и R4 так же были сделаны иными чем на кристалле. Я разъясню этот момент более подробно дальше в статье, но просто отмечу: Vref = 2*Vbe + (2*R1+R2)/R4 * ΔVbe должно быть около 2.5 вольт. Обратите внимание, важно не конкретное сопротивление резисторов, а именно их отношения. Как я писал ранее, это помогает нейтрализовать плохой допуск резисторов в микросхеме. На кристалле Q8 сформирован из двух параллельных транзисторов. Но я не могу понять, что стоит за этим странным решением. Я ожидал, что Q8 и Q9 будут идентичны, чтобы построить сбалансированный компаратор. Моя основная теория заключается в том, что это сделано для настройки опорного напряжения, чтобы оно достигало 2.5В. B. Engl предположил, что это могло помогать устройству лучше работать при низком напряжении.


10. Я не буду здесь углубляться в детали реализации стабилитрона с напряжением запрещённой зоны, разве упомяну что пусть его название и звучит как имя какого-то безумного квантового устройства, но, на самом деле, это просто пара транзисторов. Чтобы разобраться в том, как работает данный стабилитрон, можете поглядеть статью

«How to make a bandgap voltage reference in one easy lesson»

за авторством Paul Brokaw, изобретателя

одноименного стабилитрона опорного напряжения

. Кроме того есть еще такая

презентация

.


11. В известном смысле, цепь бандгапа в TL431 работает в противоположном направлении, по сравнению с обычным бандгапом, который подводит к эмиттеру правильные напряжения, чтобы получить на выходе необходимое значение. TL431 же берёт опорное напряжение в качестве входного, а эмиттеры использует как входные сигналы для компаратора. Другими словами, в противоположность блок-схеме, внутри TL431 входной «ref» сигнал не сравнивается ни с каким стабильным опорным напряжением. Вместо этого, вход «ref» генерирует два сигнала для компаратара, которые совпадают если входное напряжение 2.5 вольта.


12. Существует много статей о TL431, но они все с уклоном в матан и ожидают от читателя каких-либо начальных знаний по теории автоматического управления, графикам Боде, и так далее.

«The TL431 in Switch-Mode Power Supplies loops»

— классическая статья от Christophe Basso и Petr Kadanka. Она объясняет работу TL431 в цепи компенсации обратной связи в действующих блоках питания. Книжка содержит детальные чертежи и описания внутреннего устройства элемента. Еще есть интересные статьи на

powerelectronics.com

. В статье

«Designing with the TL431»

от Ray Ridley, для Switching Power Magazine, содержится подробное объяснение того, как использовать TL431 в цепях обратной связи для БП и так же объясняется работа компенсатора. Можно обратить внимание на презентацию

«The TL431 in the Control of Switching Power Supplies»

от ON Semiconductor. Конечно же,

даташит

тоже содержит чертежи внутреннего устройства микросхемы. Странно, но сопротивления на этих чертежах отличаются от тех, что я получил, исследуя фото кристалла.

Введение в TL431 – Инженерные проекты

Всем привет! Я надеюсь, что вы все будете в полном порядке и весело проведете время. Сегодня я расскажу вам о Introduction to TL431. TL 431 – это программируемые диоды шунтирующего стабилизатора с тремя выводами. Это диод с низким температурным коэффициентом, который может быть запрограммирован от опорного напряжения (Vref) до 36 В при подключении к 2 внешним резисторам.

TL 431 имеет сопротивление 0,22 Ом и диапазон тока от 1 мА до 100 мА.В нескольких различных приложениях стабилитроны могут быть заменены диодом TL 431 из-за его эффективности. Эти приложения включают источники питания, схемы операционного усилителя (ОУ) и цифровые вольтметры. TL-431 может использоваться как положительный или отрицательный источник опорного напряжения, поскольку он работает как шунтирующий стабилизатор. TL-431 имеет низкое выходное шумовое напряжение. Он не содержит свинца (Pb), галогенов и соответствует требованиям RoHS. Дополнительные сведения о TL 431, например, его особенности, характеристики и конфигурация контактов будут объяснены позже в этом руководстве.

Введение в TL431

TL431 – это диод шунтирующего стабилизатора, поэтому он может использоваться как положительный или отрицательный источник опорного напряжения. Он имеет низкое выходное шумовое напряжение. TL-431 можно заменить стабилитроном во многих приложениях, например. цифровые вольтметры, схема операционного усилителя, источники питания и т. д. TL-431 показан на рисунке ниже.

1. Распиновка TL431
  • TL-431 имеет всего три контакта: опорный, анодный и катодный.
  • Все три контакта вместе с их символом приведены в таблице, приведенной ниже.

2. Конфигурация контактов TL431
  • Правильно обозначенная схема контактов любого устройства улучшает положение пользователя.
  • Я сделал полностью размеченную схему диода TL 431 вместе с его анимацией.
  • Полная распиновка вместе с анимацией, символьным представлением и реальным изображением TL-431 показана на рисунке ниже.

3. Пакеты TL431
  • TL-431 имеет два разных типа пакетов SOT-23 (3) и SOT-23 (5).
  • Обе упаковки вместе с их размерами и номером детали приведены в таблице, приведенной ниже.

4. Схема TL431
  • Принципиальная схема устройства помогает нам понять его внутреннюю функциональность.
  • Я предоставил помеченную принципиальную схему TL 431, как показано на рисунке ниже.

5. Рейтинги TL431
  • Номинальные значения тока, напряжения и мощности любого устройства показывают его потребляемую мощность, то есть сколько тока и напряжения достаточно для его работы.
  • Я указал значения тока, мощности и напряжения TL-431 в приведенной ниже таблице.

6. Приложения TL431

Есть много приложений, связанных с TL-431, некоторые из реальных приложений TL 431 приведены ниже.

  • Контроль напряжения.
  • Компаратор со встроенным эталоном.
  • Регулируемое опорное напряжение.
  • Замена стабилитрона.
  • Регулируемая привязка по току.

Итак, это все из учебника Введение в TL431. Надеюсь, вам понравился этот замечательный урок. Если у вас есть какие-либо проблемы, вы можете спросить меня в комментариях в любое время, даже не колеблясь. Я постараюсь как можно лучше разобраться с вашими проблемами, если это возможно.Наша команда также доступна 24/7, чтобы помочь вам. Я изучу дополнительные микросхемы и диоды в своем следующем руководстве и обязательно поделюсь ими с вами. Итак, до тех пор, Береги себя 🙂

Автор: Сайед Заин Насир
https://www.theengineeringprojects.com/

Меня зовут Сайед Зайн Насир, основатель The Engineering Projects (TEP). Я программист с 2009 года, до этого я просто занимаюсь поиском, делаю небольшие проекты, а теперь делюсь своими знаниями через эту платформу.Я также работаю фрилансером и выполнил множество проектов, связанных с программированием и электрическими схемами. Мой профиль Google +

Навигация по сообщениям

TL431, таблица данных, распиновка, схемы приложений Programmable Precision Reference

TL431LIAQDBZR Техасские инструменты Регулируемый прецизионный шунтирующий регулятор с оптимизированным опорным током 3-SOT-23-40 до 125
TL431ACPS Техасские инструменты 1-ВЫХОДНОЕ ТРЕХСТОРОННЕЕ ОПОРНОЕ НАПРЯЖЕНИЕ, 2.495В, ПДСО8, ПЛАСТИК, СО-8
TL431CDBVTG4 Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 5-SOT-23 от 0 до 70
TL431CLPB-TDJ Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 3-TO-92 от 0 до 75
TL431CPW Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 8-TSSOP от 0 до 70
TL431IDBVRG4 Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 5-SOT-23-40 до 85
TL431IDRG4 Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 8-SOIC -40 до 85
TL431MJGB Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 8-CDIP -55 до 125
TL431QDBZT Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 3-SOT-23-40 до 125
TL431QDR Техасские инструменты Регулируемый прецизионный шунтирующий регулятор 8-SOIC от -40 до 125

Система управления на основе TL431 в приложении для зарядного устройства.

Контекст 1

… приложения [5] – [7]. Это связано с простотой построения системы управления; Выход шунтирующего регулятора может использоваться непосредственно для управления оптопарой, изолирующей контур управления, и для реализации контроллера требуется очень небольшое количество дополнительных компонентов [8]. Типичная структура такого контроллера показана на рис. …

Контекст 2

… шунтирующий регулятор подключен к системе таким образом, что оба катода (т.е.например, через оптронный диод) и опорный вход подключены к выходному напряжению, образуя двухконтурную систему управления [5] – [11], известную [10] как быстрая петля и медленная петля (рис. 1) из-за их преобладающего частотные диапазоны. Считается, что медленный контур вводит отрицательную обратную связь аналогично операционным усилителям [5] – [7]. Однако опорный вход является неинвертирующим входом, и поэтому оба контура являются контурами положительной обратной связи по отношению к выходному току системы управления. это …

Контекст 3

… Типичная частота отсечки [1], [2] составляет около 10 кГц, что соответствует выходному эквивалентному конденсатору 70 нФ. Некоторые из шунтирующих регуляторов [3] имеют выходной каскад с более высоким коэффициентом усиления. Это дает более высокий и выходной конденсатор 22,5 и 3,2 соответственно. III. СИСТЕМА УПРАВЛЕНИЯ Типичная система управления, построенная на TL431, показана на рис. 1 и 4, где – коэффициент усиления считывания выходного напряжения и его сопротивление Тевенина. С точки зрения усиления контура, существенная передаточная функция – это передаточная функция от выходного напряжения к току, протекающему через диодную часть оптопары.Эта передаточная функция фактически является суммой медленной и быстрой передачи цикла …

Контекст 4

… (1) – (3) внизу страницы. Результирующие передаточные функции медленной и быстрой петли определены в (1) и (2) соответственно. Обозначения, используемые в (1) и (2) (рис. 1), указаны в …

Context 5

… системе управления на рис. 1 [3]. Результаты анализа показаны на рис. 8 и сравниваются с идеальной моделью, где бесконечно и равно нулю.Модель, использованная в [5] – [7], даст ответ, где величина является идеальной амплитудой, но фаза начинается с 90 вместо 90, показанных на рис. 8. Может быть очевидно, что в худшем случае (рис. 8, ответ 1), …

Контекст 6

… система управления на рис. 1 [3]. Результаты анализа показаны на рис. 8 и сравниваются с идеальной моделью, где бесконечно и равно нулю. Модель, использованная в [5] – [7], даст ответ, где величина является идеальной амплитудой, но фаза начинается с 90 вместо 90, показанных на рис.8. Может быть очевидно, что в худшем случае (рис. 8, характеристика 1) система управления не намного лучше, чем стабилитрон, включенный последовательно с диодом оптрона. В случае ПИ-регулирования вариабельность амплитуды и фазы будет выше, увеличивая неопределенность системы управления …

Регулируемый прецизионный шунтирующий регулятор (семейство TL431 / AP431)

Семейство TL / AP431 представляет собой регулируемые прецизионные шунтирующие регуляторы с 3 контактами с гарантированной температурной стабильностью в соответствующем расширенном коммерческом диапазоне температур.Выходное напряжение может быть установлено на любом уровне от 2,495 В (VREF) до 36 В, едва выбрав два внешних резистора, которые действуют как сеть делителей напряжения. Эти устройства имеют типичное выходное сопротивление 0,2 Ом. Схема активного выхода
обеспечивает очень четкие характеристики включения, что делает эти устройства превосходной улучшенной заменой стабилитронов во многих приложениях.
• Типы 431 отличаются повышенной устойчивостью при очень низких требованиях к грузоподъемности.

• Он предлагает повышенную стабильность и более высокую устойчивость к электромагнитным помехам (EMI), например, для импульсных источников питания (SMPS).

• Разработан для стандартных требований и линейных приложений.


Особенности и преимущества

• Три различных допуска опорного напряжения:

Стандартная оценка: 2%

Оценка A: 1%

Уровень B: 0,5%

• Допустимый ток потребления: от 1 мА до 200 мА

• Минимальный катодный ток для регулирования: 300 мкА

• Эквивалентный температурный коэффициент во всем диапазоне: 30 ppm / oC

• Быстрая реакция на включение

• Низкое динамическое выходное сопротивление: 0.2 Ом

• Программируемое выходное напряжение до 36 В

• Низкий выходной шум.

• Типичный температурный дрейф: 6 мВ (в диапазоне от 0 C до 70 C)

Приложения

• Шунтирующий регулятор

• Прецизионный ограничитель тока

• Прецизионный приемник постоянного тока

• Изолированный контур обратной связи для импульсного источника питания (SMPS)

Для выходного напряжения можно установить любое значение в диапазоне от Vref (примерно 2.5 В) и 36 В с двумя внешними резисторами. Эти устройства имеют типичное выходное сопротивление 0,2 Ом. Схема активного выхода обеспечивает очень резкую характеристику включения, что делает эти устройства отличной заменой стабилитронам во многих приложениях, таких как встроенное регулирование, регулируемые источники питания и импульсные источники питания.

Условия эксплуатации
Катодно-анодное напряжение ВКА ………………………………… ……………………………. Vref 36 V
IK катодный ток…………………………………………… ………………….. 1 -100 мА

Диапазон входного эталонного тока ……. …… …….. …………………. ………….… ……. 10 мА

Planet Analog – На первый взгляд простые схемы: регулятор напряжения TL431, часть 4

Мы возвращаемся за вторым порывом ветра и всплываем за воздухом, переводя дыхание в Части 4, рассматривая две категории схем применения TL431.

Схема приложения

TL431 может использоваться либо как каскад усилителя обратной связи по напряжению с локальной обратной связью, либо как усилитель крутизны разомкнутого контура, такой как усилитель ошибки в более крупном контуре обратной связи преобразователя мощности, как показано ниже.Вход, ν i , представляет собой инкрементное выходное напряжение преобразователя. Делитель напряжения R 1 , R 2 является трактом обратной связи, а усилитель ошибки – первым каскадом прямого тракта.

Соответствующая блок-схема общих переменных показана ниже. Из принципиальной схемы

T o – это доля делителя тока на выводе 3, которая становится i 0 .Суммарная ошибка –

.

Затем для инкрементального анализа это уменьшается до

Инкрементальная передаточная функция схемы, таким образом, равна

.

H V и G m – обе положительные величины, так что, когда ν i увеличивается, i o увеличивается. Тогда дополнительный выходной ток, вносимый TL431, составит

Передаточная функция напряжения тракта TL431 равна

где

Выходной ток усилителя TL431 G m создает выходное напряжение на r out . T o – это доля выходного тока TL431, протекающего через диод оптопары. Для идеального выхода источника тока r out → ∞, так что T o = 1.

Другое использование TL431 – усилитель напряжения на инвертирующем ОУ с внешним R L . В этом случае R 2 не влияет на усиление с обратной связью ОУ, потому что он образует входной делитель, T i и также включен в H , что составляет 1- T я .В уравнении обратной связи с обратной связью взаимодействие факторов T i и H исключает R 2 в уравнении усиления с обратной связью. Однако, если нет статической обратной связи – нет резистора между выходом и инвертирующим входом операционного усилителя – тогда операционный усилитель работает с разомкнутым контуром при 0 + Гц, и схема возвращается к предыдущей схеме при 0 + Гц, где R 2 был частью входного делителя усилителя.TL431 имеет достаточное усиление, поэтому, когда он находится в более крупном контуре обратной связи, его усиление обычно чрезмерно, что вызывает нестабильность.

Чтобы уменьшить усиление инвертирующего операционного усилителя, позволяя делителю R 1 , R 2 устанавливать выходное напряжение преобразователя, можно использовать емкостную обратную связь. Самый простой – это одинарный конденсатор обратной связи, C f от выхода TL431 к входу. Затем входной делитель выравнивается с последовательным сопротивлением R i = R 1 || R 2 и разделенный источник.Коэффициент усиления по напряжению

Коэффициент усиления контура значительно уменьшается из-за полюса, если он достаточно мал по частоте, и он также может способствовать компенсации нуля выходного накопительного конденсатора преобразователя, вызванного последовательным сопротивлением.

Наконец, не забудьте про пассивный прямой путь, 1/ R f . Его ток (не напряжение) имеет ту же полярность, что и активный путь через TL431 (находится в фазе). В зависимости от значения r o , это может иметь некоторое значение, когда активный путь r out (cl) увеличивается с увеличением частоты.Для больших r o это несущественно.

В следующей части мы погрузимся глубже и начнем рассматривать динамику TL431.

ETC TL431

DtSheet
    Загрузить

ETC TL431

Открыть как PDF
Похожие страницы
TI TL431CKTPR
TI TL431QDBVRQ1
TI TL1431CKTPR
ETC TL431-CZ
TI TL1431QDRG4Q1
FAIRCHILD LM431SAI
TS432I_C14
Регулируемый прецизионный шунтирующий регулятор
FAIRCHILD KA431
ДЕТСКИЙ ВЕНТИЛЯТОР 431
FAIRCHILD KA431SMF
NSC LMV431
NSC LM431BCZ
FAIRCHILD KA431SAMF
TSC TS432IXRF
FCI TL431ACLT1
TSC TS432XCTB0G
ГАММА GM432AST23T
ONSEMI SC431AVSNT1G
FAIRCHILD LM431B
ETC GM431
ОПИСАНИЕ ОСОБЕННОСТИ БЛОК-СХЕМА

dtsheet © 2021 г.

О нас DMCA / GDPR Злоупотребление здесь

TL431 Распиновка, аналог, применение, приложения и другие подробности

TL431 – это трехконтактная микросхема стабилизатора шунта, сегодня мы собираемся обсудить распиновку TL431, ее эквивалент, использование, приложения и другие подробности о том, как и где использовать эту микросхему.

TL431 IC Характеристики / Технические характеристики
  • Изготавливается в ТО-92 и других мелких упаковках
  • Регулируемое выходное напряжение от 2,5 до 36 В
  • Выходной ток регулируется от 1 мА до 100 мА
  • Температурная стабильность
  • Низкая цена
  • Подлинный для использования в коммерческих устройствах

TL431 Разъяснение ИС

TL431 – это ИС с шунтирующим диодом-стабилизатором, доступная в корпусах TO-92 и других.Это трехконтактная ИС. Выходное напряжение можно регулировать от 2,5 В до 36 В с помощью резистивного делителя, подключенного к его опорному выводу или выводу 1. Более того, эта ИС может работать в диапазоне тока от 1 мА до 100 мА с типичным значением выходного импеданса 0,22 Ом. Он также способен обеспечить стабильную работу в широком диапазоне температур. Его можно использовать в качестве замены стабилитрона в самых разных приложениях, потому что он работает так же, как стабилитрон, с той лишь разницей, что его выход регулируется.

TL431 имеет множество применений в электронике, чаще всего он используется для контроля пониженного и повышенного напряжения, контроля оконного напряжения и т. Д., А также его можно найти в источниках питания в качестве источника опорного напряжения.

Глядя на внутреннюю блок-схему, показанную ниже, мы видим, что внутренняя схема микросхемы содержит NPN-транзистор на выходе, который смещается от операционного усилителя с точным напряжением 2,5 В.

Приложения

Схемы компаратора напряжения

Зарядное устройство и цепи монитора

Применение солнечной энергии

Коммутационные цепи питания

Запасные и номера эквивалентов / других деталей

KIA431, TL432, LM336Z5, TA76431S (TE6, F, M)

Как безопасно и долго работать в цепи

Для получения долгосрочной и стабильной работы с TL431 рекомендуется не управлять нагрузкой более 100 мА с ИС, не прикладывать к ИС более 36 В, всегда проверяйте распиновку перед размещением в цепи, это может привести к неправильному размещению ИС. при необратимом повреждении внутренней схемы ИС, и всегда работайте и храните ИС при температурах выше -65 по Цельсию и ниже +150 по Цельсию.

Лист данных

Чтобы загрузить техническое описание, просто скопируйте и вставьте приведенную ниже ссылку в свой браузер.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *