Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Линейный стабилизатор напряжения с регулировкой на TL431 и NPN транзисторах

Всем привет!
В последнее время я увлекся сборкой схем линейных стабилизаторов напряжения. Такие схемы не требуют редких деталей, а подборка компонентов и настройка также не вызывает особых сложностей. В этот раз я решил собрать схему линейного стабилизатора напряжения на «регулируемом стабилитроне» (микросхеме) TL431. TL431 выступает в качестве источника опорного напряжения, а силовую роль выполняет мощный NPN транзистор в корпусе ТО -220.

При входном напряжении 19В, схема способна служить источником стабилизированного напряжения в пределах от 2,7 до 16 В при токе до 4А. Стабилизатор оформлен в виде модуля, собранного на макетной плате. Выглядит следующим образом:

Видео:

Стабилизатор требует блок питания постоянного тока. Имеет смысл применять такой стабилизатор с классическим линейным блоком питания, состоящим из железного трансформатора, диодного моста и конденсатора большой емкости. Напряжение в сети может меняться в зависимости от нагрузки и как следствие, будет меняться напряжение на выходе трансформатора. Данная схема будет обеспечивать стабильное выходное напряжение при изменяющимся входном. Нужно понимать, что стабилизатор понижающего типа, а также на самой схеме падает 1-3 В напряжения, поэтому максимальное выходное напряжение будет всегда меньше входного.


В качестве блока питания для данного стабилизатора в принципе можно использовать и импульсные блоки питания, например от ноутбука на 19 В. Но в этом случае, роль именно стабилизации будет минимальной, т.к. заводские импульсные блоки питания и так на выходе выдают стабилизированное напряжение.

Схема:

Подбор компонентов
Максимальный ток, который может через себя пропустить микросхема TL431, согласно документации – 100 мА. 2/R = 19 * 19/ 1000 = 0,361 Ватт

Я использовал резистор в 1 Ватт.

Резистор R4 служит для ограничения тока на базе транзистора VT2. Номинал подбирать лучше опытным путем, контролируя выходное напряжение. Если сопротивление будет слишком большим, это заметно ограничит выходное напряжение схемы. В моем случае – это 100 Ом, мощность годится любая.


В качестве основного силового транзистора (VT1) лучше использовать транзисторы в корпусе ТО – 220 или более мощном (ТО247, ТО-3). Я использовал транзистор Е13009, купленный на Али Эксресс. Транзистор на напряжение до 400В и ток до 12А. Для подобной схемы высоковольтный транзистор – не самое оптимальное решение, но работать будет нормально. Транзистор скорее всего поддельный и 12 А не выдержит, а вот 5-6А вполне. В нашей схеме ток до 4А, поэтому для данной схемы годится. В данной схеме транзистор должен быть способен рассеять мощность до 30-35 Ватт.

Рассчитывается рассеваемая мощность как разница между входным и выходным напряжением умноженная на ток коллектора :
P = (U выход -U вход)*I коллектора
Например, входное напряжение у нас 19 В, мы выставили выходное напряжение 12 В, а ток коллектора у нас 3 А
Р = (19В-12В) *3А = 21 Ватт – вполне нормальная ситуация для нашего транзистора.

А если мы продолжим снижать выходное напряжение до 6В, то картина будет другая:
Р = (19В-6В) *3А = 39 Ватт , что не очень хорошо для транзистора в корпусе ТО-220 (еще нужно учитывать, что при закрытии транзистора ток тоже будет уменьшаться: на 6В ток будет около 2-2,5А, а не 3). В таком случае лучше либо использовать другой транзистор в более массивном корпусе, либо уменьшить разницу между входным и выходным напряжением (например, если блок питания трансформаторный, путем переключения обмоток).


Также транзистор должен быть рассчитан на ток от 5А и больше. Лучше брать транзистор со статическим коэффициентом передачи тока от 20. Китайский транзистор вполне соответствует данным требованиям. Перед запайкой в схему, я его проверил (ток и рассеиваемую мощность) на специальном стенде.

Т.к. TL431 может выдавать ток не более 100 мА, а для питания базы транзистора требуется больший ток, потребуется ещё один транзистор, который будет усиливать ток с выхода микросхемы TL431, повторяя опорное напряжение. Для этого и нужен транзистор VT2.
Транзистор VT2 должен быть способен подавать достаточный ток на базу транзистора VT1.

Грубо определить необходимый ток можно через статический коэффициент передачи тока (h31э или hFE или β) транзистора VT1. Если мы хотим на выходе иметь ток в 4 А, а статический коэффициент передачи тока VT1 равен 20, то:

I базы = I коллектора / β = 4 А / 20 = 0,2 А.


Статический коэффициент передачи тока будет меняться в зависимости от тока коллектора, так что это значение ориентировочное. Замер на практике показал, что нужно около 170 мА подать на базу транзистора VT1, чтобы ток коллектора был 4А. Транзисторы в корпусе ТО-92 начинают заметно греться при токах выше 0,1 А, поэтому в данной схеме я использовал транзистор КТ815А в корпусе ТО-126. Транзистор рассчитан на ток до 1,5А, статический коэффициент передачи тока – около 75. Небольшой радиатор для данного транзистора будет уместен.
Конденсатор С3 нужен для стабилизации напряжения на базе транзистора VT1, номинал – 100 мкФ, напряжение 25В.

На выходе и входе установлены фильтры из конденсаторов: С1 и С4 (электролитические на 25В, 1000 мкФ) и С2, С5 (керамические 2-10 мкФ).

Диод D1 служит для защиты транзистора VT1 от обратного тока. Диод D2 нужен для защиты от транзистора при питании коллекторных электродвигателей. Двигатели при отключении питания ещё какое-то время крутятся и в режиме торможения работают как генераторы. Вырабатываемый таким образом ток идет в обратном направлении и может повредить транзистор. Диод в данном случае замыкает двигатель на себя и ток не доходит до транзистора. Резистор R5 выполняет роль малой нагрузки для стабилизации в холостом режиме, номинал 10к Ом, мощность любая.


Сборка
Схема собирается в виде модуля на макетной плате. Я использовала радиатор из импульсного блока питания.

С радиатором такого размера не стоит максимально нагружать схему. При токе больше 1 А, необходимо заменить радиатор на более массивный, обдув вентилятором тоже не помешает.

Важно помнить, что чем больше разница между входным и выходным напряжением и чем больше ток, тем больше выделяется тепла и тем сильнее нужно охлаждение.

На пайку ушло около часа. В принципе хорошим тоном было бы сделать плату методом ЛУТ, но т.к. плата мне требуется только в одном экземпляре, не хотелось тратить время на проектирование платы.

Получился вот такой модуль:

После сборки проверил характеристики:

Схема практически не имеет защит (имеется в виду, что нет защиты от КЗ, защиты от переполюсовки, плавного старта, ограничения по току и т.д.), поэтому использовать ее нужно очень аккуратно. По той же причине не рекомендуется использовать подобные схемы в «лабораторных» блоках питания. Для этой цели лучше подойдут готовые микросхемы в корпусе ТО-220 на токи до 5А, например КР142ЕН22А. Либо как минимум для данной схемы нужно сделать дополнительный модуль для защиты от КЗ.


Схему можно назвать классической, как и большинство схем линейных стабилизаторов. Современные импульсные схемы имеют множество преимуществ, например: более высокий КПД, гораздо меньший нагрев, меньшие габариты и вес. В то же время линейные схемы проще освоить начинающим радиолюбителям, и если КПД и габариты не особо важны, они вполне годятся для питания устройств стабилизированным напряжением.


И конечно же ничто не сравниться с чувством, когда запитал какое-то устройство от самодельного источника питания, а линейные схемы для начинающих радиолюбителей более доступны, как ни крути. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Tl431 — схема и принцип включения, характеристики, использование

Все люди, которые интересуются электрикой и все, что с ней связано, изучают различные микросхемы, в том числе цоколевку TL431. Что собой представляет tl431 схема включения, какие у нее основные технические характеристики, как ее использовать, каков источник опорного напряжения на tl431? Об этом и другом далее.

Что это такое

Цоколевка TL431 является одной из микросхем, которая массово стала выпускаться с 1978 года. Ее можно было найти в большинстве советской электронике. Делая точное описание, необходимо сказать, что это прецизионный программируемый источник опорного напряжения. Он популярен из-за того, что имеет низкую стоимость, высокую точность и универсальность.

Основные разновидности цоколевки TL431

Характеристики

Обладает анодно-катодным напряжением в 36 вольт, анодно-катодным током до 100 микроампер, опорным источником напряжения от 0,5 до 2%. Работает в широком диапазоне напряжений, имеет маленькие токовые импульсные параметры в 100 микроампер.

Обратите внимание! Чтобы получить более мощный параллельный ток, то интегральный стабилитрон должен стать источником опорного напряжения, который бы регулировал функцию в качестве мощного транзистора.

Основные технические характеристики прецизионного программируемого источника опорного напряжения

Особенности эксплуатации

TL431 обладает мощным корпусом, программируемым выходным напряжением, низким эквивалентным температурным и световым коэффициентом, не содержит свинца и имеет низкий выход шума сигнализатора. Проверяется мультиметром.

Принцип работы очень просто понять, смотря на структурную схему. В момент того, когда напряжение на выходе ниже, чем на опоре, то на конце операционный усилитель будет работать с такой же силой. Если же этот показатель будет в норме, то усилителем будет открыт транзистор и по катоду с анодом будет течь заряд.

Использование и принцип включения цоколевки TL431

Компенсационный стабилизатор напряжения

Принцип его работы такой же, как и у обычного стабилитрона. Благодаря разности напряжения у входа и выхода компенсируется мощного вида биполярный транзистор. Однако стабилизированная точность выше благодаря выходу стабилизатора.

Обратите внимание! Для стабилизации тока используется промежуточный вид усилительного каскада. Оба транзисторных устройства работают с эмиттерным повторителем, то есть усиливается ток и не повышается показатель силы.

Подключение компенсационного стабилизатора напряжения

Реле времени

Важно понимать, что TL431 многофункциональный. Благодаря показателю в 4 микроампера входного тока, можно сделать реле времени. Когда основной контакт разомкнется, медленно начнет заряжаться транзистор. При получении напряжения в 2,5 вольт, транзистор на выходе будет открыт, и благодаря оптопаровому светодиоду будет протекать электроток. В соответствии с этим будет открыт фототранзистор и замкнута внешняя цепь.

Согласно приведенной ниже схеме, второй резистор осуществляет ограничение тока с помощью оптрона и стабилизатора, третий же предупреждает тот момент, чтобы зажегся светодиод.

Схема работы реле времени

Стабилизатор тока

Представленная ниже схема это термостабильный вид токового стабилизатора. Резистор в данном случае это своеобразный шунт, который поддерживает токовое напряжение в размере 2,5 вольт. Так при пренебрегании токовой базы, можно получить ток, имеющий нагрузку Iн=2,5/R2. При формировании значения в Омах, ток будет представлен в Амперах и наоборот.

Стабилизатор тока на TL431 схема

Зарядное устройство для литиевого аккумулятора

Главным отличием зарядника от блока питания является четкое разграничение токового заряда. Следующая картинка представлена в двух ограничиваемых режимах: тока и напряжения. Пока выходное напряжение менее 4,2 вольт, осуществляется ограничение выходного тока. Как только оно достигнет этого показателя, то начнет электроток понижаться.

Следующая схема предусматривает ограничение электротока внешними транзисторами. R1 осуществляет шунтовую функцию, VT1 осуществляет открытие и закрытие второго транзистора. В этот момент напряжение в третьем падает. Ток падает и вовсе прекращается. Так осуществляется токовая стабилизация.

Обратите внимание! В момент подбора к 4,2 вольтовому уровню, функционировать начинает DA1 и осуществляет ограничение напряжения на выходе зарядника.

Чем можно заменить

Заменить устройство сегодня можно отечественным и зарубежным аналогом. Отлично справляются со своей задачей TL431, TL431A, TL431ACD, TL431ACZ, TL431CLP, TL431CD и другие.

Основной аналог цоколевки TL 431 — TL431CD

В целом, цоколевка TL431 является регулируемым стабилитроном, используемым как источник опорного напряжения в разных блоках питания. С самого начала выпуска ее использовали в компьютерах, ноутбуках и прочей электронике. Принцип ее работы прост: операционный усилитель открывает транзистор и к аноду начинает протекать ток. Имеет свое реле, стабилизатор тока и зарядник. Аналогом оборудования служит TL431CLP, TL431CD и другие.

MOSFET + TL431 = компенсационный стабилизатор напряжения

LDO = low dropout = малое минимальное падение напряжения на проходном элементе

Идеальный стабилизатор напряжения 🙂

Для популярного трёх-выводного интегрального стабилизатора LM317 (datasheet) минимальное падение напряжения, при котором ещё нормируется его работа – 3 Вольта. Причём в документации этот параметр явно нигде не указан, а так, скромненько, в условиях измерений упоминается. В большинстве же случаев подразумевается, что падение на чипе 5 Вольт и более:
“Unless otherwise specified, VIN − VOUT = 5V”.

Баба Яга – против! Жалко терять 3 Вольта на глупом проходном транзисторе. И рассеивать лишние Ватты. Популярное решение проблемы – импульсные стабилизаторы – здесь не обсуждаем по причине того, что они свистят. С помехами можно бороться, но, как известно: кто не борется – тот непобедим! 😉

Идея
Идея данной схемки восходит к одному из многочисленных datasheet’ов на TL431. Вот, например, что предлагают National Semiconductor / TI:

Vo ~= Vref * (1+R1/R2)

Сам по себе такой регулятор не шибко интересен: на мой взгляд он ни чем не лучше, чем обычные трёхвыводные стабилизаторы 7805, LM317 и тому подобные. Минимальное падение на проходном дарлингтоне меньше 2 Вольт тут вряд ли удастся получить. Да к тому же никаких защит ни по току, ни от перегрева. Разве что транзисторы можно ставить на столько толстые, на сколько душа пожелает.

Недавно мне понадобилось-таки соорудить линейный стабилизатор с минимальным падением напряжения. Конечно, всегда можно извернуться, взять трансформатор с бОльшим напряжением на вторичке, диоды Шоттки в мост поставить, конденсаторов накопительных поболе… И всем этим счастьем греть трёхвыводной стабилизатор. Но хотелось-то изящного решения и с тем трансом, что был в наличии. Какой проходной регулятор может обеспечить падение близкое к нулю? MOSFET: у современных мощных полевиков сопротивление канала может быть единицы милли-Ом.

Простая замена дарлингтона на полевой транзистор с изолированным затвором и индуцированным каналом (т.е. самый обычный MOSFET) в схеме выше – не особо поможет. Так как пороговое напряжение затвор-исток будет Вольта 3-4 у обычных, и всё одно больше Вольта у “логических” MOSFET’ов – чем и будет задано минимальное проходное напряжение на таком стабилизаторе.

Интересно могло бы получиться при использовании полевика, работающего в режиме обеднения (т. е. со встроенным каналом), или с p-n переходом. Но к сожалению, мощные устройства этих типов нынче практически недоступны.

Спасает дополнительный источник напряжения смещения. Такой источник совсем не должен быть сильноточным – несколько миллиАмпер будет достаточно.

Схема – скелетик

Работает это всё очень просто: когда напряжение на управляющем входе TL431, пропорциональное выходному напряжению, падает ниже порогового (2.5V) – “стабилитрон” закрывается и “отпускает” затвор полевика “вверх”. Ток от дополнительного источника через резистор “подтягивает” напряжение на затворе, а, следовательно, и на выходе стабилизатора.
В обратную сторону, при увеличении выходного напряжения, всё работает аналогично: “стабилитрон” приоткрывается и уменьшает напряжение на затворе полевика.
TL431 суть устройство линейное, никаких защёлок в ней нету:

TL/LM431 – эквивалентная блок-схема

Реальность
В схеме реального устройства я всё же добавил защиту по току, пожертвовав пол-Вольта падения в пользу безопасности. В принципе, в низковольтных конструкциях часто можно обойтись плавким предохранителем, так как полевые транзисторы доступны с огромным запасом по току и при наличии радиатора способны выдерживать бешеные перегрузки. Если же и 0.5 Вольта жалко, и защита по току необходима – пишите, ибо есть способы 😉

Низковольтный линейный стабилизатор напряжения с минимальными потерями
30 января 2012: Проверено 🙂 Работает отлично! При токах нагрузки примерно от 2А и выше – мощные диоды желательно усадить на небольшой радиатор. R8=0; C7=0.1 … 10мкФ керамика или плёнка.

При номиналах R5-R6-R7, указанных на схеме, диапазон регулировки выходного напряжения примерно от 9 до 16 Вольт. Естественно, реальный максимум зависит от того, сколько может обеспечить трансформатор под нагрузкой.
R4 необходимо использовать достойной мощности: PmaxR4 ~= 0.5 / R. В данном примере – двухватник будет в самый раз.

Где это может понадобиться
Например: в ламповой технике для питания накальных цепей постоянным током.
Зачем постоянный, да ещё так тщательно стабилизированный ток для питания нитей накала?

  1. Исключить наводки переменного напряжения в сигнальные цепи. Путей для просачивания “фона” из накальных цепей в сигнал несколько (тема для отдельной статьи!)
  2. Питать накал строго заданным напряжением. Есть данные, что превышение напряжения накала на 10% от номинального может сократить срок службы лампы на порядок. Нормы же допусков для напряжения питающей сети плюс погрешности исполнения трансформаторов и т.п. – 10% ошибки легко набежит.

Для 6-вольтовых накалов необходимо уменьшить R5: 5.6КОм будет в самый раз.

Что можно улучшить
Например, для питания нитей накала полезно добавить плавный старт. Для этого достаточно будет увеличить C4 скажем до 1000мкФ и включить между мостом и C4 резистор сопротивлением в 1КОм.

Немножко окололамповой мифологии
Позволю себе пройтись по поводу одного стойкого заблуждения, утверждающего, будто питание накала “постоянкой” отрицательно сказывается на “звуке”.
Наиболее вероятный источник происхождения этого мифа, как водится – недостаток понимания и кривые ручки. Например: один трансформатор запитывает и аноды и накал. Номинальный ток накальной обмотки, скажем, 1А, который до этого питал накал ламп напрямую, и те потребляли чуть меньше этого самого 1А. Всё работало хорошо, может быть фонило чуток. Если теперь некий паяльщик-такелажник, мнящий себя “tube-guru”, вдруг запитал те же лампы от той же обмотки но уже через выпрямитель/конденсатор/стабилизатор – всё, хана усилку! Объяснение простое, хотя не для всех очевидное:

  1. Во-первых, трансформатор теперь перегружен из-за импульсного характера тока заряда накопительной ёмкости (нужна отдельная статья!) Если вкратце: надо брать транс с номинальным током вторички примерно в 1.8 раза больше, нежели выпрямленный ток нагрузки.
  2. Во-вторых – ударные токи заряда накопительных емкостей в источнике питания накала ничего хорошего в анодное питание не добавят.

 

Здесь я не претендую на уникальность. Хоть и додумался я когда-то сам до этой полезной схемки, после мне уже доводилось встречать подобные решения ещё у нескольких серьёзных разработчиков. Просто хочу поделиться с вами, друзья, своими наработками, мыслями…

  • Вам было интересно? Напишите мне!

Друзья мои, собратья по интересам! Пишу и буду развивать этот блог – идей море и опыта уже накоплено предостаточно – есть чем поделиться. Времени как всегда мало. Что было бы интересно лично Вам?

Спрашивайте, предлагайте: в комментариях, или по e-mail (есть в моём профайле). Спасибо!

Всего Вам доброго!
– Сергей Патрушин.

P.S.: Продолжение темы ЗДЕСЬ: LDO прототип в бочке

Микросхема TL431 (стабилитрон TL-431): параметры и характеристики микросхемы

Есть много известных, знаковых, новаторских и одновременно простых конструкций интегральных схем, которые превзошли ожидания своих создателей, стали популярными и даже как-то повлияли на развитие электроники. Одна из них управляемый стабилитрон tl431. Сделанная в 1978 году микросхема tl431 до сих пор широко применяется во многих профессиональных и любительских проектах.

Внешний вид TL431

Эксплуатационные характеристики tl431

Чтобы составить представление о конструкции tl431, надо изучить datasheet устройства или описание микросхемы на русском языке, которое можно найти в сети.

Часто tl431-ая система представлена в виде компаратора или конкретного транзистора с опорным напряжением 2,5 В и напряжением насыщения около 2 В. Транзистор открывается в момент достижения напряжения между анодной (Anode) и входной (Reference) клеммой 2,5 В, ток начинает протекать от анода к катоду. Если напряжение ниже величины открытия, транзистор запирается. Интерпретация схемы тл в виде такого транзистора облегчает понимание ее работы.

Упрощенное представление tl431

Фактически, это интегральная схема с расширенной внутренней структурой, состоящей из нескольких транзисторов, резисторов и конденсаторов.

В «даташите» представлены различные параметры системы, главными рабочими характеристиками являются:

  1. Максимальное катодное напряжение 36 В;
  2. Источник очень стабилен, имеет температурный дрейф обычно около 3-7 мВ;
  3. Входной ток (Ref) составляет 1-5 мкА;
  4. Минимальное значение катодного тока рекомендуется 1 мА, максимальное 100 мА.

Преимущества tl431:

  • регулируемое напряжение;
  • потребляет мало энергии;
  • защищает аккумулятор от глубокой разрядки;
  • может использоваться, как регулируемый Z-диод и как управляемый усилитель;
  • обладает только тремя контактами;
  • низкая стоимость.

Цоколевка микросхемы зависит от фирмы-изготовителя и может различаться. Если радиолюбители выпаивают tl431 из какой-либо платы, то распиновка будет на ней видна.

Цоколёвка tl431 с несколькими разновидностями исполнения представлена на рисунке.

Разновидности распиновки tl431

Схема включения

Для tl431 схема включения зависит от того, для каких целей предназначается устройство. Простейшее его применение стабилизация напряжения заданной величины.

На вход tl431 подключается делитель напряжения, выполненный с помощью пары резисторов. С учетом технических данных микросхемы можно вычислить требуемые сопротивления.

Допустим, на выходе необходимо получить 5 В. Расчеты ведутся на основании формулы:

Vout = (1 + R1/R2) x Vref.

Полная формула записывается в виде:

Vout = (1 + R1/R2) x Vref + (Iref x R1), но вторую часть уравнения можно игнорировать, так как это очень маленькое значение, хотя все будет зависеть от используемой схемы.

  1. 5 В = (1 + R1/R2) х 2,5;
  2. R1/R2 = 1.

Так как соотношение сопротивлений равно 1, должны использоваться два резистора с одинаковым сопротивлением.

Второй пример для выходного напряжения 2,75 В:

  1. 2,75 В = (1 + R1/R2) х 2,5;
  2. R1/R2 = 0,1.

Например, если один резистор взят сопротивлением 1 кОм, то другой должен быть 10 кОм.

Схема стабилизатора напряжения

В результате опорное напряжение сохраняется на уровне 2,5 В, останавливая свой выбор на различных сопротивлениях делителя, можно создать стабилизатор заданного значения напряжения.

Важно! В случае необходимости стабилизировать напряжение 2,5 В делитель не используется, а входной вывод tl431 соединяется с катодом.

Стабилизатор тока

Микросхема tl431 находит применение и как стабилизатор тока. Здесь для расчета сопротивления при желаемом токе применяется формула:

R2 = Vref/Io, где:

  • R2 – сопротивление,
  • Io – желаемый ток.

Так как напряжение Vref = 2,5 В, то R2 = 2,5/Io. При этом через сопротивление R2 выполняется обратная связь для сохранения уровня входного напряжения Vref.

Стабилизатор тока

Схемы с датчиками

Во многих схемах необходимо контролировать параметры при помощи различных датчиков (фоторезисторов, терморезисторов). Общая схема получается похожей, как для делителя, за исключением замены одного из сопротивлений. На его месте устанавливается, например, терморезистор, а катод tl431 подключается к катушке реле. Значение температуры устанавливается при помощи потенциометра. Когда температура превышает предел срабатывания, соотношение сопротивлений изменяется, напряжение на контакте управления tl431 превышает уровень открывания, ток пропускается на катушку реле, имеющую замыкающие контакты в цепи нагрузки.

Схема с термодатчиком

Зарядное устройство

Для зарядных устройств важно ограничивать параметры тока и напряжения заряда во избежание повреждения аккумуляторов. Такая схема легко может быть реализована с применением интегральной микросхемы tl431 и других элементов:

  1. Если выходное напряжение не достигло показателя 4,2 В, регулирование зарядного тока осуществляется посредством транзисторов и резисторов;
  2. По достижении значения 4,2 В выходное напряжение ЗУ контролируется tl431, не позволяя ему повышаться дальше.

Проверка микросхемы

Радиолюбители задаются вопросом, как проверить tl431 мультиметром? Простая прозвонка микросхемы невозможна, ведь она содержит много элементов. Но есть способ, как проверить работоспособность устройства, собрав специальную схему из резисторов, кнопки и самой ТЛ-схемы. Подключение мультиметра на выход схемы теперь поможет определить исправность tl431.

Схема проверки tl431

Если нажать на кнопку, тестер покажет выходное напряжение 2,5 В, при отпущенной кнопке – 5 В.

При создании устройства предполагалось, что все микросхемы данного типа от разных производителей будут иметь цифровые символы 431, а буквенные могут отличаться, например, az431, другой аналог KIA431. Затем стали менять и цифры. Для tl431 аналог отечественный тоже существует. Это КР142ЕН19.

Видео

Оцените статью:

СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Несложная схема для регулирования, а также стабилизации напряжения представлена на картинке выше, её сможет собрать даже новичок в электронике. К примеру, на вход подано 50 вольт, а на выходе получаем 15,7 вольт или другое значение до 27V.

Схема регулируемого стабилизатора

Основной радиодеталью данного устройства является полевой (MOSFET) транзистор, в качестве которого можно использовать IRLZ24/32/44 и другие подобные. Наиболее часто они производятся компаниями IRF и Vishay в корпусах TO-220 и D2Pak. Стоит около 0.58$ грн в розницу, на ebay 10psc можно приобрести за 3$ (0,3 доллара за штуку). Такой мощный транзистор имеет три вывода: сток (drain), исток (source) и затвор (gate), он имеет такую структуру: металл-диэлектрик(диоксид кремния SiO2)-полупроводник. Микросхема-стабилизатор TL431 в корпусе TO-92 обеспечивает возможность настраивать значение выходного электрического напряжения. Сам транзистор я оставил на радиаторе и  припаял его к плате с помощью проводков.

Входное напряжение для этой схемы может быть от 6 и до 50 вольт. На выходе же получаем 3-27V с возможностью регулирования подстрочным резистором 33k. Выходной ток довольно большой, до 10 Ампер, в зависимости от радиатора.

Сглаживающие конденсаторы C1,C2 могут иметь ёмкость 10-22 мкФ, C3 4,7 мкФ. Без них схема и так будет работать, но не так хорошо, как нужно. Не забываем про вольтаж электролитических конденсаторов на входе и выходе, мною были взяты все рассчитаны на 50 Вольт.

Мощность, которую сможет рассеять такой стабилизатор напряжения не может быть более 50 Ватт. Полевой транзистор обязательно устанавливается на радиатор, рекомендуемая площадь поверхности которого не менее 200 квадратных сантиметров (0,02 м2). Не забываем про термопасту или подложку-резинку, чтобы тепло лучше отдавалось.

Возможно использование подстрочного резистора 33k типа WH06-1, WH06-2 они имеют достаточно точную регулировку сопротивления, вот так они выглядят, импортный и советский.

Для удобства на плату лучше припаять две колодки, а не провода, которые легко отрываются.

Печатная плата для дискретных элементов и переменного резистора типа СП5-2 (3296).

Стабильность неплоха и напряжение изменяется только на доли вольта на протяжении длительного времени. Готовая платка получилась компактна и удобна. Так как я планирую длительное время использовать это устройство для защиты дорожек окрасил всё дно платы зеленым цапонлаком. Автор материала – Егор.

   Форум по БП

   Форум по обсуждению материала СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА ПОЛЕВОМ ТРАНЗИСТОРЕ

Схема включения и параметры TL431

Устройство TL431 является стабилизатором напряжения и программируемым источником опорного напряжения. Оно является наиболее популярным в сфере использования импульсных источников питания. В статье объясняется, что это такое, имеется описание того, где и как используются TL431 и TL431A, рассказывается, какие существуют особенности конструкции. Также указаны технические характеристики и прилагаются схемы подключения и применения устройства.

Что это такое

Параллельный стабилизатор TL431 работает так же, как стандартный стабилизатор. Различие уровня напряжения выхода и входа компенсируется благодаря мощному транзистору биполярного типа. Стабилизация будет лучше при условии того, что обратная связь поступает с выхода самого стабилизатора.

Резистор R1 должен быть рассчитан на минимальный ток, который равен 5 мА. Резисторы R2 и R3 рассчитываются аналогично, как для стабилизатора параметрического типа. Через каждый резистор протекает ток, у которого сила обратно пропорциональна значению сопротивления резистора. Существует два типа соединений резисторов: параллельное и последовательное соединение в форме цепи.

Где и как используется

Такие устройства, как правило, используются для компенсации колебаний напряжения в сети. Например, когда включена большая машина, потребность в энергии внезапно становится намного выше. Стабилизатор напряжения компенсирует изменение нагрузки. Стабилизаторы напряжения обычно работают в диапазоне напряжений, например, 150-240 В или 90-280 В.

Стабилизаторы напряжения используются в таких устройствах, как блоки питания компьютеров, где они стабилизируют напряжения постоянного тока. В автомобильных генераторах и центральных электростанциях-генераторах стабилизаторы напряжения контролируют мощность установки.

Выпускать устройство TL431 начали в 1977 году. Оно применяется в качестве источника опорного напряжения в схемах различных блоков питания ТВ, DVD, тюнеров и других разновидностей видео- и аудиотехники.

Также устройство необходимо для реализации обратной связи: выходное напряжение очень большое или же очень маленькое. Эксплуатируя участок цепи, который называется бандгап (источник опорного напряжения; его величина определяется шириной запрещённой зоны), TL431 является стабильным источником опорного напряжения в широких температурных диапазонах.

Особенности конструкции

У TL431 есть альтернативная версия TL43LI, у которой более лучшая стабильность, а также более низкий температурный дрейф (VI (dev)). Также у улучшенной версии более низкий опорный ток, которой необходим для повышения уровня точности всей системы.

Устройство TL431 является трёхконтактным и регулируется шунтирующим регулятором с термической стабильностью. Напряжение на выходе может устанавливаться между значением источника опорного напряжения (Vref) 2.5 и 36 В с двумя внешними резисторами. У устройства на выходе стандартный электрический импенданс – 0,2 Ом. Схема активного выхода обеспечивает очень точный способ включения. Эта возможность делает аппарат превосходной заменой диодов Зенера (стабилитронов) во многих областях применения, таких как встроенное регулирование и переключение источников питания.

Другая версия устройства – TL432 – имеет те же функциональные и технические характеристики, что и верися TL431, но имеет различные выводы для цоколевки DBV, DBZ и PK. Обе версии TL431 и TL432 представлены в трех классах с изначальными температурными пределами (при 25 градусах) 0.5%, 1% и 2% для B, A и стандартного класса соответственно. Более того, низкий дрейф на выходе в зависимости от температуры обеспечивает хорошую стабильность во всем диапазоне рабочих температур.

Цоколевка TL431 имеет следующий вид: 

Распиновка TL431 выглядит так:

Технические характеристики TL431 и TL431A

У TL431A и TL431 такие параметры:

  • Мощность составляет 0.2 Вт.
  • Электрический ток на выходе достигает 100 мА.
  • Напряжение на выходе варьируется от 2,5 до 36 В.
  • Рабочая температура TL431 в диапазоне от 0 до +70 градусов.
  • Рабочая температура TL431A варьируется от -40 до +85 градусов.

Также важны другие параметры.

Выходное напряжение

Оно может поддерживаться постоянным только в указанных пределах.

Регулировка нагрузки

Эта характеристика является изменением выходного напряжения для данного текущего тока нагрузки

Линейное регулирование или регулирование на входе

Это степень, в которой выходное напряжение претерпевает изменения с изменением входного (питающего) напряжения. Это аналогично отношению изменения выходного сигнала к входному или изменению выходного напряжения за весь промежуток времени.

Температурный коэффициент выходного напряжения

Это показатель изменения температуры (усредненное по заданному температурному диапазону).

Изначальная точность регулятора напряжения (или точность напряжения)

Оно отображает ошибку в выходном напряжении для заданного регулятора без учета температурного фактора на точность вывода.

Падение напряжения

Показатель – минимальная разница между входным и выходным напряжением. Для этой разницы регулятор все еще может подавать указанный ток. Дифференциальный ток ввода-вывода, при котором регулятор напряжения не будет выполнять свою функцию, – падение напряжения. Дальнейшее снижение входного напряжения может привести к понижению выходного напряжения. Данное значение зависит от тока нагрузки и температуры перехода.

Пусковой ток или импульсный входной ток

Также называется импульсный выброс при включении. Данный параметр отображает максимальный мгновенный входной ток, который потребляется устройством во время первого включения. Период длительности пускового тока – полсекунды (или несколько миллисекунд), тем не менее он почти всегда высок. Учитывая это, он является опасным, так как может постепенно сжигать детали (в течение нескольких месяцев), особенно если нет соответствующей защиты от такого типа тока.

Ток покоя в цепи регулятора

Этот электрический ток потребляется внутри цепи. Он недоступен для нагрузки и измеряется как входной ток без подключения нагрузки.

Переходная реакция

Эта реакция происходит, когда случается внезапное изменение электротока нагрузки или же входного напряжения.

Расчёт напряжения TL431 

Схемы применения TL431

Для того, чтобы правильно подключить, важно соблюдать технику безопасности и следовать последовательности, как, например, при применении схемы подключении двухклавишного выключателя или при применении схемы подключения узо.

Работа микросхемы

Извне принцип работы аппарата выделяется довольно несложно. Если подать на контакт ref напряжение, которое превышает 2 В, тогда выходной транзистор проведёт электрически ток между анодом и катодом. Ток, который идёт к микросхеме, в блоке питания в таком случае увеличивается. Это вызывает уменьшение мощности блока питания. Затем происходит уменьшение напряжения до допустимого уровня. Следовательно, для блока питания применяют TL431 с целью того, чтобы поддерживалось стабильное выходное напряжение.

Одна из самых важных частей микросхемы – источник опорного напряжения. Он эквивалентен ширине запрещённой зоны. Основные составляющие есть на фото кристалла – пространство эммитера транзистора Q5 в восемь раз превышает Q4. Так, два транзистора имеют разные реакции на температуру. Объединение выходных сигналов с транзисторов происходит посредство объединения через резисторы R4, R3 и R2 в необходимой пропорции с целью компенсации эффектов температуры. Итого, формируется стабильный опорный сигнал.

В компаратор по температуре из стабилизированной запрещённой зоны посылается напряжение. Входом компаратора служат Q9 и Q8, Q1 и Q6. Выход же компатора идёт через Q10, чтобы управлять резистором Q11 (выходной).

Схема включения TL431

Схема включения и контроля напряжения TL431A

Нередко терморезистор выполняет функцию датчика температуры, уменьшая степень своего сопротивления в случае возрастания температуры. Это происходит по причине отрицательного температурного коэффициента сопротивления (ТКС). Те резисторы, у которых сопротивление увеличивается вместе с увеличением температуры (с положительным значением ТКС), имеют название позисторы. В этом терморегуляторе в случае превышения температуры заданного лимита, заработает реле или любое другое устройство с подобными функциями. Оно сразу же отключит нагрузку или включит систему охлаждения в зависимости от ситуации.

Данная схема имеет малый гистерезис, и чтобы его увеличить, нужно ввести ООС (отрицательная обратная связь) между выводами 1-3. К примеру, подстроченный резистор с сопротивлением 1. 0-0.5 мОм. Надо подобрать экспериментальным путём подобрать в зависимости от требуемого гистерезиса. Если требуется, чтобы устройство срабатывало во время температурного снижения, тогда следует поменять местами регуляторы и датчик. Иначе говоря, включить в верхнее плечо термистор, а в нижнее – переменное сопротивление с самим резистором.

Подключение устройства TL431 требует внимания и является ответственной операцией, при которой важно не пренебрегать правилами безопасности, как например при подключении электроплиты.

TL431 – регулируемый стабилитрон. Описание, распиновка, схема включения, datasheet

В этой статье мы узнаем, как работает интегральный стабилизатор напряжения TL431, в регулируемых блоках питания.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Технически TL431 называется программируемым шунтирующим регулятором, простыми словами это может быть определено как регулируемый стабилитрон. Давайте рассмотрим его спецификацию и указания по применению.

Стабилитрон TL431 имеет следующие основные функции:

  • Выходное напряжение устанавливается или программируется до 36 вольт
  • Низкое выходное сопротивление около 0,2 Ома
  • Пропускная способность до 100 мА
  • В отличие от обычных диодов Зенера, генерация шума в TL431 незначительна.
  • Быстрое переключение.

Общее описание TL431

TL431 — регулируемый или программируемый регулятор напряжения.
Необходимое выходное напряжение может быть установлено с помощью всего двух внешних резисторов (делитель напряжения), подключенных к выводу REF.

На приведенной ниже схеме показана внутренняя структурная схема устройства, а также PIN-код обозначения.

Распиновка TL431

 

Схема включения стабилитрона TL431

Теперь давайте посмотрим, как этот прибор может быть использован в практических схемах. Схема ниже показывает, как можно использовать TL431 в роли обычного регулятора напряжения:

Приведенный выше рисунок показывает, как с помощью всего пары резисторов и TL431 получить регулятор, работающий в диапазоне 2,5…36 вольт. R1 представляет собой переменный резистор, который используется для регулировки выходного напряжения.

Следующая формула справедлива для вычисления сопротивлений резисторов, в случае если мы хотим получить какое-то фиксированное напряжение.

Vo = (1 + R1/R2)Vref

Скачать калькулятор для расчета TL431 (unknown, скачано: 3 156)

При совместном применении стабилизаторов серии 78xx (7805,7808,7812..) и TL431 можно использовать следующую схему:

TL431 катод соединен с общим выводом 78xx. Выход 78xx подключен к одной из точки резисторного делителя напряжения, который определяет выходное напряжение.

Вышеуказанные схемы использования TL431 ограничены выходным током 100 мА максимум.

Для получения более высокого выходного тока может быть использована следующая схема.

В приведенной выше схеме большинство компонентов схожи с обычным регулятором, приведенным выше, за исключением того, что здесь катод подключен к плюсу через резистор и к их точке соединения подсоединена база буферного транзистора.  Выходной ток регулятора будет зависеть от мощности данного транзистора.

Области применения TL431

Выше изложенные варианты применения TL431 могут быть использована в любом месте, где требуется точность настройки выходного напряжения или опорного напряжении. В настоящее время это широко используется в импульсных источниках питания для генерации точного опорного напряжения.

Datasheet TL431 – скачать (unknown, скачано: 1 225)

homemade-circuits.com

Блок питания 0…30 В / 3A

Набор для сборки регулируемого блока питания…

Отсутствует

Код 404 страница не найдена. К сожалению, страница отсутствует или перемещена.

Ниже приведены основные подразделы этого сайта.


  • Главная страница общей электроники
  • Мой канал YouTube Electronics
  • Проекты микроконтроллеров Arduino
  • Raspberry Pi и Linux
  • Возвращение к регистрам порта Arduino
  • Digispark ATtiny85 с MCP23016 GPIO Expander
  • Программа безопасной сборки H-Bridge
  • Построить управление двигателем с H-мостом без фейерверков
  • MOSFET H-мост для Arduino 2
  • Гистерезис компаратора и триггеры Шмитта
  • Учебное пособие по теории компараторов
  • Принципы работы и использования фотодиодных схем
  • Реле постоянного тока с оптопарой на полевых МОП-транзисторах с фотоэлектрическими драйверами
  • Подключение твердотельных реле Crydom MOSFET
  • Photodiode Op-Amp Circuits Tutorial
  • Входные цепи оптопары для ПЛК
  • h21L1, 6N137A, FED8183, TLP2662 Оптопары с цифровым выходом
  • Цепи постоянного тока с LM334
  • LM334 Цепи CCS с термисторами, фотоэлементами
  • LM317 Цепи источника постоянного тока
  • TA8050P Управление двигателем с Н-мостом
  • Оптическая развязка органов управления двигателем с Н-мостом
  • Управление двигателем с Н-мостом на всех NPN-транзисторах
  • Базовые симисторы и тиристоры
  • Твердотельные реле переменного тока с симисторами
  • Светоактивированный кремниевый управляемый выпрямитель (LASCR)
  • Базовые схемы транзисторных драйверов для микроконтроллеров
  • ULN2003A Транзисторная матрица Дарлингтона с примерами схем
  • Учебное пособие по использованию силовых транзисторов Дарлингтона TIP120 и TIP125
  • Управление силовыми транзисторами 2N3055-MJ2955 с транзисторами Дарлингтона
  • Что такое биполярные транзисторные переключатели
  • Учебное пособие по переключению N-канального силового полевого МОП-транзистора
  • Учебное пособие по переключателю P-Channel Power MOSFET
  • Создание транзисторного управления двигателем с H-мостом
  • Управление двигателем по Н-мосту с силовыми МОП-транзисторами
  • Другие примеры цепей с двутавровым мостом силового полевого МОП-транзистора
  • Создание мощного транзисторного управления двигателем с H-мостом
  • Теория и работа конденсаторов
  • Построить вакуумную трубку 12AV6 AM-радио
  • Катушки для высокоселективного кристаллического радио
  • Добавление двухтактного выходного каскада к усилителю звука Lm386
  • Исправление источника питания
  • Основные силовые трансформаторы
  • Схема транзисторно-стабилитронного стабилизатора
  • Уловки и подсказки для регуляторов напряжения серии LM78XX
  • Биполярные источники питания
  • Создайте регулируемый источник питания 0-34 В с Lm317
  • Использование датчиков Холла с переменным током
  • Использование переключателей и датчиков на эффекте Холла
  • Использование ратиометрических датчиков на эффекте Холла
  • Использование датчиков Холла с Arduino-ATMEGA168
  • Простой преобразователь от 12-14 В постоянного тока до 120 В переменного тока
  • Глядя на схемы оконного компаратора
  • Автоматическое открытие и закрытие окна теплицы
  • La4224 Усилитель звука мощностью 1 Вт
  • Управление двигателем H-Bridge с силовыми МОП-транзисторами Обновлено
  • Обновлено в сентябре 2017 г . :
  • Веб-мастер
  • Раскрытие
  • Бристоль, Юго-Западная Вирджиния
  • Наука и технологии
  • 2017 Обновления и удаления веб-сайтов
  • Электроника для хобби
  • Конституция США
  • Христианство 101
  • Религиозные темы
  • Электронная почта

»Главная ” Электронное письмо »Пожертвовать ” Преступление »Электроника для хобби
» Экологичность »Расизм »Религия »Бристоль VA / TN

»Архив 1 »Архив 2 »Архив 3 »Архив 4 »Архив 5
» Архив 6 »Архив 7 »Архив 8 »Архив 9


Веб-сайт Авторские права Льюис Лофлин, Все права защищены.

Отсутствует

Код 404 страница не найдена. К сожалению, страница отсутствует или перемещена.

Ниже приведены основные подразделы этого сайта.


  • Главная страница общей электроники
  • Мой канал YouTube Electronics
  • Проекты микроконтроллеров Arduino
  • Raspberry Pi и Linux
  • Возвращение к регистрам порта Arduino
  • Digispark ATtiny85 с MCP23016 GPIO Expander
  • Программа безопасной сборки H-Bridge
  • Построить управление двигателем с H-мостом без фейерверков
  • MOSFET H-мост для Arduino 2
  • Гистерезис компаратора и триггеры Шмитта
  • Учебное пособие по теории компараторов
  • Принципы работы и использования фотодиодных схем
  • Реле постоянного тока с оптопарой на полевых МОП-транзисторах с фотоэлектрическими драйверами
  • Подключение твердотельных реле Crydom MOSFET
  • Photodiode Op-Amp Circuits Tutorial
  • Входные цепи оптопары для ПЛК
  • h21L1, 6N137A, FED8183, TLP2662 Оптопары с цифровым выходом
  • Цепи постоянного тока с LM334
  • LM334 Цепи CCS с термисторами, фотоэлементами
  • LM317 Цепи источника постоянного тока
  • TA8050P Управление двигателем с Н-мостом
  • Оптическая развязка органов управления двигателем с Н-мостом
  • Управление двигателем с Н-мостом на всех NPN-транзисторах
  • Базовые симисторы и тиристоры
  • Твердотельные реле переменного тока с симисторами
  • Светоактивированный кремниевый управляемый выпрямитель (LASCR)
  • Базовые схемы транзисторных драйверов для микроконтроллеров
  • ULN2003A Транзисторная матрица Дарлингтона с примерами схем
  • Учебное пособие по использованию силовых транзисторов Дарлингтона TIP120 и TIP125
  • Управление силовыми транзисторами 2N3055-MJ2955 с транзисторами Дарлингтона
  • Что такое биполярные транзисторные переключатели
  • Учебное пособие по переключению N-канального силового полевого МОП-транзистора
  • Учебное пособие по переключателю P-Channel Power MOSFET
  • Создание транзисторного управления двигателем с H-мостом
  • Управление двигателем по Н-мосту с силовыми МОП-транзисторами
  • Другие примеры цепей с двутавровым мостом силового полевого МОП-транзистора
  • Создание мощного транзисторного управления двигателем с H-мостом
  • Теория и работа конденсаторов
  • Построить вакуумную трубку 12AV6 AM-радио
  • Катушки для высокоселективного кристаллического радио
  • Добавление двухтактного выходного каскада к усилителю звука Lm386
  • Исправление источника питания
  • Основные силовые трансформаторы
  • Схема транзисторно-стабилитронного стабилизатора
  • Уловки и подсказки для регуляторов напряжения серии LM78XX
  • Биполярные источники питания
  • Создайте регулируемый источник питания 0-34 В с Lm317
  • Использование датчиков Холла с переменным током
  • Использование переключателей и датчиков на эффекте Холла
  • Использование ратиометрических датчиков на эффекте Холла
  • Использование датчиков Холла с Arduino-ATMEGA168
  • Простой преобразователь от 12-14 В постоянного тока до 120 В переменного тока
  • Глядя на схемы оконного компаратора
  • Автоматическое открытие и закрытие окна теплицы
  • La4224 Усилитель звука мощностью 1 Вт
  • Управление двигателем H-Bridge с силовыми МОП-транзисторами Обновлено
  • Обновлено в сентябре 2017 г . :
  • Веб-мастер
  • Раскрытие
  • Бристоль, Юго-Западная Вирджиния
  • Наука и технологии
  • 2017 Обновления и удаления веб-сайтов
  • Электроника для хобби
  • Конституция США
  • Христианство 101
  • Религиозные темы
  • Электронная почта

»Главная ” Электронное письмо »Пожертвовать ” Преступление »Электроника для хобби
» Экологичность »Расизм »Религия »Бристоль VA / TN

»Архив 1 »Архив 2 »Архив 3 »Архив 4 »Архив 5
» Архив 6 »Архив 7 »Архив 8 »Архив 9


Веб-сайт Авторские права Льюис Лофлин, Все права защищены.

Как работает шунтирующий регулятор TL431, техническое описание, приложение

В этом посте мы узнаем, как микросхема шунтирующего регулятора обычно работает в схемах SMPS. Мы возьмем пример популярного устройства TL431 и попытаемся понять его использование в электронных схемах с помощью нескольких замечаний по его применению.

Электрические характеристики

Технически устройство TL431 называется программируемым шунтирующим стабилизатором, проще говоря, это регулируемый стабилитрон.

Давайте узнаем больше о его технических характеристиках и примечаниях к применению.

TL431 обладает следующими основными характеристиками:

  • Настраиваемое или программируемое выходное напряжение от 2,5 В (минимальное опорное напряжение) до 36 В.
  • Выходное сопротивление низкое динамическое, около 0,2 Ом.
  • Допустимая нагрузка по току приемника до 100 мА
  • В отличие от обычных стабилитронов, уровень шума незначителен.
  • Молниеносная реакция на переключение.

Как работает IC TL431?

TL431 представляет собой трехконтактный транзистор, подобный (например, BC547) регулируемому или программируемому стабилизатору напряжения.
Выходное напряжение можно измерить, используя всего два резистора на указанных выводах устройства.

На схеме ниже показана внутренняя блок-схема устройства, а также обозначения контактов.

На следующей схеме показаны выводы реального устройства. Давайте посмотрим, как это устройство можно сконфигурировать в практических схемах.

Примеры схем с использованием TL431

Схема ниже показывает, как указанное выше устройство TL431 можно использовать в качестве типичного шунтирующего регулятора.

На приведенном выше рисунке показано, как с помощью пары резисторов TL431 можно подключить как шунтирующий стабилизатор для генерации выходных сигналов от 2,5 до 36 В. R1 – переменный резистор, который используется для регулировки выходного напряжения.

Последовательный резистор на положительном входе питания можно рассчитать по закону Ома:

R = Vi / I = Vi / 0,1

Здесь Vi – вход питания, который должен быть ниже 35 В. 0,1 или 100 мА – это Максимальный шунтирующий ток, указанный в спецификации ИС, а R – резистор в Ом.

Расчет резисторов шунтирующего регулятора

Следующая формула подходит для получения значений различных компонентов, используемых для фиксации напряжения шунта.

Vo = (1 + R1 / R2) Vref

В случае, если 78XX необходимо использовать вместе с устройством, можно использовать следующую схему:

Заземление катода TL431 соединено с контактом заземления 78XX. Выход из 78XX IC связан с цепью делителя потенциала, который определяет выходное напряжение.

Детали можно идентифицировать по формуле, показанной на схеме.

Вышеуказанные конфигурации ограничены максимальным током на выходе 100 мА. Для увеличения тока можно использовать транзисторный буфер, как показано на следующей схеме.

На приведенной выше схеме расположение большинства деталей аналогично конструкции первого шунтирующего регулятора, за исключением того, что здесь катод снабжен положительным резистором, а точка также становится базовым триггером подключенного буферного транзистора.

Выходной ток будет зависеть от величины тока, который транзистор может потреблять.

На приведенной выше диаграмме мы видим два резистора, значения которых не указаны, один последовательно с входной линией питания, другой – на базе транзистора PNP.

Резистор на входе ограничивает максимально допустимый ток, который может быть поглощен или шунтирован транзистором PNP. Это можно рассчитать так же, как обсуждалось ранее для первой схемы регулятора TL431.Этот резистор защищает транзистор от сгорания из-за короткого замыкания на выходе.

Резистор на базе транзистора не критичен и может произвольно выбирать любое значение от 1 кОм до 4 кОм.

Области применения ИС TL431

Хотя вышеуказанные конфигурации могут использоваться в любом месте, где может потребоваться точная установка напряжения и эталоны, в настоящее время они широко используются в схемах SMPS для генерации точного опорного напряжения для подключенного оптопары, которая в Turn побуждает входной МОП-транзистор SMPS отрегулировать выходное напряжение точно до желаемых уровней.

Для получения дополнительной информации перейдите на https://www.fairchildsemi.com/ds/TL/TL431A.pdf

Простые регуляторы напряжения, часть 1: шум

Простые регуляторы напряжения

Часть 1.

3: Тесты и графики [Итальянская версия]

Шунтирующий регулятор TL431

TL431 – это трехконтактный шунтирующий регулятор, которому некоторые в сообществе DIY приписывают почти магические свойства. И все же в аудиоиндустрии он почти не используется. Это компонент с разумными характеристиками до 100 кГц, и если он используется в режиме с единичным усилением: это означает, что существует прямая ВЧ-обратная связь от шины напряжения к опорному входу, что на приведенной выше схеме разрешено конденсатором C3.Осмелитесь опустить C3 и полосу пропускания регулятора и соответственно пострадают импеданс. Шунты сложнее применить, и почти всегда невозможно быстро заменить последовательные регуляторы в коммерческом оборудовании. Кроме того, расчет падающего резистора R16 может вызвать затруднения, если вы не знаете полный ток нагрузки, и обратите внимание, что 431 чрезвычайно нестабилен при отсутствии выходного конденсатора C5. С другой стороны, при замене капельницы R16 на активный источник тока можно добиться огромного снижения пульсаций или изоляции.

Выше показан спектр шума для случая с коэффициентом усиления пять, то есть без C3 и с конденсатором 220 мкФ на выходе. Шум немного ниже, чем у LM317, но, что, возможно, более важно, он равномерно распределяется по всей полосе измерения.

Добавление конденсатора C3 на 22 мкФ затем снижает усиление по переменному току до единицы, что приводит к приведенному выше спектру шума. Уровень шума теперь примерно на 12 дБ ниже, что примерно соответствует разнице в усилении между обеими схемами.

Некоторые люди предпочитают звучание TL431, работающего с неединичным усилением, т.е.е. с удаленным конденсатором C3. Как уже говорилось, это ухудшает ряд технических характеристик схемы. Разумным компромиссом, по-видимому, является приведенная выше схема, где добавлен один резистор R24, который поддерживает схему с коэффициентом усиления 2 для ВЧ и коэффициентом усиления 5 для постоянного тока. Никаких измерений не проводилось, но можно ожидать, что уровень шума будет на 6 дБ выше, чем в случае с полным обходом.

Другой интересный вариант – вышеупомянутый, где 431 используется как усилитель с шунтирующим управлением, управляющий эмиттерным повторителем. Выходное сопротивление может быть намного ниже, чем у одиночного TL431.Никаких измерений шума не проводилось (пока), но я ожидаю, что они не будут существенно отличаться от приведенных выше.

Стабилитрон + эмиттерный повторитель

Речь идет о простейшем серийном регуляторе на дискретных элементах, который только можно вообразить. Не обращайте внимания на R13 (он снижает рассеиваемую мощность и может быть частью входного RC-фильтра для улучшенного подавления пульсаций). Сердечник – стабилитрон D1, служащий опорным напряжением. Поскольку обычные стабилитроны являются шумными, требуется некоторая фильтрация, но стабилитроны имеют довольно низкий импеданс, поэтому D1 подключается последовательно с R14: это снижает стабильность постоянного тока, с которой мы можем жить, и значительно снижает шум.Q4 – это выход схемы: биполярный транзистор, работающий как эмиттерный повторитель. При выходном токе 30 мА его выходное сопротивление составляет 1 Ом, а при более высоких токах оно даже ниже. Базовый стопор R17 нужен для обеспечения устойчивости. Вот и все.

И по шуму у нас есть победитель, он на 20 дБ ниже, чем у лучших из вышеперечисленных схем! Небольшие пики на низких частотах находятся на 100 Гц и гармониках, явно связанных с питанием от сети, хотя мне не совсем понятно, как они могли попасть внутрь.Вероятно, небольшая ошибка прокладки заземляющего провода.

Да, а через наушники слушаешь?

Призрачная тишина …

[ Страница 1 ] [страница 2] [страница 3] [страница 4]

© Copyright 2004 Werner Ogiers для www.tnt-audio.com

TL431 – Ссылки с программируемой точностью

% PDF-1.4 % 1 0 объект > эндобдж 6 0 obj / Заголовок (TL431 – Ссылки с программируемой точностью) >> эндобдж 2 0 obj > эндобдж 3 0 obj > эндобдж 4 0 obj > ручей application / pdf

  • ON Semiconductor
  • TL431 – Справочная информация с программируемой точностью
  • Интегральные схемы TL431A, B трехконтактные. программируемые диоды шунтирующего регулятора.Эти монолитные микросхемы напряжения эталоны работают как стабилитрон с низким температурным коэффициентом, который программируется от Vref до 36 В с двумя внешними резисторами. Эти устройства имеют широкий диапазон рабочего тока от 1,0 мА до 100 мА с типичным динамическим сопротивлением 0,22. Характеристики эти ссылки делают их отличной заменой стабилитронов в многие приложения, такие как цифровые вольтметры, источники питания и операционные схема усилителя.
  • 2021-04-06T11: 43: 49-07: 00BroadVision, Inc.2021-04-06T12: 21: 27-07: 002021-04-06T12: 21: 27-07: 00 Acrobat Distiller 21.0 (Windows) uuid: 259e4d67-46e3-4756-aa77-6c0e1311259buuid: 3325d955-84cc-4828-ad83- cb025cef2485 конечный поток эндобдж 5 0 obj > эндобдж 7 0 объект > эндобдж 8 0 объект > эндобдж 9 0 объект > эндобдж 10 0 obj > эндобдж 11 0 объект > эндобдж 12 0 объект > эндобдж 13 0 объект > эндобдж 14 0 объект > эндобдж 15 0 объект > эндобдж 16 0 объект > эндобдж 17 0 объект > эндобдж 18 0 объект > эндобдж 19 0 объект > эндобдж 20 0 объект > эндобдж 21 0 объект > эндобдж 22 0 объект > эндобдж 23 0 объект > эндобдж 24 0 объект > эндобдж 25 0 объект > эндобдж 26 0 объект > эндобдж 27 0 объект > эндобдж 28 0 объект > эндобдж 29 0 объект > эндобдж 30 0 объект > эндобдж 31 0 объект > эндобдж 32 0 объект > эндобдж 33 0 объект > эндобдж 34 0 объект > эндобдж 35 0 объект > эндобдж 36 0 объект > эндобдж 37 0 объект > эндобдж 38 0 объект > ручей HW [o ܸ8, ZDEI “{> dAe, ixn3nb @ $ (D > go /) l \ c`v “GAD $% $) IU> DQ”]. L۸w {[kNpc $ ŀrJ0e, & 2V_ 6H (̇’hnwevTk` EUVio -lCXMSMT [mYpvUoB7feV7] b = [0xz $ / y} SW \ = PNVq \ $ y ݴ + O-ipIS3] WY 蠭 X @ (| Икс , f1 & OqN ++ ZC \ AϷ ڴ] NM ծ m $ (‘J 46IE𸑢 # x, c! * 3 = Svlc: ̕i4@U*.l$Uftb) t ݌ࣉ ҮFNJ A (_5v.0 + .Wzg +] 9v @ pO > /g.yEV> BCfEƴO) 0qPn4z; 8raNbG

    самый распространенный чип, о котором вы никогда не слышали

    Фотография кристалла интересной, но малоизвестной ИС блока питания TL431 дает возможность изучить, как аналоговые схемы реализованы в кремнии. Хотя приведенная ниже схема может выглядеть как лабиринт, на самом деле микросхема относительно проста и может быть реконструирована после небольшого изучения.В этой статье объясняется, как транзисторы, резисторы и другие компоненты реализованы в кремнии для формирования микросхемы, представленной ниже.

    Фотография штампа TL431. Оригинальное фото Zeptobars.

    TL431 является «программируемым прецизионным эталоном» [1] и обычно используется в импульсных источниках питания, где он обеспечивает обратную связь, указывающую, является ли выходное напряжение слишком высоким или слишком низким. За счет использования специальной схемы, называемой запрещенной зоной, TL431 обеспечивает стабильное опорное напряжение в широком диапазоне температур.На блок-схеме TL431 ниже показано, что он имеет опорное напряжение 2,5 В и компаратор [1], но, глядя на кристалл, видно, что внутренне он сильно отличается от блок-схемы.

    TL431 имеет долгую историю; он был представлен в 1978 году [2] и с тех пор является ключевой частью многих устройств. Он помогал регулировать блок питания Apple II и теперь используется в большинстве блоков питания ATX [3], а также в зарядное устройство для iPhone и другие зарядные устройства. Адаптер MagSafe и другие адаптеры для ноутбуков используют его, а также миникомпьютеры, Драйверы светодиодов, блоки питания аудио, видеоигры и телевизоры.[4]

    На фотографиях ниже показан TL431 внутри шести различных блоков питания. TL431 бывает разных форм и размеров; два наиболее распространенных показаны ниже. [5] Возможно, причина того, что TL431 не привлекает особого внимания, потому что он выглядит как простой транзистор, а не как микросхема.

    Как компоненты реализованы в микросхеме TL431

    Поскольку TL431 – довольно простая ИС, можно понять, что происходит с кремниевой схемой, внимательно изучив ее.Я покажу, как реализованы транзисторы, резисторы, предохранители и конденсаторы, а затем проведу обратное проектирование всего чипа.

    Реализация различных типов транзисторов в IC

    В микросхеме используются двухпереходные транзисторы NPN и PNP (в отличие от микросхем, таких как 6502, которые используют транзисторы MOSFET). Если вы изучали электронику, вы, вероятно, видели схему NPN-транзистора, подобную приведенной ниже, на которой показаны коллектор (C), база (B) и эмиттер (E) транзистора. Транзистор изображен как сэндвич из кремния P между двумя симметричными слоями кремния N; слои N-P-N составляют транзистор NPN.Оказывается, на микросхеме транзисторы не выглядят так. База даже не посередине!

    Символ и структура транзистора NPN.

    На фото ниже показан один из транзисторов TL431 в том виде, в каком он изображен на микросхеме. Разные розовый и фиолетовый цвета – это области кремния, которые были легированы по-разному, образуя N- и P-области. Беловато-желтые области – это металлический слой микросхемы поверх кремния – они образуют провода, соединяющие коллектор, эмиттер и базу.

    Под фотографией находится рисунок в разрезе, приблизительно показывающий, как устроен транзистор. [6] В книгах есть гораздо больше, чем просто бутерброд N-P-N, но если вы внимательно посмотрите на вертикальное поперечное сечение под буквой E, вы можете найти N-P-N, образующий транзистор. Провод эмиттера (E) подключен к кремнию N +. Ниже находится слой P, подключенный к базовому контакту (B). А ниже находится слой N +, подключенный (косвенно) к коллектору (C). [7] Транзистор окружен кольцом P +, которое изолирует его от соседних компонентов.Поскольку большая часть транзисторов в TL431 представляет собой NPN-транзисторы с такой структурой, легко выбрать транзисторы и найти коллектор, базу и эмиттер, если вы знаете, что искать.

    Транзистор NPN из кристалла TL431 и его кремниевая структура.

    Выходной транзистор NPN в TL431 намного больше, чем другие транзисторы, поскольку он должен выдерживать полную токовую нагрузку устройства. Хотя большинство транзисторов работают от микроампер, этот транзистор поддерживает ток до 100 мА.Для поддержки этого тока он большой (занимает более 6% всей матрицы) и имеет широкие металлические соединения с эмиттером и коллектором.

    Компоновка выходного транзистора сильно отличается от других NPN-транзисторов. Этот транзистор построен сбоку, с базой между эмиттером и коллектором. Металл слева подключается к 10 эмиттерам (голубоватый кремний N), каждый из которых окружен розоватым кремнием P для основания (средний провод). Коллектор (справа) имеет один большой контакт.Эмиттерный и базовый провода образуют вложенные «пальцы». Обратите внимание, как металл коллектора становится шире сверху вниз, чтобы поддерживать более высокий ток в нижней части транзистора. На изображении ниже показана деталь транзистора, а на фотографии кристалла – весь транзистор.

    Крупный план сильноточного выходного транзистора в микросхеме TL431.

    Транзисторы PNP имеют совершенно иную компоновку, чем транзисторы NPN. Они состоят из круглого эмиттера (P), окруженного кольцевым основанием (N), которое окружено коллектором (P).Это формирует сэндвич P-N-P по горизонтали (по бокам), в отличие от вертикальной структуры NPN-транзисторов. [8]

    На схеме ниже показан один из транзисторов PNP в TL431, а также поперечное сечение, показывающее кремниевую структуру. Обратите внимание, что хотя металлический контакт для базы находится на краю транзистора, он электрически подключен через области N и N + к своему активному кольцу между коллектором и эмиттером.

    Структура транзистора PNP в микросхеме TL431.

    Как резисторы реализованы в кремнии

    Резисторы – ключевой компонент аналогового чипа, такого как TL431. Они выполнены в виде длинной полоски легированного кремния. (В этом чипе, похоже, для резисторов используется P-кремний. ) Различное сопротивление достигается за счет использования резистивного материала разной длины: сопротивление пропорционально отношению длины к ширине.

    На фото ниже показаны три резистора на кристалле. Три длинные горизонтальные полоски представляют собой резистивный кремний, из которого состоят резисторы.Над резисторами проходят желтовато-белые металлические жилы. Обратите внимание на квадратные контакты, где металлический слой соединен с резистором. Положения этих контактов определяют активную длину резистора и, следовательно, сопротивление. Сопротивление резистора внизу немного больше, потому что контакты немного дальше друг от друга. Два верхних резистора соединены последовательно металлом в верхнем левом углу.

    Резисторы в TL431.

    Резисторы в ИС имеют очень плохие допуски – сопротивление может варьироваться на 20% от микросхемы к микросхеме из-за различий в производственном процессе.Очевидно, это проблема прецизионного чипа, такого как TL431. По этой причине TL431 сконструирован таким образом, что важным параметром является соотношение сопротивлений, особенно R1, R2, R3 и R4. Пока все сопротивления изменяются в одном и том же соотношении, их точные значения не имеют большого значения. Второй способ, которым микросхема снижает влияние вариаций, – это ее расположение. Резисторы расположены параллельными полосами одинаковой ширины, чтобы уменьшить влияние любой асимметрии сопротивления кремния. Резисторы также расположены близко друг к другу, чтобы минимизировать любые различия в свойствах кремния между различными частями микросхемы.Наконец, в следующем разделе показано, как можно отрегулировать сопротивление перед упаковкой чипа, чтобы точно настроить его производительность.

    Кремниевые предохранители для подстройки резисторов

    Одна особенность TL431, которую я не ожидал, – это предохранители для уменьшения сопротивлений. Во время производства микросхем эти предохранители могут перегорать, чтобы отрегулировать сопротивление и повысить точность микросхемы. Некоторые более дорогие микросхемы имеют резисторы с лазерной подгонкой, при которых лазер сжигает часть резистора до того, как микросхема упакована, обеспечивая больший контроль, чем предохранитель.

    На фото кристалла ниже показана одна из цепей предохранителей. Есть небольшой резистор (на самом деле два параллельных резистора), подключенный параллельно предохранителю. Обычно предохранитель вызывает шунтирование резистора. В процессе изготовления можно измерить характеристики микросхемы. Если требуется большее сопротивление, два щупа контактируют с контактными площадками и подают сильный ток. Это приведет к перегоранию предохранителя и добавлению небольшого сопротивления цепи. Таким образом, сопротивление в конечной цепи можно немного отрегулировать для повышения точности микросхемы.

    Подстроечный предохранитель в TL431.

    Конденсаторы

    TL431 содержит два конденсатора внутри, и они реализованы по-разному.

    Первый конденсатор (под текстом TLR431A) представляет собой диод с обратным смещением (красноватые и пурпурные полосы). Переход обратно смещенного диода имеет емкость, которую можно использовать для формирования конденсатора (подробности). Одним из ограничений этого типа конденсатора является изменение емкости в зависимости от напряжения из-за изменения ширины перехода.

    Конденсатор перехода в микросхеме TL431 с встречно-штыревыми PN переходами. Идентификатор кристалла написан металлическим сверху.

    Второй конденсатор сформирован совершенно иначе и больше похож на традиционный конденсатор с двумя пластинами. Здесь особо не на что смотреть: у него есть большая металлическая пластина с кремнием N + под ней, действующим как вторая пластина. Форма неправильная, чтобы соответствовать другим частям схемы. Этот конденсатор занимает около 14% кристалла, демонстрируя, что конденсаторы очень неэффективно используют пространство в интегральных схемах.В таблице данных указано, что эти конденсаторы имеют емкость 20 пФ каждый; Не знаю, настоящая это ценность или нет.

    Конденсатор в микросхеме TL431.

    Реконструкция микросхемы TL431

    Матрица TL431 с маркировкой.

    На схеме выше показаны компоненты на кристалле TL431, помеченные в соответствии со схемой ниже. Из предыдущего обсуждения структура каждого компонента должна быть ясна. Три контакта микросхемы подключены к контактным площадкам «ref», «anode» и «cathode».Чип состоит из одного слоя металла (желтовато-белого цвета), соединяющего компоненты. На схеме показаны сопротивления с точки зрения неизвестного масштабного коэффициента R; 100 & Ом; вероятно, разумное значение для R, но я не знаю точного значения. Один большой сюрприз от взгляда на кристалл заключается в том, что значения компонентов сильно отличаются от значений на ранее опубликованных схемах. Эти значения существенно влияют на работу опорного напряжения запрещенной зоны. [9]

    Внутренняя схема TL431

    Как работает микросхема

    Внешне TL431 прост в эксплуатации.Если напряжение на входе вывода ref превышает 2,5 В, выходной транзистор проводит ток, вызывая протекание тока между выводами катода и анода. В источнике питания это увеличение потока тока сигнализирует микросхеме управления источником питания (косвенно), заставляя ее уменьшать мощность, которая вернет напряжение к желаемому уровню. Таким образом, источник питания использует TL431 для поддержания стабильного выходного напряжения.

    Я дам краткое описание внутренней работы чипа, а подробное объяснение напишу позже.Самая интересная часть микросхемы – это опорное напряжение запрещенной зоны с температурной компенсацией. [10] Ключ к этому можно увидеть, посмотрев на кристалл: у транзистора Q5 площадь эмиттера в 8 раз больше, чем у Q4, поэтому температура на два транзистора влияет по-разному. Выходы этих транзисторов объединены R2, R3 и R4 в правильном соотношении, чтобы нейтрализовать влияние температуры, образуя стабильный эталон. [11] [12]

    Напряжения из температурно-стабилизированной запрещенной зоны поступают в компаратор, который имеет входы Q6 и Q1; Q8 и Q9 управляют компаратором.Наконец, выходной сигнал компаратора проходит через Q10 для управления выходным транзистором Q11.

    Низкотехнологичный способ снятия крышки с TL431

    Получение фотографии кристалла ИС обычно включает растворение кристалла в опасных кислотах, а затем фотографирование кристалла с помощью дорогостоящего металлургического микроскопа. (Zeptobars описывает здесь свой процесс). Мне было интересно, что бы я получил, если бы просто расколол TL431 плоскогубцами Vise-Grip и посмотрел бы с помощью дешевого микроскопа. Я сломал матрицу пополам, но все же получил некоторые интересные результаты.На рисунке ниже показан большой медный анод внутри корпуса, который действует как теплоотвод. Рядом с ним находится (большая часть) кристалл, который обычно устанавливается на медный анод, где находится белый кружок. Обратите внимание, насколько меньше размер кристалла, чем упаковка.

    Корпус TL431, внутренний анод и большая часть кристалла.

    С помощью базовый микроскоп, Получил фото ниже. Хотя качество изображения не такое, как у Zeptobars, оно показывает структуру чипа лучше, чем я ожидал.Этот эксперимент показывает, что вы можете выполнять базовый уровень снятия колпачков и фотографирования кристаллов, не прибегая к опасным кислотам. На этой фотографии я вижу, что дешевые TL431, которые я заказал на eBay, идентичны тому, что сняли Zeptobars. Поскольку чип Zeptobars не соответствовал опубликованным схемам, я подумал, не получили ли они странный вариант чипа, но, видимо, нет.

    Кусок матрицы TL431, сфотографированный через микроскоп.

    Заключение

    Неужели TL431 действительно самая популярная микросхема, о которой люди не слышали? Невозможно узнать наверняка, но я думаю, что это хороший кандидат.Похоже, что никто не публикует данные о том, какие ИС производятся в наибольших количествах. Некоторые источники говорят, что таймер 555 – самый популярный чип, который производится в миллиард в год (что мне кажется невероятно высоким). TL431 должен занимать первое место в списке популярности – у вас, вероятно, есть TL431 прямо сейчас под рукой (в зарядном устройстве телефона, адаптере питания ноутбука, блоке питания ПК или мониторе). Разница в том, что такие чипы, как 555 и 741, настолько известны, что являются почти частью поп-культуры. книги, футболки и даже кружки.Но если вы не работали с источниками питания, скорее всего, вы никогда не слышали о TL431. Таким образом, TL431 получает мой голос за наиболее распространенную микросхему, о которой люди не знают. Если у вас есть другие предложения по микросхемам, которые не привлекают того внимания, которого они заслуживают, оставьте комментарий.

    Благодарности

    Фотографии кристаллов сделаны Zeptobars (кроме фотографии, которую я сделал). Схема и анализ в значительной степени основаны на Работа Кристофа Бассо. [12] В ходе анализа было проведено обсуждение с Михаилом из Zeptobars и группой Visual 6502, в частности Б.Англ.

    Примечания и ссылки

    [1] Поскольку TL431 выполняет необычную функцию, для ее функции нет стандартного названия. В различных таблицах данных он описывается как «регулируемый шунтирующий регулятор», «программируемый прецизионный эталон», «программируемое опорное напряжение шунта», и “программируемый стабилитрон”.

    [2] Я откопал немного истории о происхождении TL431 от Texas Instruments. Справочник по регулятору напряжения (1977 г.). Чип-предшественник, TL430, был представлен как регулируемый шунтирующий регулятор в 1976 году. TL431 был создан как усовершенствование TL430 с большей точностью и стабильностью и назывался регулируемым шунтирующим регулятором precision .TL431 был объявлен как продукт будущего в 1977 году и выпущен в 1978 году. Еще одним продуктом будущего, о котором TI анонсировала в 1977 году, был TL432, который должен был стать «строительным блоком таймера / регулятора / компаратора», содержащим опорное напряжение, компаратор и бустерный транзистор в одном корпусе. предварительный технический паспорт. Но когда вышел TL432, от плана «строительного блока» отказались. TL432 оказался просто TL431 с другим порядком контактов, чтобы облегчить компоновку печатной платы. техническая спецификация.

    [3] Современные блоки питания ATX (например, пример) часто содержат три TL431.Один обеспечивает обратную связь для резервного источника питания, другой обеспечивает обратную связь для основного источника питания, а третий используется в качестве линейного регулятора для выхода 3,3 В.

    [4] Интересно посмотреть на импульсные блоки питания, которые не используют TL431. В более ранних импульсных источниках питания в качестве источника опорного напряжения обычно использовался стабилитрон. В первых источниках питания Apple II в качестве источника опорного напряжения использовался стабилитрон (Astec AA11040), но вскоре он был заменен на TL431 в версии Astec AA11040-B.Модель B Commodore CBM-II использовала TL430 вместо TL431, что является необычным выбором. В миникомпьютерах HP-1000 использовались как TL430 (p69), так и TL431 (p73). В оригинальном блоке питания IBM PC для справки использовался стабилитрон (вместе со многими операционными усилителями). В более поздних источниках питания ПК часто использовался ШИМ-контроллер TL494, который содержал собственный источник опорного напряжения и работал от вторичной обмотки. В других источниках питания ATX использовался SG6105, который включал в себя два TL431 внутри.

    Зарядные устройства для телефонов обычно используют TL431.Недорогие подделки – исключение; вместо этого они часто используют стабилитрон, чтобы сэкономить несколько центов. Другим исключением являются зарядные устройства, такие как зарядное устройство для iPad, в которых используется регулирование на первичной стороне и вообще не используется обратная связь по напряжению с выхода. См. Мою статью об истории блоков питания для получения дополнительной информации.

    [5] TL431 доступен в большем количестве пакетов, чем я ожидал. На двух фотографиях показан TL431 в транзисторном корпусе с тремя выводами (TO-92). На остальных фотографиях показан корпус SOT23-3 для поверхностного монтажа.TL431 также выпускается в корпусах для поверхностного монтажа с 4, 5, 6 или 8 выводами (SOT-89, SOT23-5, SOT323-6, SO-8 или MSOP-8), а также более крупный корпус, такой как силовой транзистор (TO-252) или 8-контактный корпус IC (DIP-8). (картинки).

    [6] Для получения дополнительной информации о том, как биполярные транзисторы реализованы в кремнии, существует множество источников. Полупроводниковая технология дает хороший обзор конструкции NPN-транзистора. «Базовая обработка интегральных схем» – это презентация, в которой очень подробно описывается изготовление транзисторов.Диаграмма Википедии также полезна.

    [7] Вы могли спросить, почему существует различие между коллектором и эмиттером транзистора, когда простая картина транзистора полностью симметрична. Оба подключаются к слою N, так почему это важно? Как видно на фотографии кристалла, в реальном транзисторе коллектор и эмиттер сильно отличаются. Помимо очень большой разницы в размерах, также отличается легирование кремнием. В результате транзистор будет иметь плохое усиление, если поменять местами коллектор и эмиттер.

    [8] Транзисторы PNP в TL431 имеют круговую структуру, которая сильно отличается от транзисторов NPN. Круговая структура, используемая для транзисторов PNP в TL431, проиллюстрирована в книге «Разработка аналоговых микросхем» Ганса Камензинда, который был разработчиком таймера 555. Если вы хотите узнать больше о работе аналоговых микросхем, я настоятельно рекомендую книгу Камензинда, в которой аналоговые схемы подробно объясняются с минимумом математики. Загрузите бесплатный PDF или получите печатная версия.

    Структура транзистора PNP также объясняется в Принципах полупроводниковых устройств. Анализ и проектирование аналоговых интегральных схем предоставляет подробные модели биполярных транзисторов и способы их изготовления в ИС.

    [9] Транзисторы и резисторы в кристалле, который я исследовал, имеют очень разные значения от значений, опубликованных другими. Эти значения существенно влияют на работу опорного напряжения запрещенной зоны. Конкретно, предыдущие схемы показывают R2 и R3 в соотношении 1: 3, а Q5 имеет в 2 раза большую площадь эмиттера, чем Q4.На фото кристалла R2 и R3 равны, а площадь эмиттера Q5 в 8 раз больше, чем у Q4. Эти отношения приводят к другому ΔVbe. Чтобы компенсировать это, R1 и R4 различаются между предыдущими схемами и фотографией кристалла. Я объясню это подробно в более поздней статье, но суммирую Vref = 2 * Vbe + (2 * R1 + R2) / R4 * ΔVbe, что составляет около 2,5 вольт. Обратите внимание, что соотношение сопротивлений имеет значение, а не значения; это помогает противодействовать плохим допускам резисторов в микросхеме.

    В кристалле Q8 сформирован из двух параллельно включенных транзисторов.Я ожидал, что Q8 и Q9 будут идентичны, чтобы сформировать сбалансированный компаратор, поэтому я не понимаю мотивацию, стоящую за этим. Моя основная теория заключается в том, что это немного увеличивает опорное напряжение до 2,5 В. Б. Энгл предполагает, что это может помочь устройству лучше работать при низком напряжении.

    [10] Я не буду вдаваться в подробности ссылки на запрещенную зону, упомяну только, что это звучит как какое-то сумасшедшее квантовое устройство, но на самом деле это всего лишь пара транзисторов. Для получения дополнительной информации о том, как работает эталон запрещенной зоны, см. Как сделать эталон напряжения запрещенной зоны в одном легком уроке Пола Брокоу, изобретателя Ссылка на запрещенную зону.Презентация по ссылке на запрещенную зону находится здесь.

    [11] В некотором смысле схема запрещенной зоны в TL431 работает «в обратном направлении» по отношению к обычному опорному напряжению запрещенной зоны. Обычная запрещенная схема обеспечивает необходимые эмиттерные напряжения для получения желаемого напряжения на выходе. Схема TL431 принимает опорное напряжение в качестве входа, а напряжения эмиттера используются в качестве выходов для компаратора. Другими словами, в отличие от блок-схемы, внутри TL431 есть стабильное опорное напряжение , а не , которое сравнивается с опорным входом.Вместо этого вход ref генерирует два сигнала для компаратора, которые совпадают, когда на входе 2,5 вольта.

    [12] О TL431 написано много статей, но они, как правило, очень технические, предполагая наличие знаний в теории управления, графиках Боде и т. Д. TL431 в контурах импульсных источников питания – это классический образец TL431 Кристофа Бассо и Петра Каданка. Это объясняет TL431 от внутренних компонентов через компенсацию контура до фактического источника питания. Он включает подробную схему и описание внутренней работы TL431.Другие статьи по теме доступны на сайте powerelectronics.com. Проектирование с использованием TL431, Ray Ridley, Switching Power Magazine – это подробное объяснение того, как использовать TL431 для обратной связи по источнику питания, а также детали компенсации петли. TL431 в разделе «Управление импульсными источниками питания» – это подробная презентация ON Semiconductor. Техническое описание TL431 включает схему внутреннего устройства микросхемы. Как ни странно, сопротивления на этой схеме сильно отличаются от того, что можно увидеть на кристалле.

    Распиновка, характеристики и техническое описание регулятора TL431

    TL431 – это стабилизирующий диод , выходное напряжение которого можно программировать, изменяя номиналы подключенных к нему резисторов.Он действует почти как стабилитрон, за исключением того, что номинальное напряжение этой ИС является программируемым. Обычно он используется для обеспечения отрицательного или положительного опорного напряжения.

    Конфигурация контактов

    Номер контакта

    Имя контакта

    Описание

    1

    Номер ссылки

    Этот вывод устанавливает номинальное напряжение стабилитрона.

    2

    Анод

    Анод эквивалентного стабилитрона

    3

    Катод

    Катод эквивалентного стабилитрона

    Характеристики
    • Программируемый стабилитрон
    • Выходное напряжение: 2.От 5 В до 36 В
    • Выходной ток: от 1 мА до 100 мА (ток стока)
    • Допуск выходного напряжения: ± 4%
    • Выходное сопротивление: 0,22 Ом
    • Доступен в корпусах To-92 (3 контакта) и PDIP, SOIC (8 контактов)

    Примечание: Полную техническую информацию можно найти в таблице данных TL431 , приведенной в конце этой страницы.

    TL431 Альтернатива

    Стабилитроны

    Варианты

    TLV431, TS431LI, LM431

    TL431 Обзор

    TL431 – это программируемый шунтирующий регулятор , который может обеспечивать как положительное, так и отрицательное опорное напряжение.Это стабилитрон, номинальное напряжение которого можно регулировать в зависимости от номинала резисторов, подключенных к опорному выводу. Он обычно используется в качестве недорогого источника опорного напряжения в изолированных цепях питания.

    Из показанной выше внутренней схемы микросхемы мы можем заметить, что она состоит из NPN-транзистора с операционным усилителем, который имеет точное напряжение 2,5 В на неинвертирующем выводе. Коллектор и эмиттерный вывод транзистора образуют катод и анодный вывод IC соответственно.Теперь вы можете думать об ИС как о компараторе, у которого одна сторона компаратора имеет точное 2,5 В, а другая сторона может быть настроена с помощью эталонного вывода.

    Это свойство очень удобно для импульсных источников питания, где TL431 может использоваться для сравнения выходного напряжения с желаемым напряжением и обеспечения обратной связи для управления частотой переключения. Обычно вместе с этой установкой используется оптопара для изоляции стороны высокого напряжения. Помимо этого, микросхема находит применение во многих схемах, где можно использовать стабилитрон, некоторые из них перечислены ниже.

    Приложения
    • Импульсный режим Источники питания
    • Изолированные цепи питания
    • Компараторы напряжения
    • Цепи регулирования тока

    2D модель (ТО-92)

    Микросхема также доступна в 8-выводном корпусе. Размеры упаковки ТО-92 указаны ниже

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *