Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Для этого случая формула мощности

остается справедливой.

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный

сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий
В идеальной индуктивности ток отстает от напряжения на 90о.

Временная и векторная диаграммы напряжения и тока в идеальной катушке индуктивности представлены на рисунке

А ктивная, реактивная и полная мощности идеальной катушки индуктивности

P = U I cos  = 0 ( так как  = 0 )

Q = U I sin  = U I = I2 XL = U2 bL

S = U I = Q

В реальных катушках индуктивности часть электрической энергии преобразуется в тепло, т.е. катушка обладает не только индуктивностью L, но и активным сопротивлением Rk .

Эквивалентная схема замещения реальной катушки индуктивности представлена на рисунке.

Um = Im Zk Zk =

XL= L  = 2f

В реальной индуктивности к < 900

Емкость с.

Емкостью С называается элемент электрической цепи (конденсатор), в котором накапливается энергия электрического поля. Количественно емкость определяется выражением .

Если q – количество электричества измеряется в кулонах,

Uc – в вольтах, то емкость С в фарадах.

,

,

Если напряжение возрастает, то > 0. Это значит, что ток и напряжение совпадают по направлению, энергия электрического поля в конденсаторе возрастает.

При убывании напряжения ток также уменьшается, энергия возвращается обратно к источнику.

Если напряжение на емкости с меняется по закону синуса ,

то

В идеальной емкости ток опережает напряжения на 90о.

Емкостное сопротивление зависит от частоты по гиперболическому закону

XС =

В ременная и векторная диаграммы напряжения и тока в емкости представлены на рисунке

Активная, реактивная и полная мощности идеального конденсатора составляют соответственно

P = U I cos  = 0 ( так как  = – 0 )

Q = U I sin  = U I = I2 XС

= U2 bС

S = U I = Q

Реальные конденсаторы характеризуются не только емкостью С, но и активным сопротивлением RС или проводимостью gC , учитывающими потери энергии в диэлектрике.

Эквивалентная схема замещения реального конденсатора представлена на рисунке.

Im = Um YC YC =

XC =

Порядок выполнения работы

  1. Собрать схему, изображенную на рис.1.

Рис.1.

  1. Установить напряжение источника питания 4 В и записать показания приборов в табл.1 для ряда частот источника, начиная с f = 0.

  2. Построить в Excel зависимость R = f() и поместить в отчет.

  3. Включить осциллограф и поместить в отчет кривые напряжения и тока.

Таблица 1

f

Гц

U

B

I

A

P

Вт

R

Ом

cos 

град

1

200

2

500

3

1000

4

2000

5

5000

6

11000

  1. Собрать схему, изображенную на рис.2.

Рис.2.

  1. Записать показания приборов в табл.2 для ряда частот источника, начиная с f = 0, произвести необходимые вычисления.

  2. Построить в Excel зависимость XL = f() и поместить в отчет.

  3. Включить осциллограф и поместить в отчет кривые напряжения и тока.

Таблица 2

f

Гц

U

B

I

A

P

Вт

Zк

Ом

Rк

Ом

XL

Ом

L

Гн

cos 

град

1

200

2

500

3

1000

4

2000

5

5000

6

11000

; ; ; ; ;

  1. Собрать схему, изображенную на рис.3.

Рис.3.

  1. Записать показания приборов в табл.3 для ряда частот источника, начиная с f = 0, произвести необходимые вычисления.

  2. Построить в Excel зависимость XC = f() и поместить в отчет.

  3. Включить осциллограф и поместить в отчет кривые напряжения и тока.

Таблица 3

f

Гц

U

B

I

A

P

Вт

Yc

1/Ом

gc

1/Ом

RС

Ом

XС

Ом

C

мкФ

cos 

град

1

200

2

500

3

1000

4

2000

5

5000

6

11000

; ; ; ;

мкФ; ;

Закон Ома для переменного тока

 

 Мы с вами знаем формулировку закона Ома для цепей постоянного тока, которая гласит, что ток в такой цепи прямо пропорционален напряжению на элементе цепи и обратно пропорционален сопротивлению этого элемента постоянному току, протекающему через него.

Однако при изучении цепей переменного тока стало известно, что оказывается кроме элементов цепей с активным сопротивлением, есть элементы цепи с так называемым реактивным сопротивлением, то есть индуктивности и емкости (катушки и конденсаторы).

В цепи, содержащей только активное сопротивление, фаза тока всегда совпадает с фазой напряжения (рис 1.), т. е. сдвиг фаз тока и напряжения в цепи с чисто активным сопротивлением равен нулю.

Рисунок 1. Напряжение и ток в цепи с чисто активным сопротивлением. Сдвиг фаз между током и напряжение в цепи переменного тока с чисто активным сопротивлением всегда равен нулю

Отсюда следует, что угол между радиус-векторами тока и напряжения также равен нулю.

Тогда, падение напряжения на активном сопротивлении определяется по формуле:

  (1)

где, U-напряжение на элементе цепи,

I – ток через элемент цепи

R – активное сопротивление элемента

Формула (1) применима как для амплитудных, так и для эффективных значений тока и напряжения:

 (2)

где, Um-амплитудное значение напряжения на элементе цепи,

Im – амплитудное значение тока через элемент цепи

R – активное сопротивление элемента

В цепи, содержащей чисто реактивное сопротивление — индуктивное или емкостное, — фазы тока и напряжения сдвинуты друг относительно друга на четверть периода, причем в чисто индуктивной цепи фаза тока отстает от фазы напряжения (рис. 2), а в чисто емкостной цепи фаза тока опережает фазу напряжения (рис. 3).

Рисунок 2. Напряжение и ток в цепи с чисто индуктивным сопротивлением. Фаза тока отстает от фазы напряжения на 90 градусов.

 

Рисунок 3. Напряжение и ток в цепи с чисто емкостным сопротивлением. Фаза тока опережает фазу напряжения на угол 90 градусов.

Отсюда следует, что в чисто реактивной цепи угол между радиус-векторами тока и напряжения всегда равен 90°, причем в чисто индуктивной цепи радиус-вектор тока при вращении движется позади радиус-вектора напряжения, а в чисто емкостной цепи он движется впереди радиус-вектора напряжения.

Падения напряжения на индуктивном и емкостном сопротивлениях определяются соответственно по формулам:

 
 (3)
 

 (4)

где — UL-падение напряжение на чисто индуктивном сопротивлении ;

UС—падение напряжения на чисто емкостном сопротивлении;

I— значение тока в через реактивное сопротивление;

L— индуктивность реактивного элемента;

C— емкость реактивного элемента;

ω— циклическая частота.

Эти формулы применимы как для амплитудных, так и для эффективных значений тока и напряжения синусоидальной формы. Однако здесь следует отметить, что они ни в коем случае не применимы для мгновенных значений тока и напряжения, а также и для несинусоидальных токов.

Приведенные выше формулы являются частными случаями закона Ома для переменного тока.

Следовательно, полный закон Ома для переменного тока будет иметь вид:

(5)

Где Z – полное сопротивление цепи переменного тока.

Теперь остается только вычистислить полное сопротивление цепи, а оно зависит непосредсвенно от какие активные и реактивные элементы присутсвуют в цепи и как они соединены.

Закон Ома для различных типовых цепей переменного тока

Давайте выясним, как будет выглядеть закон Ома для цепи переменного тока, состоящей из активного и индуктивного сопротивлений, соединенных последовательно (рис. 4.)

Рисунок 4. Цепь переменного тока с последовательным соединением активного и индуктивного сопротивления.

Закон Ома для переменного синусоидального тока в случае последовательного соединения активного и индуктивного сопротивлений выражается следующей формулой:

 

(6)

где —эффективное значение силы тока в А;

U—эффективное значение напряжения в В;

R—активное сопротивление в Ом;

ωL—индуктивное сопротивление в ом.

Формула (6) будет также действительной, если в нее подставить амплитудные значения тока и напряжения.

В цепи, изображенной на рис. 5, соединены последовательно активное и емкостное сопротивления.

Рисунок 5. Цепь переменного тока с последовательным соединением активного и емкосного сопротивления.

А закон Ома для такой цепи принимает вид:

(7)

В общем случае, когда цепь содержит все три вида сопротивлений (рис. 6),

Рисунок 6. Цепь переменного тока с последовательным соединением активного, индуктивного и емкосного сопротивления.

Закон Ома при последовательном соединении активного, индуктивного и емкостного сопротивлений будет выглядеть так:

(8)

где I-сила тока в А;

U-напряжение в В;

R-активное сопротивление в Ом;

ωL-индуктивное сопротивление в Ом;

1/ωС-емкостное сопротивление в Ом.

Формула (8) верна только для эффективных и амплитудных значений синусоидального тока и напряжения.

Для того, что бы определить ток в цепях с параллельным соединением элементов (рисунок 7), то необходимо так же вычислить полное сопротивление цепи, как это делать можно прсмотреть здесь, зтем подставить значение полного сопротивления в общую формулу для закона Ома (5).

Рисунок 7. Полное сопротивление цепи при параллельном соединении активного и реактивных элементов. а) – параллельное соединение R и L; б) – параллельное соединение R и C.

 

Тоже самое касается и вычисления тока в колебательном контуре изображенном на рисунке 8.

Рисунок 8. Эквивалентная схема колебательного контура.

 

Таким образом закон Ома для переменного тока можно сформулировать следующим образом.

Значение тока в цепи переменного тока прямо пропорционально напряжению в цепи (или на участке цепи) и обратно пропорционально полному сопротивлению цепи (участка цепи)

 

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий
Активное и реактивное сопротивление | Практическая электроника

В этой статье мы поведем речь о таких параметрах, как активное и реактивное сопротивление.

Активное сопротивление

И начнем мы статью не с реактивного сопротивления, как ни странно, а с простого и всеми нами любимого радиоэлемента  – резистора, который, как говорят, обладает активным сопротивлением. Еще иногда его называют омическим.  Как нам говорит вики-словарь, “активный  – это деятельный, энергичный, проявляющий инициативу”. Активист готов всегда рвать и метать даже ночью. Он готов ПОЛНОСТЬЮ выложиться и потратить всю энергию во благо общества.

Активное и реактивное сопротивление

То же самое можно сказать и про другие нагрузки, обладающие активным сопротивлением. Это могут быть различные нагревательные элементы, типа тэнов, а также лампы накаливания.

Как смотреть силу тока в цепи через осциллограф

Чем же резистор отличается от  катушки индуктивности  и конденсатора? Понятное дело, что выполняемыми функциями, но этим все не ограничивается. Итак, давайте рассмотрим самую простую схемку во всей электронике:

На схеме мы видим генератор частоты и резистор.

Давайте визуально посмотрим, что у нас творится в этой схеме. Для этого, как я уже сказал, нам понадобится генератор частоты

А также цифровой осциллограф:

С помощью него мы будем смотреть напряжение и  силу тока . 

Что?

Силу тока?

Но ведь осциллограф предназначен для того, чтобы рассматривать форму сигнала напряжения? Как же мы будем рассматривать форму сигнала силы тока? А все оказывается просто). Для этого достаточно вспомнить правило шунта.

Кто не помнит –  напомню. Имеем обыкновенный резистор:

Что будет, если через него прогнать электрический ток?

На концах резистора у нас будет падение напряжения. То есть, если замерить с помощью мультиметра напряжение на его концах, мультиметр покажет какое-то значение в Вольтах

И теперь главный вопрос: от чего зависит падение напряжения на резисторе? В дело опять же вступает закон Ома для участка цепи: I=U/R. Отсюда U=IR. Мы видим зависимость от номинала самого резистора и от силы тока, текущей в данный момент в цепи. Слышите? От СИЛЫ ТОКА! Так почему бы нам не воспользоваться таким замечательным свойством и не глянуть силу тока через падение напряжения на  самом резисторе? Ведь номинал резистора у нас постоянный и почти не изменяется с изменением силы тока 😉

Осциллограмма силы тока на активном сопротивлении

В данном опыте нам не обязательно знать номинал силы тока в цепи. Мы будем просто смотреть, от чего зависит сила тока и изменяется ли вообще?

Поэтому,  наша схема примет вот такой вид:

В этом случае шунтом будет являться резистор сопротивлением в 0,5 Ом. Почему именно 0,5 Ом? Да потому что он не будет сильно греться, так как обладает маленьким сопротивлением, а также  его номинал вполне достаточен, чтобы снять с него напряжение.

Осталось снять напряжение с генератора, а также со шунта с помощью осциллографа. Если вы не забыли, со шунта мы снимаем осциллограмму силы тока в цепи. Красная осциллограмма – это напряжение с генератора Uген , а желтая осциллограмма  – это напряжение с шунта Uш , в нашем случае  – сила тока.  Смотрим, что у нас получилось:

Частота 28 Герц:

осциллограмма активного сопротивления

Частота 285 Герц:

Активное и реактивное сопротивление

Частота 30 Килогерц:

Активное и реактивное сопротивление

Как вы видите, с ростом частоты сила тока у нас осталась такой же.

Давайте побалуемся формой сигнала:

Активное и реактивное сопротивление

Активное и реактивное сопротивление

Как мы видим, сила тока  полностью повторяет форму сигнала напряжения.

Итак, какие можно сделать выводы?

1) Сила тока через активное (омическое) сопротивление имеет такую же форму, как и форма напряжения.

2) Сила тока и напряжение на активном сопротивлении совпадают по фазе, то есть куда напряжение, туда и ток. Они двигаются синфазно, то есть одновременно.

3) С ростом частоты ничего не меняется (если только на очень высоких частотах).

Конденсатор в цепи переменного тока

Ну а теперь давайте вместо резистора поставим конденсатор.

Смотрим осциллограммы:

конденсатор в цепи переменного тока

Как вы видите, конденсатор обладает сопротивлением, так  как сила тока в цепи значительно уменьшилась. Но обратите внимание, что произошел сдвиг желтой осциллограммы, то бишь осциллограммы силы тока.

Вспоминаем алгебру старшие классы. Итак, полный период T – это

Активное и реактивное сопротивление

Теперь давайте прикинем, какой сдвиг фаз у нас получился на графике:

Активное и реактивное сопротивление

Где-то примерно П/2 или 90 градусов.

Почему так произошло? Во всем виновато физическое свойство конденсатора. В самые первые доли секунд, конденсатор ведет себя как проводник с очень малым сопротивлением, поэтому сила тока в этот момент будет максимальна. В этом можно легко убедиться, если резко подать на конденсатор напряжение и в начальный момент времени посмотреть, что происходит с силой тока

заряд конденсатора

Красная осциллограмма – это напряжение, которое мы подаем на конденсатор, а желтая – это сила тока в цепи конденсатора. По мере заряда конденсатора сила тока падает и достигает нуля при полном заряде конденсатора.

К чему приведет дальнейшее увеличение частоты? Давайте посмотрим:

50 Герц.

Активное и реактивное сопротивление

100 Герц

Активное и реактивное сопротивление

200 Герц

Активное и реактивное сопротивление

Как вы видите, с увеличением частоты, у нас сила тока в цепи с конденсатором возрастает.

Реактивное сопротивление конденсатора

Как мы увидели с прошлого опыта, с увеличением частоты растет сила тока! Кстати, у резистора не росла. То есть получается в данном случае из закона Ома, что сопротивление конденсатора зависит от частоты! Да, все так оно и есть. Но называется оно не просто сопротивлением, а реактивным сопротивлением и вычисляется по формуле:

формула реактивного сопротивления

где

Хс – реактивное сопротивление конденсатора, Ом

П – постоянная и приблизительно равна 3,14

F – частота, Гц

С – емкость конденсатора, Фарад

Катушка индуктивности в цепи переменного тока

Ну а теперь давайте возьмем катушку индуктивности вместо конденсатора:

Проводим все аналогичные операции, как и с конденсатором. Смотрим на осциллограммы в цепи с катушкой индуктивности:

Активное и реактивное сопротивление

Если помните, вот такую осциллограмму мы получили в схеме с конденсатором:

Активное и реактивное сопротивление

Видите разницу? На катушке индуктивности ток отстает от напряжения на  90 градусов, на П/2, или, как еще говорят, на четверть периода (весь период у нас или 360 градусов).

Так-так-так…. Давайте соберемся с мыслями. То есть в цепи с переменным синусоидальным током,  ток на конденсаторе опережает напряжение на 90 градусов, а на катушке индуктивности ток отстает от напряжения тоже на 90 градусов? Да, все верно.

Почему на катушке ток отстает от напряжения?

Не будем углубляться в различные физические процессы и формулы, просто сочтем за данность, что сила тока не может резко возрастать на катушке индуктивности. Для этого проведем простой опыт. Так же как и на конденсатор, мы резко подадим напряжение на катушку индуктивности, и посмотрим, что случилось с силой тока.

напряжение и ток на катушке индуктивности

Как вы видите, при резкой подаче напряжения на катушку, сила тока не стремится также резко возрастать, а возрастает постепенно, если быть точнее, по экспоненте.

Давайте вспомним, как это было у конденсатора:

Активное и реактивное сопротивление

Все с точностью наоборот! Можно даже сказать, что катушка – это полная противоположность конденсатору 😉

Ну и напоследок давайте еще побалуемся частотой:

240 Килогерц

Активное и реактивное сопротивление

34 Килогерца

катушка в цепи переменного тока

17 Килогерц

Активное и реактивное сопротивление

10 Килогерц

Активное и реактивное сопротивление

Вывод?

С уменьшением частоты сила тока через катушку увеличивается.

Реактивное сопротивление катушки индуктивности

Из опыта выше мы можем сделать вывод, что сопротивление катушки зависит от частоты и вычисляется по формуле

реактивное сопротивление катушки

где

ХL –  реактивное сопротивление катушки, Ом

П – постоянная и приблизительно равна 3,14

F – частота, Гц

L – индуктивность, Генри

Мощность в цепи с реактивными радиоэлементами

Для дальнейшего объяснения этого явления нам потребуется наша осциллограмма с катушки индуктивности:

Активное и реактивное сопротивление

Итак, давайте выделим на ней один период и разделим его на 4 части, то есть по 90 градусов каждая или π/2.

Активное и реактивное сопротивление

Давайте начнем с такого понятия, как мощность. Если не забыли, мощность – это сила тока помноженное на напряжение, то есть P=IU. Итак, в первую четвертинку периода t1 у нас напряжение принимает положительные значения и сила тока тоже положительное. Плюс на плюс дает плюс. В эту четверть периода энергия поступает из источника в реактивное сопротивление.

Теперь давайте рассмотрим отрезок времени t2. Здесь ток со знаком “плюс”, а напряжение со знаком “минус”. В итоге плюс на минус дает минус. Получается мощность со знаком “минус”. А разве так бывает? Еще как бывает! В этот промежуток времени реактивный радиоэлемент отдает запасенную энергию обратно в источник напряжения. Для лучшего понимания давайте рассмотрим простой житейский пример.

Представим себе кузнеца за работой:

Активное и реактивное сопротивление

 

Не знаю, какое было у вас детство, но я когда был пацаном, брал свинец с аккумуляторов и плющил его в металлические пластинки. И что думаете? Свинец нагревался. Не так, чтобы прям обжигал, а был тепленький на ощупь. То есть моя энергия удара превращалась в тепло, можно даже сказать, в полезную энергию.

А что если взять пружину от стоек ВАЗа и ударять по ней?

Активное и реактивное сопротивление

С пружиной не станет НИ-ЧЕ-ГО! Она ведь не свинец. Но… заметьте вот такую вещь: как только мы начинаем “плющить” пружину кувалдой, у нас она начинает сжиматься. И вот она сжалась до упора и… выстрелила вверх, подхватив с собой тяжелую кувалду, которая только что пыталась ее расплющить. То есть в данном случае энергия вернулась обратно в источник энергии, то есть обратно  к кузнецу. Он вроде как и пытался расплющить пружину, но пружина вернула энергию обратно своим разжатием. То есть кузнецу не надо уже было подымать тяжелый молот, так как за него это уже сделала пружина.

Разжатие пружины и возврат ею энергии обратно – это и есть отрицательная мощность. В этом случае энергия возвращается обратно в источник. Хорошо ли это или плохо – это уже другая история.

В третий промежуток времени  t3 и ток и напряжение у нас со знаком “минус”. Минус на минус – это плюс. То есть реактивный элемент снова поглощает энергию, ну а на t4, снова ее отдает, так как плюс на минус дает минус.

Активное и реактивное сопротивление

В результате за весь период у нас суммарное потребление энергии равно чему?

Активное и реактивное сопротивление

Правильно, нулю!

Так что же это получается тогда? На катушке и конденсаторе не будет выделяться никакой энергии? Получается так. Поэтому в схемах они чаще всего холодные, хотя могут быть и слегка теплыми, так как реальные параметры катушки и конденсатора выглядят совсем по другому.

Эквивалентная схема реальной катушки индуктивности выглядит вот так:

где

R– это сопротивление потерь. Это могут быть потери в проводах, так как любой провод обладает сопротивлением. Это могут быть потери в диэлектрике, потери в сердечнике и потери на вихревые токи.  Как видите, раз есть сопротивление, значит на нем может выделяться мощность, то есть тепло.

L – собственно сама индуктивность катушки

С – межвитковая емкость.

А вот и эквивалентная схема реального конденсатора:

где

r – сопротивление диэлектрика и корпуса между обкладками

С – собственно сама емкость конденсатора

ESR – эквивалентное последовательное сопротивление

ESI (ESL) – эквивалентная последовательная индуктивность

Здесь мы тоже видим такие параметры, как r  и ESR, которые на высоких частотах будут еще лучше себя проявлять, благодаря скин-эффекту. Ну и, соответственно, на них будет выделяться мощность, что приведет к небольшому малозаметному нагреву.

Резюме

Резистор обладает активным (омическим) сопротивлением. Катушка индуктивности и конденсатор обладают реактивным сопротивлением.

В цепи переменного тока на конденсаторе ток опережает напряжение на 90 градусов, а на катушке ток отстает от напряжения на 90 градусов.

Сопротивление катушки вычисляется по формуле

Активное и реактивное сопротивление

Сопротивление конденсатора вычисляется по формуле:

Активное и реактивное сопротивление

В цепи переменного тока на идеальном реактивном сопротивлении не выделяется мощность.

Реальные катушка и конденсатор имеют в своем составе паразитные параметры, которые имеют некоторое сопротивление. Поэтому реальные катушка и конденсатор не обладают чисто реактивным сопротивлением.

Почему мощность в чистой индуктивной и чистой емкостной цепи равна нулю?

Почему мощность равна нулю (0) в чисто индуктивной, чисто емкостной или цепи, в которой ток и напряжение не совпадают по фазе?

Эти типы вопросов задаются в интервью по электротехнике или электронике. Итак, вернемся к основам, чтобы прояснить основные и важные понятия электротехники.

1. Почему мощность в цепи равна нулю (0), в которой ток и напряжение не совпадают по фазе на 90 °?

Если ток и напряжение не совпадают по фазе на 90 градусов, то мощность (P) будет равна нулю.Причина в следующем:

Мы знаем, что мощность в однофазных цепях переменного тока:

P = V I Cos θ

Где;

  • P = мощность в ваттах
  • V = напряжение в вольтах
  • I = ток в амперах
  • Cos θ = коэффициент мощности цепи, т. Е. Разность фаз между волнами тока и напряжения.

Если угол между током и напряжением равен 90 ° (θ = 90), то

Мощность = P = VI Cos (90 °) = 0… .. → [Cos (90 °) = 0]

Так что если мы ставим Cos 90 ° = 0, тогда общая мощность схемы будет равна нулю (т.е.е. В чисто индуктивной или емкостной цепи, где напряжение опережает ток на 90 °, а ток опережает напряжение на 90 ° соответственно).

2. Почему мощность в чистой индуктивной цепи равна нулю (0).

Мы знаем, что в чисто индуктивной цепи ток отстает на 90 градусов от напряжения (другими словами, напряжение опережает ток на 90 °), то есть разность фаз между током и напряжением составляет 90 градусов.

Как объяснено выше, если ток и напряжение не совпадают по фазе друг с другом, как в чисто индуктивной цепи, общая мощность схемы будет равна 0, как показано ниже.

P = VI Cos θ

, если угол между током и напряжением составляет 90 ° (θ = 90), то

Power P = VI Cos (90 °) = 0

[Обратите внимание, что Cos (90 °) = 0 ]

Это показывает, что для в случае чисто индуктивной цепи полная мощность схемы будет равна нулю при Cos 90 ° = 0. Why-Power-in-pure-Inductive-Circuit-is-Zero-0 Why-Power-in-pure-Inductive-Circuit-is-Zero-0

3. Почему мощность в чистой емкостной цепи равна нулю (0)?

Мы знаем, что в чисто емкостной цепи ток опережает напряжение на 90 ° (другими словами, напряжение отстает на 90 ° от тока) i.Разность фаз между током и напряжением составляет 90 градусов.

Как упомянуто выше, если ток и напряжение не совпадают по фазе друг с другом, как в чисто емкостной цепи, суммарная мощность схемы будет равна нулю, как указано ниже.

Мощность в цепи переменного тока

P = V I Cos θ

, если угол между током и напряжением составляет 90 (θ = 90) градусов. затем

Мощность P = V I Cos (90 °) = 0

[Обратите внимание, что Cos (90 °) = 0]

Это показывает то же, что и для чистой индуктивной цепи i.е. в случае чисто емкостной цепи, полная мощность цепи будет равна нулю , так как Cos 90 ° = 0.

Why-Power-in-pure-Capacitive-Circuit-is-Zero-0 Why-Power-in-pure-Capacitive-Circuit-is-Zero-0

Короче говоря, в цепи, где напряжение или ток опережают или отстают на 90 ° (разность фаз = 90 °) друг за другом, положительный цикл отменяет отрицательный, что приводит к нулевой средней мощности схемы, т.е. общий коэффициент мощности цепи переменного тока равен нулю, что приводит к нулевой средней мощности.

Похожие сообщения:

.

Что такое чисто индуктивная цепь? – Phasor Diagram & Waveform

Цепь, которая содержит только индуктивность (L), а не любые другие величины, такие как сопротивление и емкость в цепи, называется Pure индуктивной цепью. В схеме этого типа ток отстает от напряжения на угол 90 градусов.

Содержание:

Катушка индуктивности – это тип катушки, которая запасает электрическую энергию в магнитном поле, когда через нее протекает ток.Индуктор состоит из провода, который намотан в виде катушки. Когда ток, протекающий через индуктор, изменяется, изменяющееся во времени магнитное поле вызывает ЭДС, которая препятствует протеканию тока. Индуктивность измеряется в Генри . Противостояние потока тока известно как индуктивное сопротивление .

Объяснение и вывод индуктивной схемы

Схема, содержащая чистую индуктивность, показана ниже:

pure-INDUCTIVE-circuit Схема

чистой индуктивной схемы

Пусть переменное напряжение, подаваемое на цепь, определяется уравнением:
PURE-INDUCTIVE-CIRCUIT-EQ1

В результате переменный ток i протекает через индуктивность, которая индуцирует в нем ЭДС.Уравнение показано ниже:
PURE-INDUCTIVE-CIRCUIT-EQ2

ЭДС, которая индуцируется в цепи, равна и противоположна приложенному напряжению. Следовательно, уравнение становится,
PURE-INDUCTIVE-CIRCUIT-EQ3

Положив значение е в уравнении (2), получим уравнение как
PURE-INDUCTIVE-CIRCUIT-EQ4

Интегрируя обе части уравнения (3), мы получим
PURE-INDUCTIVE-CIRCUIT-EQ5, где X L = ω L – сопротивление, предлагаемое потоку переменного тока чистой индуктивностью и называемое индуктивным реактивным сопротивлением.

Значение тока будет максимальным, когда sin (ωt – π / 2) = 1

Следовательно,
PURE-INDUCTIVE-CIRCUIT-EQ6

Подставив это значение в I м из уравнения (5) и поместив его в уравнение (4), получим PURE-INDUCTIVE-CIRCUIT-EQ7

Диаграмма вектора и кривая мощности индуктивной цепи

Ток в чистой индуктивной цепи переменного тока отстает от напряжения на 90 градусов. Форма волны, кривая мощности и фазовая диаграмма чисто индуктивного контура показаны ниже

INDUCTIVE-CIRCUIT-WAVEFORM

Диаграмма вектора и форма волны чистой индуктивной цепи

Форма волны напряжения, тока и мощности показана синим, красным и розовым цветами соответственно.Когда значения напряжения и тока находятся на своем пике в качестве положительного значения, мощность также является положительной, и аналогично, когда напряжение и ток дают отрицательный сигнал, мощность также станет отрицательной. Это из-за разности фаз между напряжением и током.

Когда напряжение падает, значение тока изменяется. Когда значение тока достигает своего максимального или пикового значения, напряжение в этот момент времени будет равно нулю, и, следовательно, напряжение и ток не совпадают по фазе друг с другом на угол 90 градусов.

Диаграмма вектора также показана на левой стороне формы сигнала, где текущее (I м ) запаздывающее напряжение (V м ) под углом π / 2.

Власть в чистой индуктивной цепи

Мгновенная мощность в индуктивной цепи задается
PURE-INDUCTIVE-CIRCUIT-EQ8

Следовательно, средняя мощность, потребляемая в чисто индуктивной цепи, равна нулю.

Средняя мощность в одном изменении, то есть в полупериоде, равна нулю, так как отрицательная и положительная петли находятся под кривой мощности, то же самое.

В чисто индуктивной цепи в течение первой четверти цикла мощность, подаваемая источником, сохраняется в магнитном поле, установленном вокруг катушки. В следующем цикле четверти магнитное поле уменьшается, и энергия, которая была сохранена в цикле первой четверти, возвращается источнику.

Этот процесс продолжается в каждом цикле, и, следовательно, в цепи не потребляется энергия

,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *