Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Мощность рассеивания резистора для светодиода. Расчет сопротивления для светодиода

Светодиод — прибор, который при прохождении через него тока излучает свет.

В зависимости от типа используемого материала для изготовления прибора, светодиоды могут излучать свет различного цвета. Эти миниатюрные, надежные, экономичные приборы используются в технике, для освещения и в рекламных целях.

Светодиод обладает такой же вольтамперной характеристикой, как и обычный полупроводниковый диод. При этом при повышении прямого напряжения на светодиоде проходящий через него ток резко возрастает.

Например, для зеленого светодиода типа WP710A10LGD компании Kingbright при изменении приложенного прямого напряжения от 1,9 В до 2 В ток меняется в 5 раз и достигает 10 мА. Поэтому при прямом подключении светодиода к источнику напряжения при небольшом изменении напряжения ток светодиода может возрасти до очень большого значения, что приведет к сгоранию p-n перехода и светодиода.

осуществлена с применением букв и цифр, с помощью которых можно определить качественные характеристики устройств.

Поэтому при параллельном включении светодиодов обычно к каждому прибору последовательно подключают свой ограничивающий резистор. Расчет сопротивления и мощности такого резистора ничем не отличается от ранее рассмотренного случая.

При последовательном включении светодиодов необходимо включать приборы одного типа.

Кроме того, надо учитывать то, что напряжение источника должно быть не меньше суммарного рабочего напряжения всей группы светодиодов.

Расчет токоограничивающего резистора для светодиодов последовательного включения считаются также, как и раньше. Исключение состоит в том, что при вычислении вместо величины Uсв используется величина Uсв*N. В данном случае N — это количество включенных приборов.

Выводы:

  1. Светодиоды — широко распространенные приборы, используемые в технике, для освещения и рекламы.
  2. Во избежание выхода из строя светодиодов из-за их чувствительности к изменениям напряжения для них часто используют ограничивающие резисторы.
  3. Расчет значения сопротивления ограничивающего резистора делается на основе закона Ома.

Расчет резистора для подключения светодиодов на видео

(светоизлучающий диод) — излучает свет в тот момент, когда через него протекает электрический ток. Простейшая схема для питания светодиодов состоит из источника питания, светодиода и резистора, подключенного последовательно с ним.

Такой часто называют балластным или токоограничивающим резистором. Возникает вопрос: «А зачем светодиоду резистор?». Токоограничивающий резистор необходим для ограничения тока, протекающего через светодиод, с целью защиты его от сгорания. Если напряжение источника питания равно падению напряжения на светодиоде, то в таком резисторе нет необходимости.

Расчет резистора для светодиода

Сопротивление балластного резистора легко рассчитать, используя закон Ома и правила Кирхгофа. Чтобы рассчитать необходимое сопротивление резистора, нам необходимо из напряжения источника питания вычесть номинальное напряжение светодиода, а затем эту разницу разделить на рабочий ток светодиода:

  • V — напряжение источника питания
  • V LED — напряжение падения на светодиоде
  • I – рабочий ток светодиода

Ниже представлена таблица зависимости рабочего напряжения светодиода от его цвета:


Хотя эта простая схема широко используется в бытовой электронике, но все же она не очень эффективна, так как избыток энергии источника питания рассеивается на балластном резисторе в виде тепла. Поэтому, зачастую используются более сложные схемы () которые обладают большей эффективностью.

Давайте, на примере выполним расчет сопротивления резистора для светодиода.

Мы имеем:

  • источник питания: 12 вольт
  • напряжение светодиода: 2 вольта
  • рабочий ток светодиода: 30 мА

Рассчитаем токоограничивающий резистор, используя формулу:

Получается, что наш резистор должен иметь сопротивление 333 Ом. Если точное значение из подобрать не получается, то необходимо взять ближайшее большее сопротивление. В нашем случае это будет 360 Ом (ряд E24).

Последовательное соединение светодиодов

Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.

Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.

Пример расчета сопротивления резистора при последовательном подключении.

В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.

Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.

Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:

Резистор должен иметь значение не менее 183,3 Ом.

Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)

Параллельное соединение светодиодов

Так же можно подключить светодиоды и параллельно, но это создает больше проблем, чем при последовательном соединении.

Ограничивать ток параллельно соединенных светодиодов одним общим резистором не совсем хорошая идея, поскольку в этом случае все светодиоды должны иметь строго одинаковое рабочее напряжение. Если какой-либо светодиод будет иметь меньшее напряжение, то через него потечет больший ток, что в свою очередь может повредить его.

И даже если все светодиоды будут иметь одинаковую спецификацию, они могут иметь разную вольт-амперную характеристику из-за различий в процессе производства. Это так же приведет к тому, что через каждый светодиод будет течь разный ток. Чтобы свести к минимуму разницу в токе, светодиоды, подключенные в параллель, обычно имеют балластный резистор для каждого звена.

Онлайн калькулятор расчета резистора для светодиода

Этот онлайн калькулятор поможет вам найти нужный номинал резистора для светодиода, подключенного по следующей схеме:


примечание: разделителем десятых является точка, а не запятая

Формула расчета сопротивления резистора онлайн калькулятора

Сопротивление резистора = (U U F )/ I F

  • U – источник питания;
  • U F – прямое напряжение светодиода;
  • I F – ток светодиода (в миллиамперах).

Примечание: Слишком сложно найти резистор с сопротивлением, которое получилось при расчете. Как правило, резисторы выпускаются в стандартных значениях (номинальный ряд). Если вы не можете найти необходимый резистор, то выберите ближайшее бо́льшее значение сопротивления, которое вы рассчитали.

Например, если у вас получилось сопротивление 313,4 Ом, то возьмите ближайшее стандартное значение, которое составляет 330 Ом. Если ближайшее значение является недостаточно близким, то вы можете получить необходимое сопротивление путем или соединения нескольких резисторов.

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство:

или его интерпретация

U= I*R+I*R LED .

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), R LED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение R LED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего R LED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: R=(U-U LED)/I, Ом

U LED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (U LED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания (рис.3).

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление:

R=U/I max =5В/0,05А=100 Ом

Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

P=I 2 *R=(U R)2/R

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5В. Cree XM–L с бином T6 имеет такие параметры: типовое U LED =2,9В и максимальное U LED =3,5В при токе I LED =0,7А. Узнать больше о данном светодиоде можно здесь. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности.

R=(U-U LED)/I=(5-2,9)/0,7=3 Ом

Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

P=I 2 *R=0,72*3=1,47 Вт

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

η= P LED /P= U LED / U=2,9/5=0,58 или 58%

Led smd 5050

По аналогии с первым примером разберемся, какой нужен резистор для smd светодиода 5050.

Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов. Подробные данные о smd 5050 можно найти здесь.

Если LED smd 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого smd 5050 с параметрами: типовое U LED =3,3В при токе одного чипа I LED =0,02А.

R=(5-3,3)/(0,02*3)=28,3 Ом

Ближайшее стандартное значение – 30 Ом.

P=(0,02*3)2*30=0,1 Вт

η=3,3/5=0,66 или 66%

Принимаем к монтажу ограничительный резистор мощностью 0,25Вт и сопротивлением в 30 Ом±5%.

У RGB светодиода smd 5050 будет различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Светодиоды в наши дни нашли применение практически во всех областях деятельности человека. Но, несмотря на это, для большинства обычных потребителей совершенно неясно, благодаря чему и какие законы действуют при работе светодиодов. Если такой человек захочет устроить освещение посредством таких устройств, то множества вопросов и поиска решения проблем не избежать. И главным вопросом будет – «Что это за штука такая – резисторы, и для чего они требуются светодиодам?»

Резистор – это одна из составляющих электрической сети , характеризующаяся своей пассивностью и в лучшем случае, отличающаяся показателем сопротивления электротоку. То есть, в любое время для такого устройства должен быть справедлив закон Ома.

Главное предназначение устройств – способность энергично сопротивляться электрическому току. Благодаря этому качеству, резисторы нашли широкое применение при необходимости устройства искусственного освещения, в том числе и с использованием светодиодов.

Для чего необходимо использование резисторов в случае устройства светодиодного освещения?

Большинству потребителей известно, что обыкновенная лампочка накаливания даёт свет при её прямом подключении к какому-либо источнику питания. Лампочка может работать на протяжении длительного времени и перегорает лишь тогда, когда по причине подачи слишком высокого напряжения чрезмерно нагревается накаливающая нить. В таком случае лампочка, некоторым образом, реализует функцию резистора, потому как прохождение электротока через неё затруднительно, но чем выше подаваемое напряжение, тем легче току удаётся преодолеть сопротивление лампочки. Конечно же, ставить в один ряд такую сложную полупроводниковую деталь, как светодиод и обыкновенную лампочку накаливания нельзя.

Важно знать, что светодиод – это такой электрический прибор , для функционирования которого предпочтительнее не сама сила тока, а напряжение, имеющееся в сети. Например, если таким устройством выбрано напряжение 1,8 В, а к нему приходит 2 В, то, вероятнее всего, он перегорит – если вовремя не снизить напряжение до требующегося приспособлению уровня. Вот именно с этой целью и требуется резистор, посредством которого осуществляется стабилизация использующегося источника питания, чтобы подаваемое им напряжение не вывело устройство из строя.

В связи с этим крайне важно:

  • определиться, какого типа резистор требуется;
  • определить необходимость использования для конкретного прибора индивидуального резистора, для чего требуется расчёт;
  • учесть вид соединения источников света;
  • планируемое число светодиодов в осветительной системе.

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток , в каждом месте установки электрических приборов.

Но в случае параллельного соединения, для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение. Он слишком быстро выйдет из строя , при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит. Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Расчёт резисторов для светодиодов

При правильном понимании физики процесса, расчёт сопротивления и мощности данных устройств нельзя назвать невыполнимой задачей, с которой не под силу справиться обычному человеку. Для расчёта требующегося сопротивления резисторов, нужно обязательно учесть следующие моменты:

Расчёт резисторов при помощи специального калькулятора

Обычно, расчёт сопротивления таких приспособлений, требующихся для какого-либо светодиода, производится посредством специально предназначенного для этих целей калькуляторов. Такие калькуляторы, удобные и высокоэффективные, не нужно откуда-то скачивать и устанавливать – рассчитать резистор вполне можно и в онлайн-режиме.

Калькулятор расчёта резисторов позволяет с высокой точностью определить требуемую мощность и показатель сопротивления резистора, устанавливающегося в светодиодную цепь.

Для расчёта требующегося сопротивления необходимо в соответствующие строки онлайн-калькулятора внести:

  • напряжение питания светодиода;
  • номинальное напряжение светодиода;
  • номинальный ток.

Далее, требуется выбрать использующуюся схему соединения, а также необходимое число светодиодов.

После нажатия соответствующей кнопки выполняется расчёт и на экран монитора выводятся полученные расчётные данные , при помощи которых можно в дальнейшем без особого труда организовать искусственное светодиодное освещение.

Также в онлайн-калькуляторах имеется некоторая база, содержащая данные о светодиодах и их параметрах. Представлена возможность расчёта:

  • номинала приспособления;
  • цветовой маркировки;
  • потребляемого цепью тока;
  • рассеиваемой мощности.

Человек, не сильно разбирающийся в электрике и физике, в большинстве случаев не сможет самостоятельно рассчитать устройства для светодиодов. По этой причине, проведение расчётов при помощи функционального и удобного онлайн-калькулятора – неоценимая помощь для обычных людей , не владеющих методикой расчётов с применением физических формул.

Большинство известных производителей светодиодов и созданных на их основе лент, на своих официальных сайтах выкладывают и собственный онлайн-калькулятор , с помощью которого можно не только подобрать требующиеся резисторы и светодиоды, но и вычислить параметры использующихся токовых приборов в различных режимах эксплуатации при переменных значениях тока, температуры, подаваемого напряжения и пр.

Светодиоды и их применение

Светодиоды, или светоизлучающие диоды (СИД, в английском варианте LED – light emitting diode)- полупроводниковый прибор, излучающий не когерентный свет при пропускании через него электрического тока. Работа основана на физическом явлении возникновения светового излучения при прохождении электрического тока через p-n-переход. Цвет свечения (длина волны максимума спектра излучения) определяется типом используемых полупроводниковых материалов, образующих p-n-переход.


Светодиод будет “гореть” только при прямом включении , как показано на рисунке

При обратном включении светодиод “гореть” не будет. Более того, возможен выход из строя светодиода при малых допустимых значениях обратного напряжения.

Зависимости тока от напряжения при прямом (синяя кривая) и обратном (красная кривая) включениях показаны на следующем рисунке. Не трудно определить, что каждому значению напряжения соответствует своя величина тока, протекающего через диод. Чем выше напряжение, тем выше значение тока (и тем выше яркость). Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.



1. Имеется один светодиод, как его подключить правильно в самом простом случае?

Что бы правильно подключить светодиод в самом простом случае необходимо подключить его через токоограничивающий резистор.

Пример 1

Имеется светодиод с рабочим напряжением 3 вольта и рабочим током 20 мА. Необходимо подключить его к источнику с напряжением 5 вольт.

Рассчитаем сопротивление токоограничивающего резистора

R = Uгасящее / Iсветодиода
Uгасящее = Uпитания – Uсветодиода
Uпитания = 5 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0. 02 А
R =(5-3)/0.02= 100 Ом = 0.1 кОм

Тоесть надо взять резистор сопротивлением 100 Ом

P.S. Вы можете воспользоваться on-line калькулятором расчета резистора для светодиода

2. Как подключить несколько светодиодов?

Несколько светодиодов подключаем последовательно или параллельно, рассчитывая необходимые сопротивления.

Пример 1.

Имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 3 светодиода к источнику 15 вольт.

Производим расчёт: 3 светодиода на 3 вольта = 9 вольт, то есть 15-вольтового источника достаточно для последовательного включения светодиодов


Расчёт аналогичен предыдущему примеру

R = Uгасящее / Iсветодиода

Uпитания = 15 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (15-3*3)/0.02 = 300 Ом = 0.3 кОм

Пример 2.

Пусть имеются светодиоды с рабочим напряжением 3 вольта и рабочим током 20 мА. Надо подключить 4 светодиода к источнику 7 вольт

Производим расчёт: 4 светодиода на 3 вольта = 12 вольт, значит нам не хватит напряжения для последовательного подключения светодиодов, поэтому будем подключать их последовательно-параллельно. Разделим их на две группы по 2 светодиода. Теперь надо сделать расчёт токоограничивающих резисторов. Аналогично предыдущим пунктам делаем расчёт токоограничительных резисторов для каждой ветви.


R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – N * Uсветодиода
Uпитания = 7 В
Uсветодиода = 3 В
Iсветодиода = 20 мА = 0.02 А
R = (7-2*3)/0.02 = 50 Ом = 0.05 кОм

Так как светодиоды в ветвях имеют одинаковые параметры, то сопротивления в ветвях одинаковые.

Пример 3.

Если имеются светодиоды разных марок то комбинируем их таким образом что бы в каждой ветви были светодиоды только ОДНОГО типа (либо с одинаковым рабочим током). При этом необязательно соблюдать одинаковость напряжений, потому что мы для каждой ветви рассчитываем своё собственное сопротивление

Например имеются 5 разных светодиодов:
1ый красный напряжение 3 вольта 20 мА
2ой зелёный напряжение 2.5 вольта 20 мА
3ий синий напряжение 3 вольта 50 мА
4ый белый напряжение 2. 7 вольта 50 мА
5ый жёлтый напряжение 3.5 вольта 30 мА

Так как разделяем светодиоды по группам по току
1) 1ый и 2ой
2) 3ий и 4ый
3) 5ый


рассчитываем для каждой ветви резисторы

R = Uгасящее/Iсветодиода
Uгасящее = Uпитания – (UсветодиодаY + UсветодиодаX + …)
Uпитания = 7 В
Uсветодиода1 = 3 В
Uсветодиода2 = 2.5 В
Iсветодиода = 20 мА = 0.02 А
R1 = (7-(3+2.5))/0.02 = 75 Ом = 0.075 кОм

аналогично
R2 = 26 Ом
R3 = 117 Ом

Аналогично можно расположить любое количество светодиодов

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

При подсчёте токоограничительного сопротивления получаются числовые значения которых нет в стандартном ряде сопротивлений, ПОЭТОМУ подбираем резистор с сопротивлением немного большим чем рассчитали.

3. Что будет если имеется напряжение источник с напряжением 3 вольта (и меньше) и светодиод с рабочим напряжением 3 вольта?

Допустимо (НО НЕЖЕЛАТЕЛЬНО) включать светодиод в цепь без токоограничительного сопротивления. Минусы очевидны – яркость зависит от напряжения питания. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

4. Можно ли включать несколько светодиодов с одинаковым рабочим напряжением 3 вольта параллельно друг другу к источнику 3 вольта (и менее)? В «китайских» фонариках так ведь и сделано.


Опять, это допустимо в радиолюбительской практике. Минусы такого включения: так как светодиоды имеют определённый разброс по параметрам, то будет наблюдаться следующая картина, одни будут светится ярче, а другие тусклее, что не является эстетичным, что мы и наблюдаем в приведённых выше фонариках. Лучше использовать dc-dc конвертеры (преобразователи повышающие напряжение).

ВАЖНОЕ ЗАМЕЧАНИЕ!!!

Представленные выше схемы не отличаются высокой точность рассчитанных параметров, это связано с тем что при протекании тока через светодиод происходит выделение тепла в нем, что приводит к разогреву p-n перехода, наличие токоограничивающего сопротивления снижает этот эффект, но установление баланса происходит пр и немного повышенном токе через светодиод. Поэтому целесообразно для обеспечения стабильности применять стабилизаторы тока, а не стабилизаторы напряжения. При применении стабилизаторов тока, можно подключать только одну ветвь светодиодов.

Расчет резистора для светодиода – формула и таблица подбора сопротивления

Уже невозможно представить современное освещение без использования светодиодов. Они используются буквально во всех возможных сферах – это связано с их сравнительно просто конструкцией, которая обеспечивает эргономичное соотношение стоимости, потребляемой энергии и производимого света. Единственная сложность, с которой может столкнуться обычный потребитель – грамотная установка светодиодов, которая позволит извлечь из их работы максимальную эффективность.

Одним из важнейших параметров, который нужно учитывать при запуске, является ограничение тока, подаваемого на тело светодиода. Расчет резистора для светодиода позволит добиться стабильной работы освещения и обеспечить долгий срок работы каждого отдельно взятого элемента.

Теоретическая часть

Светодиод – полупроводниковый элемент, который излучает свет при прохождении сквозь него тока с определенными параметрами. Долговечность подключенного устройства и стабильность его работы напрямую зависит от величины тока, которая на него подается. Именно стабильность, а не сила тока; вопреки распространенному мнению, даже незначительные превышения в этом параметре значительно увеличивают скорость паспортной деградации кристаллов, излучающих светодиодный свет.

Во избежание нежелательных перегрузок была предложена система ограничения подаваемого тока, которая называется «токоограничивающий резистор». Важно отметить, что он именно ограничивает ток, поступающий в устройство, но не стабилизирует его, поэтому при неправильно подобранном резисторе его наличие может оказаться бесполезным. Для правильного подбора сопротивления к конкретному источнику света необходимо узнать некоторые технические данные и провести расчет сопротивления резистора.

Светодиод и ограничитель для него

Зачем нужен резистор?

Токоограничительный светодиодный резистор нужен в тех случаях, когда на первом месте стоит именно стабильность и продолжительность работы источников света, а не мощность их излучения. Такие цели преследуются в различных бытовых приборах с мигающими индикаторами, указателями и кнопками включения, а также в автомобилях, где стабильность тока в системе оставляет желать лучшего. Также он незаменим во время тестирования новых моделей светодиодов в производственных лабораториях.

В случаях, когда важна яркость света, которую выдает кристалл, нужно использовать именно стабилизатор тока – драйвер. Чаще всего драйвер имеет точные параметры и продается в комплекте с конкретным LED-изделием – светильником, лентой, или же сразу встраивается в лампочку. Также драйвер используется, если мы выбираем очень мощные источники света с огромной яркостью.

Как подключить сопротивление к светодиоду

Расчет для мощного светодиода

В этом разделе будет представлена инструкция, как выбрать ограничитель на основании расчетов. Все нижеприведенные числа теоретические. Для получения точной информации о своих светодиодах изучите техническую документацию, предоставляемую производителем или поставщиком.

Как рассчитать резистор для светодиода? В качестве примера будет использован расчет сопротивления теоретического светодиода белого цвета, который необходимо подключить к источнику тока 12 В (обозначим его буквой U). Сопротивление токоограничивающего резистора будет обозначаться буквой R – наша искомая величина. Белые и голубые светодиоды обычно имеют напряжение питания 4 В, все остальные цвета – не более 2 В. Наш источник света будет иметь максимальную мощность Umax=3.8 В, и минимальную Umin=3.1 В.

Ни в коем случае не используйте для расчета значение максимальной мощности, т. к. это все равно заставит работать светодиод на пределе вне зависимости от наличия ограничительного резистора. Обязательно необходимо узнать ток самого LED, он измеряется в амперах и обозначается буквой I. Наше устройство будет иметь ток 50 мА, или же 0.05 А. На этом сбор данных о LED заканчивается, их нужно подставить в простую формулу вида:

R = (U — Umin) / I

Проводим элементарное вычисление, в ходе которого выясняем, что:

R = (12 — 3. 1) / 0.05 = 178 Ом.

Однако эта формула не дает нам конечного значения, т. к. не существует резисторов под каждое точно найденное число. Для поиска необходимого элемента нужно воспользоваться специальной таблицей, которая поможет подобрать резистор с максимально приближенным значением сопротивления. Для этого можно взглянуть на ниже представленные картинки. На них стрелочкой будет показан метод определения резистора, который нужно спросить у продавцов или поискать у себя.

Таблица подбора резистора с максимально приближенным значением сопротивления

Проанализировав таблицу, видим, что нам очень повезло – существует именно такой резистор для LED, который нам нужен.

Однако именно его выбирать не стоит. Существует такое понятие, как запас – лучше прибавьте к этому значению 10–15% для амортизации, мало ли что в электропроводке может произойти. Выполняем действие:

R = 178 + (178 × 0.15) ≈ 205 Ом.

Подберем необходимый вариант, снова просмотрев таблицу. Видим, что существует именно такой элемент. Его и следует использовать для ограничения подаваемого тока для светодиодов.

Расчет для светодиода с тремя кристаллами

Существуют светодиоды, где используется несколько кристаллов. В этом случае нужно рассчитать необходимое сопротивление с учетом того, что каждый кристалл имеет свой собственный ток. Если светодиод одноцветный, то в ранее указанной формуле значение I нужно умножить на количество включенных кристаллов (n). Все остальные значения оставим аналогичными. Получаем:

R = (U — Umin) / I × n

R = (12 — 3.1) / 0.05 × 3= 534 Ом.

Добавляем амортизацию 15% и получаем:

R = 534 + (534 × 0.15) ≈ 614 Ом.

Ближайшим расчетным значением в таблице является сопротивление резистора в 612 Ом – это наш выбор.

Если элемент использует несколько кристаллов с разными напряжениями, расчет гасящего резистора по формуле выполняется для каждого отдельно взятого кристалла. Для подключения светодиодов к сети каждый резистор должен подавать ток на тот кристалл, для которого он рассчитывался, то есть подключение будет разветвлено на три или более контакта. Количество резисторов должно равняться количеству светящихся элементов в самом светодиоде.

Ни в коем случае не подключайте RGB-светодиоды через один общий резистор – один кристаллик может сгореть, а второй даже не засветится, нужно подбирать каждый вариант отдельно.

Простая формула позволяет рассчитать реально необходимые значения и выполнить подбор реального сопротивления. Таким образом, получаем стабильно работающие источники света, которые имеют резистор гасящего сопротивления, рассчитанного с достаточным запасом амортизации для предохранения от перепадов в сети.

Нежелательно использовать значение сопротивления меньше рассчитанного, иначе смысл наличия ограничителя пропадает совершенно. Также не стоит использовать параллельное подключение самих элементов.

Расчет сопротивления резистора для светодиода

Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:

  • Номинальный (рабочий) ток – Iн;
  • падение напряжения при номинальном токе – Uн;
  • максимальная рассеиваемая мощность – Pmax;
  • максимально допустимое обратное напряжение – Uобр.

Самым важным из перечисленных параметров является рабочий ток.

При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.

В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).

Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.

Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (Uист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

R = (Uист — Uн) / Iн

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (Iн)2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2.8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15)2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

R = (Uист — Uн) / (n ⋅ Iн)

P = (n ⋅ Iн)2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Совет. Если по какой-то причине нужно обойтись одним гасящим сопротивлением, увеличьте его номинал на 20-25%. Это обеспечит большую надежность конструкции.

Пример правильного подключения резистора

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Материалы по теме:

Зачем нужен резистор для светодиода – АвтоТоп

Светодиод является полупроводниковым прибором с нелинейной вольт-амперная характеристикой (ВАХ). Его стабильная работа, в первую очередь, зависит от величины, протекающего через него тока. Любая, даже незначительная, перегрузка приводит к деградации светодиодного чипа и снижению его рабочего ресурса.

Чтобы ограничить ток, протекающий через светодиод на нужном уровне, электрическую цепь необходимо дополнить стабилизатором. Простейшим, ограничивающим ток элементом, является резистор.

Важно! Резистор ограничивает, но не стабилизирует ток.

Расчет резистора для светодиода не является сложной задачей и производится по простой школьной формуле. А вот с физическими процессами, протекающими в p-n-переходе светодиода, рекомендуется познакомиться ближе.

Теория

Математический расчет

Ниже представлена принципиальная электрическая схема в самом простом варианте. В ней светодиод и резистор образуют последовательный контур, по которому протекает одинаковый ток (I). Питается схема от источника ЭДС напряжением (U). В рабочем режиме на элементах цепи происходит падение напряжения: на резисторе (UR) и на светодиоде (ULED). Используя второе правило Кирхгофа, получается следующее равенство: или его интерпретация

В приведенных формулах R – это сопротивление рассчитываемого резистора (Ом), RLED – дифференциальное сопротивление светодиода (Ом), U – напряжения (В).

Значение RLED меняется при изменении условий работы полупроводникового прибора. В данном случае переменными величинами являются ток и напряжение, от соотношения которых зависит величина сопротивления. Наглядным объяснением сказанного служит ВАХ светодиода. На начальном участке характеристики (примерно до 2 вольт) происходит плавное нарастание тока, в результате чего RLED имеет большое значение. Затем p-n-переход открывается, что сопровождается резким увеличением тока при незначительном росте прикладываемого напряжения.

Путём несложного преобразования первых двух формул можно определить сопротивление токоограничивающего резистора: ULED является паспортной величиной для каждого отдельного типа светодиодов.

Графический расчет

Имея на руках ВАХ исследуемого светодиода, можно рассчитать резистор графическим способом. Конечно, такой способ не имеет широкого практического применения. Ведь зная ток нагрузки, из графика можно легко вычислить величину прямого напряжения. Для этого достаточно с оси ординат (I) провести прямую линию до пересечения с кривой, а затем опустить линию на ось абсцисс (ULED). В итоге все данные для расчета сопротивления получены.

Тем не менее, вариант с использованием графика уникален и заслуживает определенного внимания.

Рассчитаем резистор для светодиода АЛ307 с номинальным током 20 мА, который необходимо подключить к источнику питания 5 В. Для этого из точки 20 мА проводим прямую линию до пересечения с кривой LED. Далее через точку 5 В и точку на графике проводим линию до пересечения с осью ординат и получаем максимальное значение тока (Imax), примерно равное 50 мА. Используя закон Ома, рассчитываем сопротивление: Чтобы схема была безопасной и надёжной нужно исключить перегрев резистора. Для этого следует найти его мощность рассеивания по формуле:

В каких случаях допускается подключение светодиода через резистор?

Подключать светодиод через резистор можно, если вопрос эффективности схемы не является первостепенным. Например, использование светодиода в роли индикатора для подсветки выключателя или указателя сетевого напряжения в электроприборах. В подобных устройствах яркость не важна, а мощность потребления не превышает 0,1 Вт. Подключая светодиод с потреблением более 1 Вт, нужно быть уверенным в том, что блок питания выдаёт стабилизированное напряжение.

Если входное напряжение схемы не стабилизировано, то все помехи и скачки будут передаваться в нагрузку, нарушая работу светодиода. Ярким примером служит автомобильная электрическая сеть, в которой напряжение на аккумуляторе только теоретически составляет 12 В. В самом простом случае делать светодиодную подсветку в машине следует через линейный стабилизатор из серии LM78XX. А чтобы хоть как-то повысить КПД схемы, включать нужно по 3 светодиода последовательно. Также схема питания через резистор востребована в лабораторных целях для тестирования новых моделей светодиодов. В остальных случаях рекомендуется использовать стабилизатор тока (драйвер). Особенно тогда, когда стоимость излучающего диода соизмерима со стоимостью драйвера. Вы получаете готовое устройство с известными параметрами, которое остаётся лишь правильно подключить.

Примеры расчетов сопротивления и мощности резистора

Чтобы помочь новичкам сориентироваться, приведем пару практических примеров расчета сопротивления для светодиодов.

Cree XM–L T6

В первом случае проведем вычисление резистора, необходимого для подключения мощного светодиода Cree XM–L к источнику напряжения 5 В. Cree XM–L с бином T6 имеет такие параметры: типовое ULED = 2,9 В и максимальное ULED = 3,5 В при токе ILED=0,7 А. В расчёты следует подставлять типовое значение ULED, так как. оно чаще всего соответствует действительности. Рассчитанный номинал резистора присутствует в ряду Е24 и имеет допуск в 5%. Однако на практике часто приходится округлять полученные результаты к ближайшему значению из стандартного ряда. Получается, что с учетом округления и допуска в 5% реальное сопротивление изменяется и вслед за ним обратно пропорционально меняется ток. Поэтому, чтобы не превысить рабочий ток нагрузки, необходимо расчётное сопротивление округлять в сторону увеличения.

Используя наиболее распространённые резисторы из ряда Е24, не всегда удаётся подобрать нужный номинал. Решить эту проблему можно двумя способами. Первый подразумевает последовательное включение добавочного токоограничительного сопротивления, который должен компенсировать недостающие Омы. Его подбор должен сопровождаться контрольными измерениями тока.

Второй способ обеспечивает более высокую точность, так как предполагает установку прецизионного резистора. Это такой элемент, сопротивление которого не зависит от температуры и прочих внешних факторов и имеет отклонение не более 1% (ряд Е96). В любом случае лучше оставить реальный ток немного меньше от номинала. Это не сильно повлияет на яркость, зато обеспечит кристаллу щадящий режим работы.

Мощность, рассеиваемая резистором, составит:

Рассчитанную мощность резистора для светодиода обязательно следует увеличить на 20–30%.

Вычислим КПД собранного светильника:

Пример с LED SMD 5050

По аналогии с первым примером разберемся, какой нужен резистор для SMD светодиода 5050. Здесь нужно учесть конструкционные особенности светодиода, который состоит из трёх независимых кристаллов.

Если LED SMD 5050 одноцветный, то прямое напряжение в открытом состоянии на каждом кристалле будет отличаться не более, чем на 0,1 В. Значит, светодиод можно запитать от одного резистора, объединив 3 анода в одну группу, а три катода – в другую. Подберем резистор для подключения белого SMD 5050 с параметрами: типовое ULED=3,3 В при токе одного чипа ILED=0,02 А. Ближайшее стандартное значение – 30 Ом.

Принимаем к монтажу ограничительный резистор мощностью 0,25 Вт и сопротивлением в 30 Ом ±5%.

У RGB светодиода SMD 5050 различное прямое напряжение каждого кристалла. Поэтому управлять красным, зелёным и синим цветом, придётся тремя резисторами разного номинала.

Онлайн-калькулятор

Представленный ниже онлайн калькулятор для светодиодов – это удобное дополнение, которое произведет все расчеты самостоятельно. С его помощью не придётся ничего рисовать и вычислять вручную. Всё что нужно – это ввести два главных параметра светодиода, указать их количество и напряжение источника питания. Одним кликом мышки программа самостоятельно произведёт расчет сопротивления резистора, подберёт его номинал из стандартного ряда и укажет цветовую маркировку. Кроме этого, программа предложит уже готовую схему включения.

Дополняя вышесказанное стоит отметить, что если прямое напряжение светодиода значительно ниже напряжения питания, то схемы включения через резистор малоэффективны. Вся лишняя энергия впустую рассеивается резистором, существенно занижая КПД устройства.

Светодиодное освещение и индикация, за счёт этого полупроводникового прибора считается одной из самых надёжных. При организации освещения светодиодные светильники производят качественный световой поток, при этом являются экологически чистыми источниками света не требующими утилизацию и не потребляющими много электроэнергии. Светодиод работает только от постоянного напряжения и пропускает ток только в одном направлении, как и обыкновенный диод.

Диод излучающий свет является прибором с определённым, чётко регламентированным, протекающим током как максимальным, так и минимальным. Если превысить максимальный допускаемый прямой ток или подводящее к нему напряжение, то он обязательно выйдет из строя, простыми словами «сгорит». Данные о светодиоде можно найти:

  1. В справочнике или технической литературе;
  2. На страницах интернета;
  3. При покупке у продавца-консультанта.

Не зная рабочего напряжения и максимального прямого тока подобрать сопротивление резистора для ограничения тока достаточно проблематично. Разве что имея ли автотрансформатор, или переменный резистор. При этом можно спалить несколько таких полупроводниковых элементов. Этот способ скорее теоретический, чем практический, и применяется он может только в экстренных ситуациях. Резистор — это пассивный элемент, применяющийся в электрических цепях, он обладает определённым значением сопротивления. Выпускается переменный, с регулировочной ручкой, или постоянный резистор. Для резистора характерно понятие мощности, которое тоже стоит учитывать при его расчете в электрических цепях.

Итак, каждый светодиод имеет рабочее напряжение и прямой проходящий и засвечивающий его ток. Если U источника питания, допустим, 1,5 вольта, и по паспорту диод должен подключаться именно к такому напряжению, то ограничивающий резистор не требуется. Или же есть возможность подключить три светодиода с рабочим напряжением 0,5 вольта, последовательно источнику питания. При этом все эти полупроводниковые элементы должны быть одинакового типа и марки. Однако такая ситуация случается крайне редко, а зачастую величина питания значительно больше, чем рабочее напряжение одного светодиода.

Как произвести расчет сопротивления для светодиодов, которое не только ограничивает ток в цепи, но и создаёт падение напряжения. Токоограничивающий резистор для светодиода рассчитывается на основе всем известного закона Ома I=U/R. Отсюда можно выделить и значение сопротивления R=U/I. Где U — напряжение, I — величина постоянного тока.

Вот простейшая схема подключения одного светодиода.

Сила тока при последовательном соединении будет одинакова, а напряжение питания светодиода должно быть определённой величины, зачастую оно значительно ниже питающего всю цепь. Поэтому резистор должен погасить часть напряжения, чтобы приложенное к светодиоду уже было определённого значения, указанного в его паспорте как рабочее напряжение. То, есть I (ток) в цепи известна и будет равна I, потребляющему диодом, а U падения на сопротивлении будет равно разности U питания и U светодиода. Зная U на резисторе и I, который через него проходит, согласно тому же закону Ома можно найти его сопротивление. Для этого напряжение падения на резисторе разделить на протекающий по цепи ток.

После расчета резистора светодиода, он ещё должен соответствовать мощности, для этого U на нём нужно умножить на известный I всей цепи. Ток в любом участке цепи будет одинаковым и поэтому максимальная сила тока, проходящая через светодиод, не будет превышать проходящий через ограничивающий резистор. При этом рекомендуется подбирать резистор с немного большим номиналом, нежели с меньшим, это касается и сопротивления, и его мощности. Зная закон Ома можно также рассчитать сопротивление через R светодиода.

Если нет подходящего резистора с нужным сопротивлением его можно получить подключив несколько таких элементов последовательно или параллельно. При этом для последовательного соединения, всеобщее сопротивление всех резисторов будет равно сумме всех входящих в эту цепь.

А при параллельном рассчитывается по такой вот формуле

Нужно учесть, что всё это рассчитывается исходя из напряжения питания, так как при его увеличении увеличится и сила тока во всей цепи. Так что источник питания, должен выдавать не только качественно выпрямленное, но и стабилизированное напряжение.

Шунтирование светодиода резистором

О таком подключении светодиода и резистора стоит рассуждать при последовательном соединении двух и более излучающих свет элементов. Даже с одинаковой маркировкой и типом характеристики каждого светодиода могут немножко отличаться. Если через него протекает I, то он имеет своё внутреннее R. При этом в режиме когда вентиль (диод) проводит его, и не проводит, сопротивление внутреннее будет значительно отличаться. То есть при обратном включении вентиля именно в таком режиме сопротивление будет отличаться уже значительно. Соответственно и обратное напряжение тоже будет очень разниться, что может привести к перегоранию (пробою).

Для предотвращения таких ситуаций рекомендуется шунтировать светодиод маломощным резистором с большим R в несколько сотен Ом. Такое подключение обеспечит выравнивание обратного напряжения на соединенных в одну цепь полупроводниковых приборах выдающих световой поток.

Вот тут я обещал рассказать о том, как можно рассчитать номинал резистора для того, чтобы бортовая сеть вашего автомобиля не сожгла светодиоды, которые вы к ней подключите.
Для начала определимся с терминологией (люди, знакомые с электроникой, могут перейти к следующему пункту).

Падение напряжения — напряжение U (измеряется в вольтах, V) — которое потребляет светодиод (да-да, совершенно нагло съедает его!).
Оно же — напряжение питания. Не путать с напряжением источника питания.
Рабочий ток — ток I (измеряется в амперах, А. мы будем измерять в миллиамперах — 1 мА = 0.001 А).
СопротивлениеR измеряется в омах — Ом. Именно в этих единицах измеряются резисторы (сопротивления).
Напряжение источника питания — в нашем случае напряжение бортовой сети автомобиля и равно примерно 12V при заглушенном двигателе и 14V при заведённом (при условии исправной работы генератора).

С терминологией вроде всё. Перейдём к теории.
Вот примерное падение напряжения для каждого из основных цветов светодиодов.

Красный — 1,6-2,03
Оранжевый — 2,03-2,1в
Жёлтый — 2,1-2,2в
Зелёный — 2,2-3,5в
Синий — 2,5-3,7в
Фиолетовый — 2,8-4в
Белый — 3-3,7в

Реальные значения могут немного колебаться в ту или иную сторону. О том, как точно выяснить сколько потребляет конкретный светодиод — ссылка ниже.
Разница связана с использованием в них разных материалов кристалла, что и даёт, собственно говоря, разную длину испускаемой волны, а равно и разный цвет.

Средний же рабочий ток для маломощных светодиодов составляет около 0.02А = 20мА.
В чём же, спросите вы, загвоздка? Всё ведь просто — подключил светодиод соблюдая полярность и он светит тебе.
Да, всё так, но светодиод – предмет тёмный, изучению не подлежит интересный.
Тогда как напряжения питания он забирает на себя ровно столько, сколько ему требуется, ток превышающий его рабочий ток, попросту сожжёт кристалл.

Давайте возьмём пример. Имеется светодиод оранжевого цвета, который, согласно приведённой выше таблице, имеет напряжение питания порядка 2,1V, и рабочий ток 20мА. Если мы обрушим на него всю мощь бортовой сети нашего автомобиля, то напряжение в цепи, в которую он включен, снизится на

2.1V, правда, избыточный ток тут же его сожжёт…
Как же быть, если нам, например, нужно установить светодиод для подсветки замка зажигания?
Всё просто – нужно лишить участок цепи, в которую включен светодиод, избыточного тока.

Как? – спросите вы. Всё просто. Был такой дядя, Георг Ом, который вывел известную любому старшекласснику формулу (закон Ома для участка цепи) – U=I*R (где U – напряжение, I – ток, R – сопротивление.)
Переворачиваем эту прекрасную формулу, получая R=U/I.
В нашем случае R – сопротивление (номинал резистора), которое нам потребуется; U – напряжение в участке цепи, I – рабочий ток нашего светодиода.
Vs – напряжение источника питания
Vl – напряжение питания светодиода
Таким образом R=(Vs-Vl)/I=(12-2.1)/0.02=9.9/0.02=495 Ом – номинал резистора, который необходимо включить в цепь, дабы напрямую подключить светодиод к бортовой сети при выключенном двигателе.
Для работы при включенном двигателе рассчитываем так же, только Vs берём уже 14В.
Настоятельно рекомендую производить расчёты для авто, беря за напряжение бортовой сети 14В, иначе ваши светодиоды достаточно быстро выйдут из строя.

Если взять номинал больше, например 550-600 Ом, то светодиод будет светить чуть менее ярко.
Если номинал будет меньше, то «свет твоей звезды будет коротким, хоть и очень ярким».

Достоверно узнать, сколько вольт потребляет конкретный светодиод, можно подключив его к источнику постоянного напряжения в 3-5 вольт, подсоединив последовательно вольтметр (можно использовать электронный мультиметр, включив его в соответствующий режим), после чего посчитать насколько снизилось напряжение в цепи. И исходя уже их этих, конкретных данных, рассчитать требуемый вам резистор. Подробнее об этом методе читайте здесь.

В конце хочу сказать вам, что настоятельно рекомендую использовать номинал резистора немного выше чем расчётный, что, несомненно, продлит жизнь светодиодам.
Для определения резистора по цветовой маркировке (а именно так обозначены все современные резисторы) рекомендую использовать этот онлайн-калькулятор.
www.chipdip.ru/info/rescalc

Спасибо, что читаете мой БЖ, мне очень приятно. Если остались вопросы — задавайте не стесняясь — всем отвечу.

Как работают светодиоды и их виды, полярность и расчет резистора

Светодиоды – одни из самых популярных электронных компонентов, использующиеся практически в любой схеме. Словосочетание “помигать светодиодами” часто используется для обозначений первой задачи при проверке жизнеспособности схемы. В этой статье мы узнаем, как работают светодиода, сделаем краткий обзор их видов, а также разберемся с такими практическими вопросами как определение полярности и расчет резистора.

Устройство светодиода

Светодиоды — полупроводниковые приборы с электронно-дырочным переходом, создающий оптическое излучение при пропускании через него электрического тока в прямом направлении.

Излучаемый светодиодом свет лежит в узком диапазоне спектра. Иными словами, его кристалл изначально излучает конкретный цвет (если речь идёт об СД видимого диапазона) — в отличие от лампы, излучающей более широкий спектр, где нужный цвет можно получить лишь применением внешнего светофильтра. Диапазон излучения светодиода во многом зависит от химического состава использованных полупроводников.

 

Светодиод состоит из нескольких частей: 

  • анод, по которому подается положительная полуволна на кристалл; 
  • катод, по которому подается отрицательная полуволна на кристалл; 
  • отражатель; 
  • кристалл полупроводника; 
  • рассеиватель.  

Эти элементы есть в любом светодиоде, вне зависимости от его модели.  

Светодиод является низковольтным прибором. Для индикаторных видов напряжение питания должно составлять 2-4 В при токе до 50 мА. Диоды для освещения потребляют такое же напряжение, но их ток выше – достигает 1 Ампер. В модуле суммарное напряжение диодов оказывается равным 12 или 24 В.  

Подключать светодиод нужно с соблюдением полярности, иначе он выйдет из строя.  

Цвета светодиодов

Светодиоды бывают разных цветов. Получить нужный оттенок можно несколькими способами.  

Первый – покрытие линзы люминофором. Таким способом можно получить практически любой цвет, но чаще всего эта технология используется для создания белых светодиодов.  

RGB технология. Оттенок получается за счет применения в одном кристалле трех светодиодов красного, зеленого и синего цветов. Меняется интенсивность каждого из них, и получается нужное свечение.  

Применение примесей и различных полупроводников. Подбираются материалы с нужной шириной запрещенной зоны, и из них делается кристалл светодиода.   

Принцип работы светодиодов

Любой светодиод имеет p-n-переход. Свечение возникает при рекомбинации электронов и дырок в электронно-дырочном переходе. P-n переход создается при соединении двух полупроводников разного типа электропроводности. Материал n-типа легируется электронами, p-типа – дырками.  

При подаче напряжения электроны и дырки в p-n-переходе начинают перемещаться и занимать места. Когда носители заряда подходят к электронно-дырочному переходу, электроны помещаются в материал p-типа. В результате перехода электронов с одного энергетического уровня на другой выделяются фотоны. 

Не всякий p-n переход может излучать свет. Для пропускания света нужно соблюсти два условия: 

  • ширина запрещенной зоны должна быть близка к энергии кванта света; 
  • полупроводниковый кристалл должен иметь минимум дефектов.  

Реализовать подобное в структуре с одним p-n-переходом не получится. По этой причине создаются многослойные структуры из нескольких полупроводников, которые называются гетероструктурами.  

Для создания светодиодов используются прямозонные проводники с разрешенным прямым оптическим переходом зона-зона. Наиболее распространенные материалы группы А3В5 (арсенид галлия, фосфид индия), А2В4 (теллурид кадмия, селенид цинка).  

Цвет светоизлучающего диода зависит от ширины запрещенной зоны, в которой происходит рекомбинация электронов и дырок. Чем больше ширина запрещенной зоны и выше энергия квантов, тем ближе к синему излучаемый свет. Путем изменения состава можно добиться свечения в широком оптическом диапазоне – от ультрафиолета до среднего инфракрасного излучения.  

Светодиоды инфракрасного, красного и желтого цветов изготавливаются на основе фосфида галлия, зеленый, синий и фиолетовый – на основе нитридов галлия.  

Виды светодиодов, классификация

По предназначению выделяют индикаторные и осветительные светодиоды. Первые используются для стилизации, декоративной подсветки – например, украшение зданий, рекламные баннеры, гирлянды.  Осветительные приборы используются для создания яркого освещения в помещении.  

По типу исполнения выделяют: 

  • Dip светодиоды. Они представляют собой кристаллы, заключенные в цилиндрическую линзу. Относятся к индикаторным светодиодам. Существуют монохромные и многоцветные устройства. Используются редко из-за своих недостатков: большой размер, малый угол свечения (до 120 градусов), падение яркости излучения при долгом функционировании на 70%, слабый поток света. Dip светодиоды

     

  • Spider led. Такие светодиоды похожи на предыдущие, но имеют 4 выхода. В таких диодах оптимизирован теплоотвод, повышается надежность компонентов. Активно используются в автомобильной технике.  
  • Smd – светодиоды для поверхностного монтажа. Могут относиться как к индикаторным, так и к осветительным светодиодам. Smd

     

  • Cob (Chip-On-Board) – кристалл установлен непосредственно на плате. К преимуществам такого решения относятся защита от окисления, малые габариты, эффективный отвод тепла и равномерное освещение по всей площади. Светодиоды такой марки являются самыми инновационными. Используются для освещения. На одной подложке может быть установлено более 9 светодиодов. Сверху светодиодная матрица покрывается люминофором. Активно используются в автомобильной индустрии для создания фар и поворотников, при разработке телевизоров и экранов компьютеров.   Cob
  • Волоконные – разработка 2015 года. Могут использоваться в производстве одежды.  Волоконные
  • Filament также является инновационным продуктом. Отличаются высокой энергоэффективностью. Используются для создания осветительных ламп. Важное преимущество – возможность осуществления монтажа напрямую на подложку из стекла. Благодаря такому нанесению есть возможность распространения света на 360 градусов. Конструкция состоит из сапфирового стекла с диаметром до 1,5 мм и специально выращенных кристаллов, которые соединены последовательно. Число кристаллов обычно ограничивается 28 штуками. Светодиоды помещаются в колбу, которая покрыта люминофором. Иногда филаментные светодиоды могут относить к классу COB изделий. Filament

     

  • Oled. Органические тонкопленочные светодиоды. Используются для построения органических дисплеев. Состоят из анода, подложки из фольги или стекла, катода, полимерной прослойки, токопроводящего слоя из органических материалов. К преимуществам относятся малые габариты, равномерное освещение по всей площади, широкий угол свечения, низкая стоимость, длительный срок службы, низкое потребление электроэнергии.  Oled
  • В отдельную группу выделяются светодиоды, излучающие в ультрафиолетовом и инфракрасном диапазонах. Они могут быть с выводами, так и в виде smd исполнения. Используются в пультах дистанционного управления, бактерицидных и кварцевых лампах, стерилизаторах для аквариумов.  

Светодиоды могут быть:

  • мигающими – используются для привлечения внимания;
  • многоцветными мигающими;
  • трехцветными – в одном корпусе есть несколько несвязанных между собой кристаллов, которые работают как по отдельности, так и все вместе;
  • RGB;
  • монохромными.

Светодиоды классифицируются по цветовой гамме. Для максимально точной идентификации цвета в документации прибора указывается его длина волны излучения.  

Белые светодиоды классифицируются по цветовой температуре. Они бывают теплых оттенков (2700 К), нейтральных (4200 К) и холодных (6000 К). 

По мощности выделяют светодиоды, потребляющие единицы мВт до десятков Вт. Напрямую от мощности зависит сила света.  

Полярность светодиодов

Полярность светодиодов

При неправильном включении светодиод может сломаться. Поэтому важно уметь определять полярность источника света.  Полярность – это способность пропускать электрический ток в одном направлении.  

Полярность моно определить несколькими способами: 

  • Визуально. Это самый простой способ. Для нахождения плюса и минуса у цилиндрического диода со стеклянной колбой нужно посмотреть внутрь. Площадь катода будет больше, чем площадь анода. Если посмотреть внутрь не получится, полярность определяется по контактам – длинная ножка соответствует положительному электроду. Светодиоды типа  SMD имеют метки, указывающие на полярность. Они называются скосом или ключом, который направлен на отрицательный электрод. На маленькие smd наносятся пиктограммы в виде треугольника, буквы Т или П. Угол или выступ указывают на направление тока – значит, этот вывод является минусом. Также некоторые светодиоды могут иметь метку, которая указывает на полярность. Это может быть точка, кольцевая полоска.  
  • При помощи подключения питания. Путем подачи малого напряжения можно проверить полярность светодиода. Для этого нужен источник тока (батарейка, аккумулятор), к контактом которого прикладывается светодиод, и токоограничивающий резистор, через который происходит подключение. Напряжение нужно повышать, и светодиод должен загореться при правильном включении.  
  • При помощи тестеров. Мультиметр позволяет проверить полярность тремя способами. Первый – в положении проверка сопротивления. Когда красный щуп касается анода, а черный катода, на дисплее должно загореться число , отличное от 1. В ином случае на экране будет светиться цифра 1. Второй способ – в положении прозвонка. Когда красный щуп коснется анода, светодиод загорится. В ином случае он не отреагирует. Третий способ – путем установки светодиода в гнездо для транзистора. Если в отверстие С (коллектор) будет помещен катод – светодиод загорится.  
  • По технической документации. Каждый светодиод имеет свою маркировку, по которой можно найти информацию о компоненте. Там же будет указана полярность электродов.  

Выбор способа определения полярности зависит от ситуации и наличия у пользователя нужного инструмента.  

Расчет сопротивления для светодиода

Диод имеет малое внутреннее сопротивление. При подключении его напрямую к блоку питания, элемент перегорит. Чтобы этого не случилось, светодиод подключается к цепи через токоограничивающий резистор. Расчет производится по закону Ома: R=(U-Uled)/I, где R – сопротивление токоограничивающего резистора, U – питание источника; Uled – паспортное значение напряжения для светодиода, I – сила тока. По полученному значению и подбирается мощность резистора.  

Важно правильно рассчитать напряжение. Оно зависит от схемы подключения элементов.  

Можно не производить расчет сопротивления, если использовать в цепи мощный переменный или подстроечный резистор. Токоограничивающие резисторы существуют разного класса точности. Есть изделия на 10%, 5% и 1 % – это значит, что погрешность варьируется в указанном диапазоне.  

Выбирая токоограничивающий резистор, нужно обратить внимание и на его мощность. почти всегда, если при малом рассеивании тепла устройство будет перегреваться и выйдет из строя. Это приведет к разрыву электрической цепи.  

Когда нужно использовать токоограничивающий резистор: 

  • когда вопрос эффективности схемы не является основным – например, индикация; 
  • лабораторные исследования. 

В остальных случаях лучше подключать светодиоды через стабилизатор – драйвер, что особенно это актуально в светодиодных лампах. 

Онлайн – сервисы и калькуляторы для расчета резистора:

какой резистор нужен для светодиода как рассчитать резистор для светодиода

Светодиодное освещение прочно вошло в нашу жизнь. Основные достоинства – низкое энергопотребление, высокая яркость, минимальные размеры. Светодиод представляет собой полупроводниковый элемент с электронно-дырочной проводимостью. При пропускании через него электрического тока в прямом направлении он создает оптическое излучение в узком диапазоне. Собственное низкое сопротивление и чувствительность к величине силы тока, является основной причиной того что при включении данного элемента в электрическую цепь необходимо использовать токоограничивающий резистор. Как рассчитать и правильно подобрать данную деталь для конкретных условий применения рассмотрим более подробно.

Расчет токоограничивающего резистора для светодиода

В интернете можно встретить множество калькуляторов с помощью которого можно рассчитать необходимое сопротивление резистора для эффективной и длительной работы любого светодиода. Но не всегда компьютер может быть под рукой, а токоограничивающий резистор необходимо установить именно в данный момент. Вот для этого и нужно знание элементарных правил.

Светодиоды, как и все элементы могут быть включены в цепь параллельно или последовательно. Первый вариант не является надежным в принципе. Суть в следующем: при таком виде включения, напряжение на светодиодах будет одинаковым, но так как практически невозможно подобрать полупроводниковые приборы с идеальными идентичными характеристиками, сила тока на светодиодах может оказаться разной по величине. Один будет светить вполнакала, а второй может работать при удвоенной нагрузке и быстро выйдет из строя. Данное неудобство исключено при последовательном включении светодиодов (или его одиночной установке).

Подбор резистора для светодиода необходимо начинать с выяснения характеристик самого светодиода, а именно значение падения напряжения на светодиоде (U св) и номинальный ток (I св) при нормальной работе. Эти данные можно найти в соответствующей сопроводительной документации или в специальных каталогах. Также необходимо будет знать напряжение источника питания (U).

Расчет сопротивления (R) токоограничивающего резистора для конкретного светодиода производится по формуле: R = (U– Uсв)/ Iсв, что собственно следует из закона Ома.

Рассмотрим наглядно какой резистор нужен для светодиода КИПД06А-1К при напряжении источника питания 220 В. Из соответствующих справочников выясняем, что номинальный ток (I св) для данного источника света составляет 25 мА, а падение напряжения (U св) при этом равно 5,5 В.

Используя вышеприведенную формулу можем рассчитать сопротивление резистора (R) для обеспечения нормальной работы данного светодиода.

R = 220-5,5/0,025 = 8580 Ом = 8,58 кОм.

Далее, после получения необходимой величины сопротивления в омах, переходим к непосредственно к подбору резистора для светодиода соответствующей марки. Возвращаясь к параллельному соединению светодиодов нужно уточнить, что оно возможно, если в дополнение к каждому источнику света будет идти собственный токоограничивающий резистор.

Подбор токоограничивающего резистора для светодиода

После того как необходимое сопротивление резистора было вычислено, необходимо определиться с выбором соответствующей детали. Здесь могут возникнуть некоторые сложности. Дело в том, что не всегда можно подобрать резистор для светодиода, полностью соответствующий по вычисленным параметрам.

Проблема решается двумя способами:

Первый способ.

Необходимо подобрать резистор для светодиода, сопротивление которого будет выше необходимого. При этом не стоит сильно завышать этот параметр. Дело в том, что при увеличении сопротивления, будет теряться световая мощность источника, т.е. он будет менее ярким, но при этом прослужит значительно дольше. Оптимальным является превышение необходимого значение в пределах 20-30%.

Второй способ.

Второй способ основан на законе Ома, согласно которому при последовательном соединении резисторов их собственное сопротивление суммируется. Таким образом, при невозможности подбора для светодиода токоограничивающего резистора сопротивлением 8,58 кОм (как в нашем случае), можно взять несколько деталей с необходимыми параметрами. Это в принципе является оптимальным вариантом, вследствие более точного результата. Естественно ограничением будет являться сама возможность установки нескольких резисторов в электрической цепи.

Также при подборе резистора необходимо обращать внимание на его мощность. Это обусловлено тем, что при работе выделяется тепло и при недостаточной мощности данная деталь может просто перегореть. Это в свою очередь приведет к разрыву цепи и отключению светодиодных источников света.

Требуется ли для светодиодов резистор ограничения тока, если прямое напряжение и напряжение питания равны?

Нет, это не правильно, хотя бы потому, что ни светодиод, ни блок питания не имеют напряжения 3,3 В. Источник питания может быть 3,28 В, а напряжение светодиода 3,32 В, и тогда простой расчет для последовательного резистора больше не выполняется.

Модель светодиода представляет собой не просто постоянное падение напряжения, а скорее постоянное напряжение последовательно с резистором внутреннего сопротивления. Поскольку у меня нет данных для вашего светодиода, давайте рассмотрим эту характеристику для другого светодиода Kingbright KP-2012EC LED:

Для токов выше 10 мА кривая прямая, а наклон является обратным внутреннему сопротивлению. При 20 мА прямое напряжение составляет 2 В, при 10 мА это 1,95 В. Тогда внутреннее сопротивление

.RINT=V1−V2I1−I2=2V−1.95V20 м -10mA=5ΩRINT=V1-V2я1-я2знак равно2В-1,95В20мA-10мAзнак равно5Ω

Собственное напряжение

ВяNT= V1- я1× RяNT= 2 В- 20 м × 5 Ω = 1,9 В,ВяNTзнак равноВ1-я1×ряNTзнак равно2В-20мA×5Ωзнак равно1,9В,

Предположим, что у нас есть источник питания 2 В, тогда проблема немного похожа на оригинальную, где у нас было 3,3 В для питания и светодиода. Если мы подключим светодиод через резистор 0 (в конце концов, оба напряжения равны!), Мы получим ток светодиода 20 мА. Если напряжение источника питания изменится на 2,05 В, то есть на 50 мВ, то ток светодиода будет ΩΩ

яL ED= 2,05 В- 1,9 В5 Ом= 30 м .яLЕDзнак равно2,05В-1,9В5Ωзнак равно30мA,

Таким образом, небольшое изменение напряжения приведет к значительному изменению тока. Это показывает крутизна графика и низкое внутреннее сопротивление. Вот почему вам нужно внешнее сопротивление, которое намного выше, чтобы лучше контролировать ток. Конечно, падение напряжения на 10 мВ, скажем, на 100 дает только 100 мкА , что будет едва заметно. Поэтому также требуется более высокая разность напряжений. ΩΩμμ

Вам всегда нужно достаточно большое падение напряжения на резисторе, чтобы иметь более или менее постоянный ток светодиода.

Когда и зачем светодиодам нужны токоограничивающие резисторы?


Если вы работаете с какой-либо схемой, включающей светодиоды, вы могли столкнуться с предупреждениями или рекомендациями всегда использовать токоограничивающий резистор.

Мы составили это руководство, чтобы помочь любому, от новичка в домашних условиях до тех, кто занимается проектированием и изготовлением печатных плат для светодиодного освещения, полностью понять, когда, почему и как выбирать соответствующий ограничивающий ток резистор.

Понимание кривой ВАХ светодиодов

Как и в случае с любым пассивным полупроводниковым компонентом, понимание кривой ВАХ (тока в зависимости от напряжения) имеет решающее значение при проектировании схемы вокруг них.

Светодиод, по сути, является диодом и имеет нелинейную кривую ВАХ. Другими словами, соотношение между входным напряжением и входным током не является прямой линией.


Например, давайте посмотрим на прямой ток при 2,7 В – примерно 20 мА. Если мы увеличим напряжение на 0,1 В до 2,8 В, прямой ток увеличится примерно на 30–50 мА. Если мы затем увеличим его еще на 0,1 В до 2,9 В, прямой ток увеличится на 35 мА до 85 мА.

По мере увеличения напряжения скорость увеличения прямого тока также увеличивается.Небольшие изменения прямого напряжения могут привести к очень большим изменениям прямого тока.

Таким образом, драйверы светодиодов с постоянным током являются предпочтительным методом управления светодиодами – они работают на одном токе и соответственно регулируют свое выходное напряжение, гарантируя, что прямой ток остается стабильным. Когда используется вход постоянного тока, токоограничивающий резистор не требуется.

Что делать, если вы используете блоки питания постоянного напряжения

Однако блоки питания постоянного тока обычно более дороги и ограничены в своей гибкости.В результате почти все светодиодные ленты и другие модули используют вход постоянного напряжения.

Источники питания постоянного напряжения имеют фиксированный уровень выходного напряжения и могут производить любой уровень выходного тока от 0 мА до его номинального максимума (который вполне может быть выше номинального максимума для светодиодов и светодиодной системы).

Но, как мы видели выше, из-за нелинейной зависимости между прямым током и прямым напряжением, входы питания постоянного напряжения нуждаются в дополнительной модификации для безопасного использования со светодиодными системами по следующим причинам:

1) Прямое напряжение светодиода не работает. обязательно соответствовать таковому по уровню напряжения блока питания. Например, на основе тех же технических характеристик светодиодов, что и выше, если у вас есть источник питания с постоянным напряжением 3,0 В, прямой ток также будет ограничен 135 мА.


Что, если мы хотим запустить светодиод на 20 мА, используя тот же источник питания? Нам нужно будет предоставить светодиоду только 2,7 В вместо 3,0 В. Однако, поскольку большинство блоков питания не имеют опции выхода переменного напряжения, невозможно достичь 2,7 В на светодиодах с помощью одного только блока питания. .

Что нам делать?

Ответ состоит в том, чтобы подключить резистор последовательно со светодиодом и позволить резистору «понизить» напряжение светодиода на 0.3 В.

Как рассчитать номинал резистора? Мы используем закон Ома, который гласит, что V = IR, и подставляем 0,3 В (падение напряжения) вместо V и 0,02 А (желаемый прямой ток) вместо I. Решение для R дает нам 15 Ом.

Подобные расчеты могут быть выполнены независимо от задействованного напряжения – например, для светодиодных лент 12В и 24В.

В условиях массового производства изменения прямого напряжения светодиодов неизбежны и приводят к появлению нескольких ячеек напряжения. В идеале светодиоды из каждой ячейки напряжения имеют разные пары номиналов резисторов, рассчитанные для обеспечения одинакового потребления прямого тока, независимо от ячейки напряжения светодиодов.В противном случае могут возникнуть более широкие вариации в потребляемом прямом токе и, следовательно, яркости.


Каждая из вышеперечисленных строк представляет собой отдельную ячейку напряжения. Чтобы получить 60 мА для всех светодиодных бункеров, необходимо использовать резисторы разных спецификаций, чтобы получить разные прямые напряжения, необходимые для достижения одинаковых 60 мА.

2) Токоограничивающие резисторы защищают от повышения напряжения

Мы видели выше, что светодиоды имеют нелинейную зависимость между прямым током и прямым напряжением.В результате небольшое увеличение напряжения может привести к значительному увеличению прямого тока, что приведет к потенциальной перегрузке по току и отказу устройства.

В отличие от диодов, резисторы имеют линейную зависимость между прямым током и прямым напряжением (как показано законом Ома).


Следовательно, увеличение прямого напряжения приведет к такому же пропорциональному увеличению прямого тока независимо от уровня напряжения. Это свойство резисторов, включенных в схему светодиода, может помочь смягчить эффекты повышения напряжения.

Почему должно увеличиваться напряжение?

Первая возможность – нестабильный источник питания со значительным шумом или пульсацией. Если есть проблемы с источником питания постоянного напряжения, обеспечивающим нестабильный постоянный ток, прямое напряжение и периодические всплески, и наличие резисторов, ограничивающих ток, поможет смягчить соответствующий всплеск прямого тока.

Второе, более предсказуемое и распространенное свойство самих светодиодных устройств.

По мере нагрева светодиода его прямое напряжение уменьшается, если прямой ток остается постоянным.Обычно это показано в технических характеристиках светодиодов на следующей диаграмме изменения температуры и прямого напряжения:


Это полезная информация при проектировании цепи постоянного тока, поскольку она дает нам информацию об истинном диапазоне прямых напряжений, которые мы можем увидеть в системе. Но давайте перефразируем тот же принцип с точки зрения постоянного напряжения:

Когда светодиод нагревается, его прямой ток увеличивается, если мы сохраняем постоянное прямое напряжение.

Графически мы можем показать тот же принцип на одной диаграмме (ниже).Если мы используем перспективу постоянного тока, мы можем сказать, что кривая сдвигается влево при повышении температуры. Или, если мы используем перспективу постоянного напряжения, мы можем сказать, что кривая смещается вверх при повышении температуры.


Тепловыделение светодиода в первую очередь зависит от его общего рассеивания мощности. Следовательно, тот факт, что прямой ток возрастает при повышении его температуры, потенциально катастрофичен, потому что более высокий прямой ток еще больше увеличит температуру светодиода, в свою очередь, еще больше увеличивая его прямой ток в контуре положительной обратной связи.Это называется тепловым разгоном светодиодной системы и в лучшем случае приведет к катастрофическим сбоям и, возможно, к возгоранию и задымлению.

Токоограничивающий резистор помогает смягчить эффект увеличения напряжения благодаря своей линейной ВАХ. Кроме того, резисторы ведут себя противоположно светодиодам в зависимости от их температуры – с повышением температуры увеличивается и сопротивление.

Эта простая, но полезная особенность резисторов побудила некоторых также называть резисторы, используемые таким образом, балластными резисторами.

Bottom Line

Светодиодные устройства по своей природе управляются током и плохо реагируют на колебания напряжения.

Если вы строите светодиодную систему с использованием источников питания постоянного напряжения, вы должны быть абсолютно готовы к использованию токоограничивающих резисторов для обеспечения стабильной и безопасной работы светодиодных устройств.

Нужна помощь в создании светодиодной схемы? Свяжитесь с нами, чтобы обсудить сегодня!

Следует ли отказаться от токоограничивающего резистора для светодиода? | Блог

Создано: 20 сентября 2017 г.
Обновлено: 11 декабря 2020 г.

Большинство моих друзей-инженеров ведут сбалансированный образ жизни.Однако есть инженеры-трудоголики. Эти инженеры не ограничивают свое рабочее время и постоянно сталкиваются со стрессом. Их образ жизни не сильно отличается от светодиодов, которые напрямую подключены к источнику питания без токоограничивающего резистора или с неправильным номиналом резистора. Сначала они сильны, но со временем мерцают и выгорают.

В архитектурной индустрии светоизлучающие диоды (LED) обычно используются в архитектурных моделях. Однако я заметил, что все больше и больше людей подключают свои светодиоды напрямую к источнику питания без токоограничивающего резистора.Хотя изначально они работают, поскольку напряжение источника питания установлено в соответствии со светодиодом, это не лучшая практика, если вы хотите, чтобы ваши светодиоды соответствовали заданным срокам службы печатной платы.

Как работает светодиод

Светодиод – это полупроводниковое устройство, построенное с использованием соединения кремния P-типа и кремния N-типа, аналогично диоду. Полупроводники P-типа имеют более высокую концентрацию положительных «дырок», чем электроны, а полупроводники N-типа имеют более высокую концентрацию электронов.

Типичный диод пропускает ток только в одном направлении. Прямое смещение применяется к светодиоду путем подключения кремния P-типа к положительной клемме источника питания и кремния N-типа к земле. Когда прямое напряжение превышает пороговое напряжение P-N перехода, ток начинает течь. Падение напряжения на светодиоде всегда эквивалентно прямому напряжению светодиода. Они могут варьироваться от 1,8 В до 3,3 В в зависимости от цвета и типа светодиода.

Когда светодиод подключен к источнику питания с напряжением выше, чем его прямое напряжение, резистор, ограничивающий ток, подключается последовательно со светодиодом. Токоограничивающий резистор ограничивает ток светодиода и регулирует разницу в падении напряжения между светодиодом и источником питания. Конечно, вам нужно будет рассчитать, какой токоограничивающий резистор вам понадобится для вашей печатной платы.

Выбор правильного источника питания для светодиодов

В то время как обычный импульсный источник питания может легко загореться светодиодной системой с токоограничивающим резистором, существуют источники питания, предназначенные для светодиодных приложений.Эти источники питания называются драйверами светодиодов и бывают двух типов: драйверы светодиодов с постоянным током и драйверы светодиодов с постоянным падением напряжения.

Драйвер светодиода с постоянным током изменяет свое напряжение в определенном диапазоне, чтобы гарантировать, что его выходной ток поддерживается на заданном значении. Например, вы можете использовать драйвер светодиода постоянного тока для 100 параллельно подключенных светодиодов с прямым напряжением 3,3 В и прямым током 10 мА. Драйвер светодиода должен быть способен поддерживать 1 А в соответствии с диапазоном рабочего напряжения, который перекрывает прямое напряжение светодиода.В этом случае токоограничивающий резистор не нужен.

Драйвер светодиода с постоянным падением напряжения работает, регулируя падение и усиление напряжения с заданным значением и скоростью в пределах ограничения по току. В случае светодиодных лент или коммерческого освещения устанавливаются токоограничивающие резисторы, чтобы минимизировать влияние колебаний источника напряжения. Эти светодиодные фонари часто указывают напряжение, при котором они работают, и что для них требуются драйверы светодиодов постоянного напряжения.


Подберите источник питания, подходящий для вашей светодиодной конфигурации.

Отсутствие резистора ограничения тока – стоит ли рисковать?

Имея на рынке ряд драйверов для светодиодов, многие компании предпочитают использовать обычный импульсный источник питания и пропускают значения резисторов в своих светодиодных установках. Это связано с тем, что ручная пайка резисторов к светодиодам требует дополнительных усилий, а обычные импульсные блоки питания дешевле драйверов светодиодов.

Теоретически кажется разумным подключить обычное напряжение питания 3,3 В к сотням светодиодов с таким же прямым напряжением.Такой подход может привести к выходу этих светодиодов из строя задолго до указанного срока их службы. В результате эти светодиоды нередко мигают или перегорают в течение нескольких недель после установки. Это связано с тем, что в обычных импульсных источниках питания возникают проблемы с пусковым током напряжения питания; внезапный всплеск тока при включении питания. Со временем это может повредить светодиоды, если они не защищены токоограничивающими резисторами. В качестве альтернативы, усовершенствованные драйверы светодиодов имеют функции, которые устраняют проблемы с пусковым током напряжения питания и помогают избежать ручной пайки.


Некоторые из этих красивых светодиодов начнут мигать через несколько недель после установки, если вы решите сократить расходы вместо того, чтобы следовать лучшим практикам.

Как инженер или поставщик электронного оборудования, лучшее, что мы можем сделать, – это дать разумный совет о том, как действовать в таких сценариях. Однако, когда мы разрабатываем собственные светодиодные приложения, нет оправдания тому, что мы не следуем передовым методам питания светодиодов. Если вам нужен доступ к простому в использовании инструменту компоновки печатных плат, который включает в себя все необходимое для создания высококачественных производимых печатных плат, не ищите ничего, кроме CircuitMaker.Помимо простого в использовании программного обеспечения для проектирования печатных плат, все пользователи CircuitMaker имеют доступ к личному рабочему пространству на платформе Altium 365. Вы можете загружать и хранить свои проектные данные в облаке, и вы можете легко просматривать свои проекты через веб-браузер на защищенной платформе.

Начните использовать CircuitMaker сегодня и следите за новостями о новом CircuitMaker Pro от Altium.

Требуется ли токоограничивающий резистор для светодиодов, если прямое напряжение и напряжение питания равны?

Нет, это не так, хотя бы потому, что ни светодиода, ни блока питания не 3.3В. Источник питания может быть 3,28 В, а напряжение светодиода 3,32 В, и тогда простой расчет для последовательного резистора больше не выполняется.

Модель светодиода – это не просто постоянное падение напряжения, а скорее постоянное напряжение последовательно с резистором, внутренним сопротивлением. Поскольку у меня нет данных для вашего светодиода, давайте посмотрим на эту характеристику для другого светодиода, Kingbright KP-2012EC LED:

Для токов выше 10 мА кривая прямая, а наклон обратный внутреннему сопротивлению.При 20 мА прямое напряжение составляет 2 В, при 10 мА – 1,95 В. Тогда внутреннее сопротивление

Ом.

\ $ R_ {INT} = \ dfrac {V_1 – V_2} {I_1 – I_2} = \ dfrac {2V – 1.95V} {20mA – 10mA} = 5 \ Omega \ $.

Собственное напряжение

\ $ V_ {INT} = V_1 – I_1 \ times R_ {INT} = 2V – 20mA \ times 5 \ Omega = 1.9V. \ $

Предположим, у нас есть источник питания 2 В, тогда проблема немного похожа на исходную, где у нас было 3,3 В для питания и светодиода.Если мы подключим светодиод через резистор 0 \ $ \ Omega \ $ (в конце концов, оба напряжения равны!), Мы получим ток светодиода 20 мА. Если напряжение источника питания изменится на 2,05 В, то есть только на 50 мВ, тогда ток светодиода будет

.

\ $ I_ {LED} = \ dfrac {2,05–1,9 В} {5 \ Omega} = 30 мА. \ $

Таким образом, небольшое изменение напряжения приведет к большому изменению тока. Об этом свидетельствует крутизна графика и низкое внутреннее сопротивление. Вот почему вам нужно внешнее сопротивление, которое намного выше, чтобы мы могли лучше контролировать ток.Конечно, падение напряжения на 10 мВ, скажем, на 100 \ $ \ Omega \ $ дает только 100 \ $ \ mu \ $ A, что будет практически незаметно. Следовательно, также требуется более высокая разница напряжений.

Всегда требуется достаточно большое падение напряжения на резисторе, чтобы иметь более или менее постоянный ток светодиода.

Правильный выбор токоограничивающих резисторов для светодиодных драйверов постоянного напряжения – LED professional

Введение:
Не все резисторы одинаковы, и рост на новых рынках, таких как мощное светодиодное освещение, подчеркивает важность понимания всего аспекты приложения, чтобы правильно и безопасно указать правильный тип резистора.

Следовательно, эта статья сначала вернется к основам, чтобы понять принципы работы светодиодов и то, как они должны быть правильно смещены для достижения оптимальной светоотдачи, указанной производителями. Здесь будут рассмотрены электрические, оптические и тепловые характеристики светодиодов, чтобы понять, почему последовательное включение нескольких светодиодов может быть более эффективным, чем перегрузка отдельных светодиодов, и почему контроль температуры является ключом не только к максимальному выходу, но и к поддержанию желаемого цвета. тон и обеспечение надежности и долгого срока службы.

Поняв расчеты смещения для некоторых типичных сценариев освещения, быстро становится очевидно, что во многих приложениях необходимый балластный резистор может рассеивать несколько ватт мощности. Это не только диктует необходимость в подходящем типе резистора большой мощности, но может потребовать конструкции, подходящей для установки на радиаторе, чтобы отводить тепло от светодиода, а не вносить вклад в и без того сложное требование к конструкции.

Все эти и другие соображения будут изучены в контексте потенциальных проектных решений от специализированного производителя и поставщика резисторов, Riedon, чья продуктовая линейка включает в себя силовые резисторы с проволочной обмоткой серии UT для рассеивания до 13 Вт, силовые пленочные резисторы серии PF. с мощностью до 20 Вт и другие серии, которые позволяют использовать дополнительные радиаторы и варианты поверхностного монтажа.

Понимание работы светодиодов и требований к смещению:
Светоизлучающий диод (СИД) – это полупроводниковый диод, который излучает свет, когда ток течет от анода к катоду через P-N переход устройства. Следовательно, при нормальной работе светодиоду требуется источник постоянного тока (DC) для обеспечения необходимого положительного смещения (прямого напряжения) на этом переходе.
Светодиоды высокой яркости, предназначенные для освещения, обычно обеспечивают оптимальную производительность при прямом напряжении около 3 В.Однако, как видно на рисунке 1, зависимость напряжения от тока нелинейна, поэтому, хотя светодиод начинает включаться при более низком напряжении, он будет быстро потреблять гораздо более высокий ток, когда напряжение превышает его номинальное значение. Помимо соображений рассеивания тепла и надежности (подробнее об этом ниже), это неэффективно, поскольку зависимость светового потока (мера светоотдачи) с током светодиода также нелинейна. Таким образом, удвоение тока, безусловно, не приводит к удвоению светоотдачи, и гораздо лучшим решением для достижения желаемого светового потока является использование нескольких светодиодов.

Рисунок 1: Типичная характеристика зависимости тока светодиода от напряжения

С учетом этих характеристик обычным решением для управления светодиодами является управление током через устройство, а в простейшем методе, как показано на рисунке 2, используется последовательный резистор для ограничения. ток такой, что по закону Ома:

IF = (VDC – VF) / R
, где IF = прямой ток
VDC = напряжение питания
VF = прямое напряжение
R = балластный резистор


Рисунок 2: Простая схема смещения светодиода

Можно использовать выпрямленный и сглаженный вход сети для питания цепи смещения светодиода, но результирующее напряжение питания (VDC) будет намного выше, чем прямое напряжение (VF) на один светодиод, а это означает, что на балластный резистор будет потрачена значительная мощность по сравнению с мощностью, потребляемой светодиодом.Последовательное соединение ряда светодиодов, что типично для многих конструкций светодиодных ламп, решает проблему лишь частично, поскольку совокупное прямое напряжение все равно будет меньше, чем напряжение, падающее на резисторе.

Вместо этого в большинстве систем светодиодного освещения используются блоки питания (БП) со специальными схемами драйверов светодиодов, обеспечивающими выходной сигнал, соответствующий требуемой конфигурации светодиодов. Эти блоки питания обычно принимают входное напряжение сети переменного тока с выходом постоянного тока, который может управлять одним светодиодом, но, скорее всего, цепочкой светодиодов, работающих при напряжении до 60 В.Даже в светодиодных лампах типа «замена 60 Вт» используется встроенный драйвер светодиодов для преобразования сети переменного тока в подходящее напряжение постоянного тока для питания светодиодов. Использование выделенных источников питания также позволяет подключать светодиоды или цепочки светодиодов параллельно для распределенных систем освещения, но обычно ток в каждом параллельном тракте по-прежнему необходимо ограничивать с помощью отдельного последовательного резистора.

Рекомендации по выбору балластного резистора:
Мы можем легко понять это, выполнив некоторые простые вычисления на основе схемы смещения и характеристик светодиодов, показанных выше.Например, использование источника постоянного тока 24 В и шести последовательно соединенных светодиодов (каждый с номинальным прямым напряжением 3 В) оставляет нам 6 В, падающие на балластный резистор. Таким образом, при соответствующем прямом токе светодиода 350 мА необходимое значение резистора равно:

R = (VDC – 6 x VF) / IF = (24-6 x 3) / 0,35 = 17,1 Ом (Ом)
И мощность, которую должен рассеивать резистор, определяется как:
P = V x I = 6 x 0,35 = 2,1 Вт (Вт)

Это обеспечивает базовую спецификацию резистора, но прежде чем двигаться дальше, чтобы увидеть, какой тип резистора может быть подходящим, возможно, полезно подвергнуть сомнению некоторые из наших предположений.Например, почему источник питания 24 В, когда явно источник питания 20 В, уменьшит рассеиваемую мощность в резисторе до 0,7 Вт? Одна из причин заключается в конструкции и допусках компонентов. Типичный блок питания может иметь допуск по выходному напряжению ± 5%, и, хотя характеристика тока / напряжения светодиодов все еще играет важную роль, большая часть изменений выходного сигнала будет влиять на напряжение на резисторе. Следовательно, в нашем примере с блоком питания 24 В увеличение на + 5% (+ 1,2 В) приведет к увеличению тока примерно до 400 мА, что все еще близко к номинальному значению для светодиодов.Однако с блоком питания на 20 В увеличение на + 5% (+ 1 В) приводит к увеличению прямого тока примерно до 450 мА, что непропорционально выше целевого значения 350 мА.

Аналогичные эффекты на прямой ток будут иметь место, если само значение резистора значительно отклоняется от проектного целевого значения или если светодиоды отличаются от своих номинальных характеристик. Хотя не существует абсолютных правил для проектирования цепей смещения светодиодов, все эти факторы необходимо учитывать. Наказание, как отмечалось ранее, заключается в том, что повышенное рассеивание мощности при работе с более высокими токами приводит к более высоким температурам перехода светодиодов.Это приводит к снижению относительной светоотдачи, что частично сводит на нет любое увеличение от работы с более высоким током, но, что более важно, влияет на надежность устройства и ожидаемый срок службы.

Относительная цветность, то есть цветовой тон светодиода, также зависит от изменений тока и температуры, и это еще одна причина для того, чтобы держать их под контролем. Это поднимает проблему затемнения светодиодов, поскольку, хотя можно добиться аналогового затемнения светодиодов в ограниченном диапазоне яркости, изменяя ток возбуждения, иногда даже превышающий его номинальный номинал, это связано с той же проблемой изменения цвета.Вместо этого предпочтительным методом является широтно-импульсная модуляция (ШИМ) тока смещения. Этот подход обычно приводит в действие светодиоды с прямоугольной формой волны, эффективно включая и выключая светодиоды со скоростью (100 кГц или более), которая слишком высока, чтобы ее можно было заметить. Таким образом, светодиоды видят идеальный номинальный прямой ток во время «включенной» части цикла и незначительное рассеяние мощности во время «выключенной» фазы. Однако потенциальное требование к ШИМ-диммированию накладывает еще одно ограничение на выбор балластного резистора; а именно, что это должна быть нереактивная нагрузка i.е. с минимальной индуктивностью или емкостью.

Возможные типы резисторов для балластов светодиодов:
Для светодиодного освещения устройства с номинальным номинальным прямым током 350 мА являются довольно типичными, но все более распространенными становятся светодиоды, рассчитанные на работу при 700 мА, 1 А и даже 1,5 А. Таким образом, если в описанном выше примере применения требуется резистор с номинальной мощностью чуть более 2 Вт, для светодиодов более высокой мощности вполне могут потребоваться резисторы с номинальной мощностью 10 Вт или более.

Резисторы с осевыми выводами с проволочной обмоткой обеспечивают разумную мощность при низких допусках сопротивления, превосходные характеристики с низким TCR (температурный коэффициент сопротивления) и могут работать в широком диапазоне температур.Например, резисторы с проволочной обмоткой серии UT от Riedon предлагают номинальную мощность до 13 Вт и диапазон температур от -55 ° C до + 250 ° C (или даже + 350 ° C для некоторых типов). Для еще большего рассеивания мощности или там, где важно более эффективно отводить тепло от балластного резистора, Riedon предлагает серию UAL резисторов с проволочной обмоткой в ​​алюминиевом корпусе с номинальной мощностью до 50 Вт и выше.

Резисторы с проволочной обмоткой доступны с неиндуктивными обмотками, но технология тонкопленочных резисторов предоставляет альтернативу, которая может подойти для некоторых приложений.Серия PF от Riedon предлагает силовые пленочные резисторы с низкой индуктивностью в различных корпусах для поддержки различных номинальных мощностей, например 20Вт ТО-126 и 50Вт ТО-220. Для поверхностного монтажа серия силовых пленочных SMD резисторов PFS от Riedon может выдерживать до 35 Вт.

Об авторе:
Фил Эбберт – вице-президент по проектированию, Riedon Inc .:
Фил Эбберт отвечает за разработку резисторов в Riedon Inc. Он также отвечает за технологические проекты, включая оборудование, испытания и разработку процессов.Г-н Эбберт имеет 15-летний опыт разработки резисторов и возглавил расширение Riedon от резисторов с проволочной обмоткой до родственных пленочных и фольгированных технологий. Он изучал физику, оптику и информатику в Университете Карнеги-Меллона.

Токоограничивающий резистор – обзор

4.2 Выходы дисплея

Простейшим выходом дисплея является светодиод (LED). Теперь они доступны не только для индикаторов состояния, но и для широкого круга приложений. Изменение выходной частоты (цвета) светового потока охватывает не только все видимые длины волн, но также инфракрасные (ИК) и ультрафиолетовые (УФ) лучи.IRLED используются в пультах дистанционного управления, поэтому на приемник не влияет окружающий свет. Лазерные светодиоды, которые производят одночастотный когерентный световой поток, используются в системах связи в качестве передатчиков данных в волоконно-оптических системах.

Светодиоды

можно модулировать (включать и выключать) с высокой частотой для обеспечения широкополосной связи с несколькими одновременными потоками данных, отсюда преимущество оптического волокна над медью для доступа в Интернет. Мощные светодиоды белого света (полный спектр видимых частот) сейчас достаточно дешевы, чтобы использовать их в качестве высокоэффективных источников освещения.Выбор компонентов на основе светодиодов показан на рисунке 4.5.

Рисунок 4.5. Светодиодные компоненты.

4.2.1 Схема вывода светодиода

Базовая схема вывода светодиода очень проста (рисунок 1.6). Единственный другой требуемый компонент – это ограничивающий ток резистор, который рассчитывается в соответствии с напряжением питания. Типичный индикаторный светодиод требует прямого тока около 15 мА для включения и вызывает падение прямого напряжения около 2 В (в зависимости от типа светодиода). Мы можем использовать простую формулу для оценки требуемого резистора:

Номинал резистора = (Vs – 2) / 15 × 10 −3

Итак, если напряжение питания 5 В, резистор требуемое значение составляет 200 Ом.Маломощные или высокоэффективные светодиоды могут использовать более высокое значение, тем самым экономя электроэнергию. Выход PIC может потреблять или передавать максимальный ток около 25 мА, поэтому светодиоды могут быть подключены непосредственно к выходам. Светодиод может также легко использоваться для индикации активного переменного тока. питания, так как он действует как выпрямительный диод. Ток рассчитывается как среднее значение полуволновой выпрямленной синусоидальной формы волны, следовательно, требуемое значение резистора ограничения тока.

4.2.2 Светодиодный оптоизолятор и детектор

Иногда входной сигнал необходимо электрически изолировать от входа микроконтроллера, чтобы защитить его от высокого напряжения и электрических помех, которые часто встречаются в промышленных условиях.Напряжение питания, используемое во многих промышленных контроллерах, составляет 24 В постоянного тока, поэтому оптоизолятор может обеспечить переключение уровня до 5 В, а также безопасную работу.

Оптоизолятор (или оптопара) включает в себя светодиод и фототранзистор в одном корпусе. Этот компонент можно увидеть на рисунке 8.4, который используется в качестве выходного изолятора с симистором, который регулирует ток до 240 В переменного тока. нагрузки. Аналогичная схема встроена внутри на входах ПЛК (программируемых контроллеров), которые используются в производственных системах.

При включении через подходящий токоограничивающий резистор светодиод в оптоизоляторе освещает базу фототранзистора, заставляя его проводить. Транзистор должен быть насыщен (полностью включен), создавая минимальное прямое падение напряжения на переходе коллектор-эмиттер. Нагрузочный резистор в коллекторе транзистора, подключенного к цифровому источнику питания, создает логический выход. Типичный оптоизолятор инвертирует логический уровень.

Из этих же компонентов можно сделать оптоискатель.Светодиод и фотодетектор устанавливаются рядом друг с другом для обнаружения отражающего объекта перед датчиком или по обе стороны от щели, так что световой луч прерывается движущимся объектом. Часто металлический или пластиковый диск с прорезями или градуированная полоса используется для формирования датчика положения или скорости. Типичные применения этого типа включают позиционирование печатающей головки в струйном принтере и измерение скорости вала двигателя. На рисунке 4.6 показана схема оптоизоляции или фотоопределения. Применение оптопар и детекторов обсуждается далее в следующих главах.

Рисунок 4.6. Оптоизолятор или детекторная схема.

4.2.3 7-сегментный светодиодный дисплей

Стандартный 7-сегментный светодиодный дисплей состоит из подсвечиваемых сегментов, на которых отображаются числовые символы при включении в соответствующей комбинации. Каждый сегмент управляется отдельно от выходного порта через токоограничивающий резистор. Могут отображаться числа 0–9, но для полного диапазона буквенно-цифровых символов доступны дисплеи с большим количеством сегментов или точечная матрица. 7-сегментный светодиодный дисплей можно увидеть на прототипе оборудования на рисунке 4.1. Это активный высокий дисплей с общим катодом и отдельными анодами, для которого требуется логическая 1 и ток, достаточный для его включения. Активный низкий тип, требующий логического 0 на каждом катоде, будет иметь общий анод.

7-сегментные коды для 0–9, * и # показаны в таблице 4.1. Сегменты помечены a – g и предполагается, что они работают с активным высоким уровнем (1 = ВКЛ). Затем для каждого отображаемого символа необходимо разработать требуемый двоичный код в зависимости от порядка, в котором выходы подключены к сегментам.В этом случае бит 1 = a до бита 7 = g, при этом бит 0 не используется. Хеш отображается как «H» и звездочка в виде трех горизонтальных полос. Поскольку необходимо всего 7 бит, LSB (младший значащий бит) предполагается равным 0 при преобразовании в шестнадцатеричный формат. В любом случае желательно поместить двоичный код в программу. Коды для других типов дисплеев или подключений могут быть разработаны таким же образом.

Таблица 4.1. 7-сегментные коды.

9030 030 030 0 305 9 0305 7E
Ключ Сегмент Шестигранник
gfedcba – LSB = 0
1 0 0
2 1 0 1 1 0 1 1 0 B6
3 1 0 0 1 1 1 1 0 9E
4 1 1 0 0 1 1 0 0 CC
5 1 1 0 1 1 0 1 0 DA
6 1 1 1 1 0 1 0 FA
7 0 0 0 0 1 1 1 0 0E
8 1 1 1 1 1 1 1 0 FE
9 1 1 0 0 1 1 1 0 CE
# 1 1 1 0 1 1 0 0 EC
0 0 1 1 1 1 1 1 0
* 1 0 0 1 0 0 1 0 92

Альтернативой простому 7-сегментному дисплею является модуль BCD.Он получает входной двоично-десятичный (BCD) ввод и отображает соответствующее число с использованием внутреннего декодера. В BCD 0 = 0000 2 , 1 = 0001 2 и так далее до 9 = 1001 2 . Таким образом, для него требуется всего четыре входа (плюс общий терминал), и он отображает двоичные числа от 0 до 9 без кодирования.

Калькулятор светодиодных резисторов

Токоограничивающий резистор, иногда называемый нагрузочным резистором или последовательным резистором, подключается последовательно со светоизлучающим диодом (LED), чтобы на нем было правильное прямое падение напряжения.

Если вам интересно, «Какой резистор мне использовать со светодиодом?», Или если вам интересно, какой резистор вы должны использовать с питанием 12 В или 5 В, тогда эта статья поможет.

На схеме выше вы можете увидеть распиновку светодиода. Катод – отрицательная клемма. Это на плоской стороне диода, а вывод короче. Анод положительный и имеет более длинный вывод. Если вам всегда интересно, что является отрицательным или положительным, то приведенная выше анимация поможет тренировать мозг.Вы только посмотрите на это, надеюсь, он утонет …


Калькулятор токоограничивающего резистора – Серия

прямое напряжение

Прямое падение напряжения , обычно называемое просто прямое напряжение – это конкретное значение для каждого светодиода. Вы можете получить это из таблицы вашего компонента. Однако, если вы не можете найти спецификацию, вы всегда можете обратиться к таблице, приведенной ниже. Он показывает падение напряжения в прямом направлении для каждого обычно доступного светодиода по цвету.

Вы также можете измерить его с помощью цифрового измерителя. Практически любой дешевый счетчик имеет эту менее известную возможность.

Как измерить прямое напряжение Vf

Если у вас есть цифровой мультиметр, вы также можете измерить прямое падение напряжения. У вашего измерителя будет символ диода на переднем циферблате, поэтому просто переместите селекторный переключатель на него и измерьте его! Большинство инженеров не знают об этой функции, поэтому держите это в секрете!

Красный зонд измерителя подключается к аноду, а черный зонд подключается к катодному выводу, который является более коротким проводом.Ваш цифровой измеритель должен предоставлять вам хорошее точное значение, которое вы можете использовать.

Диаграмма по цвету

Цвет светодиода Прямое напряжение Vf Прямой ток при
Белый от 3,2 В до 3,8 В 20 мА до 30 мА
Теплый белый от 3,2 В до 3,8 В 20308 от мА до 30 мА
Синий от 3,2 В до 3,8 В от 20 мА до 30 мА
Красный 1.От 8 В до 2,2 В от 20 мА до 30 мА
Зеленый от 3,2 В до 3,8 В от 20 мА до 30 мА
Желтый от 1,8 В до 2,2 В от 20 мА до 30 мА
Оранжевый от 1,8 В до 2,2 В от 20 мА до 30 мА
Розовый от 3,2 В до 3,8 В от 20 мА до 30 мА
UV от 3,2 В до 3,8 В от 20 мА до 30 мА

Вот диаграмма, показывающая прямое напряжение по цвету для широко доступных светодиодов на eBay.Сейчас они очень дешевы, и вы можете получить сумку светодиодов высокой яркости практически за копейки. Все они доступны в размерах 3 мм, 5 мм и 10 мм. Катодный вывод обычно имеет длину 17 мм, а длину анода – 19 мм.

Из-за нелинейного характера кривой характеристики диода светодиод работает в очень узком диапазоне параметров прямого напряжения и прямого тока.

Например, красный светодиод имеет типичное прямое напряжение 1,8 В и максимальное прямое напряжение 2.2 В. Он имеет типичный прямой ток 20 мА и максимальный прямой ток 30 мА. Инженеры-электронщики обычно используют типичные рабочие параметры.

Самое замечательное в этих светодиодах то, что все они имеют типичный прямой ток около 20 мА, что означает, что вы можете применить закон Ома для определения номинала последовательного резистора.

Выбор резистора для использования со светодиодами

Напряжение питания Vs Vf = 1.8 В Vf = 3,2 В
3,3 В 75 Ом 5 Ом
5 В 160 Ом 90 Ом 9029 360 Ом 290 Ом
12 В 510 Ом 440 Ом

Как видно из диаграммы выше, обычно используются два прямых напряжения. Красный, желтый и оранжевый светодиоды попадают в 1.Категория 8 В, а белый, синий, зеленый, розовый, УФ, попадают в категорию 3,2 В.

Таким образом, я составил другую диаграмму, показывающую значения последовательного резистора, необходимые для этих двух категорий падения напряжения. На диаграмме показаны расчетные значения при напряжении питания 3,3 В, 5 В, 9 В и 12 В. Это типичные напряжения, используемые любителями в своих проектах. Просто воспользуйтесь таблицей значений стандартных резисторов, чтобы найти ближайшее из возможных значений.

Пример 1: Синий светодиод имеет типичное прямое падение напряжения, равное 3.2 В, поэтому при напряжении питания 3,3 В требуется резистор 5 Ом. Однако, если вы используете напряжение питания 5 В, то потребуется резистор на 90 Ом. Как видите, номинал резистора увеличивается с увеличением напряжения питания.

Пример 2: Если вы используете желтый светодиод, то он имеет типичное прямое напряжение 1,8 В. Следовательно, значения резистора 75 Ом, 160 Ом, 360 Ом и 510 Ом могут использоваться, когда напряжение питания составляет 3,3. В, 5 В, 9 В и 12 В соответственно.

Формула для расчета номиналов резисторов

Напряжение на шине Vs равно сумме напряжений на светодиоде и резисторе.

Учитывая прямое напряжение диода Vf, напряжение на резисторе равно Vs –Vf.

Учитывая прямой ток, мы знаем, что этот же ток течет и по цепи в резисторе. Следовательно, у нас есть вся информация, чтобы использовать закон Ома для расчета номинала последовательного резистора.

Схема с несколькими светодиодами – Серия

Несколько светодиодов можно подключать последовательно, однако напряжение питания ограничивает количество светодиодов, которые вы можете установить. Как видите, полное прямое напряжение – это сумма всех прямых напряжений, представленных каждым светодиодом.Очевидно, что суммарное прямое напряжение должно быть меньше напряжения питания. Если вы используете источник питания 12 В, у вас может быть до семи светодиодов последовательно.


Цепь с несколькими светодиодами – параллельная

Вот такой правильный способ подключения нескольких светодиодов параллельно. У каждого светодиода есть собственный резистор, ограничивающий ток.

В этой конфигурации у вас может быть много светодиодов; однако ограничивающим фактором является сила тока, которую может обеспечить источник питания. Полный ток – это сумма всех индивидуальных прямых токов каждого светодиода.

Калькулятор резисторов серии

LED

Калькулятор резисторов серии

LED

Для всех светодиодов требуется некоторая форма ограничения тока . Подключение светодиода напрямую к источнику питания сгорит в мгновение ока. Даже кратковременная перегрузка значительно сократит срок службы и светоотдачу.

К счастью, управление одним или цепочкой светодиодов с низким током (20-30 мА) является простой задачей – добавление небольшого резистора в серию – самый простой и дешевый способ ограничить ток.Однако имейте в виду, что светодиоды с большим током (выше нескольких сотен мА) сложнее управлять, и, хотя они могут работать с последовательным резистором, для минимизации потерь мощности и обеспечения надежности рекомендуется использовать более дорогие переключатели . регулятор тока .

Наш калькулятор светодиодов поможет вам определить номинал токоограничивающего последовательного резистора при подключении одного или нескольких слаботочных светодиодов. Для начала введите необходимые значения и нажмите кнопку «Рассчитать».

Программа нарисует небольшую схему, отобразит рассчитанное сопротивление и сообщит вам значение и цветовой код ближайшего стандартного резистора более низкого и высокого уровня. Он рассчитает мощность, рассеиваемую резистором и светодиодами, рекомендуемую мощность резистора, общую мощность, потребляемую схемой, и эффективность конструкции (мощность, потребляемая светодиодами / общая потребляемая мощность схемы) x 100. ).

Поля ввода

Напряжение питания : Введите напряжение, превышающее падение напряжения светодиода для одной цепи светодиода и параллельного подключения, или сумму всех падений напряжения при последовательном подключении нескольких светодиодов.

Ток светодиода : Введите ток одного светодиода в миллиамперах. Обычные светодиоды 3 мм и 5 мм обычно работают в диапазоне 10-30 мА, но силовые светодиоды, используемые в осветительных и автомобильных приложениях, могут иметь ток более 200 мА. Ток 20 мА обычно является безопасным значением, если у вас нет доступа к техническому описанию компонента.

Цвет светодиода и Падение напряжения : Выберите цвет светодиода. Падение напряжения Поле автоматически заполнится типичным значением для выбранного цвета (например,грамм. 2В для стандартного красного светодиода; 3,6 В для белого светодиода, используемого в освещении, стробоскопе и т. Д .; 1,7 В для инфракрасного светодиода, используемого в пультах дистанционного управления и т. Д.). Однако падение напряжения сильно различается между разными типами светодиодов, а также незначительно изменяется в зависимости от тока, поэтому, пожалуйста, измените его, если вы знаете правильное значение для вашего компонента.

Количество светодиодов : Выберите количество светодиодов, которое вы хотите использовать в своей цепи. Для нескольких светодиодов появится второе раскрывающееся меню, в котором вы можете выбрать соединение серии или параллельное соединение .

Примечание. Не следует подключать светодиоды параллельно с одним общим резистором. Идентичные светодиоды могут быть успешно подключены параллельно, но у каждого светодиода может быть немного разное падение напряжения, и яркость светодиодов будет отличаться. Если вы хотите подключить светодиоды параллельно, у каждого из них должен быть свой резистор. Рассчитайте значение для одного светодиода и подключите все пары светодиод-резистор параллельно.

Точность резистора : выберите желаемую стандартную точность резистора: 10% (E12), 5% (E24), 2% (E48) или 1% (E96).Воспользуйтесь нашим калькулятором цветового кода резистора, чтобы узнать цветовые полосы для различных (20%, 0,5% …) прецизионных резисторов.

Как интерпретировать результаты

Простая схема генерируется при каждой загрузке страницы. На схеме показано только ближайшее значение стандартного резистора, и показаны только два подключения светодиодов, независимо от того, сколько светодиодов в цепи (но я уверен, что вы легко можете заполнить недостающие биты).

Справа показаны два резистора .Это ближайшие (верхние и нижние) стандартные значения, наиболее близкие к исходному рассчитанному сопротивлению. Вы должны использовать только один в своей схеме – лучше выбрать тот, который ближе (тот, который отмечен * после значения).

Рекомендуемая мощность резистора Мощность рассчитана с небольшим запасом прочности, так что рассеиваемая мощность остается в пределах 60% от номинального значения.

Эффективность [%] покажет вам, какая часть общей мощности, потребляемой схемой, фактически используется светодиодами.

Как определить выводы светодиода

Светодиод имеет два вывода: положительный (анод) и отрицательный (катод). На схематических диаграммах его символ похож на простой диод, с двумя стрелками, направленными наружу. Анод (+) отмечен треугольником, а катод (-) – линией. Иногда встречаются дополнительные метки: A или + для анода и K или для катода.

Есть несколько способов определить выводы светодиода:

  1. Катод (отрицательный) обычно маркируется плоской кромкой в нижней части корпуса светодиода.
  2. Большинство светодиодов изготавливаются с одной длинной ножкой, указывающей на плюс (анод).
  3. Загляните внутрь самого светодиода – меньшая металлическая деталь внутри светодиода подключается к положительному электроду, а большая – к отрицательному.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *