Применение платы заряда TP4056 в планшете
Всем привет!Принесли на ремонт планшет Lenovo a7600-h, с проблемой медленной зарядки (450ma). Осмотр выявил, что был вырван разъем с дорожками. Разъем запаяли, но мастер восстановил только контакт + и массу, а data+ и data — не были задействованы. Именно из-за этого планшет заряжался медленно, потому что считал, что он подключен к usb разъему ПК.
Первым делом я припаял data+ и data — (кинул проводки), благо контакты были с другой стороны, но компьютер на это никак не отреагировал, а зарядка так и шла низким током.
Ну ладно, соединение с пк не самое важное на данный момент, но с зарядкой нужно что решать.
Для решения данной проблемы я задействовал плату зарядки на tp4056.
В общем то ничего сложного нет — нужно подключить модуль зарядки параллельно с системой зарядки планшета. Таким образом и ток зарядки повысится (1 ампер + ток заряда планшета), и индикация заряда будет работать (но если планшет не реагирует на з/у, то показывать процесс заряда планшет не будет)
Ну и подпаял провод к плюсовому контакту аккумулятора.
Нашел место для установки модуля в свободном месте, там сточил пластик.
Подпаял провода к платке. Массу можно взять с любого места (с металлического экрана на плате например). У меня ее по близости не было — подпаял к корпусу аккумулятора, и с другой стороны подпаял к массе на плате, т.к не было уверенности в хорошем контакте.
Схема подключения
Установил на место, влезла. Кстати, разъем microUSB с платы был выпаян.
Проверка — заряд идет, ток заряда повысился.
Но тут выявилась проблема — а корпус не закрывается! Хотя должен…
Можно было конечно подпилить плату, но остался один вариант, а именно — использовать саму микросхему, без платы.
Спаял с платы микросхему и резистор на 1,2кОм. Кстати, если Вам нужен меньший ток заряда, то путем подбора номинала его можно изменять
Схема подключения очень простая
Все спаял, для теплоотвода использовал кусок металла от корпуса пк (заглушка), через терможевачку.
Заизолировал каптоновым скотчем, закрыл крышку планшета, теперь все хорошо, места хватило.
Подключил разряженный планшет. Зарядка пошла током 1,45А, как и ожидалось
Планшет нормально зарядился, индикация в % отображается корректно.
По нагреву микросхемы — она горячая, но в пределах нормы. Не думаю, что сгорит, все таки теплоотвод лучше текстолита.
Вот и еще одно использование TP4056)
Конечно это не ремонт, а «костыли», но это дешевле и быстрее, чем искать неисправность на плате и ремонтировать.
Всем спасибо за внимание!
mysku.ru
Зарядка-защита лития + применение
Это устройство ранее уже было кратко описано, попробую написать подробнее и применить на практике.Прислали хорошо замотав пупыркой
Платы ещё не были разделены, но разделяются хорошо
Размер платы 27х17х4мм
Подключение к зарядке через стандартный разъём microUSB или через дублирующие контакты + и —
Аккумулятор подключается к контактам B+ и B-
Нагрузка подключается к контактам OUT+ и OUT-
Все чипы хорошо известны и проверены
Реальная схема устройства
Отсутствует ограничивающий резистор на входе TP4056 — видимо кабель подключения выполняет эту функцию.
Реальный ток заряда 0,93А.
Зарядка отключается при напряжении на аккумуляторе 4,19В
Потребляемый ток от аккумулятора всего 3мкА, что значительно меньше саморазряда любого аккумулятора.
TP4056 — чип контроллера заряда лития на 1А
www.dfrobot.com/image/data/DFR0208/TP4056.pdf
Подробно описывал тут
mysku.ru/blog/aliexpress/27752.html
DW01A — чип защиты лития
www.ic-fortune.com/upload/Download/DW01A-DS-11_EN.pdf
FS8205A — электронный ключ 25мОм 4А
www.ic-fortune.com/upload/Download/FS8205A-DS-12_EN.pdf
R3 (1,2кОм) — установка тока зарядки аккумулятора
Изменяя его номинал, можно уменьшить зарядный ток
R5 C2 — фильтр цепи питания DW01A. Через него также осуществляется контроль напряжения на аккумуляторе.
R6 — нужен для защиты от переполюсовки зарядки. Через него также измеряется падение напряжения на ключах для нормальной работы защиты.
Красный светодиод — индикация процесса заряда аккумулятора
Синий светодиод — индикация окончания заряда аккумулятора
Переполюсовку аккумулятора плата выдерживает лишь кратковременно — быстро перегревается ключ FS8205A. Сами по себе FS8205A и DW01A переполюсовки аккумулятора не боятся из-за наличия токоограничивающих резисторов, но из-за подключения TP4056 ток переполюсовки начинает течь через него.
При напряжении аккумулятора 4,0V, измеренное полное сопротивление ключа 0,052 Ом
При напряжении аккумулятора 3,0V, измеренное полное сопротивление ключа 0,055 Ом
Защита от токовой перегрузки — двухступенчатая и срабатывает, если:
— ток нагрузки превышает 27А в течение 3мкс
— ток нагрузки превышает 3А в течение 10мс
Информация рассчитана по формулам из спецификации, реально это не проверить.
Длительный максимальный ток отдачи получился около 2,5А, при этом ключ заметно нагревается, т.к. на нём теряется 0,32Вт.
Защита от переразряда аккумулятора срабатывает при напряжении 2,39В — маловато будет, не всякий аккумулятор можно безопасно разряжать до такого низкого напряжения.
Попробовал приспособить эту платку в старую маленькую простейшую детскую радиоуправляемую машинку вместе со старыми аккумуляторами 18500 из ноутбука в сборке 1S2P
mysku.ru/blog/aliexpress/29476.html
Машинка питалась от 3-х батареек АА, т.к. аккумуляторы 18500 значительно толще их, крышку батарейного отсека пришлось снять, перегородки выкусить, а аккумуляторы приклеить. По толщине они получились заподлицо с днищем.
Платку приклеил герметиком к крыше, под разъём сделал вырез.
Теперь аккумуляторы можно заряжать так
Красный индикатор зарядки хорошо просвечивает через красную крышу.
Синий индикатор окончания зарядки через крышу почти не виден — его видно только со стороны разъёма подключения.
Машинка снизу выглядит как с газовыми баллонами 🙂
На этих баллонах машинка катается минут 25. Не слишком много, ну да ладно, наиграться хватает. Заряжается машинка около часа.
Вывод: маленькое и очень полезное для творчества устройство — можно брать. Буду заказывать ещё.
mysku.ru
Зарядное устройство для литий-ионных (Li-Ion) и литий-полимерных (Li-Pol) аккумуляторов на TP4056
Для заряда литий-ионных и литий-полимерных аккумуляторов необходимо специальное зарядное устройство, которое будет обеспечивать в процессе заряда тепловую стабильность и исключать угрозу выхода её из под контроля. Для этой задачи применяются зарядные устройства на микросхеме TP4056, которые можно купить в виде готового модуля.
Подобный модуль с доставкой, я купил на Aliexpress за $1.11. Модуль имеет габариты 24 х 19 мм и вес 1,8г.
Принципиальная схема зарядного устройства на TP4056.
Основа модуля – микросхема TP4056, которая является контроллером Li-Ion батарей с теплорегулированием.
Схема подключения модуля для заряда аккумулятора.
К контактам «BAT+» и «BAT-» подключается Li-Ion или Li-Pol батарея 3,7 В.Данное зарядное устройство предназначено для заряда исключительно одной банки. Заряжать одновременно несколько подключенных параллельно или последовательно батарей нельзя.
На вход зарядного подаётся 5 В. Входное напряжение может быть от 4,5 до 8 В, но лучше не подавать выше 5,5 В, поскольку микросхема будет очень сильно греться и может сготеть. В данном исполнении, питание можно подать либо к контактам «IN+» и «IN-», либо через miniUSB разъём. Подобные модули так же выпускаются с microUSB разъёмом.
Схема не защищена от переплюсовки заряжаемого аккумулятора, поэтому за этим нужно следить.
Весь процесс заряда сигнализируется светодиодами. Индикатор заряда сигнализирует красным, а индикатор окончания заряда — зелёным светодиодом.
Резистором R4, установленным между вторым выводом микросхемы (PROG) и землёй (GND), устанавливается ток заряда. По умолчанию установлен ток в 1000мА, что соответствует номиналу резистора 1,2к (в SMD исполнении сответствует122). Ток заряда для Li-Ion аккумуляторов следует устанавливать 0,5С. Например, если ёмкость аккумулятора составляет 1000 мА, ток заряда не должен превышать 500 мА, что соответствует номиналу R4 в 2,4 кОм.
Ток заряда ( IBAT ) в зависимости от номинала резистора, можно вычесть по формуле:
где VPROG = 1 В, RPROG – номинал резистора R4.
В таблице приведены номиналы R4, в зависимости от тока заряда:
Номинал резистора R4, кОм |
Выставленный ток заряда, мА |
1,2 | 1000 |
1,3 | 923 |
1,4 | 857 |
1,5 | 800 |
1,6 | 750 |
1,7 | 705 |
1,8 | 666 |
2 | 600 |
2,2 | 545 |
2,4 | 500 |
2,7 | 444 |
3 | 400 |
3,3 | 364 |
4 | 300 |
5 | 240 |
6 | 200 |
6,5 | 185 |
8 | 150 |
10 | 120 |
12,5 | 96 |
17 | 70 |
24 | 50 |
Ток защиты: 1.2 А
Температура эксплуатации: -30…+60
Микросхема TP4056 может осуществлять при зарядке аккумулятора, контроль температуры, для этого первый вывод микросхемы (TEMP), нужно подключить к датчику температуры, встроенного в аккумулятор.
Как это можно реализовать, показано на схеме из даташита.
В данном модуле контроль температуры отключен, путём замыкания вывода «TEMP» на землю.
Процесс заряда аккумулятора.
В процессе зарядки, постоянно контролируется напряжение на аккумуляторе. Если требуется зарядить аккумулятор, производится зарядка током 1/10 от выставленного резистором R4, до напряжения 2.9 В. Например, если R4 = 1,2 кОм, зарядка производится током в 100мА. Далее следует зарядка максимальным током (при R4 = 1,2 кОм, ток заряда 1000мА).
При достижении напряжения на аккумуляторе 4.2 В, идёт стабилизация напряжения на этом уровне и дальнейшая зарядка идёт с падением тока до уровня 1/10.
При достижении тока на уровне 1/10 от выставленного резистором R4, процесс зарядки отключается и устройство переходит к процессу постоянного контроля напряжения на аккумуляторе.
На графике это представлено так:
У данного модуля, отсутствует на выходе защита от короткого замыкания и защита от глубокого разряда аккумулятора. Если эти функции необходимы, можно купить подобный модуль, с дополнительной микросхемой DW01 и сборкой из 2-х MOSFET транзисторов N-типа.
Я купил подобный модуль с защитой за $1.16.
Принципиальная схема зарядного на TP4056 с защитой. На DW01 и 8205 (такое корпусное обозначение имеют MOSFET-ы) часто строятся контроллеры заряда батарей планшетов и мобильных телефонов.
Для примера, плата контоллера заряда батареи планшета.
Схема подключения зарядного устройства к батареи.
Каким зарядным устройством пользоваться, с защитой или без? Всё будет зависеть от того, как вы собираетесь им пользоваться. Если заряжать будите аккумуляторы для планшетов и мобильных телефонов, то в них уже встроена подобная защита. Если нужно только заряжать аккумуляторы 18650, то тоже можно использовать плату без защиты. Плата с защитой нужна там, где вы будите не только заряжать аккумуляторы без встроенного в него контроллера (например аккумуляторы 18650, хотя более дорогие, имеют встроенную защиту), но и питать от неё нагрузку. Это актуально для использования зарядного устройства и аккумулятора вместе, в каком то устройстве, например в повербанке, фонарике и пр. В таком случае, защита будет не допускать разряд аккумулятора, ниже допустимых пределов.
Если вам понадобится задействовать в зарядке термоконтроль аккумулятора, нужно перерезать дорожку от первого вывода микросхемы TP4056, замыкающегося на землю и подключить его к датчику температуры аккумулятора. С аккумулятором от мобильного это будет выглядеть так:
В своей практике, я использую данные зарядные устройства для зарядки аккумуляторов от планшетов и банки 18650. На плате с защитой буду собирать мини солнечную электростанцию, для питания “оранжереи на подоконнике”.
radiolis.pp.ua
Маленький универсальный зарядный модуль для литиевых батарей / TP4056 1A Li-Ion battery Charging Module
Вся история началась с того, что только что купленный карманный роутер Hame R1 (благодаря обзору отсюда, можете почитать его здесь) приказал долго жить. Если точнее, вышла из строя микросхема зарядки. Как я справился с этой проблемой и в итоге получил большую функциональность, нежели была изначально, можно прочитать под катом.Много фото, а также ковыряния паяльником.
Если что, я предупредил =)
Заранее извиняюсь за неказистость и качество фотографий.
Ну что, поехали!
После недели использования Hame R1 начал странно себя вести: после конца зарядки постоянно горел индикатор зарядки и постоянно кушались 0.35A от аккумулятора. Вскрытие показало, что греется вот этот модуль:
(выпаян и лежит рядом))
Поиск в гугле по маркировке ничего не дал, а беглое тыкание щупами по выводам микросхемы дало понять, что скорее всего это и есть микросхема заряда.
Тут на помощь и пришёл сабж, заказанный до кучи с фасттеча.
Девайс простой и незатейливый. Основан на микросхеме TP4056, на ней же, кстати говоря, построена зарядная часть всеми любимой народной зарядки ml102 пятой версии.
Ток заряда задаётся резистором R4, по умолчанию впаян резистор на 1.2KОм, что соответствует току заряда в CC в 1А.
При желании, для батарей малой ёмкости, ток можно (и нужно!) уменьшить. Соотношение тока и необходимого сопротивления можно найти под спройлером.
Дополнительная информация
RPROG(k)IBAT (mA)
30 50
20 70
10 130
5 250
4 300
3 400
2 580
1.66 690
1.5 780
1.33 900
1.2 1000
На сабже имеется два индикаторных светодиода. Красный горит во время зарядки, а зелёный после её завершения.
Также на плате присутствует разъём miniUSB, так что можно подключать и пользоваться, но не в нашем случае. Плата такого размера просто не влезет в корпус роутера.
Так что я открыл Eagle и принялся за дело.
Спустя полчаса схема девайса была готова, а вскоре и разводка дорожек:
Разводил схему без разъёмов и чего бы то ни было ещё. Максимально компактно, чтобы можно было встроить девайс куда угодно.
Дальше был ЛУТ, травление, нанесение паяльной маски. Кому интересно — можете посмотреть небольшой фотоотчёт под спойлером.
PCB за одну ночь
Ну вот, плата готова. Теперь стал другой вопрос. В ходе тестирования выяснилось, что при таком зарядном токе микросхема нехило греется:
84грС после 2.5 минут работы это ппц. При встраивании модуля в девайс придётся это учитывать.
Подготавливаем место для зарядки над разъёмом RJ45:
Подпаиваемся к + выхожу с разъёма microUSB роутера
А также + от аккумулятора, и землю (синий провод) около кнопки reset.
Так я решил вопрос с перегревом:
Устанавливаем модуль на посадочное место и закрепляем его термоклеем:
Для безопасности между радиатором и микросхемой вставляем специальную термопрокладку:
Наносим термопасту, устанавливаем радиатор и приклеиваем его суперклеем к ребру корпуса (при этом хорошенько его прижимаем вниз)
Не забываем сделать два отверстия в корпусе для индикаторов заряда.
Последний взгляд перед сборкой:
На этом всё!
или…
Вот конечные фото с демонстрацией работы:
Как можете заметить, девайс не потерял товарного вида, а главное только набрал функциональности! Теперь после окончания заряда индикатор не просто тупо гаснет, а горит добрый зелёный светодиод.
Вот теперь уж точно всё. Будут вопросы — с радостью отвечу.
Всем бобра! =)
UPD:
Благодаря пользователю с ником turbopascal007, было выяснено, что за микросхема была установлена в моём роутере. Он не поленился и разобрал свой, после чего прислал мне его маркировку. По EMC5755 гугл без проблём выдаёт даташит, в отличие от установленного у меня C2C37. Так что у кого возникнет такая же проблема — можете просто её заменить.
mysku.ru
Реинкарнация “народной” платы TP4056 или самодельная зарядка для лития на 3А
Всех приветствую, кто заглянул на огонек. Речь в обзоре пойдет, как вы наверно уже догадались, об одной интересной модификации «народного» зарядного модуля TP4056 на ток 3А и небольшом применении в качестве самодельной зарядки для лития. Будет небольшое тестирование и простенький пример изготовления зарядки из дешевых компонентов, поэтому, кому интересно, милости прошу под кат.Итак, вот та самая модификация «народной» платки:
Применение данной платы:
— зарядка Li-Ion аккумуляторов, встроенных в конечное устройство. Частый случай – в устройстве несколько запараллеленных банок и 1А слишком мало. Ну, сами посудите, есть две-три банки по 2,6-3Ач, общая емкость около 6-7Ач. Заряд такой батареи займет около 7-8 часов, а с данной платкой – около 3 часов. Как пример – самодельные ПБ, аккумуляторные отвертки и минишуруповерты
— сборка своего «быстрого» зарядника на один или два аккумулятора. Современные высокоемкие аккумуляторы на 3300-3500mah спокойно могут принимать 3-4А, а уж две запараллеленные банки тем более (перед зарядом лучше приблизительно уравнять потенциалы). Сами производители допускают заряд некоторых банок током 3-4А, об этом написано в даташитах на эти банки.
ТТХ:
— Входной разъем – DC Port 5мм + дублирующие выводы
— Входное напряжение — 4,5V-5,5V
— Конечное напряжение заряда — 4,2V (Li-Ion аккумуляторы)
— Максимальный зарядный ток — 3А
— Количество модулей TP4056 — 4 (макс. разгонный ток 4А)
— Индикация – дискретный двухцветный светодиод (красный/зеленый)
— Защита от переполюсовки — нет
— Размеры — 65мм*15мм
Комплектация:
— плата заряда 4*TP4056 на 3А
— двухцветный трехногий светодиод (красный/синий свет)
— DC разъем 5мм
Поставляется платка в обычном мелком пакете, до меня доехала за две-три недели. Внутри пакета была своеобразная защита – два склеенных листа пенополиэтилена, внутри которых и была платка:
Плата зарядки крупным планом:
По схемотехнике ничего сверхъестественного – просто взяли и запараллелили 4 контроллера TP4056, одновременно уменьшив максимальный зарядный ток для каждого контроллера с 1А до 750ma. Поначалу я не мог понять, почему максимальный зарядный ток всего 3А, ведь контроллеров то четыре, но приглядевшись, увидел не привычный 1,2Ком SMD резистор, а 1,6Ком. Причем во всех плечах стоит резистор 1,6Ком:
Напомню таблицу максимального зарядного тока в зависимости от номинала токозадающего резистора:
В нашем случае стоят резисторы по 1,6Ком для каждого контроллера, по 750ma на плечо. Следовательно, общий максимальный зарядный ток – 3А. Оно и к лучшему, меньше греется платка, да и 4А уже многовато. С другой стороны, если нужен зарядный ток 4А – меняем 4 резистора.
Регулировать общий зарядный ток подпайкой подстроечного/переменного резистора, скорее всего, не получится, ибо нужно задавать для каждого контроллера.
Итого, кому сложно или не хочет сам спаивать народные платки — неплохое решение проблемы.
Размеры платки:
Платка совсем небольшая, всего 65мм*15мм:
Вот сравнение с «народной» платой TP4056 на 1А, 18650 аккумулятором и холдером:
При необходимости можно откусить переднюю часть платы, на которую впаивается DC разъем и припаяться к контактам 5V+ или 5V-, либо напрямую к соответствующим дорожкам:
Так длина платки станет на 1см короче. О подобной переделке «народной» платки я уже писал ранее в статье Бюджетный квадрокоптер Bayang X5 с отличным функционалом:
В нашем случае все просто до невозможности, ибо дорожки на печатной плате не страдают. Разумеется, кому необходим DC разъем – оставляем, либо подпаиваем его через провода к контактам 5V+ или 5V-. Разъемы microUSB и miniUSB здесь нежелательны, будут сильно греться, ибо не рассчитаны на такие токи. Да и незачем они, ибо в большинстве адаптерах стоит ограничение на 2,5А. Но с другой стороны, если адаптер не отключается при перегрузке, то мы экономим на дискретном блоке питания, ну и ток будет чуть меньше. Поэтому, решать вам…
Тестирование платки 4*TP4056 3A:
Теперь протестируем платку. Действительно ли она заряжает 3А? Для этого нам поможет ампервольтметр, который частенько мелькает в моих обзорах (замер тока заряда) и привычный мультиметр (замер напряжения на аккумуляторе). В качестве источника питания – импульсный БП S-30-5 на 5V/6A:
Как видим, заряд действительно идет постоянным током 3А (фаза СС), пока напряжение на банке не превысит 3,9V-3,95V, затем начинает плавно снижаться (начинается фаза CV). Как только напряжение на банке равняется 4,2V, цвет светодиода меняется на зеленый, означая, что заряд окончен. Хотя из-за инерционности ток продолжает еще течь:
После этого еще 10-15 минут ток снижается, при этом напряжение на аккуме 4,21V. Как только ток снизится до 150ма, контроллер полностью отключает заряд, напряжение на банке скидывается до 4,2V.
Практически «выжатую» банку Sanyo UR18650ZY 2600mah модуль зарядил за 75-80 минут. Ну что же, просто великолепно!
Небольшой пример сборки своего зарядника на 3А:
В качестве примера приведу пример постройки своего зарядного устройства из проверенных недорогих компонентов. Что нам для этого понадобится:
1) непосредственно сама обозреваемая платка:
2) холдер/держатель для аккумуляторов:
Вот такие холдеры ни в коем случае не применяйте, 3А для них много:
Можно попробовать переделать дрянную зарядку, выпаяв все кишки:
Я рекомендую первый вариант, т.к. они с легкостью выдерживают 3А, ибо контакты на порядок лучше, да и имеют паз для провода.
3) Любой подходящий разъем: DC port (из комплекта), USB (не очень желательно), Molex (при питании от компьютера), силовые модельные или автомобильные разъемы (какие найдутся под рукой):
В крайнем случае, можно вывести просто два провода и гонять все хозяйство на скрутке, как в моем случае, :-).
4) Качественный медный многожильный провод:
Нужен именно медный, а не омедненный. Определить легко – зачищаем ножом и если жилки начинают блестеть и не лудятся, значит, провод омедненный (алюминий покрытый медью). Рекомендую либо качественный акустический, либо бытовые, типа ШВВП.
5) Блок питания (БП) на 5V на 5-6A (с запасом). Я использовал купленный на распродаже JD БП S-30-5 на 5V/6A:
Можно применить часто встречающийся БП на 12V на 2-3A, которые идут в комплекте к различным устройствам и понижающий DC-DC преобразователь на 5А (3А они стабильно держат). Но здесь есть пара минусов, ибо усложняется схема и повышается себестоимость зарядника. Поэтому, если нет в наличии подходящего БП, то используем БП компьютера. Дополнительная нагрузка в 15Вт ему не страшна, если, конечно, он и так не работает на пределе своих возможностей. Если есть в наличии свободный Molex разъем, то подцепить к нему переходник не составит труда. В таком случае нам нужны красный (+) и черный (-) провода.
Итак, с компонентами разобрались. Теперь непосредственно сборка:
Поскольку платка будет использоваться в другом устройстве и у меня уже есть хорошие высокотоковые зарядники, то самодельная зарядка мне не нужна, поэтому сборка, как говорится, на коленке (подпаивать разъемы я не буду):
Берем холдер для аккумулятора и вырезаем пластик на торцах для провода (на фото нижний паз):
Далее подпаиваемся с правой стороны к плюсовому контакту и укладываем провод в пазу:
Далее припаиваем минусовой выход платы (В-) к другому, минусовому выводу холдера, а проведенный в пазу провод – к плюсовому выходу платы (В+):
Потом припаиваем питающие провода с разъемами или без них, в зависимости от того, какой вариант вы выбрали. Трехногий светодиод изгибаем по своему усмотрению, но чтобы не коротнуть его выводы – натягиваем на них изоляцию от любого провода:
Закрываем плату пластиковой крышкой от кабель-канала или аналогичным кожухом и заматываем всеми известной изолентой, :-). Получается довольно кустарно, но главное работает:
Контрольная проверка, все работает:
Я не стал припаивать разъемы, а подключил напрямую к БП. Я же рекомендую припаять соответствующий разъем, который выдержит длительное протекание тока 3А. На этом у меня все…
Плюсы:
+ Надежная, проверенная годами элементная база
+ Высокий ток заряда
+ Возможность увеличения зарядного тока до 4А путем замены токозадающих резисторов
+ Небольшой размер
+ Простота монтажа и эксплуатации
Минусы:
— Цена великовата
— Платка не предназначена для зарядки последовательных сборок (2S, 3S, 4S и более не умеет)
— Требуется внешнее питание
— Боится переполюсовки
— Некоторая заторможенность последней фазы заряда (CV)
Вывод: полезная модификация народной платки на большой зарядный ток, брать можно!
Киска:
mysku.ru
Умный контроллер заряда литиевых аккумуляторов
Для долгой и счастливой жизни литиевого аккумулятора очень важно правильно его заряжать. Не менее важно контролировать так же и разряд. На наше спасение, уже давно придумали контроллер заряда литиевых аккумуляторов в виде готового модуля. Но можно ли ему доверять, сейчас мы это и проверим.
Как заряжать литиевые аккумуляторы
Вся фишка зарядки литиевых аккумуляторов кроется в том, что ни ток заряда ни напряжение не должен быть постоянными. Процесс заряда должен проходить по определенным фазам:
- При полной разрядке аккумулятора (около 3 вольт) ток заряда должен быть максимальным. Обычно он не должен превышать значения емкости аккумулятора (С).
- По мере накопления заряда аккумулятором, т.е. увеличения напряжения на клеммах аккумулятора, ток заряда должен уменьшаться.
- При достижении 90% от полного заряда, ток заряда должен снизиться до уровня порядка 0,1С. Как только напряжение на аккумуляторе достигнет 4.1-4.15 вольта, процесс заряда должен прекратиться.
Соблюдение этих правил заряда литиевого аккумулятора обеспечит ему продолжительный срок службы. Разрядка литиевого аккумулятора ниже 3 вольт, а так же его регулярная перезарядка даже на 0.1 вольта значительно сокращает емкость аккумулятора.
Готовые микросхемы
Сегодня существуют микросхемы, представляющие из себя готовый контроллер заряда li ion аккумуляторов. Одной из таких микросхем является TP4056 (скачать даташит). Схема контроллера заряда литиевых аккумуляторов на TP4056 выглядит следующим образом:
Однако, если вам вздумалось ее реализовать, то спешу вас огорчить. Потраченные усилия, время и деньги во много много раз превысят покупку готового модуля, построенного по точно такой же схеме.
Модуль контроля заряда Li-ion аккумулятора
Специально для этой статьи я сотворил ролик, в котором показал, как пользоваться подобными модулями, а так же как собрать мощное зарядное устройство на этих модулях.
Это мой первый «шедевр» для Ютуба, поэтому буду очень рад просмотру. А еще больше буду рад любому Вашему фидбэку 🙂
Если Вы посмотрели ролик, то уже знаете, что готовый модуль контроля заряда литиевого аккумулятора можно прикупить всего за 30 центов.А так же то, что такие модули существуют как с контролем разряда аккумулятора так и без него.
Картинка демонстрирует все четыре варианта подобных модулей. Два левых модуля полностью аналогичны двум правым модулям, разница заключается только в установленном разъеме. А вот между собой, два левых модуля, как и два правых отличаются возможностью контроля разряда аккумулятора.
Если на модуле помимо контактов для аккумулятора В+ и В- также присутствуют контакты OUT+и OUT- то это значит, что модуль умеет контролировать разряд аккумулятора, а подключение нагрузки к аккумулятору происходит через модуль.
Контроллер заряда — максимальный ток
В исходном состоянии модуль может выдать максимальный ток заряда до 1 Ампера. Если нужно больше, то смотрите видосик (чуть выше).
Если же емкость аккумулятора меньше 1000мА*ч, то максимальный ток заряда лучше снизить до значения, равного емкости аккумулятора или еще ниже. Для этого стоит заменить резистор RPROG на подходящий номинал.
А теперь самое интересное — будем мерить
Мерить мы будем следующее:
- Процесс зарядки — посмотрим, как меняется ток заряда от напряжения на аккумуляторе.
- Разрядку, а точнее умение модуля продолжительно отдавать ток в нагрузку, а так же умение отрубать аккумулятор по достижении порога разряда.
Для этих целей нам понадобится вольтметр и амперметр. Но я рожа ленивая, да и мерить вручную в наш век — мартышкин труд. Поэтому на помощь был позван микроконтроллер PIC18F4550. Он умеет общаться с компом по USB и обладает 10-битным АЦП на борту.
Амперметр и вольтметр далее изображены условно. И вольтметр и амперметр реализованы на дифференциальных усилителях. Для измерения тока использован низкоомный резистор, разность напряжений с выводов которого и снимается дифференциальным усилителем. Такому методу измерения тока недавно была посвящена отдельная статья.
С выходов диф. усилителей сигнал поступает на АЦП микроконтроллера. Шаг АЦП по напряжению составляет около 5 мВ, чего для таких измерений более чем достаточно. Но для большей точности было дополнительно реализовано усреднение данных приходящих за каждые 10 секунд ( каждые 200 приходящих значений).
Все пытки проводились с участием аккумулятора Sony VTC6 типоразмера 18650. Этот аккумулятор обладает емкостью 3000 мА*ч. Максимальный выходной ток аккумулятора может достигать 30 А.
Измерения заряда аккумулятора
Для изучения процесса заряда аккумулятора была реализована следующая измерительная схема:
Полученный с ее помощью график, представлен на следующей картинке. Для удобства синим обозначена зависимость тока, а красным — зависимость напряжения от времени. При этом время указанно в секундах.
6000 секунд соответствуют 100 минутам или же в более привычном виде это 1 час 40 минут. Соответственно полная зарядка аккумулятора заняла около 6 часов. При емкости аккумулятора в 3000 мАч, средний ток заряда можно считать равным 500мА.
На графике отлично видны все три описанные выше фазы зарядки. Схемка отрабатывает все как и положено. Между разными экземплярами модулей присутствует небольшой разброс конечного напряжения, но он не критичен.
Стоит отметить, что любое измерение физической величины это лишь попытка приближения к истинному значению. Не стоит обращать внимание на мелкие зубчики, их природа может быть вызвана как неравномерностью АЦП так и нелинейностью модуля.
В любом случае получившаяся зависимость отлично удовлетворяет всем правилам заряда аккумулятора.
Умный модуль бережет аккумулятор
Я не зря назвал этот модуль умным. Если внимательно присмотреться к моменту подачи питания на модуль, то можно увидеть небольшую ступеньку на зависимости тока. Вот так она выглядит крупным планом:
Речь идет о ступеньке между 500 и 600 секундами на уровне 100 мА.
Модуль бережно относится к аккумулятору. Сначала он доводит напряжение на аккумуляторе примерное до 3 вольт током в 100 мА. А уже затем начинает кочегарить через аккумулятор 1 ампер. Ну или ток, который был установлен резистором RPROG.
Контроль разряда аккумулятора
Для изучения выходных характеристик модуля схема была несколько изменена. В качестве нагрузки был установлен переменный резистор, включенный последовательно с амперметром к выходным контактам модуля.
Сопротивление нагрузочного резистора было установлено так, что начальный ток разряда составлял около 1.15 А. Т.к. нагрузка была постоянной, соответственно ток в выходной цепи падал с падением напряжения на аккумуляторе.
Как видно из графика, модуль благополучно отрубил нагрузку от аккумулятора в районе 5000 сек. А это значит, что модуль отдавал ток порядка 1 ампера в течении полутора часов и не загнулся. Отличный результат)
Рост напряжения на аккумуляторе, после отключения нагрузки, вызван химическим восстановлением аккумулятора после столь длительной отдачи приличного тока.
Включение модуля произойдет, при подключении зарядного устройства, как только напряжение на аккумуляторе достигнет уровня в 2.9 — 3 вольта.
Нагрев
В процессе зарядки, когда ток составляет 1 ампер, модуль прилично греется. Стоит учитывать этот факт при использовании модуля в закрытом устройстве. Так, на открытом воздухе температура модуля достигала значений более 70 градусов (по термопаре).
В случае установки модуля в закрытый корпус желательно снизить максимальный ток заряда до 500-700 мА. Но на терма-клей все же не стоит крепить.
У самого же модуля предусмотрена защита от перегрева. Так при перегреве модуль начинает ограничивать выходной ток. Так что от перегрева он скорее всего не сдохнет — но не факт)
Где взять?
Я не могу ручаться за все подобные модули, ибо их производством не брезгует каждый уважающий себя житель поднебесной. Показанные модули заказывались уже не первый раз у конкретного продавца.
Покупать такие модули поштучно не выгодно — продавцы начинают накручивать стоимость доставки. Удобнее закупать сразу по 5 или 10 штук даже если требуется 1-2. Очень удобно, когда где-то в шкафу лежит кучка таких модулей и при необходимости можно быстро сообразить из них зарядку. Вот ссылки на разные лоты проверенного магазина:
1.65$ за 5 штук, и тем более 2.75$ за 10 штук — это копейки. Во многих магазинах радиодеталей с вас попросят аналогичную сумму за каждый такой модуль.
Да, ссылки реферальные, но покупая по ним Вы абсолютно ничего не теряете. Зато этим Вы говорите мне спасибо за проделанную работу и помогаете копеечкой моему проекту. Так что спасибо и Вам.
Заключение
Честно говоря я и сам не ожидал таких результатов, но модули зарядки литиевых аккумуляторов отлично себя показали. И я однозначно рекомендую к покупке такой контроллер заряда. На таких модулях можно мастерить много интересных штук. В скором времени я покажу как с их помощью соорудить блок бесперебойного питания для камер Canon.
audiogeek.ru
Модуль для зарядки LiPo аккумуляторов ТР4056
Здравствуйте, имеется в наличии налобный фонарик на 3 ААА аккумулятора, нужно было зарядное к нему, а так же нужен был модуль для зарядки lipo аккумуляторов(вне мобильника).Для этих целей и был заказан данный модуль(тем более учитывая его цену-0,29$) .Через 3 недели с момента заказа, почтальон вручил в руки пакет.
Вот из описания на сайте:
Особенности:
Этот линейной зарядное устройство, позволяет заряжать Lipo аккумулятор с помощью микро USB разъема 4.5 В-5.5 В вход.
Технические характеристики:
Красный: Зарядка
Зеленый: полностью заряжена
Входное напряжение: 4.5 В-5.5 В
Напряжение заряда: 4.2 В
Зарядка точности: 1.5%
Размеры: 22 мм x 16 мм
Вес нетто: 3 г
Цвет: синий
В Пакет включено:
1×5 В мини USB 1A TP4056 литий аккумулятор модуль.
Первым делом припаял к плате 2 провода и подключил её через микро usb на плате к 5в входу(обычной зарядке от смартфона ).
при этом загорелся синий диод.
При подключении аккумулятора от мобильника, синий диод погас и загорелся красный-начался процесс зарядки.
Через некоторое время красный светодиод погас и загорелся синий, сигнализирующий о полной зарядке(в описании указано, что должен загореться зелёный, но там только 2 светодиода)
проверил напряжение на отключенном аккумуляторе:
Странно, ожидал увидеть 4,2в.
Теперь подключил 3 ААА аккумулятора от фонарика, подключенные последовательно.
Т.к аккумуляторы были не полностью разряжены и очень старые, в них вошло всего 143мач, прежде чем загорелся синий светодиод.Ради интереса сразу не отключил от зарядки, через пару минут сново включился красный светодиод и снова пошла зарядка, так что нужно контролировать процесс.
В заключение хочу сказать, что не рекомендую так заряжать(последовательно 3 штуки), но мне это, в данном случае, не принципиально.
Спасибо за внимание.
P.S: По умолчанию
плата заряжает 1А, что может быть многовато для лития с емкостью 300-500
махов.
Для подстройки под конкретную батарейку (обычно 0.5 от емкости) надо заменить
резистор с обозначением 122 на подходящий:
10k — 130 mA
5k — 250 mA
4k — 300 mA
3k — 400 mA
2k — 580 mA
1.66k — 690 mA
1.5k — 780 mA
1.33k — 900 mA
1.2k — 1000 mA
mysku.ru