✅ Как подключить npn транзистор
Транзисторы: схема, принцип работы, чем отличаются биполярные и полевые
Транзистор — повсеместный и важный компонент в современной микроэлектронике. Его назначение простое: он позволяет с помощью слабого сигнала управлять гораздо более сильным.
В частноти, его можно использовать как управляемую «заслонку»: отсутствием сигнала на «воротах» блокировать течение тока, подачей — разрешать. Иными словами: это кнопка, которая нажимается не пальцем, а подачей напряжения. В цифровой электронике такое применение наиболее распространено.
Транзисторы выпускаются в различных корпусах: один и тот же транзистор может внешне выглядеть совершенно по разному. В прототипировании чаще остальных встречаются корпусы:
Обозначение на схемах также варьируется в зависимости от типа транзистора и стандарта обозначений, который использовался при составлении. Но вне зависимости от вариации, его символ остаётся узнаваемым.
Биполярные транзисторы
Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:
Основной характеристикой биполярного транзистора является показатель hfe также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер способен пропустить транзистор по отношению к току база–эмиттер.
Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент, который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас». Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные 10 мА.
Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на контактах. Превышение этих величин ведёт к избыточному нагреву и сокращению службы, а сильное превышение может привести к разрушению.
NPN и PNP
Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive — с избытком положительных (p-doped).
NPN более эффективны и распространены в промышленности.
PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N. PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется, когда через неё идёт ток.
Полевые транзисторы
Полевые транзисторы (FET, Field Effect Transistor) имеют то же назначение, но отличаются внутренним устройством. Частным видом этих компонентов являются транзисторы MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor). Они позволяют оперировать гораздо большими мощностями при тех же размерах. А управление самой «заслонкой» осуществляется исключительно при помощи напряжения: ток через затвор, в отличие от биполярных транзисторов, не идёт.
Полевые транзисторы обладают тремя контактами:
N-Channel и P-Channel
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Подключение транзисторов для управления мощными компонентами
Типичной задачей микроконтроллера является включение и выключение определённого компонента схемы. Сам микроконтроллер обычно имеет скромные характеристики в отношении выдерживаемой мощности. Так Ардуино, при выдаваемых на контакт 5 В выдерживает ток в 40 мА. Мощные моторы или сверхъяркие светодиоды могут потреблять сотни миллиампер. При подключении таких нагрузок напрямую чип может быстро выйти из строя. Кроме того для работоспособности некоторых компонентов требуется напряжение большее, чем 5 В, а Ардуино с выходного контакта (digital output pin) больше 5 В не может выдать впринципе.
Зато, его с лёгкостью хватит для управления транзистором, который в свою очередь будет управлять большим током. Допустим, нам нужно подключить длинную светодиодную ленту, которая требует 12 В и при этом потребляет 100 мА:
Теперь при установке выхода в логическую единицу (high), поступающие на базу 5 В откроют транзистор и через ленту потечёт ток — она будет светиться. При установке выхода в логический ноль (low), база будет заземлена через микроконтроллер, а течение тока заблокированно.
Обратите внимание на токоограничивающий резистор R. Он необходим, чтобы при подаче управляющего напряжения не образовалось короткое замыкание по маршруту микроконтроллер — транзистор — земля. Главное — не превысить допустимый ток через контакт Ардуино в 40 мА, поэтому нужно использовать резистор номиналом не менее:
здесь Ud — это падение напряжения на самом транзисторе. Оно зависит от материала из которого он изготовлен и обычно составляет 0.3 – 0.6 В.
Но совершенно не обязательно держать ток на пределе допустимого. Необходимо лишь, чтобы показатель gain транзистора позволил управлять необходимым током. В нашем случае — это 100 мА. Допустим для используемого транзистора hfe = 100, тогда нам будет достаточно управляющего тока в 1 мА
Нам подойдёт резистор номиналом от 118 Ом до 4.7 кОм. Для устойчивой работы с одной стороны и небольшой нагрузки на чип с другой, 2. 2 кОм — хороший выбор.
Если вместо биполярного транзистора использовать полевой, можно обойтись без резистора:
это связано с тем, что затвор в таких транзисторах управляется исключительно напряжением: ток на участке микроконтроллер — затвор — исток отсутствует. А благодаря своим высоким характеристикам схема с использованием MOSFET позволяет управлять очень мощными компонентами.
Соединение транзисторов
Кремниевые транзисторы в свое время полностью вытеснили лампы. Когда же появились интегральные схемы, где транзисторов иногда насчитывалось до миллиарда штук, эти радиоэлементы стали незаменимы. В этом материале будет рассказано, как подключить биполярный транзистор и какие схемы включения транзисторов для чайников существуют.
Что это такое
Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.
Конструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.
Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа.
На сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.
Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.
Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах.
Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.
Область применения и основной принципы функционирования
В состоянии покоя между коллекторами транзистора нет электрического тока. Его прохождению мешает сопротивляемость переходника, которая возникает из-за одновременной работы двух слоев транзистора. Включить элемент просто: необходимо подать любое напряжение на него. Управление базой и ее токами будет напрямую переключать режимы работы транзистора с «включенного» на «выключенный».
Если же направить сигнал от аналогового источника, то он будет взаимодействовать с выходными токами путем передачи им своей амплитуды. Иначе говоря, электрический сигнал, который поступил на выходы, будет усилен. Полупроводниковые управляющие триоды вполне могут активно работать как электронные ключи или усилители электронных сигналов входа.
Обозначение на электросхемах
У транзистора есть принятое обозначение: «ВТ» или «Q». После букв нужно указать индекс позиции. Например, ВТ 2. На старых чертежах можно найти условные обозначения: «Т», «ПП» или «ПТ», которые более не используются. Транзистор рисуют в виде неких отрезков, обозначающих контакты электродов. Иногда их обводят кругом. Направление электротока в области эмиттера указывает специальная стрелка.
По принципу действия и строению различают следующие полупроводниковые триоды:
- Полевого типа;
- Биполярного;
- Комбинированного.
Все они обладают схожим функционалом и отличаются по технологии работы.
Полевые
Такие триоды ещё называют униполярными, из-за их электрических свойств — у них происходит течение тока только одной полярности. Такой тип также подразделяется на некоторые виды по своему строению и типу регулировки:
- Транзисторы с PN переходом управления;
- Элементы с затвором изолированного типа;
- Такие же транзисторы другой структуры (металл-диэлектрик-проводник).
Важно! Изолированный затвор обладает одной отличительной особенностью — наличием диэлектрического слоя между ним и каналом.
Еще одна особенность полевых транзисторов — низкое потребление электроэнергии. Например, такой элемент может функционировать больше одного года на одной батарейке. Полевые радиоэлементы довольно независимы: они потребляют крайне мало электроэнергии. Такой прибор может годами работать на пальчиковой батарейке или небольшом аккумуляторе. Именно это и обусловило их широкое применение в электросхемах и приборах.
Биполярные
Свое название эти элементы получили за то, что они способны пропускать электрические заряды плюса и минуса через один проходной канал. Также они обладают низким входным сопротивлением. Такие приспособления работают как усилители сигнала и коммутаторы. Благодаря им в электроцепь можно подключить довольно сильную нагрузку и понизить действие ее сопротивления. Биполярники являются наиболее популярными полупроводниковыми приборами активного типа.
Комбинированные
Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:
- Биполярными с внедрёнными в их схему резисторами;
- Двумя триодами одной или нескольких структур строения в единой детали;
- Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
- Элементы, в которых полевые составляющие управляют биполярными.
Схема подключения транзистора для чайников
Наиболее популярны следующие схемы подсоединения транзисторов в цепь: с общей базовой установкой, общими выводами инжекторного эмиттера и с общим коллекторным преобразователем для подачи напряженности.
Для усилителей с базой общего типа характерно следующее:
- Низкие параметры входного сопротивления, которое не достигает даже 100 Ом;
- Неплохая температура и частота триода;
- Допустимое напряжение весьма большое;
- Требуют два различных источника питания.
Схемы второго типа обладают:
- Высокими показателями усиления электротока и напряжения;
- Низкими показателями усиления мощностных характеристик;
- Инверсионной разницей между входным и выходным напряжением.
Важно! Схема транзистора с электродами общего коллекторного типа требует одного источника питания.
Подключение по типу общего коллектора может обеспечить:
- Низкие показатели электронапряжения по усилению;
- Большая и меньшая сопротивляемость входа и выхода соответственно.
Таким образом, транзистор — один из самых распространенных радиоэлементов в электронике. Он позволяет изменять параметры электрического тока и регулировать его для корректной работы электроприборов. Существует несколько видов транзисторов, как и способов их соединения. Различаются они строением и целями использования.
Биполярные транзисторы
Биполярный транзистор является одним из старейших, но самым известным типом транзисторов, и до сих пор находит применение в современной электронике. Транзистор незаменим, когда требуется управлять достаточно мощной нагрузкой, для которой устройство управления не может обеспечить достаточный ток. Они бывают разного типа и мощности, в зависимости от исполняемых задач. Базовые знания и формулы о транзисторах вы можете найти в этой статье.
Введение
Прежде чем начать урок, давайте договоримся, что мы обсуждаем только один тип способ включения транзистора. Транзистор может быть использован в усилителе или приемнике, и, как правило, каждая модель транзисторов производится с определенными характеристиками, чтобы сделать его более узкоспециализированым для лучшей работы в определённом включении.
Транзистор имеет 3 вывода: база, коллектор и эмиттер. Нельзя однозначно сказать какой из них вход, а какой выход, так как все они связаны и влияют друг на друга так или иначе. При включении транзистора в режиме коммутатора (управление нагрузкой) он действует так: ток базы контролирует ток от коллектора к эмиттеру или наоборот, в зависимости от типа транзистора.
Есть два основных типа транзисторов: NPN и PNP. Чтобы это понять, можно сказать, что основное различие между этими двумя типами это направления электрического тока. Это можно видеть на рисунке 1.А, где указано направление тока. В транзисторе NPN, один ток течет от основания внутрь транзистора, а другой ток течет от коллектора к эмиттеру, а в PNP транзисторе всё наоборот. С функциональной точки зрения, разница между этими двумя типами транзисторов это напряжение на нагрузке. Как вы можете видеть на рисунке, транзистор NPN обеспечивает 0В когда он открыт, а PNP обеспечивает 12В. Вы позже поймете, почему это влияет на выбор транзистора.
Для простоты мы будем изучать только NPN транзисторы, но всё это применимо к PNP, принимая во внимание, что все токи меняются на противоположные.
Рисунок ниже показывает аналогию между переключателем (S1) и транзисторным ключом, где видно, что ток базы закрывает или открывает путь для тока от коллектора к эмиттеру:
Точно зная характеристики транзистора, от него можно получить максимальную отдачу. Основным параметром является коэффициент усиления транзистора по постоянному току, который обычно обозначается Hfe или β. Также важно знать максимальный ток, мощность и напряжение транзистора. Эти параметры можно найти в документации на транзистор, и они помогут нам определить значение резистора на базе, о чем рассказано дальше.
Использование NPN транзистора как коммутатора
На рисунке показано включение NPN транзистора в качестве коммутатора. Вы встретите это включение очень часто при анализе различных электронных схем. Мы будем изучать, как запустить транзистор в выбранном режиме, рассчитать резистор базы, коэффициент усиления транзистора по току и сопротивление нагрузки. Я предлагаю самый простой и самый точный способ для этого.
1. Предположим, что транзистор находится в режиме насыщения: При этом математическая модель транзистора становится очень простой, и нам известно напряжение на точке Vc. Мы найдем значение резистора базы, при котором всё будет правильно.
2. Определение тока насыщения коллектора: Напряжение между коллектором и эмиттером (Vce) взято из документации транзистора. Эмиттер подключен к GND, соответственно Vce= Vc — 0 = Vc. Когда мы узнали эту величину, мы можем рассчитать ток насыщения коллектора по формуле:
Иногда, сопротивления нагрузки RL неизвестно или не может быть точным, как сопротивление обмотки реле; В таком случае, достаточно знать, необходимый для запуска реле ток.
Убедитесь, что ток нагрузки не превышает максимальный ток коллектора транзистора.
3. Расчет необходимого тока базы: Зная ток коллектора, можно вычислить минимально необходимый ток базы для достижения этого тока коллектора, используя следующую формулу:
Из неё следует что:
4. Превышение допустимых значений: После того как вы рассчитали ток базы, и если он оказался ниже указанного в документации, то можно перегрузить транзистор, путем умножения расчетного тока базы например в 10 раз. Таким образом, транзисторный ключ будет намного более устойчивым. Другими словами, производительность транзистора уменьшится, если нагрузка увеличится. Будьте осторожны, старайтесь не превышать максимальный ток базы, указанный в документации.
5. Расчёт необходимого значения Rb: Учитывая перегрузку в 10 раз, сопротивление Rb может быть рассчитано по следующей формуле:
где V1 является напряжением управления транзистором (см. рис 2.а)
Но если эмиттер подключен к земле, и напряжение база-эмиттер известно (около 0,7В у большинстве транзисторов), а также предполагая, что V1 = 5V, формула может быть упрощена до следующего вида:
Видно, что ток базы умножается на 10 с учётом перегрузки.
Когда значение Rb известно, транзистор «настроен» на работу в качестве переключателя, что также называется «режим насыщения и отсечки «, где «насыщение» — когда транзистор полностью открыт и проводит ток, а «отсечение» – когда закрыт и ток не проводит.
Примечание: Когда мы говорим
, мы не говорим, что ток коллектора должен быть равным . Это просто означает, что ток коллектора транзистора может подниматься до этого уровня. Ток будет следовать законам Ома, как и любой электрический ток.Расчет нагрузки
Когда мы считали, что транзистор находится в режиме насыщения, мы предполагали что некоторые его параметры не менялись. Это не совсем так. На самом деле эти параметры менялись в основном за счет увеличения тока коллектора, и поэтому он является более безопасным для перегрузки. В документации указано изменение параметров транзистора при перегрузке. Например, в таблице на рисунке 2.В показано два параметра которые значительно меняются:
HFE (β) меняется в зависимости от тока коллектора и напряжения VCEsat. Но VCEsat само меняется в зависимости от тока коллектора и базы, что показано в таблице дальше.
Расчет может быть очень сложным, так как все параметры тесно и сложно взаимосвязаны, поэтому лучше взять худшие значения. Т.е. наименьший HFE, крупнейший VCEsat и VCEsat.
Типичное применение транзисторного ключа
1. Управление реле
В современной электронике транзисторный ключ используется для контроля электромагнитных реле, которое потребляют до 200 мА. Если вы хотите управлять реле логической микросхемой или микроконтроллером то транзистор незаменим. На рисунке 3.A, сопротивления резистора базы рассчитывается в зависимости от необходимого для реле тока. Диод D1 защищает транзистор от импульсов, которые катушка генерирует при выключении.
2. Подключение транзистора с открытым коллектором:
Многие устройства, такие как семейство микроконтроллеров 8051 имеют порты с открытым коллектором. Сопротивление резистора базы внешнего транзистора рассчитывается, как описано в этой статье. Заметим, что порты могут быть более сложными, и часто используют полевые транзисторы вместо биполярных и называются выходами с открытым стоком, но всё остаётся точно таким же как на рисунке 3. B
3. Создание логического элемента ИЛИ-НЕ (NOR):
Иногда в схеме необходимо использовать один логический элемент, и вы не хотите использовать 14-контактную микросхему с 4 элементами либо из-за стоимости или местом на плате. Её можно заменить парой транзисторов. Отметим, что частотные характеристики таких элементов зависят от характеристик и типа транзисторов, но обычно ниже 100 кГц. Уменьшение выходного сопротивления (Ro) приведет к увеличению потребления энергии, но увеличит выходной ток.
Вам надо найти компромисс между этими параметрами.
На рисунке выше показан логический элемент ИЛИ-НЕ построенный с использованием 2х транзисторов 2N2222. Это может быть сделано на транзисторах PNP 2N2907, с незначительными изменениями. Вы просто должны учитывать, что все электрические токи тогда текут в противоположном направлении.
Поиск ошибок в транзисторных схемах
При возникновении проблемы в цепях, содержащих много транзисторов, может быть весьма проблематично узнать, какой из них неисправен, особенно когда они все впаяны. Я даю вам несколько советов, которые помогут вам найти проблему в такой схеме достаточно быстро:
1. Температура: Если транзистор сильно греется, вероятно, где-то есть проблема. Необязательно что проблема в горячем транзисторе. Обычно дефектный транзистор даже не нагревается. Это повышение температуры может быть вызвано другим транзистором, подключенным к нему.
2. Измерение VCE транзисторов: Если они все одного типа и все работают, то они должны иметь приблизительно одинаковое VCE. Поиск транзисторов, имеющих различные VCE это быстрый способ обнаружения дефектных транзисторов.
3. Измерение напряжения на резисторе базы: Напряжение на резисторе базы достаточно важно (если транзистор включен). Для 5 В устройства управления транзистором NPN, падения напряжения на резисторе должно быть более 3В. Если нет падения напряжения на резисторе, то либо транзистор, либо устройство управления транзистора имеют дефект. В обоих случаях ток базы равен 0.
Электронные печеньки
Arduino, DIY и немного этих ваших линуксов.
Транзистор
Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.
Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:
Типы транзисторов
Биполярный транзистор
Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:
Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).
Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.
Работа биполярного транзистора
NPN и PNP биполярные транзисторы
Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.
От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:
Обозначение NPN (слева) и PNP (справа) транзисторов на схеме
NPN транзисторы более распространены в электронике, потому что являются более эффективными.
Полевый транзистор
Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.
Полевые транзисторы имеют как минимум 3 вывода:
Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.
N канальные и P канальные полевые транзисторы
Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме
Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.
Транзистор Дарлингтона
Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.
Схема составного транзистора дарлингтона
Подключение транзистора
Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:
Подключение мощного мотора с помощью транзистора
На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).
ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.
При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.
PNP-транзистор: схема подключения.
Какая разница между PNP и NPN-транзисторами?PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока («внутрь» для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют «комплементарные», или «согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Как подключить pnp транзистор – Инженер ПТО
Arduino, DIY и немного этих ваших линуксов.
Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.
Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:
Биполярный транзистор
Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:
Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).
Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.
Работа биполярного транзистора
NPN и PNP биполярные транзисторы
Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.
От чередования слоёв зависит поведение транзисторов. На анимации выше представлен
Обозначение NPN (слева) и PNP (справа) транзисторов на схеме
NPN транзисторы более распространены в электронике, потому что являются более эффективными.
Полевый транзистор
Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.
Полевые транзисторы имеют как минимум 3 вывода:
Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.
N канальные и P канальные полевые транзисторы
Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме
Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.
Транзистор Дарлингтона
Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.
Схема составного транзистора дарлингтона
Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:
Подключение мощного мотора с помощью транзистора
На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления ( hfe).
ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.
При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.
Arduino, DIY и немного этих ваших линуксов.
Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:
Биполярный транзистор
Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:
Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).
Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений
Работа биполярного транзистора
NPN и PNP биполярные транзисторы
Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.
От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:
Обозначение NPN (слева) и PNP (справа) транзисторов на схеме
NPN транзисторы более распространены в электронике, потому что являются более эффективными.
Полевый транзистор
Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.
Полевые транзисторы имеют как минимум 3 вывода:
Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.
N канальные и P канальные полевые транзисторы
Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме
Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.
Транзистор Дарлингтона
Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.
Схема составного транзистора дарлингтона
Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:
Подключение мощного мотора с помощью транзистора
На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).
ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.
При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.
PNP-транзистор является электронным прибором, в определенном смысле обратном NPN-транзистору. В этом типе конструкции транзистора его PN-переходы открываются напряжениями обратной полярности по отношению к NPN-типу. В условном обозначении прибора стрелка, которая также определяет вывод эмиттера, на этот раз указывает внутрь символа транзистора.
Конструкция прибора
Конструктивная схема транзистора PNP-типа состоит из двух областей полупроводникового материала p-типа по обе стороны от области материала n-типа, как показано на рисунке ниже.
Стрелка определяет эмиттер и общепринятое направление его тока (“внутрь” для транзистора PNP).
PNP-транзистор имеет очень схожие характеристики со своим NPN-биполярным собратом, за исключением того, что направления токов и полярности напряжений в нем обратные для любой из возможных трех схем включения: с общей базой, с общим эмиттером и с общим коллектором.
Основные отличия двух типов биполярных транзисторов
Главным различием между ними считается то, что дырки являются основными носителями тока для транзисторов PNP, NPN-транзисторы имеют в этом качестве электроны. Поэтому полярности напряжений, питающих транзистор, меняются на обратные, а его входной ток вытекает из базы. В отличие от этого, у NPN-транзистора ток базы втекает в нее, как показано ниже на схеме включения приборов обоих типов с общей базой и общим эмиттером.
Принцип работы транзистора PNP-типа основан на использовании небольшого (как и у NPN-типа) базового тока и отрицательного (в отличие от NPN-типа) базового напряжения смещения для управления гораздо большим эмиттерно-коллекторным током. Другими словами, для транзистора PNP эмиттер является более положительным по отношению к базе, а также по отношению к коллектору.
Рассмотрим отличия PNP-типа на схеме включения с общей базой
Действительно, из нее можно увидеть, что ток коллектора IC (в случае транзистора NPN) вытекает из положительного полюса батареи B2, проходит по выводу коллектора, проникает внутрь него и должен далее выйти через вывод базы, чтобы вернуться к отрицательному полюсу батареи. Таким же образом, рассматривая цепь эмиттера, можно увидеть, как его ток от положительного полюса батареи B1 входит в транзистор по выводу базы и далее проникает в эмиттер.
По выводу базы, таким образом, проходит как ток коллектора IC, так и ток эмиттера IE. Поскольку они циркулируют по своим контурам в противоположных направлениях, то результирующий ток базы равен их разности и очень мал, так как IC немного меньше, чем IE. Но так как последний все же больше, то направление протекания разностного тока (тока базы) совпадает с IE, и поэтому биполярный транзистор PNP-типа имеет вытекающий из базы ток, а NPN-типа – втекающий.
Отличия PNP-типа на примере схемы включения с общим эмиттером
В этой новой схеме PN-переход база-эмиттер открыт напряжением батареи B1, а переход коллектор-база смещен в обратном направлении посредством напряжения батареи В2. Вывод эмиттера, таким образом, является общим для цепей базы и коллектора.
Полный ток эмиттера задается суммой двух токов IC и IB; проходящих по выводу эмиттера в одном направлении. Таким образом, имеем IE = IC + IB.
В этой схеме ток базы IB просто «ответвляется» от тока эмиттера IE, также совпадая с ним по направлению. При этом транзистор PNP-типа по-прежнему имеет вытекающий из базы ток IB, а NPN-типа – втекающий.
В третьей из известных схем включения транзисторов, с общим коллектором, ситуация точно такая же. Поэтому мы ее не приводим в целях экономии места и времени читателей.
PNP-транзистор: подключение источников напряжения
Источник напряжения между базой и эмиттером (VBE) подключается отрицательным полюсом к базе и положительным к эмиттеру, потому что работа PNP-транзистора происходит при отрицательном смещении базы по отношению к эмиттеру.
Напряжение питания эмиттера также положительно по отношению к коллектору (VCE). Таким образом, у транзистора PNP-типа вывод эмиттера всегда более положителен по отношению как к базе, так и к коллектору.
Источники напряжения подключаются к PNP-транзистору, как показано на рисунке ниже.
Работа PNP-транзисторного каскада
Итак, чтобы вызвать протекание базового тока в PNP-транзисторе, база должна быть более отрицательной, чем эмиттер (ток должен покинуть базу) примерно на 0,7 вольт для кремниевого прибора или на 0,3 вольта для германиевого. Формулы, используемые для расчета базового резистора, базового тока или тока коллектора такие же, как те, которые используются для эквивалентного NPN-транзистора и представлены ниже.
Мы видим, что фундаментальным различием между NPN и PNP-транзистором является правильное смещение pn-переходов, поскольку направления токов и полярности напряжений в них всегда противоположны. Таким образом, для приведенной выше схеме: IC = IE – IB, так как ток должен вытекать из базы.
Как правило, PNP-транзистор можно заменить на NPN в большинстве электронных схем, разница лишь в полярности напряжения и направлении тока. Такие транзисторы также могут быть использованы в качестве переключающих устройств, и пример ключа на PNP-транзисторе показан ниже.
Характеристики транзистора
Выходные характеристики транзистора PNP-типа очень похожи на соответствующие кривые эквивалентного NPN-транзистора, за исключением того, что они повернуты на 180° с учетом реверса полярности напряжений и токов (токи базы и коллектора, PNP-транзистора отрицательны). Точно также, чтобы найти рабочие точки транзистора PNP-типа, его динамическая линия нагрузки может быть изображена в III-й четверти декартовой системы координат.
Типовые характеристики PNP-транзистора 2N3906 показаны на рисунке ниже.
Транзисторные пары в усилительных каскадах
Вы можете задаться вопросом, что за причина использовать PNP-транзисторы, когда есть много доступных NPN-транзисторов, которые могут быть использованы в качестве усилителей или твердотельных коммутаторов? Однако наличие двух различных типов транзисторов — NPN и PNP — дает большие преимущества при проектировании схем усилителей мощности. Такие усилители используют “комплементарные”, или “согласованные” пары транзисторов (представляющие собой один PNP-транзистор и один NPN, соединенные вместе, как показано на рис. ниже) в выходном каскаде.
Два соответствующих NPN и PNP-транзистора с близкими характеристиками, идентичными друг другу, называются комплементарными. Например, TIP3055 (NPN-тип) и TIP2955 (PNP-тип) являются хорошим примером комплементарных кремниевых силовых транзисторов. Они оба имеют коэффициент усиления постоянного тока β=IC/IB согласованный в пределах 10% и большой ток коллектора около 15А, что делает их идеальными для устройств управления двигателями или роботизированных приложений.
Кроме того, усилители класса B используют согласованные пары транзисторов и в своих выходной мощных каскадах. В них NPN-транзистор проводит только положительную полуволну сигнала, а PNP-транзистор – только его отрицательную половину.
Это позволяет усилителю проводить требуемую мощность через громкоговоритель в обоих направлениях при заданной номинальной мощности и импедансе. В результате выходной ток, который обычно бывает порядка нескольких ампер, равномерно распределяется между двумя комплементарными транзисторами.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Определение типа транзисторов
Любые биполярные транзисторы можно представить состоящими в основном из двух диодов, соединенных вместе спина к спине.
Мы можем использовать эту аналогию, чтобы определить, относится ли транзистор к типу PNP или NPN путем тестирования его сопротивления между его тремя выводами. Тестируя каждую их пару в обоих направлениях с помощью мультиметра, после шести измерений получим следующий результат:
1. Эмиттер — База. Эти выводы должны действовать как обычный диод и проводить ток только в одном направлении.
2. Коллектор — База. Эти выводы также должны действовать как обычный диод и проводить ток только в одном направлении.
3. Эмиттер — Коллектор. Эти выводы не должен проводить в любом направлении.
Значения сопротивлений переходов транзисторов обоих типов
Пара выводов транзистора | PNP | NPN | |
Коллектор | Эмиттер | RВЫСОКОЕ | RВЫСОКОЕ |
Коллектор | База | RНИЗКОЕ | RВЫСОКОЕ |
Эмиттер | Коллектор | RВЫСОКОЕ | RВЫСОКОЕ |
Эмиттер | База | RНИЗКОЕ | RВЫСОКОЕ |
База | Коллектор | RВЫСОКОЕ | RНИЗКОЕ |
База | Эмиттер | RВЫСОКОЕ | RНИЗКОЕ |
Тогда мы можем определить PNP-транзистор как исправный и закрытый. Небольшой выходной ток и отрицательное напряжение на его базе (B) по отношению к его эмиттеру (E) будет его открывать и позволит протекать значительно большему эмиттер-коллекторному току. Транзисторы PNP проводят при положительном потенциале эмиттера. Иными словами, биполярный PNP-транзистор будет проводить только в том случае, если выводы базы и коллектором являются отрицательным по отношению к эмиттеру.
Транзисторы: описание, подключение, схема, характеристики
Транзистор – электронная “кнопка” в цепи питания, которая нажимается не пальцем, а электрическим сигналом, например от контроллера, что позволяет управлять сильным импульсом при помощи слабого.
Содержание
- Назначение
- Биполярные транзисторы
- Полевые транзисторы
- Пример
- Вывод
Назначение транзисторов
Транзистор – электронная “кнопка” в цепи питания, которая нажимается не пальцем, а электрическим сигналом, например от контроллера, что позволяет управлять сильным импульсом при помощи слабого. Также применяется для преобразования и коммутации электрических сигналов, что широко используется в электронных устройствах любой сложности, в том числе в микросхемах, в качестве атомарного триггера и так далее.Как правило, у транзистора имеется три ноги: для входа, для выхода и для управляющего сигнала.
В DIY-разработках чаще всего используются транзисторы в двух корпусах: ТО-92 для небольших нагрузок и ТО-220 – более крупный и более мощный.
Транзисторы бывают двух типов: биполярные и полевые, каждый из которых имеет свои особенности, преимущества и недостатки.
Биполярные транзисторы.
Простое, надежное, компактное и недорогое устройство. Три контакта имеют следующие названия и назначения:
- Коллектор – контакт для мощного положительного тока, которым следует управлять.
- Эмиттер – контакт для “земли” мощного тока, на который открывается или закрывается транзит в зависимости от состояния Базы.
- База – та самая “кнопка”, подавая небольшой ток на которую можно разблокировать связь коллектор-эмиттер, а заземлив его – заблокировать.
В роли затвора, в нашем случае, чаще всего выступает пин Ардуино. Токоограничивающий резистор нужен для того, чтобы этот самый пин не сгорел, так как при подаче сигнала этот контакт замкнется на землю. Для этой цели достаточно резистора номиналом от 180 Ом.
Основной характеристикой биполярного транзистора является является коэффициент усиления hfe, соотношение между управляющим током и током нагрузки:
Ice = Ibe * hfe
Давайте рассчитаем, какой ток можно пропустить через типовой транзистор bc337 в корпусе ТО-92. Согласно даташита, коэффициент усиления такого транзистора составляет от 160 до 400, возьмем 300 как разумно-оптимальный. Примем номинал токоограничивающего резистора за 1 кОм, значит на базе получим ток:
Ibe = V/R = 5/1000 = 0.005 А
Вычисляем максимальный управляемый ток при помощи нехитрой формулы:
Ice = 5 мА * 300 = 1500 мА
Ответ: при помощи транзистора bc337 мы (теоретически) можем управлять нагрузкой до 1.5 А. При более высокой нагрузке транзистор откроется не полностью, “лишняя” часть пойдет на нагрев и транзистор быстро сгорит.
К основным характеристикам биполярного транзистора также можно причислить максимальное напряжение коллектор-эмиттер и максимальный ток через коллектор. Для нашего примера bc337 эти параметры, соответственно, 50 В и 0.8 А. Получается, что расчетные 1.5 А мы пропускать через этот транзистор все-таки не сможем, максимум 0.8. Поэтому, перед выбором транзистора, обязательно изучите его характеристики и свойства нагрузки.
Биполярные транзисторы выпускаются в двух разновидностях: NPN и PNP.
Транзистор из рассмотренного выше примера – NPN (Negative-Positive-Negative), такие более эффективны, а значит и распространены. PNP-транзисторы работают по обратной логике: при заземлении базы открываются, при подаче на нее питания закрываются.
Полевые транзисторы
Полевый транзисторы позволяют управлять гораздо более мощными нагрузками, при тех же размерах корпуса. В отличие от биполярных транзисторов, ток через затвор полевых не проходит, он изолирован от главной нагрузки, управление происходит только при помощи напряжения, а значит токоограничивающий резистор для них не нужен.Названия и назначения контактов:
- Сток – для подачи управляемой нагрузки;
- Исток – для заземления, связь с которым открывается или закрывается в зависимости от состояния затвора;
- Затвор – управляющий контакт, подаем напряжение – открываем транзистор, заземляем – закрываем.
Основными характеристиками полевого транзистора являются:
- Максимальное напряжение сток-исток;
- Максимальный ток через сток;
- Сопротивление сток-исток;
- Рассеиваемая мощность;
Наиболее известная разновидность полевого транзистора – MOSFET, чаще всего в DIY используются именно они. Особое внимание обратите на транзисторы с буквой L в маркировке, например IRLZ44n, они очень удобны для работы с контроллерами благодаря логическому уровню управления. Это значит, что для полного открытия гарантированно хватит сигнала с пина, обычно это от 2,5 В и выше. Максимальный ток сток-исток таких транзисторов многократно больше, чем у полевых, в случае IRLZ44n это аж 45 А, против 0,8 А у bc337. Поэтому для управления серьезной нагрузкой рекомендуется использовать именно их.
Пример
Рассматривать применение транзисторов в качестве простого выключателя мы здесь не будем, тем более, что такие схемы уже приведены выше. Давайте попробуем сделать из них что-то более сложное и полезное. Например, управление асинхронным электромотором с возможностью реверса. Для этого применим схему подключения, известную как Н-мост. Простейший вариант будет выглядеть так:Для запуска мотора в одном направлении, подаем на первый пин единицу, на второй ноль. Нетрудно заметить на схеме, что при этом ток пойдет по красной линии, плюс на левый контакт мотора, минус на правый. Если выставим состояние пинов в обратное положение, ток пойдет по синей линии и мотор будет крутиться в противоположном направлении. Если оба пина выставить в одинаковое положение, мотор вращаться не будет, так как на его контактах будет отсутствовать разница потенциалов.
Можно обойтись и одним пином, для этого подключить второй управляющий контакт через логический инвертор, как пример – микросхему 74HC04, которая превращает ноль в единицу и наоборот. Тогда на пинах всегда будет разноименный сигнал и мотор будет вращаться в ту или другую сторону, в зависимости от подключения и состояния единственного управляющего пина.
Вывод
Транзистор – очередной элементарный “кирпичик”, один из базовых элементов электроники, наряду с резистором и конденсатором и диодом. Комбинацией этих “кубиков” создается подавляющее количество электронных схем. Знать эти элементы, их свойства, разновидности и уметь ими пользоваться должен каждый DIY-мастер.
Транзистор | Электронные печеньки
Транзистор
Транзистор — полупроводниковый прибор позволяющий с помощью слабого сигнала управлять более сильным сигналом. Из-за такого свойства часто говорят о способности транзистора усиливать сигнал. Хотя фактически, он ничего не усиливает, а просто позволяет включать и выключать большой ток гораздо более слабыми токами. Транзисторы весьма распространены в электронике, ведь вывод любого контроллера редко может выдавать ток более 40 мА, поэтому, даже 2-3 маломощных светодиода уже не получится питать напрямую от микроконтроллера. Тут на помощь и приходят транзисторы. В статье рассматриваются основные типы транзисторов, отличия P-N-P от N-P-N биполярных транзисторов, P-channel от N-channel полевых транзисторов, рассматриваются основные тонкости подключения транзисторов и раскрываются сферы их применения.
Не стоит путать транзистор с реле. Реле — простой выключатель. Суть его работы в замыкании и размыкании металлических контактов. Транзистор устроен сложнее и в основе его работы лежит электронно-дырочный переход. Если вам интересно узнать об этом больше, вы можете посмотреть прекрасное видео, которое описывает работу транзистора от простого к сложному. Пусть вас не смущает год производства ролика — законы физики с тех пор не изменились, а более нового видео, в котором так качественно преподносится материал, найти не удалось:
Биполярный транзистор
Биполярный транзисто предназначен для управления слабыми нагрузками (например, маломощные моторы и сервоприводы). У него всегда есть три вывода:
Коллектор (англ. collector) — подаётся высокое напряжение, которым транзистор управляет
- База (англ. base) — подаётся или отключается ток для открытия или закрытия транзистора
Эмиттер (англ. emitter) — «выпускной» вывод транзистоа. Через него вытекает ток от коллектора и базы.
Биполярный транзистор управляется током. Чем больший ток подаётся на базу, тем больший ток потечёт от коллектора к эмиттеру. Отношение тока, проходящего от эмиттера к коллектору к току на базе транзистора называется коэффициент усиления. Обозначается как hfe (в английской литературе называется gain).
Например, если hfe = 150, и через базу проходит 0.2 мА, то транзистор пропустит через себя максимум 30 мА. Если подключен компонент, который потребляет 25 мА (например, светодиод), ему будет предоставлено 25 мА. Если же подключен компонент, который потребляет 150 мА, ему будут предоставлены только максимальные 30 мА. В документации к контакту указываются предельно допустимые значени токов и напряжений база->эмиттер и коллектор->эмиттер. Превышение этих значений ведёт к перегреву и выходу из строя транзистора.
Весёлые картинки:
Работа биполярного транзистора
NPN и PNP биполярные транзисторы
Различают 2 типа полярных транзисторов: NPN и PNP. Отличаются они чередованием слоёв. N (от negative — отрицательный) — это слой с избытком отрицательных переносчиков заряда (электронов), P (от positive — положительный) — слой с избытком положительных переносчиков заряда (дырок). Подробнее о электронах и дырках рассказано в видео, приведённом выше.
От чередования слоёв зависит поведение транзисторов. На анимации выше представлен NPN транзистор. В PNP управление транзистором устроено наоборот — ток через транзистор течёт, когда база заземлена и блокируется, когда через базу пропускают ток. В отображении на схеме PNP и NPN отличаются направлением стрелки. Стрелка всегда указывает на переход от N к P:
Обозначение NPN (слева) и PNP (справа) транзисторов на схеме
NPN транзисторы более распространены в электронике, потому что являются более эффективными.
Полевый транзистор
Полевые транзисторы отличаются от биполярных внутренним устройством. Наиболее распространены в любительской электронике МОП транзисторы. МОП — это аббревиатура от металл-оксид-проводник. То-же самое по английски: Metal-Oxide-Semiconductor Field Effect Transistor сокращённо MOSFET. МОП транзисторы позволяют управлять большими мощностями при сравнительно небольших размерах самого транзистора. Управление транзистором обеспечивается напряжением, а не током. Поскольку транзистором управляет электрическое поле, транзистор и получил своё название — полевой.
Полевые транзисторы имеют как минимум 3 вывода:
Сток (англ. drain) — на него подаётся высокое напряжение, которым хочется управлять
Затвор (англ. gate) — на него подаётся напряжение для управления транзистором
Исток (англ. source) — через него проходит ток со стока, когда транзистор «открыт»
Здесь должна быть анимация с полевым транзистором, но она ничем не будет отличаться от биполярного за исключением схематического отображения самих транзисторов, поэтому анимации не будет.
N канальные и P канальные полевые транзисторы
Полевые транзисторы тоже делятся на 2 типа в зависимости от устройства и поведения. N канальный (N channel) открывается, когда на затвор подаётся напряжение и закрывается. когда напряжения нет. P канальный (P channel) работает наоборот: пока напряжения на затворе нет, через транзистор протекает ток. При подаче напряжения на затвор, ток прекращается. На схеме полевые транзисторы изображаются несколько иначе:
По аналогии с биполярными транзисторами, полевые различаются полярностью. Выше был описан N-Channel транзистор. Они наиболее распространены.
P-Channel при обозначении отличается направлением стрелки и, опять же, обладает «перевёрнутым» поведением.
Обозначение N канальных (слева) и P канальных (справа) транзисторов на схеме
Существует заблуждение, согласно которому полевой транзистор может управлять переменным током. Это не так. Для управления переменным током, используйте реле.
Транзистор Дарлингтона
Транзистора Дарлингтона не совсем корректно относить к отдельному типу транзисторов. Однако, не упомянуть из в этой статье нельзя. Транзистор Дарлингтона чаще всего встречается в виде микросхемы, включающей в себя несколько транзисторов. Например, ULN2003. Транзистора Дарлингтона характеризуется возможность быстро открываться и закрывать (а значит, позволяет работать с ШИМ) и при этом выдерживает большие токи. Он является разновидностью составного транзистора и представляет собой каскадное соединение двух или, редко, более транзисторов, включённых таким образом, что нагрузкой в эмиттере предыдущего каскада является переход база-эмиттер транзистора следующего каскада, то есть транзисторы соединяются коллекторами, а эмиттер входного транзистора соединяется с базой выходного. Кроме того, в составе схемы для ускорения закрывания может использоваться резистивная нагрузка эмиттера предыдущего транзистора. Такое соединение в целом рассматривают как один транзистор, коэффициент усиления по току которого, при работе транзисторов в активном режиме, приблизительно равен произведению коэффициентов усиления всех транзисторов.
Схема составного транзистора дарлингтона
Не секрет, что плата Ардуино способна подать на вывод напряжение 5 В с максимальным током до 40 мА. Этого тока не хватит для подключения мощной нагрузки. Например, при попытке подключить к выводу напрямую светодиодную ленту или моторчик, вы гарантированно повредите вывод Ардуино. Не исключено, что выйдет из строя всё плата. Кроме того, некоторые подключаемые компоненты могут требовать напряжения более 5 В для работы. Обе эти проблемы решает транзистор. Он поможет с помощью небольшого тока с вывода Ардуино управлять мощным током от отдельного блока питания или с помощью напряжения в 5 В управлять бОльшим напряжением (даже самые слабые транзисторы редко имеют предельное напряжение ниже 50 В). В качестве примера рассмотрим подключение мотора:
Подключение мощного мотора с помощью транзистора
На приведённой схеме мотор подключается к отдельному источнику питания. Между контактом мотора и источником питания для мотора мы поместили транзистора, который будет управляться с помощью любого цифрового пина Arduino. При подаче на вывод контроллера сигнала HIGH с вывода контроллера мы возьмём совсем небольшой ток для открытия транзистора, а большой ток потечёт через транзистор и не повредит контроллер. Обратите внимание на резистор, установленный между выводом Ардуино и базой транзистора. Он нужен для ограничения тока, протекающего по маршруту микроконтроллер — транзистор — земля и предотвращения короткого замыкания. Как упоминалось ранее, максимальный ток, который можно взять с вывода Arduino — 40 мА. Поэтому, нам понадобится резистор не менее 125 Ом (5В/0,04А=125Ом). Можно без опаски использовать резистор на 220 Ом. На самом деле, резистор стоит подбирать с учётом тока, который необходимо подать на базу для получения необходимого тока через транзистор. Для правильного подбора резистора нужно учитывать коэффициент усиления (hfe).
ВАЖНО!! Если вы подключаете мощную нагрузку от отдельного блока питания, то необходимо физически соединить между собой землю («минус») блока питания нагрузки и землю (пин «GND») Ардуино. Иначе управлять транзистором не получится.
При использовании полевого транзистора, токоограничительный резистор на затворе не нужен. Транзистор управляется исключительно напряжением и ток через затвор не течёт.
Поделиться ссылкой:
ПохожееСхема подключения транзистора для чайников
Кремниевые транзисторы в свое время полностью вытеснили лампы. Когда же появились интегральные схемы, где транзисторов иногда насчитывалось до миллиарда штук, эти радиоэлементы стали незаменимы. В этом материале будет рассказано, как подключить биполярный транзистор и какие схемы включения транзисторов для чайников существуют.
Что это такое
Транзистор — это особый элемент электроцепи полупроводникового типа, который служит для изменения основных электрических параметров электротока и для регулирования этих параметров. В стандартном полупроводниковом триоде есть всего 3 вывода: коллектор, инжектор зарядов и базовый элемент, на который собственно и направляются электроны от управления. Также имеются комбинированные транзисторы с большой мощностью. Если обычные элементы, используемые в интегральных схемах, могут быть размером в несколько нанометров, то производственные транзисторы для промышленных предприятий имеют корпус и составляют до 1 сантиметра в ширину. Напряжение обратного типа производственных управляющих триодов достигает 1 тысячи Вольт.
2SD1710 для импульсных блоков питанияКонструкция триода сделана на основе слоев полупроводника, заключенных в корпусе элемента. В качестве полупроводников выступают материалы, в основу которых входит кремний, германий, галлий и некоторые другие химические элементы. В настоящее время проводится множество исследований, которые предлагают в качестве материалов различные виды полимеров и углеродных нанотрубок.
Важно! Когда-то кристаллы полупроводников располагали в металлических отсеках в виде шляп с тремя выводами. Такое строение было характерно для точечных элементов транзисторного типа.
Различные виды рассматриваемых радиоэлементовНа сегодняшний день строение практически всех плоских и кремниевых транзисторов основано на легированном монокристалле. Они находятся в пластмассовых, металлических или стеклянных корпусах. У многих из них есть выступающие выводы, позволяющие отвести тепло при сильном нагреве от электричества.
Кремниевый биполярный транзистор 2SA1286Выводы современных транзисторов расположены, как правило, в один ряд. Это удобно, так как плату собирают роботы, и это экономит ресурсы. Выводные контакты также не маркируются на корпусе элемента. Вид вывода определяют по инструкции эксплуатации или после тестовых замеров.
Важно! Для транзисторов применяют сплавы полупроводникового типа с разным строением: PNP или NPN. Их различие заключается в разных знаках напряженности на выводах.
Если брать схематически, то описать этот радиоэлемент можно так: два полупроводника, разделенные дополнительным слоем, который управляет проводимостью триода.
Схема устройства полевых радиоэлементовОбласть применения и основной принципы функционирования
В состоянии покоя между коллекторами транзистора нет электрического тока. Его прохождению мешает сопротивляемость переходника, которая возникает из-за одновременной работы двух слоев транзистора. Включить элемент просто: необходимо подать любое напряжение на него. Управление базой и ее токами будет напрямую переключать режимы работы транзистора с «включенного» на «выключенный».
Если же направить сигнал от аналогового источника, то он будет взаимодействовать с выходными токами путем передачи им своей амплитуды. Иначе говоря, электрический сигнал, который поступил на выходы, будет усилен. Полупроводниковые управляющие триоды вполне могут активно работать как электронные ключи или усилители электронных сигналов входа.
Простейшие схемы подключения транзисторовОбозначение на электросхемах
У транзистора есть принятое обозначение: «ВТ» или «Q». После букв нужно указать индекс позиции. Например, ВТ 2. На старых чертежах можно найти условные обозначения: «Т», «ПП» или «ПТ», которые более не используются. Транзистор рисуют в виде неких отрезков, обозначающих контакты электродов. Иногда их обводят кругом. Направление электротока в области эмиттера указывает специальная стрелка.
Схема работы простейшего радиоэлементаПо принципу действия и строению различают следующие полупроводниковые триоды:
- Полевого типа;
- Биполярного;
- Комбинированного.
Все они обладают схожим функционалом и отличаются по технологии работы.
Полевые
Такие триоды ещё называют униполярными, из-за их электрических свойств — у них происходит течение тока только одной полярности. Такой тип также подразделяется на некоторые виды по своему строению и типу регулировки:
- Транзисторы с PN переходом управления;
- Элементы с затвором изолированного типа;
- Такие же транзисторы другой структуры (металл-диэлектрик-проводник).
Важно! Изолированный затвор обладает одной отличительной особенностью — наличием диэлектрического слоя между ним и каналом.
Схема элемента с затвором изолированного типаЕще одна особенность полевых транзисторов — низкое потребление электроэнергии. Например, такой элемент может функционировать больше одного года на одной батарейке. Полевые радиоэлементы довольно независимы: они потребляют крайне мало электроэнергии. Такой прибор может годами работать на пальчиковой батарейке или небольшом аккумуляторе. Именно это и обусловило их широкое применение в электросхемах и приборах.
Электронно-дырочный переходБиполярные
Свое название эти элементы получили за то, что они способны пропускать электрические заряды плюса и минуса через один проходной канал. Также они обладают низким входным сопротивлением. Такие приспособления работают как усилители сигнала и коммутаторы. Благодаря им в электроцепь можно подключить довольно сильную нагрузку и понизить действие ее сопротивления. Биполярники являются наиболее популярными полупроводниковыми приборами активного типа.
Принцип работы биполярного транзистора в схемеКомбинированные
Комбинированные элементы изобретаются для того, чтобы по применению одного дискретного состояния достичь требуемых электрических параметров. Они бывают:
- Биполярными с внедрёнными в их схему резисторами;
- Двумя триодами одной или нескольких структур строения в единой детали;
- Лямбда-диодами — сочетанием двух полевых управляющих триодов, создающих сопротивляемость со знаком «минус»;
- Элементы, в которых полевые составляющие управляют биполярными.
Схема подключения транзистора для чайников
Наиболее популярны следующие схемы подсоединения транзисторов в цепь: с общей базовой установкой, общими выводами инжекторного эмиттера и с общим коллекторным преобразователем для подачи напряженности.
Для усилителей с базой общего типа характерно следующее:
- Низкие параметры входного сопротивления, которое не достигает даже 100 Ом;
- Неплохая температура и частота триода;
- Допустимое напряжение весьма большое;
- Требуют два различных источника питания.
Схемы второго типа обладают:
- Высокими показателями усиления электротока и напряжения;
- Низкими показателями усиления мощностных характеристик;
- Инверсионной разницей между входным и выходным напряжением.
Важно! Схема транзистора с электродами общего коллекторного типа требует одного источника питания.
Подключение по типу общего коллектора может обеспечить:
- Низкие показатели электронапряжения по усилению;
- Большая и меньшая сопротивляемость входа и выхода соответственно.
Таким образом, транзистор — один из самых распространенных радиоэлементов в электронике. Он позволяет изменять параметры электрического тока и регулировать его для корректной работы электроприборов. Существует несколько видов транзисторов, как и способов их соединения. Различаются они строением и целями использования.
Схемы Подключения Биполярных Транзисторов – tokzamer.ru
В импортных усилителях очень часто применяется мощная комплементарная пара 2SA и 2SC Мы рассмотрим их позднее при подробном изучении схемы усилительного каскада с общим эмиттером.
Конденсатор Ср является разделительным. Если его правильно выбрать, величина выходного напряжения будет значительно выше, чем входного.
Вольт-амперная характеристика стабилитрона представлена на рис.
Биполярные транзисторы
По рабочей частоте транзисторы делятся на низкочастотные, — рабочая частота не свыше 3 МГц, среднечастотные — 3…30 МГц, высокочастотные — свыше 30 МГц.
Рисунок 3.
Автор статьи предлагал регулировать частоту вращения коллекторного двигателя изменением длительности импульсов в обмотке управления ОУ.
Но параметры германиевых транзисторов были нестабильны, их самым большим недостатком следует считать низкую рабочую температуру, — не более
Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.
СХЕМЫ ВКЛЮЧЕНИЯ ТРАНЗИСТОРА. ЭМИТТЕРНЫЙ ПОВТОРИТЕЛЬ [РадиолюбительTV 42]
Характеристики транзистора, включенного по схеме об
Через базу происходит исключительно диффузионное перемещение электронов, поскольку там нет действия электрического поля. У транзистора же есть только три вывода, поэтому для реализации четырехполюсника приходится один из выводов подключать как ко входу, так и к выходу усилителя.
Положительный тип заряда, или дырки, образуются на месте высвобожденного электрона. Напряжение источника питания и нагрузка должны оставаться неизменными при обоих измерениях.
Заключение Полупроводниковые элементы используются в схемах преобразования электрических сигналов. Несмотря на то что переходные слои основаны на одном принципе, транзистор является несимметричным устройством.
Активный режим транзистора — это нормальный режим работы транзистора.
При этом параметры транзистора тут вообще никакой роли не играют. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.
Если ток базы падает, то ток коллектора также будет снижаться — человек подкорректирует его посредством реостата.
Работу усилителя хорошо видно на временных диаграммах. Рисунок 2.
Как работает транзистор? Режим ТТЛ логика / Усиление. Анимационный обучающий 2d ролик. / Урок 1
Смотрите также: Энергоаудит предприятия для чего и когда проводится
Схема с общей базой
При этом входное сопротивление очень мало, а выходное — велико.
Напомним, что реактивное сопротивление конденсатора Хс, Ом, можно вычислить по формуле: Для постоянного тока реактивное сопротивление конденсаторов стремится к бесконечности. В выходной цепи для сигнала требуется нагрузка. Кроме биполярных существуют униполярные полевые транзисторы, у которых используется лишь один тип носителей — электроны или дырки.
Активный режим транзистора — это нормальный режим работы транзистора. Самая верхняя характеристика в точке А пересекается с прямой нагрузки, после которой при дальнейшем увеличении IВ коллекторный ток уже не изменяется.
Это усиление осуществляется за счет энергии источника питания. Напряжение 0,6В это напряжение на переходе Б—Э, и при расчетах о нем не следует забывать!
Схемы включения биполярных транзисторов при объединении режимов отсечки и насыщения позволяют создавать с их помощью электронные ключи. Достоинства каскада по схеме с общим эмиттером: 1. Для того, чтобы лучше понять, как работает эмиттерная стабилизация, надо рассмотреть схему включения транзистора с общим коллектором ОК.
Схема включения биполярного транзистора с общим коллектором
Работа транзистора в ключевом режиме Прежде, чем изучать работу транзистора в режиме усиления сигнала, стоит вспомнить, что транзисторы часто используются в ключевом режиме. Эмиттерные повторители схемы с общим коллектором применяют для согласования высокого выходного сопротивления источника сигнала с низким входным сопротивлением нагрузки. Быстродействие БТ зависит от толщины базового слоя БС. Теперь проследим саму работу данной схемы: источник питания 1.
Отсюда и большой разброс коэффициента усиления у транзисторов взятых даже из одной коробки читай одной партии. И модельный ряд постоянно увеличивается, позволяя решать практически все задачи, поставленные разработчиками. Рисунок 7. Следовательно, для усилителей постоянного тока нижняя граничная частота усиления равна нулю переходные конденсаторы не требуются, а для разделения каскадов необходимо предусматривать специальные меры. На рисунке изображена схема работы транзистора в ключевом режиме.
В эмиттерном повторителе используется схема включения транзистора с общим коллектором ОК. Мощность это произведение тока на напряжение, но так как напряжение не меняется то мощность увеличивается только за счет тока! База является управляющим электродом.
Биполярные транзисторы. Принцип действия.
Характеристики транзистора, включённого по схеме оэ:
Основные элементы схемы: транзистор, резистор RL и цепь выхода усилителя с внешним питанием.
Благодаря незначительной толщине слоя микроны и большой величине градиента концентрации отрицательно заряженных частиц, почти все из них попадают в область коллектора, хотя сопротивление базы достаточно велико. Где транзисторы купить? Транзисторы по праву считаются одним из великих открытий человечества.
При работе в активном режиме на эмиттерном переходе напряжение прямое, а на коллекторном — обратное. Его также обозначают как Исходы из выше сказанного транзистор может работать в четырех режимах: Режим отсечки транзистора — в этом режиме переход база-эмиттер закрыт, такое может произойти когда напряжение база-эмиттер недостаточное. Во — первых усиление каскада зависит от конкретного экземпляра транзистора: заменил транзистор при ремонте, — подбирай заново смещение, выводи на рабочую точку.
Ответ может быть да а может и нет. Поскольку ток коллектора в десятки раз больше тока базы, этим объясняется тот факт, что коэффициент усиления по току составляет десятки единиц. Схема с общим коллектором ОК Практические варианты схем включения транзисторов структуры п-р-п и р-п-р приведены на рис. В литературе такое название почему-то почти не встречается, а вот в кругу радиоинженеров и радиолюбителей используется повсеместно, всем сразу понятно, о чем идет речь.
Читайте также: Снип по прокладке кабеля в земле
Схемы включения биполярного транзистора
Ваш email:. Для того чтобы без расчетов первоначально оценить величины RC-элементов, входящих в состав схем рис. Поэтому плотность компоновки элементов в МОП- интегральных схемах значительно выше. Коллектор имеет более положительный потенциал , чем эмиттер Как я уже говорил цепи база — коллектор и база -эмиттер работают как диоды Каждый транзистор характеризуется предельными значениями, такими как ток коллектора, ток базы и напряжение коллектор-эмиттер.
Такое состояние называют рабочей точкой транзистора, в этом случае коэффициент усиления каскада максимален. Граница на втором коллекторном переходе при этом закрыта, и через нее ток протекать не должен. Такой режим работы транзистора рассматривался уже давно. Повышение частоты приводит к снижению реактивной ёмкости коллекторного перехода, что приводит к его существенному шунтированию и ухудшению усилительных свойств каскада. Выводы транзистора звонятся как два диода, соединенные в общей точке в области базы транзистора.
Устройство и принцип действия
В биполярном транзисторе используются два типа носителей заряда — электроны и дырки, отчего такие транзисторы и называются биполярными. Нагрузкой каскада является эмиттерный резистор R2, входной сигнал подается через конденсатор C1, а выходной снимается через конденсатор C2. Сопротивление нагрузки можно изменять в широких пределах, правда, при этом особо усердствовать не надо. Коэффициент усиления транзистора зависит от толщины базы, поэтому изменить его нельзя.
Иногда она применяется для ослабления влияния нагрузки на характеристики высокочастотных генераторов и синтезаторов частоты. Все эти схемы показаны на рисунке 2. Поэтому при построении схем усилителей постоянного тока используют схемы с непосредственными связями между каскадами.
Ключевой режим работы транзистора Схема с общим эмиттером
Устройство, принцип работы и различие N-P-N и P-N-P транзисторов | Энергофиксик
Существуют два основных вида транзисторов: полевые и биполярные. Биполярные транзисторы, в свою очередь, также разделяются на тип с P-N-P и N-P-N переходом. В этом материале я вам расскажу об устройстве биполярных транзисторов и мы поговорим о принципе работы и в чем их основное различие. Итак, поехали.
Немного историиСогласно записям официальной истории дату 16.12.1947 года можно считать официальным днем рожденья одного из главных элементов всей электроники современности. Именно в этот день был представлен общественности первый транзистор, который был собран тремя учеными, а именно: Д. Бардин, У. Шокли и У. Браттейн.
yandex.ruПоявление биполярного транзистора позволило отказаться от использования электронных ламп. Вся современная электроника была бы невозможна без этого изделия. Вот такое важное открытие было совершено в середине 20-го столетия. Теперь от истории перейдем к нашим биполярным транзисторам.
Как устроен биполярный транзисторИтак, биполярный транзистор схематически можно представить следующим образом:
Посмотрите внимательно на изображение, вам оно ничего не напоминает? Да, вы правы, если присмотреться и мысленно разделить зону N – перехода, то перед нами два соединенных между собой диода (запомните этот момент, в дальнейшем он нам понадобится).
Для определения какой проводимости перед нами диод, достаточно прочитать направление P-N перехода. На рисунке выше у нас проводимость типа P-N-P. Это означает, что перед нами транзистор прямой проводимости (так как принято считать, что ток проходит от плюса к минусу).
А вот у транзистора N-P-N типа проводимость обратная
Вы заметили, что в обоих вариантах исполнения присутствуют три вывода под названием:
Эмиттер (источник, генератор), База (основа) и Коллектор (сборщик, накопитель).
Схематическое обозначение транзисторовИз всего выше написанного вы уже наверняка поняли, что есть транзисторы обратной и прямой последовательности, а это значит, что и на схемах такие элементы должны иметь различия. Давайте их рассмотрим.
Итак, обозначение транзистора прямой проводимости на схемах будет следующее:
А вот транзистор обратной проводимости обозначается уже так:
В старых советских мануалах транзисторы маркировались буквой «Т», а теперь обозначение сменили на «VT».
Как по схеме определить N-P-N или P-N-P транзистор перед вамиНа самом деле определить по схеме тип биполярного транзистора довольно просто, достаточно помнить следующее правило:
Как известно в N – полупроводнике имеется большое количество свободных электронов, а в полупроводнике P–типа расположены «дырки» – положительно заряженные частицы. А по общепринятой теории ток протекает от «плюса» к «минусу».
Если вы посмотрите на схему, то увидите, что эмиттер изображен со стрелкой, которая либо направлена к базе либо от нее. Так вот если транзистор N-P-N типа, то есть база выполнена из P– полупроводника, то ток течет от базы (стрелка эмиттера от базы). Если же база выполнена из N – полупроводника, то ток (стрелка) втекает в базу.
Как работает P-N-P транзисторС обозначением и устройством вроде все понятно, а вот как он работает давайте разбираться:
Давайте представим биполярный транзистор в виде водяной трубы с задвижкой с пружинным механизмом.
Как видно из рисунка сверху беспрепятственному протеканию воды по трубе мешает задвижка с пружинным механизмом, если мы приложим небольшое усилие (откроем задвижку сжав пружину), то вода беспрепятственно потечет по трубе. Если же мы отпустим пружину, то она распрямится и вернет задвижку на место, тем самым перекрыв трубу и поток воды будет остановлен.
Теперь вообразите, что данная труба – это транзистор P-N-P типа, значит его выводы можно представить следующим образом:
Получается, чтобы ток протекал от эмиттера к коллектору (напоминаю, что направление тока совпадает с направлением стрелки на эмиттере) нужно сделать так, чтобы ток выходил из базы, или говоря по простому: подать на базу минус.
Давайте наглядно проверим работу такого транзистора. Для этого возьмем КТ814Б и соберем простенькую схему с двумя источниками питания.
Для того, чтобы правильно подключить транзистор необходимо знать какой вывод является эмиттером, базой и коллектором. Для этого находим техническую документацию и определяем:
Лампочку я буду использовать самую обычную автомобильную, рассчитанную на 12 Вольт. Собранная схема будет выглядеть так:
Итак, чтобы наша схема заработала выставляем на источнике питания №2 12 Вольт. А на первом источнике питания начинаем очень плавно (с нуля) поднимать напряжение ровно до того момента, пока не загорится наша лампа.
Схема заработала при напряжении 0,66 Вольт на первом источнике.
То есть произошло “открытие” транзистора и через цепь эмиттер-коллектор начал проходить ток.
Иначе говоря, напряжение, которое открыло наш транзистор – это ни что иное как падение напряжения на P-N переходе база-эмиттер, которое как раз и находится в пределах от 0,5 до 0,7 В для кремниевых транзисторов.
А как дела обстоят с транзисторами, где используется N-P-N переход.
Принцип работы N-P-N транзистора
Если внимательно посмотреть на техническую документацию к транзистору КТ814Б, то можно найти запись о том, что комплиментарной парой к этому транзистору является КТ815Б, а он различается лишь тем что здесь используется N-P-N переход.
yandex.ruИ схема подключения будет выглядеть так:
Посмотрите внимательно на эту схему и схему включения КТ814Б, вы ничего не заметили? Все верно, единственное различие между этими двумя транзисторами заключено в том, что транзистор с P-N-P переходом открывается “минусом” (так как на базу подается отрицательный потенциал), а вот транзистор N-P-N открывается “плюсом”.
Заключение
В этом материале мы с вами познакомились с устройством биполярных транзисторов, их устройстве и принципе работы, а также с тем как они обозначаются на схемах. Если статья оказалась вам интересна или полезна, то оцените ее лайком. Спасибо за ваше внимание!
как соединить два транзистора последовательно
как соединить два транзистора последовательноСеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange – это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 12к раз
\ $ \ begingroup \ $Я пытаюсь соединить два транзистора вместе, чтобы они использовали одну базу и включались вместе.Я думал, что их можно просто соединить вот так:
За исключением того факта, что я использую только 1 вход, поэтому он должен выглядеть примерно так:
смоделировать эту схему – Схема создана с помощью CircuitLab
, где у меня на конце должна гореть светодиодная лампочка. Я попытался сделать такую схему на макетной плате, но светодиод ничего не делает, и ток не проходит. вот картинка,
: белый и черный контакты подключены к батарее, так что здесь может быть не так?
jbarlow1,95599 серебряных знаков1515 бронзовых знаков
Создан 30 июл.
Poifqpoifq711 золотой знак11 серебряный знак11 бронзовый знак
\ $ \ endgroup \ $ 7 \ $ \ begingroup \ $Два простых способа исправить это.
Используйте транзисторы PNP вместо NPN. NPN не будет работать перед нагрузкой из-за того, что его эмиттер ниже, чем его базовый. Замените два 2n3904 на их аналоги 2n3906 PNP и переместите их основание на землю.
Переместите груз. Поместите светодиод и его токоограничивающий резистор перед коллекторами транзистора.
смоделировать эту схему – Схема создана с помощью CircuitLab
Также измените номиналы резисторов.100 Ом при 9 В для светодиода – это слишком мало. 300 Ом или выше для светодиодного резистора и 1 кОм для транзисторов.
Но это бессмысленно. Поскольку у вас есть обе базы, связанные вместе, единственное, что делают эти транзисторы, – это тратят энергию (как VCE, так и VBE). Один транзистор в любой конфигурации лучше. Откровенно говоря, лучше не было бы никакого транзистора, раз уж вы его просто держите включенным.
Создан 30 июл.
Прохожий65.1k55 золотых знаков7272 серебряных знака179179 бронзовых знаков
\ $ \ endgroup \ $ 1 \ $ \ begingroup \ $На мой взгляд, распиновка 2N3904 E и C перепуталась. Например, светодиод переходит на 100R, затем 100R идет на коллектор RH 2N3904, где, как показано на схеме, 100R должен быть подключен к эмиттеру. и т.д. и т.д.
Создан 30 июл.
\ $ \ endgroup \ $ Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Последовательное соединение транзисторов – Обмен электротехнического стека
Последовательное соединение транзисторов – Электротехнический стековый обменСеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange – это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 7к раз
\ $ \ begingroup \ $Я знаю, что мы можем соединить два или более транзисторов параллельно, чтобы увеличить максимальный ток переключения, но как насчет увеличения максимального напряжения?
Можем ли мы соединить их последовательно?
Например, подключение двух 2N3055 для получения 100 В 5 А, а не 50 В 5 А?
JRE48.1,995 золотых знаков7676 серебряных знаков132132 бронзовых знака
Создан 08 фев.
М.А.К.М.А.К1,69811 золотых знаков2020 серебряных знаков4040 бронзовых знаков
\ $ \ endgroup \ $ 10 \ $ \ begingroup \ $Да, это возможно, но менее тривиально, чем их параллельное размещение.
Что вам нужно, так это кодирование , которое выполняется так:
смоделировать эту схему – Схема создана с помощью CircuitLab
Qsw выполняет фактическое переключение
Qcasc предназначен для разделения напряжения между транзисторами
Я использовал такие схемы, где мне нужно переключать 5,5 В, но я ограничен использованием (на кристалле) транзисторов, которые могут выдерживать только 2,7 В.
Создан 08 фев.
Бимпелреккие74.2k22 золотых знака7676 серебряных знаков167167 бронзовых знаков
\ $ \ endgroup \ $ 1 \ $ \ begingroup \ $Каскодный усилитель – это разновидность последовательного соединения, в котором каскад с общим эмиттером управляет каскадом с общей базой. Википедия показывает вариант с несколькими общими базовыми стадиями:
Создан 08 фев.
\ $ \ endgroup \ $ 4 \ $ \ begingroup \ $можем ли мы соединить их последовательно?
да.
к примеру подключение двух 2N3055 дало 100В 5А, а не 50В 5А?
Да, если напряжение переключения также соответственно увеличивается.
В противном случае верхний транзистор принимает большую часть падения напряжения.
Такие устройства существуют / существовали. Транзисторы Google с переключением эмиттеров. ST сделал кое-что.
Создан 08 фев.
dannyfdannyf4,08111 золотой знак55 серебряных знаков99 бронзовых знаков
\ $ \ endgroup \ $Не тот ответ, который вы ищете? Просмотрите другие вопросы с метками транзисторы или задайте свой вопрос.
Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Основы транзисторов– BJT: 7 шагов
Существует много-много типов BJT, и большинство из них взаимозаменяемы для подавляющего большинства проектов, если вы правильно подбираете типы.Это означает, что список запчастей полностью доступен для интерпретации в соответствии с тем, что у вас есть дома в корзине с запчастями.
Вам потребуется –
+ транзисторы типа NPN и PNP. Для этих демонстраций я буду использовать 2N3904 (NPN) и 2N3906 (PNP) почти для всего, поскольку их очень легко достать. Любые различия будут отмечены. 2N2222 BJT можно использовать для 2N3904, а 2N2907 можно использовать для 2N3906 при необходимости.
+ различные резисторы – подойдет диапазон значений от 100 до 100 кОм.При необходимости будут указаны точные значения.
+ другие биты – светодиоды, двигатель, динамик, датчик изгиба, электретный микрофон, аудиопреобразователь и т. Д. В основном компоненты, которые требуют некоторого усиления для использования или требуют большей мощности, чем может обеспечить схема. Некоторые из них будут использоваться, другие – предложения для ваших собственных проектов позже. Подробности будут представлены в демоверсиях.
+ макетная плата – ни одна из этих демонстраций не предназначена для постоянного использования, поэтому возьмите макет для упрощения сборки
+ перемычки – для соединения битов
+ 9В батареи и разъемы для батарей – для питания
Изображения 1 и 2 являются диаграммы для обоих типов БЮТ – NPN и PNP.Три контакта помечены как B ase, C ollector и E mitter (к сведению – для полевых транзисторов они обозначены как G ate, D rain и S ource и выполняют те же функции. ). Внимательно обратите внимание на ориентацию трех контактов на изображении 3. Таблицы данных – ваш друг, и они избавят вас от многих головных болей. Всегда дважды проверяйте таблицу для BJT, который вы используете, поскольку некоторые используют другую конфигурацию контактов. В любом случае я всегда скрещиваю булавки, что для большинства проектов не будет проблемой, если вы поймаете это достаточно быстро, но лучше этого избегать.Вот спецификации для 2N3904 и 2N3906.
Как всегда, в даташитах много информации. Обратите особое внимание на максимальные рейтинги. Не работайте на пределе максимальных значений, если можете этого избежать, всегда оставляя себе место. Теперь снова посмотрим на изображение 1. Чтобы биполярные транзисторы NPN работали, базовое напряжение (Vb) должно быть более положительным, чем напряжение эмиттера (Ve). И напряжение коллектора (Vc) должно быть более положительным, чем Vb. Возвращаясь к максимальным характеристикам 2N3904 из таблицы данных, мы видим, что если Ve равно 0, Vb может быть не более чем на 6 В больше положительного значения.И напряжение Vc может быть не более чем на 40 В положительнее, чем Ve. Vb должен быть где-то между Ve и Vc, чтобы BJT работал. Порог Vb для многих BJT составляет около 0,7 В, что означает, что при этом напряжении они начинают открываться. Кроме того, природа BJT заключается в том, что, хотя вам потребуется минимум 0,7 В для его включения, ток через базу является определяющим фактором для производительности. По мере увеличения тока базы увеличивается и ток коллектора. Это отличается от полевых МОП-транзисторов, которые работают больше с напряжением затвора, чем с током.
Для работы PNP BJT, переверните все вышеописанное. Vb должен быть больше ОТРИЦАТЕЛЬНЫЙ , чем Ve, и Vc должен быть больше ОТРИЦАТЕЛЬНЫЙ , чем Vb. Небольшая хитрость, которая поможет запомнить, – это запомнить тип, с которым вы работаете. N P N требует положительного напряжения и тока P , а P N P требует относительного напряжения и тока N .
BJT должны быть защищены от слишком большого тока, как и любой другой компонент. Никогда не подключайте контакты эмиттера и коллектора напрямую между источником питания и GND.Всегда подключайте компонент с сопротивлением последовательно. Возвращаясь к таблице данных 2N3904, мы видим, что максимальный ток коллектора составляет 200 мА, но в пунктах под характеристиками на первой странице указано 100 мА. Это идеальная цифра, и неплохо использовать ее в качестве максимального значения, установленного самим собой. Опять же, избегайте максимальных ограничений, используя резисторы. Очевидно, что для этих демонстраций мы будем работать на гораздо более низком уровне, чем максимальный.
На рисунке 4 показан другой тип упаковки для BJT. Меньший по размеру пакет, как на изображении 3, известен как TO-92.Более крупный стиль – TO-220. Эти пакеты используются во многих приложениях, помимо BJT и FET, поэтому не думайте, что, поскольку он выглядит как один, это один. Всегда проверяйте номера деталей. Разница в том, что TO-220 может выдерживать гораздо более высокие токовые нагрузки, чем TO-92, если он правильно соединен с подходящим радиатором. У меня есть такие, которые рассчитаны на 30 А, а не на 0,2 А. Есть еще много типов корпусов для транзисторов, если вам интересно, и вы даже можете получить их в виде массивов в корпусе IC на одном куске силикона, например LM3046.
Что такое транзистор NPN? – Определение, строительство и работа
Определение: Транзистор, в котором один материал p-типа помещен между двумя материалами n-типа, известен как транзистор NPN . NPN-транзистор усиливает слабый сигнал , поступающий в базу, и производит сильные сигналы усиления на конце коллектора. В NPN-транзисторе направление движения электрона – от эмиттера к области коллектора , благодаря которой в транзисторе образуется ток.Такой тип транзисторов чаще всего используется в схеме, потому что их основными носителями заряда являются электроны, которые имеют большую подвижность по сравнению с дырками.
Конструкция NPN-транзистора
NPN-транзистор имеет два диода, соединенных спиной друг к другу. Диод на левой стороне называется диодом эмиттер-база, а диоды на левой стороне – диодом коллектор-база. Эти имена даны согласно названиям терминалов.
NPN-транзистор имеет три вывода: эмиттер, коллектор и базу.Средняя часть NPN-транзистора слегка легирована, и это наиболее важный фактор работы транзистора. Эмиттер умеренно легирован, а коллектор сильно легирован.
СхемаNPN транзистора
Принципиальная схема NPN-транзистора показана на рисунке ниже. Коллектор и база соединены с обратным смещением, в то время как эмиттер и база соединены с прямым смещением. Коллектор всегда подключен к положительному источнику питания, а база – к отрицательному источнику питания для управления состояниями ВКЛ / ВЫКЛ транзистора.
Работа транзистора NPN
Принципиальная схема NPN-транзистора показана на рисунке ниже. Прямое смещение применяется к переходу эмиттер-база, а обратное смещение применяется к переходу коллектор-база. Напряжение прямого смещения V EB мало по сравнению с напряжением обратного смещения V CB .
Эмиттер NPN-транзистора сильно легирован. Когда к эмиттеру прикладывается прямое смещение, основные носители заряда движутся к базе.Это вызывает ток эмиттера I E . Электроны входят в материал P-типа и соединяются с отверстиями.
База NPN-транзистора слегка легирована. Благодаря этому только несколько электронов объединяются, а оставшиеся составляют базовый ток I B . Этот базовый ток входит в область коллектора. Обратный потенциал смещения области коллектора прикладывает высокую силу притяжения к электронам, достигающим коллекторного перехода. Таким образом притягивают или собирают электроны на коллекторе.
В базу вводится весь ток эмиттера. Таким образом, можно сказать, что ток эмиттера складывается из тока коллектора и базы.
Npn Transistor – обзор
Bipolar Transistors
Обычный линейный биполярный процесс, который все еще очень широко используется, предлагает npn-транзисторы с частотой примерно 500 МГц F t , боковые pnp-транзисторы с F t 3–7 МГц и pnp подложки (часто ошибочно называемые вертикальными pnp) с F t около 15 МГц.Ранние тексты IC цитировали боковой pnp-транзистор как устройство с очень низким коэффициентом усиления, но это неверно для современных процессов с хорошо отожженными поверхностными оксидами. Такой pnp, созданный на основе процесса типа операционного усилителя с эпи-материалом 5 Ом-см, теперь может иметь пиковый бета-коэффициент в диапазоне 50-200, и этот пик обычно возникает при токе коллектора около 10 мкА для небольшого устройства. При более низких токах бета уменьшается, но, как правило, ее можно использовать даже в диапазоне пикоампер. При высоких токах инжекция высокого уровня резко снижает коэффициент усиления по току, что делает боковой pnp крайне непригодным в качестве силового устройства, если он не сделан неоправданно большим.Кроме того, низкий F t (и высокий избыток фазы) ограничивают этот транзистор низкочастотными приложениями. Подложка pnp, конечно, имеет свой коллектор, неизменно подключенный к отрицательному источнику питания (или, точнее, подложку p-типа, которая почти всегда должна быть отрицательным источником питания), но нашла применение в качестве повторителя выходного эмиттера благодаря своей улучшенной F t и мощность грузоподъемности. Однако эти улучшения не являются существенными, и такой выходной каскад быстро выходит из строя при токах, значительно превышающих несколько десятков миллиампер, или на частотах выше нескольких мегагерц.
Несколько процессов развились из этого линейного биполярного процесса стандартного типа, который включает в себя многократно рассеиваемый pnp-транзистор с характеристиками, более близкими к npn-транзистору.
Обычный метод достижения этого – диффузия в p-лунке, которая действует как коллектор pnp, и дополнительная диффузия n-типа для базы pnp. Излучатель pnp обычно может использоваться как основание npn, а скрытый слой p-типа (если он есть) также использовался как часть диффузии изоляции.Диэлектрическая изоляция упрощает эту процедуру, и поэтому первые коммерчески успешные примеры такого процесса использовали этот тип изоляции. Еще один метод создания такого «дополнительного» процесса – перевернуть биполярный процесс с ног на голову, чтобы оптимизировать его для pnp-транзистора. Хотя это действительно усложняет изготовление npn-устройства, здесь можно воспользоваться большей свободой из-за неотъемлемого преимущества в производительности.
Такие процессы занимают от 10 до 18 шагов маски и обеспечивают pnp-транзисторы с F t в диапазоне 150–600 МГц, что является значительным улучшением по сравнению с латеральными типами.
Другая тенденция – снижение напряжения питания для линейных интегральных схем. Если не требуется широкий динамический диапазон сигнала, этот подход позволяет изготавливать биполярные транзисторы значительно меньшего размера и, следовательно, быстрее. Кроме того, такие процессы позволяют интегрировать схемы «аналоговых БИС», а также позволяют объединить изрядное количество биполярной логики на одном кристалле.
Типичные низковольтные аналоговые биполярные процессы (обычно предусмотрен пробой 12 В для облегчения работы от источников питания ± 5 В) используют очень быстрые npn-транзисторы с F t от 1.От 5 до 8 ГГц или около того. Из-за задействованной небольшой геометрии боковые pnp-транзисторы часто могут быть удивительно быстрыми, F t 80 МГц не редкость.
Опять же, есть тенденция к интеграции действительно комплементарного pnp-транзистора, и теперь для некоторых из этих процессов доступны F t 1–4 ГГц.
Обычная диэлектрическая изоляция (почти оксюморон) не может обеспечить контроль эпитаксиальной толщины, необходимый для этих процессов, поэтому все они в основном изолированы от стыка, хотя емкость боковых стенок часто снижается с помощью траншеи с плазменным или реактивно-ионным травлением.Последние достижения в области кислородной имплантации и соединения пластин показывают, что диэлектрически изолированные версии этих процессов скоро станут реальностью, но я быстро выхожу за рамки этой главы.
Транзисторы используются для увеличения мощности для управления мощными устройствами, такими как реле или двигатель. Транзисторы бывают разных форм, размеров и упаковок, как показано справа. | |
Независимо от того, как они выглядят, у всех транзисторов есть три соединения: эмиттер (E), база (B) и коллектор (C), как показано справа для упаковочного ящика T092B. | |
Однако идентификация трех соединений иногда сбивает с толку, поскольку они различаются в зависимости от корпуса транзистора с идентификационными номерами, такими как TO18, TO92A, TO92B, TO3 и т. Д., Как показано справа. | |
Независимо от их формы, размера или упаковки, все транзисторы делятся на категории NPN или PNP, где N означает отрицательный, а P – положительный. | |
Транзистор общего назначения NPN – это 3904 или 2N2222. Далее показан символ транзистора NPN. Типичное подключение NPN-транзистора показано справа. | |
Транзистор общего назначения PNP – это 3906.Далее показан символ транзистора PNP. Типичное подключение транзистора PNP показано справа. | |
Может быть, вам понадобится еще более мощный транзистор. Транзисторы Дарлингтона являются универсальными и могут обрабатывать до:
| |
Их соответствующие номера по каталогу:
Типичное подключение NPN-транзистора Дарлингтона показано справа. | |
Для управления любыми мощными устройствами, такими как динамик, двигатель или реле, с помощью ESP8266 (который представляет собой устройство с напряжением 3,3 В) нам необходимо использовать два транзистора, как показано справа. Первый транзистор PNP 3906 действует как переключатель. Он включается отрицательным низким сигналом от ESP8266 к базе. Когда этот транзистор включен, положительный выходной сигнал с коллектора этого транзистора включается и управляет вторым транзистором NPN 3904 или TIP120.Этот второй транзистор действует как усилитель для управления высоковольтным устройством, таким как динамик или двигатель. Штифты PNP 3906 или NPN 3904 Штыри NPN TIP120 | |
|
Транзистор – Energy Education
Рис. 1. [1] Схематическое изображение NPN-транзистора с обозначенными токами коллектора, базы и эмиттера.Транзисторы – это компоненты электрических цепей, которые могут действовать как усилители и как переключатели.Транзисторы являются неотъемлемой частью современных схем, сотни миллионов из которых используются в современных интегральных схемах для вычислений. Они являются основой цифровой логики и вычислений, и они стали катализатором революции в электронике. [2] Самым основным типом транзисторов является транзистор с биполярным переходом (см. Рисунок 1).
Типы и функции
Транзисторы с биполярным переходом (BJT) состоят из трех легированных полупроводников. NPN-транзисторы имеют тонкую p-легированную область между двумя n-легированными секциями, в то время как PNP-транзисторы имеют тонкую n-легированную область между двумя p-легированными участками.Единственное функциональное различие между транзисторами PNP и NPN заключается в смещении каждого PN-диода, необходимого для работы транзистора. [3] Все три области транзистора имеют четкое соединение с внешней схемой (см. Рисунок 2). Концевые области называются коллектором и эмиттером, так что обычный ток течет от коллектора к эмиттеру через NPN-транзистор. [4]
Рис. 2. [3] a) Схема PNP b) Схема PNP c) Схема NPN d) Схема NPNБиполярные транзисторы работают как регуляторы тока или электронные переключатели.В зависимости от напряжения небольшого тока через базу, гораздо больший ток коллектора-эмиттера может строго контролироваться или отключаться.
Большинство современных транзисторов известны как металлооксидные полупроводниковые полевые транзисторы (МОП-транзисторы), которые работают по тем же принципам, что и биполярные транзисторы, но устроены и работают совершенно по-другому. Однако как BJT, так и MOSFET имеют одинаковую фундаментальную способность управлять большим током с помощью небольшого. [5]
Для получения дополнительной информации о том, как работают транзисторы, посетите All About Circuits and the Simulation at Learn About Electronics.
использует
Транзисторы повсеместно используются в современной электронике, но наиболее фундаментальное применение транзистора – это электронный переключатель. В режиме отсечки транзистор не пропускает ток между коллектором и эмиттером. В режиме насыщения транзистор допускает неограниченный ток. Эти два различных состояния создают бинарный эффект, который можно использовать для создания логических вентилей, микроконтроллеров, микропроцессоров и других интегральных схем. [6] Таким образом, транзистор является фундаментальным компонентом всех цифровых вычислений.
Транзисторы также широко используются в качестве усилителей, так как они пропускают небольшой входной ток через базу для создания большего пропорционального тока между коллектором и эмиттером. Усиление играет ключевую роль во многих схемах, особенно в микрофонах, громкоговорителях, радио, телевизорах, телефонах и слуховых аппаратах. [7] [8] Транзисторное усиление также позволяет получить большой коэффициент усиления по току и сложные процессы, такие как дифференциальное усиление, при котором усиливается разница между двумя входными сигналами.