Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

НОУ ИНТУИТ | Лекция | Более сложные логические элементы

< Дополнительный материал  || Лекция 4: 123

Аннотация: В лекции рассказывается о принципах работы, характеристиках и типовых схемах включения логических элементов, выполняющих сравнительно сложные функции – элементов Исключающее ИЛИ, И-ИЛИ-НЕ, триггеров Шмитта, а также приводятся схемотехнические решения, позволяющие реализовать на их основе часто встречающиеся функции.

Ключевые слова: ПО, функция, таблица истинности, единица, компаратор кодов, сумматор, инвертор, входной, управляющий сигнал, задержка распространения, выход, вариант использования, объединение, мультиплексор, двунаправленные линии, триггер Шмитта, очередь, логическая модель, график, запаздывания, память, генератор импульсов, Z-резистор, замыкание

Элементы Исключающее ИЛИ

Элементы Исключающее ИЛИ (по-английски — Exclusive-OR) также можно было бы отнести к простейшим элементам, но функция, выполняемая ими, несколько сложнее, чем в случае элемента И или элемента ИЛИ. Все входы элементов Исключающее ИЛИ равноправны, однако ни один из входов не может заблокировать другие входы, установив выходной сигнал в уровень единицы или нуля.

Таблица 4.1. Таблица истинности двухвходовых элементов исключающего ИЛИ
Вход 1Вход 2Выход
000
0
1
1
101
110

Рис. 4.1. Обозначения элементов Исключающее ИЛИ: зарубежные (слева) и отечественные (справа)

Под функцией Исключающее ИЛИ понимается следующее: единица на выходе появляется тогда, когда только на одном входе присутствует единица. Если единиц на входах две или больше, или если на всех входах нули, то на выходе будет нуль. Таблица истинности двухвходового элемента Исключающее ИЛИ приведена в табл. 4.1. Обозначения, принятые в отечественных и зарубежных схемах, показаны на рис. 4.1. Надпись на отечественном обозначении элемента Исключающее ИЛИ “=1” как раз и обозначает, что выделяется ситуация, когда на входах одна и только одна единица.

Элементов Исключающее ИЛИ в стандартных сериях немного. Отечественные серии предлагают микросхемы ЛП5 (четыре двухвходовых элемента с выходом 2С), ЛЛ3 и ЛП12, отличающиеся от ЛП5 выходом ОК. Слишком уж специфическая функция реализуется этими элементами.

С точки зрения математики, элемент Исключающее ИЛИ выполняет операцию так называемого суммирования по модулю 2. Поэтому эти элементы также называются сумматорами по модулю два. Как уже отмечалось в предыдущей лекции, обозначается суммирование по модулю 2 знаком плюса, заключенного в кружок.

Основное применение элементов Исключающее ИЛИ, прямо следующее из таблицы истинности, состоит в сравнении двух входных сигналов. В случае, когда на входы приходят две единицы или два нуля (сигналы совпадают), на выходе формируется нуль (см. табл. 4.1). Обычно при таком применении на один вход элемента подается постоянный уровень, с которым сравнивается изменяющийся во времени сигнал, приходящий на другой вход. Но значительно чаще для сравнения сигналов и кодов применяются специальные микросхемы компараторов кодов, которые будут рассмотрены в следующей лекции.

В качестве сумматора по модулю 2 элемент Исключающее ИЛИ используется также в параллельных и последовательных делителях по модулю 2, служащих для вычисления циклических контрольных сумм. Но подробно эти схемы будут рассмотрены в лекциях 14,15.

Важное применение элементов Исключающее ИЛИ — это управляемый инвертор (рис. 4.2). В этом случае один из входов элемента используется в качестве управляющего, а на другой вход элемента поступает информационный сигнал. Если на управляющем входе единица, то входной сигнал инвертируется, если же нуль — не инвертируется. Чаще всего управляющий сигнал задается постоянным уровнем, определяя режим работы элемента, а информационный сигнал является импульсным. То есть элемент Исключающее ИЛИ может изменять полярность входного сигнала или фронта, а может и не изменять в зависимости от управляющего сигнала.

Рис. 4.2. Элемент Исключающее ИЛИ как управляемый инвертор

В случае, когда имеется два сигнала одинаковой полярности (положительные или отрицательные), и при этом их одновременный приход исключается, элемент Исключающее ИЛИ может быть использован для смешивания этих сигналов (рис.

4.3). При любой полярности входных сигналов выходные сигналы элемента будут положительными. При положительных входных сигналах элемент Исключающее ИЛИ будет работать как элемент 2ИЛИ, а при отрицательных он будет заменять элемент 2И-НЕ. Такие замены могут быть полезны в тех случаях, когда в схеме остаются неиспользованными некоторые элементы Исключающее ИЛИ. Правда, при этом надо учитывать, что задержка распространения сигнала в элементе Исключающее ИЛИ обычно несколько больше (примерно в 1,5 раза), чем задержка в простейших элементах И, И-НЕ, ИЛИ, ИЛИ-НЕ.

Рис. 4.3. Применение элемента Исключающее ИЛИ для смешивания двух неодновременных сигналов

Рис. 4.4.

Выделение фронтов входного сигнала с помощью элемента Исключающее ИЛИ

Еще одно важнейшее применение элемента Исключающее ИЛИ — формирование коротких импульсов по любому фронту входного сигнала (рис. 4.4). В данном случае не важно, положительный фронт входного сигнала или отрицательный, на выходе все равно формируется положительный импульс. Входной сигнал задерживается с помощью конденсатора или цепочки элементов, а затем исходный сигнал и его задержанная копия поступают на входы элемента Исключающее ИЛИ. В обеих схемах в качестве элементов задержки используются также двувходовые элементы Исключающее ИЛИ в неинвертирующем включении (на неиспользуемый вход подается нуль). В результате такого преобразования можно говорить об удвоении частоты входного сигнала, так как выходные импульсы следуют вдвое чаще, чем входные.

Данную особенность элементов Исключающее ИЛИ надо учитывать в том случае, когда на оба входа элемента поступают изменяющиеся одновременно сигналы. При этом на выходе элемента возможно появление коротких паразитных импульсов по любому из фронтов входных сигналов. Исключить их влияние на дальнейшую схему можно, например, с помощью синхронизации, подобной рассмотренной в предыдущем разделе.

Дальше >>

< Дополнительный материал  || Лекция 4: 123

Что такое триггер Шмидта. Схемы триггера Шмитта

Содержание:

Определение триггера Шмитта

Триггер Шмитта (ТШ) обладает двумя устойчивыми состояниями. На его выходе может быть высокое (высокое состояние) или низкое (низкое состояние) напряжение. Переход из одного состояния в другое осуществляется при изменении входного напряжения.

Различают два вида триггеров Шмитта. Первый вид – неинвертирующий, переходит в высокое состояние при повышении напряжения, в низкое – при понижении. Второй вид – инвертирующий, переходит в высокое состояние при понижении напряжения, в низкое – при повышении.

Неинвертирующий триггер Шмитта переходит в высокое состояние, если напряжение на входе становится выше, чем Uon, переходит в низкое состояние, если напряжение на входе становится ниже, чем Uoff. Причем Uon больше, чем Uoff на величину Электрического гистерезиса триггера Шмитта.

Инвертирующий триггер Шмитта переходит в высокое состояние, если напряжение на входе становится ниже, чем Uon, переходит в низкое состояние, если напряжение на входе становится выше, чем Uoff. Причем Uon меньше, чем Uoff на величину Электрического гистерезиса триггера Шмитта.

Если напряжение на входе находится между Uon и Uoff, то триггер Шмитта сохраняет свое состояние.

Электрическая схема, обладающая описанными свойствами, с точки зрения инженера – схемотехника, вне зависимости от внутреннего устройства, является триггером Шмитта.

История

Функциональный триггер можно создать из обычного реле с электромеханическим приводом. Установив нужным образом контакты управляющей цепи, обеспечивают включение силовой группы после определенной комбинации входных сигналов. Отдельной клавишей выполняют сброс.


Схема RS триггера на одном реле

Электронные аналоги были собраны в начале прошлого века из ламповых приборов. Действующие схемы впервые опубликованы российскими и английскими учеными в 1918-20 гг. Позднее стали применять полупроводниковые транзисторы. В наши дни соответствующие устройства создают с применением микроэлектронных технологий.

Классификация

Энергия конденсатора

Изделия этой категории разделены на две основные группы по принципу сигналов управления. В первой – формируется заданная последовательность выходных сигналов, если установлено состояние «1». После переходе в «0» генерация прекращается. Вторая – способна переключать выходное напряжение соответствующим образом. Как правило, «1» примерно соответствует уровню источника питания.

Также триггеры различают по следующим параметрам:

  • синхронность рабочих циклов;
  • статические (динамические) способы управления;
  • сложность логических схем;
  • одно,- или двухступенчатые.

Триггеры на логических элементах и на операционном усилителе

Для реализации статических триггеров хорошо подходит схема усилителя с двумя каскадами. Связь между ними организуют прямую либо с ограничительными резисторами в соответствующих цепях.


Триггер на логических элементах

Триггер (Trigger) Шмитта

Изделия этой категории могут быть созданы с применением разной элементной базы. В данном разделе рассмотрен триггер Шмитта на транзисторах. Он управляется изменением аналогового сигнала. В зависимости от уровня напряжения, выполняется переключение состояния памяти в соответствующее положение «0» или «1».


Триггер Шмидта на транзисторах с подключенной нагрузкой

Устройство триггера

Триггер по своей схемотехнике очень похож на простейшее электронное устройство — мультивибратор. Но в отличие от него, он имеет два устойчивых положения. Эти состояния обеспечиваются изменениями входного сигнала при достижении им определённого значения. Переход из одного положения в другое называют перебросом. В результате на выходе логического элемента возникает скачок напряжения, форма которого зависит от скорости процессов, проходящих в радиоприборах.

Наибольшее применение получил триггер, работающий на транзисторах. Связанно это со способностью последних работать в ключевом режиме. Биполярный транзистор — это полупроводниковый прибор, имеющий три вывода. Эти электроды называются:

  • эмиттер;
  • база;
  • коллектор.

В грубом приближении транзистор представляет собой два диода, объединённых электрической связью. Состоит он из двух p-n переходов. Название биполярный элемент получил из-за того, что одновременно в нём используются два типа носителей заряда. В триггерных схемах транзистор работает в режиме ключа, суть которого заключается в управлении силой тока коллектора путём изменения значения на базе. При этом коллекторный ток по своей величине превышает базовый.

При таком включении важны лишь токи, а напряжения особой роли не играют. Поэтому при возникновении определённого тока на базе транзистор открывается и пропускает через себя сигнал. Сигнал на коллекторе полупроводникового прибора будет обратным по входному знаку, то есть инвертированным. А значит, когда на базовом выходе будет присутствовать разность потенциалов, на коллекторном она будет равна нулю, и наоборот.

Эта способность транзисторов и используется в триггерах, схема которых построена на двух ключах с перекрёстными обратными связями. Когда используются транзисторные ключи с одинаковой обвязкой, то триггер считается симметричным, в другом же случае — несимметричным.

Принцип работы

У классического триггера Шмитта один вход и один выход. И, как и положено триггеру, два состояния: на выходе 0 (низкий потенциал) или 1 (высокий потенциал).

На вход может поступать аналоговый сигнал сложной формы. При достижении определённого порога на входе триггер переключается из одного состояния в другое.

Но главная его особенность — наличие гистерезиса, то есть порог переключения зависит от текущего состояния самого триггера.

Допустим, наш триггер изначально в состоянии 0, и мы начинаем плавно поднимать напряжение на входе. При достижении порога U1 триггер переключится в состояние 1. И теперь, чтобы вернуть его в состояние 0, уже недостаточно опустить входное напряжение ниже U1, переключение произойдёт только при значительно меньшем напряжении U0. Для большей наглядности посмотрите вот эти графики:

График входного и выходного сигналов триггера Шмитта

Ну, а если нарисовать график зависимости выходного сигнала от входного, то получится как раз такая симпатичная петелька гистерезиса ⎎. Если вы увидите такое обозначение на схеме, скорее всего, где-то там скрывается триггер Шмитта.

Место триггеров в цифровой схемотехнике

В отличие от комбинационных логических схем, которые изменяют состояние в зависимости от фактических сигналов, поданных на их входы в определенное время, последовательностные логические имеют некоторую форму присущей им встроенной «памяти», так что они могут учитывать как предыдущее, так и фактическое состояние их входов и выходов. Общая структурная схема последовательностного устройства показана ниже.


RS-триггер как цифровой управляющий автомат включает собственно память и комбинационную схему управления на типовых лигических элементах, реализующую его входной логический алгоритм. Если рассматривать эту схему применительно к простейшим схемам триггеров, то они не имеют структурно выделенной памяти в виде какой-то специализированной микросхемы или схемного узла. Память триггера существует на уровне функции, она словно встроена в алгоритм работы его комбинационной схемы управления. Проявлением этой «памяти» является так называемая бистабильность триггера, выходы которого могут находиться в одном из двух основных состояний: логической единицы (далее — 1) или логического нуля (далее — 0). Установившиеся значения своих выходов триггер запоминает («защелкивает» их) и сохраняет, пока не возникнет очередное изменение его входных сигналов.

Схема триггера Шмитта на транзисторах

Давайте перейдём к практике и соберём вот такую простенькую схему, чтобы поэкспериментировать с триггером Шмитта (картинки можно кликать для увеличения).

Схема триггера Шмитта на транзисторах

Rвх здесь у нас имитирует входной сигнал: вращая ручку резистора, можно подавать на вход разные напряжения. Ну а чтобы наглядно увидеть работу триггера, в коллекторную цепь второго транзистора включён светодиод, который горит, если транзистор открыт.

В исходном состоянии (на входе нет сигнала) транзистор Т1 закрыт. При этом на базе Т2 оказывается почти половина напряжения питания — через делитель R2-R4-R5. T2 открыт, светодиод горит, а на выходе низкий потенциал.

Триггер в состоянии “ноль”

Если мы начнём поднимать напряжение на входе, в какой-то момент оно окажется достаточным, чтобы открылся T1. Тем самым он фактически зашунтирует R4-R5, потенциал на базе T2 резко упадёт и он закроется. Светодиод погаснет, а на коллекторе появится высокий уровень (1).

Триггер в состоянии “единица”

Откуда же в этой схеме берётся гистерезис? Всё дело в резисторе R3, который осуществляет положительную обратную связь. Какой бы из транзисторов ни был открыт, его ток течёт через R3. Но, для этой схемы очень важно, что коллекторная нагрузка Т2 меньше нагрузки T1. То есть суммарное сопротивление R6 и светодиода меньше, чем R2. А, значит, когда открыт Т2, через R3 течёт больший ток, чем когда открыт T1. Соответственно, и падение напряжение на R3 больше, когда триггер в состоянии 0.

Это напряжение приложено плюсом к эмиттеру T1, оно мешает ему открываться, т. к. уменьшает разницу потенциалов между базой и эмиттером. Вот и получается, что для перекидывания триггера из 0 в 1 нужно приложить большее напряжение к базе T1. А обратное переключение происходит при более низком входном напряжении, т. к. в этот момент плюс на эмиттере поменьше. Фактические напряжения, которые я измерил в работающей схеме, отмечены на рисунках выше. Пороги переключения U0 и U1 у меня получились, соответственно, 1.78 и 1.94 В.

Схема собрана на макетной плате

Ну и конечно, параметры триггера (пороги срабатывания) можно менять, подбирая номиналы резисторов.

Улучшения схемы

Иногда в подобных схемах ставят ещё конденсатор параллельно R4. Это так называемый ускоряющий конденсатор.

Вариант схемы с ускоряющим конденсатором

Когда триггер в стабильном состоянии, на конденсаторе постоянное напряжение и он не оказывает влияние на токи. Но, в момент переключения, когда происходит резкий скачок напряжений, в первый момент конденсатор имеет близкое к нулевому сопротивление и тем самым обеспечивает резкое изменение тока базы Т2, который затем плавно “устаканивается” до стабильного значения. Тем самым ускоряется переключение транзистора Т2. Это может иметь значение, если планируется работа схемы на высоких частотах, где время переходных процессов в транзисторе может начать играть заметную роль.

Также можно встретить дополнительный буферный транзистор между T2 и T1, включённый по схеме эмиттерного повторителя. Он нужен, чтобы снизить влияние T1 и T2 друг на друга, а также получить большую чувствительность схемы.

Добавляем в схему буферный каскад

Описание работы схемы

Триггер Шмитта  это компаратор, имеющий ПОС.  В данной схеме доля выходного электрического сигнала ОУ поступает на прямой вход и устанавливает уровень, при котором схема будет переключаться.

Принципиальная схема работы триггера Шмитта на ОУ изображена ниже.

ОУ подключен к двухполярному блоку питания на 5 вольт. На инверсный вход DA1 поступает синусоидный  сигнал равный амплитуде 2 В. Сопротивления R1 и R2 имеют значения 25 кОм и 10 кОм. Напряжение на прямом выводе DA1 поступает с делителя напряжения построенного на резисторах R1 и R2, который подключен к выходу ОУ.  Формула расчета для определения напряжения насыщения:

  1. Uвх1 = +U*R2/(R1+R2) = 3,5*10/35 = 1 В
  2. Uвх1 = -U*R2/(R1+R2) = -3,5*10/35 = -1 В

Когда на выходе ОУ напряжение с положительным потенциалом насыщения – на прямом входе напряжение равно  1 вольту. Предположим, входной электрический сигнал постепенно увеличивается с нуля. Пока потенциал входного сигнала не превышает напряжения на прямом входе – схема находится в стабильном состоянии. Чуть только входной электрический сигнал превзойдет величину в  1 вольт, напряжение на входе ОУ сменит свою полярность на отрицательное напряжение  насыщения. Это поменяет напряжение на прямом входе ОУ, и оно будет равно -1 вольт.

Входной электрический сигнал постепенно будет увеличиваться до максимума, а затем начнет уменьшаться. После того как амплитуда сигнала на входе станет менее 1 вольта, то на выходе ОУ будет так же отрицательный потенциал насыщения. Как только сигнал на входе пройдет величину -1В, напряжение на выходе   поменяется и будет равным положительному потенциалу насыщения.

На графике можно наблюдать зависимость выходного напряжения триггера Шмитта от входного.

В результате такой работы схемы шумы входного сигнала не будут влиять на выходной сигнал.

Применение триггера Шмитта

Триггеры Шмитта применяются там, где нужно исключить ‘дребезг’, в самом широком смысле этого слова. Например, если у Вас есть механический выключатель, то в момент включения или выключения, возникают коротковременные замыкания и размыкания цепи, пока, наконец, переключение не будет выполнено окончательно. Такой дребезг длится микро или даже наносекунды, но некоторые схемы (особенно цифровые) могут быть чувствительны к нему. Триггер Шмитта позволяет бороться с таким дребезгом.

Другим примером может быть включение / выключение какого-либо прибора на основании данных датчика. Пусть нужно включать нагреватель при понижении температуры, и выключать его, когда температура нормализовалась. Применение простого компаратора (устройства, выдающего на выход напряжение в зависимости от соотношения двух входных) приводит к своеобразному дребезгу, если температура находится вблизи точки переключения. Нагревательные и другие приборы не любят, когда их часто включают и выключают. Так что нужен триггер Шмитта.

Компараторы в чистом виде вообще очень редко используются в схемах из-за переходных процессов при напряжении, близком к напряжению переключения. Чтобы исключить эти процессы, вводится небольшая положительная обратная связь, которая превращает компаратор в триггер Шмитта с небольшим гистерезисом.

Триггер Шмитта на операционном усилителе

Для построения триггера Шмитта используют компаратор на обычном операционном усилителе (ОУ) или же применяют специальную микросхему компаратора, и это встречается чаще.

Необходимо обратить внимание, что при использовании ОУ в триггере Шмитта, если входной сигнал является медленно нарастающим или имеет шумы, то существует вероятность того, что выход будет многократно переключаться, вследствие неполного закрытия-открытия выходного транзистора ОУ. Это связано с таким параметром ОУ как входное напряжение смещения.

Обычный компаратор может быть легко преобразован в триггер Шмитта путем добавления положительно-обратной связи (ПОС) операционного усилителя или компаратора. Это обеспечивается добавлением резистора R3 в приведенной ниже схеме.


Паяльный фен YIHUA 8858Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час…Подробнее

Эффект от данного резистора (R3) проявляется в том, что он смещает порог переключения зависящий от выходного состояния компаратора или операционного усилителя.

Когда выходной сигнал компаратора является высоким, то это напряжение подается обратно на неинвертирующий вход операционного усилителя. В результате порог переключения становится выше. Когда же на выходе напряжение падает, то порог переключения также снижается. Это придает схеме так называемый гистерезис.

Применение положительно-обратной связи создает более высокий коэффициент усиления и, следовательно, переключение происходит быстрее. Это особенно полезно, когда входной сигнал медленно изменяющийся. Так же для увеличения скорости переключения триггера Шмита, параллельно резистору ПОС подключают так называемый скоростной конденсатор емкостью 10…100 пФ.

Довольно легко подобрать резисторы, необходимые для работы триггера Шмитта. Уровень напряжения, при котором необходимо, чтобы триггер переходил в свое противоположное состояние, задается делителем напряжения из резисторов R1 и R2. Это первое что необходимо сделать. Затем уже подбирается резистор обратной связи R3.

Особенности построения Триггера Шмитта на ОУ

При использовании ОУ в качестве компаратора, необходимо соблюдать осторожность. Операционный усилитель спроектирован для функционирования в схемах с отрицательной обратной связью. В результате, производители ОУ не гарантируют, что ОУ будут также надежно работать в цепях без обратной связи, либо с положительной обратной связью, как и в случае с триггером Шмитта.

Реализация триггера Шмитта на операционном усилителе

Два примера схемы на операционном усилителе:

Триггер Шмитта на операционном усилителе: с двухполярным питанием (слева) и однополярным (справа)

На рисунке приведены два варианта: с двухполярным и с однополярным источником питания. В первом случае порог срабатывания одинаковый по модулю, но с разным знаком. Во втором случае пороги зависят от соотношения резисторов. Но, в обеих схемах часть выходного сигнала попадает на вход через резистор положительной обратной связи Rос, тем самым смещая порог срабатывания.

Обратите внимание, что однополярный вариант схемы получился инвертирующим: когда на входе высокий сигнал, на выходе низкий, и наоборот. Дело в том, что мы подаём входной сигнал на инвертирующий вход, поэтому “шиворот на выворот”.

Кстати, в данную схему можно добавить ограничитель выходного напряжения. Это стабилитрон, через который осуществляется отрицательная обратная связь. Включается он таким вот образом:

Триггер Шмитта с ограничителем выходного напряжения

Это решение полезно, если необходимо согласовать высокие напряжения предыдущего каскада и низкие следующиего. Например, на входе может быть до 15 вольт от автомобильной электроники, а на выходе ТТЛ микросхема, притающаяся от 5 Вольт.

Преимущества применения триггерных схем логики

Выяснив, что значит триггер, несложно использовать полученные знания для решения практических задач. С помощью логических элементов:

  • автоматизируют работу систем освещения;
  • обеспечивают безопасное подключение станков и других мощных нагрузок;
  • предотвращают опасные режимы с использованием сигналов от внешних датчиков.

Для создания качественного устройства на основе триггеров рекомендуется в комплексе использовать представленную информацию. Следует учесть условия реальной эксплуатации, чтобы выбрать подходящие функциональные компоненты конструкции.

Предыдущая

ТеорияКвантовый эффект холла

Следующая

ТеорияЧто такое коронный разряд?

Схема триггера Шмитта и пояснение к работе

Триггер Шмитта представляет собой цифровой логический элемент, предназначенный для арифметических и логических операций. Он обеспечивает ВЫХОД на основе уровня напряжения ВХОДА. Триггер Шмитта имеет уровень напряжения THERSHOLD, когда ВХОДНОЙ сигнал, приложенный к затвору, имеет уровень напряжения выше, чем THRESHOLD логического затвора, ВЫХОД переходит в ВЫСОКИЙ уровень. Если уровень ВХОДНОГО сигнала ниже ПОРОГА, ВЫХОД гейта будет НИЗКИМ.

 

В выбранной микросхеме за вентилем триггера Шмитта следует вентиль НЕ, поэтому мы получаем логический ВЫХОД, противоположный ВЫХОДу триггера Шмитта. Таким образом, ВЫХОД ИНВЕРТИРОВАННОГО триггера Шмитта будет НИЗКИМ, когда уровень напряжения ВХОДНОГО сигнала пересекает пороговый уровень затвора, во всех других случаях ВЫХОД будет ВЫСОКИМ.

Здесь мы собираемся использовать 74LS14 IC для демонстрации, эта микросхема имеет 6 вентилей триггера Шмитта. Эти ШЕСТЬ гейтов соединены внутри, как показано на рисунке ниже.

Эти вентили имеют ограничения по рабочему напряжению и входной логической частоте. Когда эти ограничения не учитываются, микросхема может необратимо выйти из строя, поэтому следует быть внимательным при выборе логических элементов.

Компоненты

Беспопас для питания (5 В)

1K, 220 Ом резисторы

74LS14 HEX Schmitt Trigger Trigger Gate IC

1 Светодиод, пуговица

100nf Capacitor

Connection Wresse и Hebboard Bytboard

100nf Capacitor

Connection Wresse и Bebboard Bobboard

100nf

.0005

 

Принципиальная схема и объяснение

Таблица истинности инвертированного триггера Шмитта показана на рисунке ниже.

Согласно принципиальной схеме вентиль с инвертированным триггером Шмитта имеет один выход на один вход. Согласно таблице истинности, выход вентиля НЕ будет высоким, когда вход низкий. Выход вентиля НЕ должен быть низким, когда вход высокий.

 

Таким образом, вентиль НЕ обеспечивает выход, который представляет собой инвертированную логику входа, за исключением того, что уровень напряжения ВХОДНОГО сигнала должен пересекать ПОРОГОВОЕ напряжение вентиля триггера Шмитта. В противном случае вентиль НЕ, за которым следует триггер Шмитта, не увидит никакого ВХОДА, и поэтому ВЫХОД будет все время ВЫСОКИМ.

 

В этой схеме мы собираемся соединить оба входа затвора с землей через резистор 1 кОм. А дальше вход подключается к питанию через кнопку.

 

Таким образом, когда кнопка нажата, соответствующий контакт ворот становится высоким. Таким образом, с помощью этой кнопки мы можем реализовать таблицу истинности вентиля инвертированного триггера Шмитта. Когда кнопка нажата, на входе будет высокий уровень, при этом на выходе будет низкий уровень, поэтому светодиод должен быть выключен. Когда кнопка будет отпущена, вход станет НИЗКИМ, при этом ВЫХОД станет ВЫСОКИМ, поэтому светодиод должен гореть.

Эти подтягивающие резисторы необходимы, так как выбранный ЧИП запускает положительный фронт. Если резистор игнорируется, схема может привести к непредсказуемым результатам.

 

Конденсатор здесь для нейтрализации эффекта подпрыгивания кнопки. Хотя конденсатор здесь не обязателен, его установка может сгладить работу затвора. Основное предназначение ворот Schmitt Trigger состоит в том, чтобы свести на нет эффект подпрыгивания кнопок.

Что такое триггер Шмитта | Как это работает

от Dejan

Электротехника

В этом уроке мы узнаем, что такое триггер Шмитта и как он работает. Вы можете посмотреть следующее видео или прочитать письменную статью ниже.

Обзор

Триггер Шмитта представляет собой тип логического входа, который обеспечивает гистерезис или два разных уровня порогового напряжения для нарастающего и спадающего фронта. Это полезно, потому что позволяет избежать ошибок, когда у нас есть шумные входные сигналы, из которых мы хотим получить прямоугольные сигналы.

Так, например, если у нас есть такой зашумленный входной сигнал, который должен иметь 2 импульса, устройство, имеющее только одну уставку или порог, может получить неверный ввод и может зарегистрировать более двух импульсов, как показано на этой иллюстрации. И если мы используем триггер Шмитта для одного и того же входного сигнала, мы получим правильный ввод двух импульсов из-за двух разных порогов. Такова основная функция триггера Шмитта — преобразовывать зашумленные прямоугольные сигналы, синусоидальные волны или входные сигналы с медленными фронтами в чистые прямоугольные сигналы.

Типы триггеров Шмитта

Существует множество логических ИС со встроенными триггерами Шмитта на своих входах, но также они могут быть построены с использованием транзисторов или проще с использованием операционного усилителя или компаратора, просто добавив к нему несколько резисторов и положительный отзыв.

Операционный усилитель на основе триггера Шмитта

Здесь у нас есть операционный усилитель, инвертирующий вход которого подключен к земле или нулевому напряжению, а неинвертирующий вход подключен к входу напряжения, В В . Так что на самом деле это компаратор, который сравнивает неинвертирующий вход с инвертирующим входом или, в данном случае, входное напряжение V IN с 0 В. Таким образом, когда значение V IN ниже 0 вольт, выход компаратора будет будет отрицательным V CC , и если входное напряжение выше 0 вольт, выход будет положительным V CC .

Теперь, если мы добавим положительную обратную связь, подключив выходное напряжение к неинвертирующему входу с резистором между ними и другим резистором между V В и неинвертирующем входе мы получим триггер Шмитта. Теперь выход переключится с V CC – на V CC +, когда напряжение в узле A превысит 0 вольт.

Это означает, что теперь, регулируя значения резисторов, мы можем установить, при каком значении входа V IN произойдет переключение, используя следующие уравнения. Мы получаем эти уравнения со следующими соотношениями. Ток i по этой линии равен V IN – V A разделить на R 1 а также V A – V OUT разделить на R 2 . Итак, если мы заменим V A на ноль, так как нам нужно это значение для переключения, мы получим это окончательное уравнение. Например, если на выходе -12 вольт, а на входе V IN отрицательный и повышается, переключение с -12 В на +12 В произойдет при 6 вольтах в соответствии с уравнением и значениями резисторов и наоборот, когда на входе V IN высокий уровень и при спаде переключение с +12 В на – 12 В произойдет при -6 вольт.

Несимметричный триггер Шмитта

Чтобы получить два разных несимметричных порога, мы можем использовать эту схему инвертирующего триггера Шмитта с одним питанием. Здесь напряжение V REF совпадает с напряжением V CC операционного усилителя. Теперь, поскольку вход V IN подключен к инвертирующему входу ОУ, когда его значения достигнут верхнего порога, выход отключится до 0 вольт, а затем, когда его значения упадут до нижнего порога, выход переключится на 5 вольт.

Вот пример того, как мы можем рассчитать пороги. V REF и V CC будут на 5 вольт, а три резистора будут на те же 10 кОм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *