UC3845 Откровенно говоря, одолеть UC3845 с первого раза не удалось – злую шутку сыграла самоуверенность. Однако умудренный опытом я решил разобраться окончательно – не такая уж и большая микросхема – всего 8 ног. Особую благодарность хочу выразить своим подписчикам, не оставшимся в стороне и давшим кое какие пояснения, даже на почту довольно потробную статью прислали и кусок модели в Микрокап. БОЛЬШОЕ СПАСИБО.
Оставался один вариант – Мультисим. Версия 12 нашлась даже с русификатором. Я ОЧЕНЬ давно не пользовался Мультисимом, поэтому пришлось повозиться. Первое, что обрадовало – в Мультисиме отдельная библиотека для логики пятивольтовой и отдельная библиотека для пятнадцативольтовой логики. В общем с горем пополам получился более-менее работоспособный вариант, подающий признаки жизни, но точно так, как ведет себя реальная микросхема он работать не захотел, сколько я его не уговаривал. Во первых модели не измеряют уровень отностиельно реального нуля, поэтому пришлось бы вводить дополнительный источник отрицательного напряжения смещения. Но в этом случае пришлось бы довольно подробно объяснят, что это и для чего, а хотелось максимального приближения к реальной микросхеме.
Порывшись в итнернете нашел уже готовую схему, но для Мультисима 13. Качнул вариант 14, открыл модель и она даже работала, но радость была не долгой. Не смотря наличие в самих библиотеках и двенадцатого и четырнадцатого Мультисима самой микросхемы UC3845 и ее аналогов довольно быстро выяснилось, что модель микросхемы не позволяет отработать ВСЕ варианты включения данной микросхемы. В частности ограничение тока и регулировка выходного напряжения работают вполне уверенно (правда частенько вываливается из симуляции), а вот использование подачи на выход усилителя ошибки земли микросхема отказалась воспринимать.
В общем воз хоть и сдвинулся с места, но проехал не далеко. Оставался один вариант – распечатка даташника на UC3845 и плата с обвязкой. Чтобы не изагляться с имитацией нагрузки и имитацией ограничения тока решил построить микробустер и на нем уже проверить что в реальности происходит с микросхемой при том или ином варианте включения и использования.
Исходя из приведенной таблицы понятно, что UC3845 далеко не лучший вариант этой микросхемы, поскольку нижний предел по температуре у нее ограничен нулем градусов. Причина довольна проста – не каждый хранит сварочный аппарат в отапливаемом помещении и возможна ситуация, когда нужно что то подварить в межсезонье, а сварочник или не включается или банально взрывается. нет, не в клочья, даже куски силовых транзисторов врядли вылетят, но в любом сварки не будет, да еще и ремонт сварочнику нужен. Проскочив по Али я пришел к выводу, что проблема вполне решаема. Конечно же UC3845 популярней и их в продаже больше, но и UC2845 тоже есть в продаже: АЛИ ПОИСК UC2845 АЛИ ПОИСК UC3845 UC2845 конечно несколько дороже, но в любом случае она дешевле ОДНОГО силового транзистора, так что лично я заказал десяток UC2845 не смотря на то, что еще в наличии имеется 8 штук UC3845. Ну а Вы уж как пожелаете.
Кстати, если нажать на рисунок, то он откроется в новой вкладке. Не совсем удобно скакать между вкладками, но в любом случае это удобней, чем крутить туда сюда колесико мыши, возвращаясь к ушедшему на верх рисунку. При появлении логической единицы на первом входе этого сумматора всех управляющих сигналов на его прямом выходе появится логическая единица, а на инверсном – логический ноль. Соответственно верхний танзистор драйвера будет закрыт, а нижний откроется, тем самым закрывая силовой транзистор. Допустим питание у нас нормальное и микросхема начинает работать. Задающий генератор начинает генерировать управляющие импульсы. Частота этих импульсов зависит от номиналов частотозадающих резистора и конденсатора. Вот тут есть небольшой разнобой. Разница вроде не большая, но тем не менее она есть и появляется вероятность получить не совсем то, что хотелось, а именно сильногреющийся аппарат, кодга более “быстрая”микросхема одного производителя будет заменена на более медленную. Самая красивая картинка зависимости частоты от сопротивления резистора и емкости конденсатора у Texas Instruments:
У остальных производителей дела чуточки по другому:
С тактового генератора получаются довольно короткие импульсы в виде логической единицы. Эти импульсы разбигаются на три блока: Именно по этой причине у микросхем UC3844 и UC3845 выходная частота в 2 раза меньше, чем у UC3842 и UC3843 – ее делит триггер.
Все внешние элементы имеют приписку out, означающую, что это СНАРУЖИ микросхемы деталюшки.
Силовой транзистор это что то выпаянное из ремонтируемого когда то автомобильного преобразователя – полыхнуло одно плечо, менял все транзисторы (почему ВСЕ ответ ТУТ), а это так сказать сдача. Так что я не знаю что это – надпись сильно потертая, в общем это что то ампер на 40-50. Первое включение – движки ВСЕХ подстрочников соединены должны быть с землей, т.е не оказывают влияния на схему. Движок Rout 8 установлен так, чтобы сопротивление этого резистора составляло 2-3 кОм, поскольку конденсатор на 2,2 нФ, то частота должна получится порядка 300 с хвостиком кГц, следовательно на выходе UC3845 мы получим где то около 150 кГц. Проверяем частоту на выходе самой микросхемы – так точнее, поскольку сигнал на захламнен ударными процессами из дросселя. Для подтверждения отличий частоты генерации и частоты преобразования желтым лучиком становимся на вывод 4 и видим, что частота в 2 раза больше. Сама же рабочая частота получилась равной 146 кГц:
Теперь увеличиваем напряжение на светодиоде оптрона Uout 1 для того, чтобы проконтролировать изменение режимов стабилизации. Тут следует напомнить, что движок резистора Rout 13 находится в нижнем по схеме положении. На базу VT1 так же подан общий провод, т.е. на на выводе 3 абсолютно ни чего не происходит и компаратор OP2 не реагирует на не инвертирующий вход.
Но бустер нагружен, следовательно выходное напряжение начинает уменьшаться, светодиод Uout 1 начинает уменьшать яркость, транзистор Uout 1 призакрывается и OP1 начинает увеличивать свое выходное напряжение и как только оно минует порог срабатывания OP2 микросхема снова запускается.
Снимаем напряжение со светодиода Uout 2 и на всякий случай проверям наличие пилы на верхнем выводе R15 (желтый луч): Амплитуда чуть больше вольта и этой амплитуды может не хватить, ведь на схеме имеются делители напряжения. На всякий случай выкручиваем движок подстроечного резистора R13 в верхнее положение и контролируем, что у нас происходит на третьем выводе микросхемы. В принципе надежды полностью оправдались – амплитуды не хватает для начала ограничения тока (желтый лучик):
Ну раз не хватает тока через дроссель, то значит либо много витков, либо большая частота. Перематывать слишком лениво, ведь для регулировки частоты на плате предусмотрен подстроечный резистор Rout8. Вращаем его регулятор до получения необходимой амплитуды напряжения на выводе 3 контроллера.
Отличительной чертой UC3845 является то, что протекающий через силовой транзистор он контролирует практически на каждом такте работы, а не среднее значение, как например это делает TL494 и если блок питания спроектирован правильно, то ушатать силовой транзистор не получится ни когда…
Тоже самое происходит и при увеличении напряжения на отпроне Uout 2, правда в мое варианте не получилось получить такие же короткие импульсы, как в первый раз – не хватило яркости светодиода оптрона, а уменьшать резистор Rout 3 я поленился. Однако сейчас больше интересен сам принцип работы, поэтому проверяем его, опустив движок подстроечника Rout 13 на землю начинаем вращать Rout 1.
При дальнейшем увеличении напряжения на светодиоде оптрона происходит срыв на релейный режим работы.
Так же не трудно заметить, что увеличивая нагрузку увеличивается и амплитуда напряжения на выводе 3, поскольку возрастает протекающий через силовой транзистор ток.
Напряжение на нагрузочном резисторе тоже изменяется, но я не буду делать ГИФку – страница и так получилась довольно “тяжелой” по трафику, поэтому со всей ответственность заявляю – напряжение на нагрузке равно напряжению максимального значения на картинке выше минус 0,5 вольта. ПОДВОДИМ ИТОГИ UC3845 универсальный самотактируемый драйвер для однотактных преобразователей напряжения, может работать как в обратноходовых, так и в прямоходовых преобразователях.
Для полноценной ШИМ стабилизации напряжения микросхеме необходима нагрузка, поскольку она использует пилообразное напряжение для сравнения с контролируемым напряжением.
На микросхеме довольно легко организовать стабилизатор тока, причем контроль протекающего тока контролируется на каждом такте, что полностью исключает перегрузку силового каскада при правильном выборе силового транзистора и токоограничивающего, точнее измерительного резистора, устанавливаемого на исток полевого транзистора. Именно этот факт сделал UC3845 наиболее популярной при проектировании бытовых сварочных аппаратов. Частота у микросхем ХХ44 и ХХ45 в 2 раза меньше тактовой частоты, а коф заполнение не может превышать 50%, то для преобразователей с трансформатором наиболее благоприятно. А вот микросхемы ХХ42 и ХХ43 наилучшим образом подходят для ШИМ стабилизаторов, поскольку длительность управляющего импульса может достигать 100%.
Теперь, поняв принцип работы данного ШИМ контроллера можно вернуться и к проектированию сварочного аппарата на его основе… ПРОДОЛЖЕНИЕ
Адрес администрации сайта: [email protected]
|
Микросхемы ШИМ-контроллера UC3844, UC3845, UC2844, UC2845
Микросхемы ШИМ-контроллера UC3844, UC3845, UC2844, UC2845 являются самыми распространенными в импульсных блоках питания бытовой и компьютерной техники, используется для управления полевым ключевым транзистором в схемах импульсных блоков питания. Они специально разработаны для DC− DC преобразователей – преобразование постоянного напряжения одной величины в постоянное напряжение другой величины.
Принцип работы микросхем UC3844, UC3845, UC2844, UC2845
Принцип работы микросхемы UC3844: При напряжении питания в норме, на выводе 8 появляется напряжение +5В, которое запускает генератор OSC , генератор в какой-то момент выдает короткий положительный импульс на вход RS, S триггера, переключая его, после этого на выходе появляется нуль. При спаде импульса OSC, напряжение, на прямых входах цифрового элемента станет равным нулю.
Рис. 2. Структурная схема микросхем UC3844, UC3845, UC2844, UC2845, в скобках указаны номера выводов микросхем в 14ти выводных корпусах (с суффиксом D, см. цоколевку выше).
При этом, на инвертирующем выходе образуется логическая 1, эта единица откроет верхний транзистор, и ток от плюс источника, коллектор, эмиттер потечет в нагрузку подключенной к выходу (6 вывод). Импульс на выходе будет открытым и длится до тех пор, пока на вывод 3 не поступит закрывающее напряжение выше +1 Вольт. При подачи напряжения на 3 вывод (выше +1 Вольт), и на прямой вход операционного усилителя, на выходе появится логическая 1, и переключит RS триггер в момент подачи (лог. 1) на вход R. В результате на выходе RS триггера появится логическая единица, при подачи еденицы на один, из прямых входов логического элемента, на его прямом выходе образуется логическая единица (на инверсном выводе в этот момент образуется логический 0, запирающий верхний транзистор), в результате открывает нижний транзистор и через коллектор-эмиттер замыкает выход (вывод 6 микросхемы) на “землю”.
Типовые схемы включения микросхем UC3844, UC3845, UC2844, UC2845
На схемах, в скобках указаны номера выводов микросхем в 14ти выводных корпусах (с суффиксом D, см. цоколевку выше).
Пример реализации импульсного блока питания на на базе ШИМ-контроллера UC3844
Принципиальная схема импульсного блока питания на базе ШИМ-контролера UC3844 и силовом ключе на полевом транзисторе STP3NA90F.
Микросхемы с наименованием UC3844 кроме UNITRODE выпускают фирмы ST и TEXAS INSTRUMENTS, аналогами этой микросхемы являются: DBL3844 фирмы DAEWOO, SG3844 фирмы MICROSEMI/LINFINITY, KIA3844 фирмы КЕС, GL3844 фирмы LG, а также микросхемы других фирм с различными литерами (AS, МС, IP и др.) и цифровым индексом 384Х.
Автомобильный преобразователь из 12В в 19В на UC3845
Данный повышающий dc-dc преобразователь предназначен для повышения напряжения бортовой сети автомобиля (+12В) до 19В, получая возможность подключения ноутбука к бортовой кабельной сети автомобиля. С учетом того, что ноутбук в наше время не редкость, то представленная в этой статье схема преобразователя очень даже актуальна для автомобилистов.
Данный автомобильный преобразователь на UC3845 построен по принципу однотактного повышающего преобразователя с накопительным дросселем. Схема имеет защиту по току.
Схема автомобильного преобразователя из 12В в 19В на UC3845
Работа схемы подробно описана в статье “Повышающий dc-dc преобразователь на UC3843”. В этой же статье вы прочтете о том, как работает защита по току, а также другую интересную информацию по данной схеме.
Микросхема UC3845 является ШИМ контроллером и по своей работе аналогична ШИМ UC3843.
Микросхемы UC3845 и UC3843 одинаковы по расположению выводов и могут быть заменены друг с другом в данной схеме. При замене этих ШИМ контроллеров стоит учесть тот факт, что при одинаковых времязадающих элементах (R2, C6) частота на выходах этих ШИМ (6 вывод) будет отличаться почти вдвое.
Дело в том, что в UC3845 есть триггер, который делит частоту пополам, а также ограничивает ширину импульса до 50% (речь пойдет ниже). И если настроить на одинаковую частоту генераторы микросхем UC3845 и UC3843 (встаем осциллографом на 4 вывод), то на самом выходе UC3845 (вывод 6) частота будет вдвое меньше выходной частоты UC3843. Не путайте выходную частоту, с частотой генератора ШИМ, она не всегда одинаковая (как в нашем случае).
К примеру, я установил в качестве R2 = 10кОм, а C6 = 1нФ, частота генератора UC3845 составила примерно 160кГц, а у UC3843 135кГц. На выходе UC3845 частота составила примерно 80кГц (то есть уменьшилась вдвое), а у UC3843 частота равнялась частоте генератора (135кГц).
Поэтому для UC3845 конденсатор C6 необходимо устанавливать емкостью не более 500пФ, а резистор R2 на 10кОм, чтобы на выходе получить частоту примерно 160кГц. Я установил 1нФ и все испытания проводил на этой емкости.
Еще одно отличие этих микросхем в том, что коэффициент заполнения импульса у ШИМ UC3845 равен 50%, в отличие от UC3843, коэффициент которой равен 100%.
Короче, при регулировке скважности у UC3843 ширина импульса может быть настолько большой, что займет почти весь период, а у UC3845 только половину периода. Как это можно пощупать, да легко! Собрав, этот автомобильный повышающий преобразователь из 12В в 19В на UC3845, при регулировке напряжения под нагрузкой 3А, напряжение на выходе преобразователя не сможет подняться больше 21В-22В (напряжение зависит от параметров дросселя), то есть напряжение будет “просаживаться”.
Казалось бы беда! Но нет, наш преобразователь должен выдавать напряжение 19В постоянного тока, и он со своей задачей справляется отлично при нагрузке 3А и 5А. Не зря эта микросхема является одной из лидеров в схемах преобразования 12-19 Вольт.
Некоторые параметры микросхемы UC3845
Максимальное входное напряжение не более………. 30В
Выходной ток………. 1А
Ток сигнала ошибки……… 10мА
Мощность рассеивания (корпус DIP)………. 1Вт
Максимальная частота генератора………. 500кГц
Коэффициент заполнения………. 50%
Рабочий ток………. 11мА
Другие параметры и графики найдете в даташите.
Элементы схемы
Резисторы схемы нужно выбирать на четверть Ватта (0,25Вт), за исключением R4 = 0,5Вт и R6 = 2Вт.
Конденсаторы C1, C2, C8, C9 должны быть рассчитаны на напряжение 25В. На выходе схемы достаточно одного электролита на 1000мкФ (C8 или C9).
Диоды VD1 и VD2 – Шоттки, или другие супербыстрые диоды. У меня установлена сборка Шоттки SB2040CT (20А, 40В), меньше 40В лучше не устанавливать. Можно на плату установить одиночный диод, но к сборке легче прикрепить радиатор.
R9 – многооборотный подстроечный резистор типа 3296. Многооборотные резисторы позволяют производить настройку плавно.
Самое интересное это дроссель L1. Индуктивность его должна быть в пределах 40-50мкГн. Хотя и при индуктивности 20мкГн преобразователь будет работать, только КПД будет ниже желаемого. Для его изготовления необходимо найти кольцо из порошкового железа желто-белого цвета. Чем больше диаметр кольца, тем лучше. У меня наружный диаметр кольца составляет 27мм, внутренний 14мм и толщина 11мм. Мотаем 20-22 витка двойным медным, лакированным проводом. Диаметр жилы 1мм. У меня диаметр жилы 1,4мм, я мотал одиночным проводом. Такой дроссель долговременно держит ток 3А при выходном напряжении +19В.
При намотке двойным (тройным) проводом обмотка может не уместится в один слой, тогда обмотку необходимо выполнять в два слоя, можно без изоляции (если эмаль провода не повреждена).
Пару слов о защите
От короткого замыкания (КЗ) будет спасать предохранитель FU1. Схема КЗ выдерживает, это показали мои опыты, главное чтобы источник напряжения +12В, подключенный к входу преобразователя, имел защиту и был достаточно мощным, а лучше чтобы это был автомобильный аккумулятор.
Работа защиты по току подробно описана в статье про UC3843 (смотри ссылку выше), здесь все работает аналогичным образом. Единственное добавлю, для работы преобразователя на UC3845 на выходной ток до 5А, необходимо сопротивление резистора R6 (датчик тока) уменьшить вдвое, или подключить в параллель два резистора по 0,1 Ома. Если не сделать данные манипуляции, Выходная мощность (напряжение и ток) будут ограничены защитой.
Два разных по габаритам дросселя…
Преобразователь с параметрами дросселя, описанными чуть выше, я эксплуатировал на нагрузку сопротивлением 6,2 Ома. Ток нагрузки составил 3А, при выходном напряжении 19В. В течение тридцатиминутной работы дроссель нагрелся до 45 градусов Цельсия, и рост температуры прекратился, это очень даже неплохо. Кстати КПД при такой нагрузке составил 82%.
После чего я установил второй дроссель, который намотан на кольце с наружным диаметром 18мм, внутренним 8мм и шириной 7мм. Провод одиночный, диаметр провода 1,4мм, 20 витков (40мкГн). При работе на выходной ток 3А в течение 30 мин, дроссель нагрелся до температуры 50 градусов Цельсия.
Теперь вам немного понятно, какие габариты сердечника выбрать. Конечно, если бы я мотал двумя жилами, нагрев бы снизился немного, но даже 55 градусов это вполне нормально.
Также обязательно пролудите силовые дорожки платы, а лучше по ним пропаять медный провод, иначе дорожки будут значительно нагреваться, и греть электролитические конденсаторы, вследствие чего надежность и долговечность устройства будет значительно снижена.
Если в бортовую сеть автомобиля будут проникать высокочастотные наводки, то на входе преобразователя (на плюсовой шине необходимо установить дроссель. Дроссель мотается на аналогичном желто-белом кольце из порошкового железа. Он должен содержать 9 витков двойным проводом, диаметр которого должен составлять 1мм.
В заключение хочку сказать, что для автомобильного преобразователя из 12В в 19В на UC3845 данная схема очень даже неплоха. Имеет достаточно высокий КПД, не имеет сложных узлов, дроссель очень прост в изготовлении и имеет запас по допуску индуктивности. Также, микросхема очень даже доступная и недорогая.
Печатная плата автомобильного преобразователя из 12В в 19В на UC3845 СКАЧАТЬ
Даташит на UC3845 СКАЧАТЬ
Похожие статьи
И так, блок питания в привычном многим корпусе.
Видно, что БП имеет заметные следы эксплуатации, досталось ему при жизни однако 🙂
Внимание, внутри блока питания может присутствовать опасное напряжение даже через некоторое время после отключения, перед тем как касаться токоведущих частей лучше подождать около 5 минут.
Разбираем БП, так как фото делалось уже после ремонта, то скажу, БП внутри был довольно грязным, на фото он уже вычищен.
Все работы лучше начинать с чистки, затем всегда следует визуальный осмотр на предмет явных повреждений компонентов и платы.
После этого откручиваем силовые транзисторы и выходные диодные сборки.
У этого Бп присутствует термопредохранитель, вставленный в крепежный элемент выходной диодной сборки, весьма полезная вещь.
после этого откручиваем винты, фиксирующие плату в корпусе, чаще всего их четыре, но бывает и пятый, тогда он находится около центра платы.
Блок питания собран на базе довольно известного ШИМ контроллера UC2845, ссылка на даташит.
Чаще всего дешевые блоки питания такой мощности собирают уже на базе TL494, но здесь производитель решил поступить несколько по другому.
Микросхема выпускается в двух вариантах корпуса, у нас вариант в корпусе DIP-8, потому номер вывода указан не в скобках.
Первым делом проверяем питание микросхемы.
Вообще характерные неисправности Бп на базе этой микросхемы таковы:
1. Высох конденсатор питания микросхемы
2. Вышел из строя высоковольтный транзистор и попутно сжег микросхему
3. Сгорел резистор, через который идет первоначальный запуск микросхемы
4. Сгорел резистор через который идет основное питание микросхемы, он обычно стоит последовательно с диодом, который подключен к вспомогательной обмотке трансформатора.
Справа видны конденсаторы входного фильтра питания , левее резисторы, через которые питается микросхема.
В моем случае на микросхеме было всего 2.5 Вольта
Смотрим в даташит, у нашей микросхемы стартовое напряжение около 8.4 Вольта, потому микросхема не запускается.
Такое может быть и по причине выхода из строя как самой микросхемы, так и элементов, к которым она подключена.
Первая же простая проверка, подключаем резистор номиналом около 150к параллельно существующим резистором предварительного запуска микросхемы.
Если неисправен родной резистор, то после этого БП заработает, если нет, то посмотрим как изменилось напряжение питания.
В моем случае ничего не изменилось, напряжение чуть подросло, до 2.8 Вольта и все.
Вообще типовая схема включения микросхемы очень простая, резистор с питания 310 Вольт, а после старта БП питание от дополнительной обмотки трансформатора.
В нашем случае резистор исправен, но питание занижено.
Но на этой схеме нет еще одного элемента, защитного стабилитрона по шине питания микросхемы, иногда он уходит в КЗ, но в данном случае КЗ по этой цепи нет.
Ладно, подаем питание в эту цепь от внешнего блока питания. Внимание, такое делать только при отключенном питании проверяемого БП!!!
При подаче штатных 12-15 Вольт все нормально, КЗ нет, на выходе встроенного в микросхему стабилизатора 5 Вольт присутствует необходимое напряжение.
Выключаем питание, снижаем напряжение до 5 Вольт и подаем снова, и замечаем мелкий нюанс, ток потребления около 8мА. Непорядок, так как стартовые резисторы могут дать только 2мА, соответственно напряжение не может подняться до необходимого значения.
Первым под подозрение попал стабилитрон. И я не ошибся, у него нет КЗ, но у него большой ток утечки.
Стабилитрон рассчитан на 16 Вольт, но при напряжении 5 Вольт мы имеем уже 9мА, а при напряжении старта около 10мА.
Вот этот паршивец.
Стабилитрон желательно менять на такой же по напряжению, но дома были только на 15 Вольт, такая замена также допустима.
А вот по поводу мощности, лучше взять более мощный, они обычно есть на 0.5 Ватта (на фото) и 1.3 Ватта (больше размерами).
Меняем стабилитрон, включаем БП, все отлично. Проверочные включения лучше производить через лампу накаливания.
Для маломощных БП (5-50Ватт) 15-25 Ватт, для более мощных 40-100, иногда 150Ватт.
Лампа при включении должна вспыхнуть и погаснуть, это зарядились входные конденсаторы. Если засветилась, значит есть неисправность.
Нагрузку в таком режиме к блоку питания подключать нельзя.
Все, собираем Бп обратно в кучку, цена стабилитрона около 5-10 центов, остальное обычно берется за то, что мастер знает, какой стабилитрон поменять 🙂
На этом все. Если есть вопросы, пишите. В следующий раз постараюсь расписать более детально и последовательно.
Новое. Микросхемы на интернет-аукционе Au.ru
Распиновка совпадает у всей серии UC3842 UC3843 UC3844 UC3845Рассмотрим подробнее назначение выводов ИС для наиболее часто встречающегося восьмивыводного корпуса.
Comp: этот вывод подключен к выходу усилителя ошибки компенсации. Для нормальной работы ИС необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС.
Vfb: вход обратной связи. Напряжение на этом выводе сравнивается с образцовым, формируемым внутри ИС. Результат сравнения модулирует скважность выходных импульсов, стабилизируя, таким образом, выходное напряжение ИП.
C/S: сигнал ограничения тока. Данный вывод должен быть присоединен к резистору в цепи истока ключевого транзистора (КТ). При повышении тока через КТ (например, в случае перегрузки ИП) напряжение на этом резисторе увеличивается и, после достижения порогового значения, прекращает работу ИС и переводит КТ в закрытое состояние.
Rt/Ct: вывод, предназначенный для подключения времязадающей RC-цепочки. Рабочая частота внутреннего генератора устанавливается подсоединением резистора R к опорному напряжению Vref и конденсатора С (как правило, емкостью около 3 000 пФ) к общему выводу. Эта частота может быть изменена в достаточно широких пределах, сверху она ограничивается быстродействием КТ, а снизу – мощностью импульсного трансформатора, которая падает с уменьшением частоты. Практически частота выбирается в диапазоне 35…85 кГц, но иногда ИП вполне нормально работает и при значительно большей или значительно меньшей частоте. Следует заметить, что в качестве времязадающего должен применяться конденсатор с возможно большим сопротивлением постоянному току. В практике автора встречались экземпляры ИС, которые вообще отказывались запускаться при использовании в качестве времязадающего некоторых типов керамических конденсаторов.
Gnd: общий вывод. Следует заметить, что общий провод ИП ни в коем случае не должен быть соединен с общим проводом устройства, в котором он применяется.
Out: выход ИС, подключается к затвору КТ через резистор или параллельно соединенные резистор и диод (анодом к затвору).
Vcc: вход питания ИС. Рассматриваемая ИС имеет некоторые весьма существенные особенности, связанные с питанием, которые будут объяснены при рассмотрении типовой схемы включения ИС.
Vref: выход внутреннего источника опорного напряжения, его выходной ток до 50 мА, напряжение 5 В.
Основные отличия семейства показаны в таблице:
В наличии:
UC3842 t=0-100% Ucc>16В
UC3843 t=0-100% Ucc>9В
UC3844 t=0-50% Ucc>16В
UC3845 t=0-50% Ucc>9В
Самая полная аппнота на UC384x
Даташит
Примеры интересных схем
мощный преобразователь для фотовспышки
источник высокого напряжения 2000В
цена за 1шт, в наличии
РадиоКот :: Ионофон на UC3845BN
РадиоКот >Схемы >Аналоговые схемы >Игрушки >Ионофон на UC3845BN
Всем доброго времени суток! Как я и обещал работа по проектированию и совершенствованию ионофонов продолжается!
Сегодня я хочу предложить Вам пару вариантов ионофона на микроконтроллере UC3845BN.
Данная специализированная микросхема предназначена для построения однотактных импульсных источников питания. Благодаря её применению удалось добиться:
– повышения КПД устройства в целом
– повышения громкости и чёткости звучания дуги на выходе (по сравнению с https://radiokot.ru/circuit/analog/games/25/, но не намного…)
– повышения надёжности устройства в целом.
– упрощения схемы до минимума деталей
Итак, рассмотрим 1 вариант сконструированного ионофона подробнее. Его схема изображена на рисунке ниже:
Основу схемы составляет специализированный микроконтроллер DD1. На нём реализована система управления выходным силовым ключом VT1. Рабочая частота данного преобразователя задаётся номиналами элементов С3, R4. При указанных на схеме номиналах она составляет 70 кГц. ( Подробнее о контроллере можно прочитать в даташите тут: https://pdf1.alldatasheet.com/datasheet-pdf/view/25566/STMICROELECTRONICS/UC3845.html )
Сигнал с выхода Вашего аудиоустройства поступает на обмотку II (на которой при нормальном включении трансформатора напряжение 12 Вольт) трансформатора ТВК-110. Данный трансформатор выполняет роль предусилителя сигнала и гальваническую развязку по питанию выхода аудиоустройства и ионофона.
С выхода данного трансформатора, обмотки I (на которой при нормальном включении трансформатора напряжение 220 Вольт), через разделительный конденсатор С4 аудиосигнал поступает на вход FB (вывод 2) микроконтроллера. От напряжения на этом входе зависит скважность выходных импульсов микроконтроллера. Таким образом подавая сюда аудиосигнал мы и осуществляем ШИМ (широтно-импульсную) модуляцию. Резисторы R1, R2, R3 служат для начальной установки скважности выходного сигнала. С выхода данного микроконтроллера (вывода 6) промодулированный сигнал, через токоограничительный резистор R5 поступает на базу выходного силового ключа VT1. Нагрузкой данного ключа является первичная обмотка трансформатора Tr2.
Со вторичной обмотки данного трансформатора и снимается выходное высокое напряжение.
Диод VD1 защищает схему от бросков обратного напряжения во время закрытия силового ключа, а супрессорный диод VD2 защищает схему от перенапряжения по питанию.
Все используемые детали указаны на схеме.
Выходной трансформатор – это переделанный “строчник” от старого лампового телевизора. Первичная обмотка трансформатора содержит 8 витков провода МГШВ-0,5. Кроме того не нужно делать зазора между половинками сердечника при его сборке.
Правильно собранный ионофон начинает работать сразу после включения. Настройка инофона так же проста. Нужно лишь резистором R2 подстроить сигнал на выходе по наилучшему соотношению качество звука/мощность. Вот вроде и всё…
На фото ниже показан внешний вид собранного ионофона:
А вот так это выглядит на видео:
Теперь перейдём ко второму вариантуионофона на UC3845BN. Его схема показана на рисунке ниже:
Если предыдущие конструкции ионофонов можно было отнести к игрушкам больше, чем к звуковоспроизводящим устройствам, то данная конструкция – это уже более серьёзный вариант. Итак, начнём…
Как и в предыдущем варианте ионофона, задающий генератор выполнен на широко распространённом ШИМ-контроллере UC3845BN, все входные цепи устройства аналогичны предыдущей конструкции, поэтому их работу мы рассматривать не будем. Скажу только пару слов о рабочей частоте: в данном варианте ионофона она составляет 160 кГц.
Рассмотрим подробно только изменения.
Итак, с выхода (ножки 6), шим-контроллера, промодулированный сигнал, через токоограничительный резистор R6 поступает на вход драйвера управления силовым ключом VT3. Данный драйвер реализован на транзисторах VT1, VT2. Резистор R8 служит для ограничения максимального рабочего тока каскада. С выхода драйвера, через конденсатор С5, сигнал поступает на первичную обмотку развязывающего трансформатора Tr2. Посредством данного трансформатора осуществляется гальваническая развязка драйвера и выходного каскада, а так же усиление управляющего сигнала до нужного уровня.
Со вторичной обмотки трансформатора Tr2, через резистор R10, усиленный сигнал поступает на затвор выходного силового ключа VT3. Нагрузкой данного ключа является первичная обмотка выходного трансформатора Tr3. Со вторичной обмотки данного трансформатора и снимается выходное высокое напряжение. Стабилитроны VD2, VD3 ограничивают уровень управляющего сигнала на затворе силового ключа.
Нагрузочный резистор R9 служит для подавления всевозможных слабых гармоник, возникающих в трансформаторе при переходных процессах и различных резонансных явлениях. Кроме того, возникающие в результате этого короткие импульсы, без резистора, могут привести к ложному срабатыванию ключа, а это в свою очередь приведёт к его чрезмерному перегреву.
Диоды VD4, VD5, VD6 защищают схему от бросков обратного напряжения во время закрытия силового ключа, а супрессорный диод VD1 защищает блок управления от перенапряжения по питанию.
Все использованные детали указаны на схеме.
Трансформатор Tr1 – это всё тот же, известный нам ТВК-110, включённый наоборот.
Трансформатор Tr2 мотается на ферритовом Ш 6х6. Первичная обмотка содержит 35 витков эмалированного провода диаметром 0,47 мм. Вторичная обмотка содержит 160 витков провода диаметром 0,24 мм. Кроме того в середине сердечника следует сделать зазор 1 мм.
Трансформатор Tr3 – это всё тот же переделанный «строчник». Первичная обмотка содержит 30 витков провода МГШВ-0,25. Кроме того, при сборке трансформатора следует сделать зазор около 0,8-1 мм (С каждой стороны по 0,4-0,5 мм соответственно). Вторичная высоковольтная обмотка так же остаётся штатной.
Правильно собранный ионофон начинает работать сразу после включения. Настройка ионофона очень проста. Нужно лишь резистором R3 подстроить сигнал на выходе по наилучшему соотношению качество звука/мощность. На этом настройку можно считать законченной.
При наладке, перед первым включением, без подачи модуляции, следует проконтролировать форму сигналов в контрольных точках схемы. Для начала, вращением движка резистора R3 добиваемся появления сигнала в точке А. При отключённом драйвере, в контрольной точке А сигнал должен быть как на фото:
В контрольной точке В как на фото:
Если же сигналы по форме сильно отличаются от приведённых, следовательно задающий генератор работает не правильно. Далее следует проконтролировать сигнал в контрольной точке С, без подключения затвора силового ключа. Сигнал должен соответствовать фото:
Если же у Вас получился сигнал как на фото:
то следует увеличить ёмкость конденсатора С5. На этом наладку можно считать законченной.
В качестве источника напряжения 160 В я использовал трансформатор ТС-180 от старого лампового телевизора с соединёнными последовательно 2 обмотками по 63 вольта, выпрямительный мост от компьютерного БП KBU6G (RS604) и конденсатор 470 мкФ 350 Вольт.
На фото ниже представлен внешний вид готового собранного опытного образца данного ионофона.
А вот так выглядит горящая дуга без подачи модуляции:
Качество звучания данного ионофона можно повысить, поэкспериментировав с формой электродов и их материалом.
P.S. Кроме того, из данного преобразователя получается неплохая лестница Иакова. Для этого следует убрать штатные элетроды и заменить их на те, что используются в лестнице.
На видео это всё выглядит вот так:
На этом на сегодня всё! До новых встречь. С уважением, Андрей!
Файлы:
Схема 1 варианта Ионофона в формате SPlan
Схема 2 варианта Ионофона в формате SPlan
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Эти статьи вам тоже могут пригодиться:
© Semiconductor Components Industries, LLC, 2004
сентября, 2004 – Rev. 3
1
Публикации Номер заказа:
UC3844B / D
UC3844B, UC3845B,
UC2844B, UC2845B
Высокопроизводительные
контроллеры с токовым режимом
Серия UC3844B, UC3845B – это высокопроизводительные контроллеры с токовым режимом
с фиксированной частотой.Они специально разработаны для
автономных и преобразователей постоянного тока, предлагая разработчику экономичное решение
с минимальными внешними компонентами. Эти интегральные микросхемы
оснащены генератором, опорным датчиком
с температурной компенсацией, усилителем с высокой погрешностью усиления, компаратором чувствительности тока и сильнотоковым токовым полюсом, идеально подходящим для управления мощным полевым МОП-транзистором.
Также включены защитные функции, состоящие из входа и блокировок эталонного минимального напряжения
, каждая с гистерезисом, циклическое ограничение
тока, защелка для измерения одиночного импульса и триггер
, который отключает выход при каждом другой цикл генератора, позволяющий программировать
времени простоя на выходе от 50% до 70%.
Эти устройства доступны в 8-контактном пластиковом корпусе с двойным входом и поверхностью
(SOIC-8), а также 14-контактной пластиковой поверхности с креплением(SOIC-14). Пакет SOIC-14 имеет отдельное питание и
заземляющих контактов для выходного каскада полюса тотема.
UCX844B имеет пороги UVLO 16 В (вкл.) И 10 В (выкл.),
идеально подходит для автономных преобразователей. UCX845B предназначен для приложений с низким напряжением
ис порогами UVLO 8.5 В (вкл.) И
7,6 В (выкл.).
Особенности
• Доступны бессвинцовые пакеты
• Подстроечный генератор для точного управления частотой
• Частота генератора гарантирована при 250 кГц
• Работа в токовом режиме до 500 кГц Частота переключения выхода
• Выходная задержка 50 с регулировкой по времени % до 70%
• Автоматическая прямая компенсация подачи
• Фиксация ШИМ для ограничения цикла за циклом
• Задание с внутренней подстройкой с блокировкой по минимальному напряжению
• Вывод высокого токового полюса
• Блокировка по низкому напряжению 3 с гистерезисом • Низкий пусковой и рабочий ток
14
SOIC − 14
D SUFFIX
CASE 751A
1
См. Подробную информацию о заказе и доставке в разделе
, размерные размеры на стр. 2 данного паспорта.
ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА
См. Общую информацию о маркировке в разделе «Маркировка устройства
» на стр. 16 данного паспорта.
ИНФОРМАЦИЯ О МАРКИРОВКЕ УСТРОЙСТВА
1
8
PDIP − 8
N SUFFIX
CASE 626
ПОДКЛЮЧЕНИЯ PIN
Компенсация
NC
RT / CTКомпенсация
Обратная связь по напряжению
Датчик тока
RT / CT
Vref
Vref
NC
VCC
VC
строенных рабочих силовых звеньевGN
D
(вид сверху)
8
7
6
5
1
2
3
4
1
2
2 000 000 000 000 000 000 000 000 14
13
12
11
5
6
7
10
9
8
900 02 (вид сверху)SOIC − 8
D1 SUFFIX
CASE 751
1
8
http: // onsemi.ком
.Таблица данныхUC3844B, UC3845B, UC2844B, UC2845B
http://onsemi.com
4
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ (VCC = 15 В [Примечание 4], RT = 10 кОм, CT = 3.3 k, CT = 3.3 k, CT = 3.3 k. Для типичных значений TA = 25 ° C, для минимальных / максимальных значений
TA – это диапазон рабочих температур окружающей среды, который применяется [Примечание 5], если не указано иное.)
UC284XB
UC384XB, XBV
Характеристика
Символ
Мин.
Тип
Макс.
Мин.
Тип
Макс.
Блок
РАЗДЕЛ УСИЛИТЕЛЯ ОШИБКИ
Вход обратной связи по напряжению (VO = 2.5 В)
VFB
2.45
2.5
2.55
2.42
2.5
2.58
В
Ток смещения входа (VFB = 5.0 В)
-1,0–
– 0,1
– 2,0
мА
Коэффициент усиления по напряжению в разомкнутом контуре (VO = 2,0 В до 4,0 В)
AVOL
65
90
–
–
дБ
Пропускная способность Unity Gain (TJ = 25 ° C)
BW
0.7
1,0
–
0,7
70
–
дБ
Выходной ток
Раковина (VO = 1,1 В, VFB = 2,7 В)
Источник (VO = 5,0 В, VFB = 2,3 В)
ISink
ISource
2.0
– 0,5
12
-1.0
–
–
2.0
– 0.5
12
−1.0
–
–
мА
Колебание выходного напряжения
Высокое состояние (RL = 15 К 2,3 к заземлению, к заземлению, V)
в низком состоянии (RL = 15 кОм Vref, VFB = 2,7 В)
(UC284XB, UC384XB)
(UC384XBV)
VOH
VOL
5 000
5 000
5 000
0,8
–
–
1.1
–
5,0
–
–
6,2
0,8
0,8
–
1,1
1,2
V
текущий ток Sense для входа
S0002 9000 7)
(UC284XB, UC384XB)
(UC384XBV)
AV
2.85
–
3.0
–
3.15
000 000 2.00020000000000
3.15
3.25
9000 9000
1.1
–
0,9
0,85
1,0
1,0
1,1
1,1
В
Коэффициент отклонения электропитания
(VCC = 12 В до 25 000 9) 9 (Примечание: от 12 В до 25 В) PSRR
–
70
–
–
70
–
дБ
Входной ток смещения
IIB
–
– 2.0
−10
–
– 2.0
−10
мА
Задержка распространения (токовый вход-выход)
т / ч (вход / выход)
–
150
300
Таблица данныхUC3844B, UC3845B, UC2844B, UC2845B
http://onsemi.com
2
Номера выводов в скобках указаны для пакета D SOIC-14 с суффиксом D.
Выход
VC
RT / CT
Vref
VCC
Пониженное напряжение
Блокировка
GND
5.0V
Ссылка
P0002000000
000000 ГенераторОшибка
Усилитель
5 (9)
3 (5)
5 (8)
6 (10)
7 (11)
Питание
Заземление
Токовый вход
1 (1)
2 (3)
4 (7)
8 (14)
Выход /
Компенсация
Напряжение
Обратная связь
Вход
VCC
7 (12)R
R
Рисунок 1.Упрощенная блок-схема
ИНФОРМАЦИЯ ДЛЯ ЗАКАЗА
Прибор
Operating
Температурный диапазон
Комплект
Доставка †
UC384xBD
SOIC-14
55 единиц / Железнодорожные
UC384xBDR2
SOIC-14
2500 Tape & Катушка
UC3844BDR2G
SOIC − 14
(без содержания свинца)
2500 Лента и катушка
UC384xBD1
SOIC − 8
98 единиц / шина
° 0 000 0 ° 0 000 000 = 0 000 000 UC38 C
SOIC − 8
(без свинца)
98 единиц / рельс
UC384xBD1R2
A
SOIC − 8
2500 Tape & Reel
9000IC 9000IC 9000IC0000002000B2000R )
2500 Tape & Reel
UC384xBN
PDIP − 8
50 блоков / рельс
UC384xBNG
PDIP − 8
(Pb-Free)
50 000 50 000 50 000 универс SOIC − 1455 единиц / рельс
UC284xBDR2
SOIC − 14
2500 Tape & Reel
UC2845BDR2G
SOIC − 14
(Pb-Free)
U0002000000 T000 = −25 ° до + 85 ° C
SOIC − 8
98 единиц / рельс
UC284xBD1R2
A
SOIC − 8
2500 Tape & Reel
UC284xBD1R2G 9000
000000000000000000000000 Бесплатно)
2500 Tape & Reel
UC2844BN
PDIP − 8
50 единиц / рельс
UC384xBVD
SOIC − 14
55 единиц / рельс
300020000002000000R0002
UC384xBVD1
TA = −40 ° до + 105 ° C
SOIC − 8
98 единиц / шина
UC384xBVD1R2
A
SOIC − 8
U000300000038000B 8
50 единиц / рельс
† Для информацию о спецификациях ленты и катушки, в том числе об ориентации деталей и размерах ленты, см. в нашей брошюре по спецификациям ленты и катушки
, BRD8011 / D.
x указывает 4 или 5 для определения конкретных номеров деталей устройства.
ПаспортUC2842B / 3B / 4B / 5B
UC3842B / 3B / 4B / 5B
Март 1999
ШИМ конроллер ВЫСОКОЭФФЕКТИВНОГО ТОКА
.УСТАНОВЛЕННЫЙ ОСЦИЛЛЯТОР ДЛЯ ТОЧНОГО ОСВОБОЖДЕНИЯ
УПРАВЛЕНИЕ КОЛИЧЕСТВОМ
.
Частота генератора гарантирована
при 250 кГц
.
ТЕКУЩИЙ РЕЖИМ РАБОТЫ ДО 500 кГц
.
АВТОМАТИЧЕСКАЯ ПОДАЧА ПЕРЕДАЧА КОМПЕНСА-
TION
.
ЗАДВИЖКА ШИМ ДЛЯ ЦИКЛА ЗА ЦИКЛОМ
ТЕКУЩЕЕ ОГРАНИЧЕНИЕ
.
СПРАВОЧНИК С ВНУТРЕННЕЙ УСТАНОВКОЙ С
БЛОКИРОВКА С УСТАНОВКОЙ
ВЫХОД ВЫСОКОГО ТЕКУЩЕГО ПОЛЮСА
.
БЛОКИРОВКА ПОД УСТАНОВКОЙ С HYSTER-
ESIS
.
НИЗКИЙ ЗАПУСК И ТЕКУЩИЙ ЭКСПЛУАТАЦИЯ
ОПИСАНИЕ
Семейство ИС управления UC384xB предоставляет необходимые функции
для реализации автономных или постоянного тока
схем управления режимом тока с фиксированной частотой с минимальным
минимальным количество внешних деталейВнутренне реализуемые схемы
свключают в себя подстроечный генератор для контроля за циклом до
при блокировке по напряжению –
, ток запуска при срабатывании менее 0,5 мА, задание до
обрезания для точности с ошибкой
вход усилителя, логика для обеспечения фиксированной работы, компаратор PWM
, который также обеспечивает контроль предела тока,
и выходной каскад полюса тотема, рассчитанный на источник
или поглотитель высокого пика тока. Выходной каскад, подходящий
для управления N-канальными МОП-транзисторами, находится в состоянии низкого уровня
.
Различия между членами этого семейства – это пороги блокировки пониженного напряжения
и максимальные циклы
циклов. UC3842B и UC3844B имеют
пороговых значений UVLO 16 В (вкл.) И 10 В (выкл.), В идеале
подходящих автономных приложений.
циклов приближается к 100%. Диапазон от нуля до <
50% получается UC3844B и UC3845B
добавлением внутреннего триггера с переключателем, который отключает
выходной сигнал от каждого второго тактового цикла.
BLOCK DIAGRAM (переключающий триггер, используемый только в UC3844B и UC3845B)
UVLO
S / R
5V
REF
34V
ВНУТРЕННИЙ
-RU-RU-ЭТУT
S
R
OSC
R1V
ТОК
SENSE
КОМПАРАТОР
2R
+
000000
1
3
8
6
ОШИБКА AMP.
Vi
ЗЕМЛЯ
RT / CT
VFB
COMP
ТОК
SENSE
VREF
5V 50mA
8000 3000 9000 (RU) () (RU) (RU) (серийный номер) 800031/15
.