Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

объяснение принципа работы, устройства и подключения

Мигающая наружная реклама украшает городские кварталы. Забавный световой эффект «бегущие огни» сопровождает выступления эстрадных артистов. Новогодняя гирлянда на ёлке создаёт праздничное настроение. Маленькая деталь, которая управляет огромными электронными приборами, называется тиристор.

Принцип работы

Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».

Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.

В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.

Конструкция прибора

Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.

Основообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.

Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.

Режимы работы

Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.

Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.

Даже значительное увеличение разности потенциалов на контактах не приведёт устройство в рабочее состояние. Линия графика почти горизонтальна.

Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.

Работа транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.

Классификация тиристоров

Существует два варианта управления полупроводником: через катод или анод. Это зависит от полярности слоя, к которому подключено управление. Поэтому различают тиристоры с катодным или анодным управлением.

Возможен вариант отсутствия управляющего электрода. Такой прибор называется диодным тиристором, и включение устройства производит напряжение, подаваемое на основные контакты. Отсюда классификация на динисторы, не имеющие вывода управления, и тринисторы, у которых есть управляющий контакт.

По способностям пропускать ток в том или ином направлении тиристоры подразделяются на симметричные и асимметричные устройства. Симметричные полупроводники, которые профессионалы называют симисторами, способны проводить ток в обоих направлениях. В сущности, симистор — это пара тиристоров, включённых по встречно-параллельной схеме.

Асимметричные приборы пропускают ток только в одну сторону:

  • прямонаправленные устройства заперты при подключении напряжения обратного направления;
  • приборы, пропускающие обратный ток, открываются при подаче напряжения противоположной полярности.

В электронных схемах также используются запираемые тиристоры. Устройство открывается, когда на управляющий электрод подаётся ток. В положение «закрыто» прибор переходит при изменении полярности тока управления.

Технические характеристики

Области применения полупроводника разнообразны. В зависимости от того, для чего нужен тиристор, подбирается деталь с требуемыми техническими данными. Выбрать необходимый тип полупроводникового триода помогут рабочие параметры устройства:

  1. Максимальный ток от анода к катоду.
  2. Наибольшая величина обратного тока указывается только для типов, обладающих такой функцией.
  3. Максимальное прямоточное напряжение в положении «открыто».
  4. Минимальные напряжение и сила тока раскрытия p — n перехода.
  5. Предельный уровень сигнального тока, приводящий к пробою тиристора.
  6. Ток удержания определяет уровень, ниже которого наступает состояние «закрыто».
  7. Мощность указывает величину допустимой нагрузки.
  8. Время срабатывания.

Контроль работоспособности

Перед установкой тиристора в схему необходимо убедиться в его исправности. Целостность детали проверяется мультиметром или лампочкой, подключённой к источнику питания.

На измерительном приборе устанавливают функцию прозвонки. Сначала щупы присоединяют к аноду и катоду попеременно в прямом и обратном направлении. Цифра «1» на дисплее укажет, что ток не проходит, и деталь исправна. Затем прозванивают линию от анода до сигнального контакта.

Одна из цепей должна быть оборвана, а другая покажет небольшое сопротивление. Если в обоих случаях мультиметр обнаружит одинаковый результат, то тиристор неисправен.

Работоспособность детали можно проверить, собрав простую электрическую цепь. Анодный контакт присоединяют к «плюсовому» зажиму батарейки. Катод замыкают на «минус» источника питания через лампочку. Куском провода кратковременно смыкаются анодный и управляющий выводы. Лампа должна загореться и не гаснуть после разрыва цепочки «анод — управляющий электрод».

Работающий осветительный прибор указывает на исправность тиристора. При проверке необходимо учитывать величину подаваемого напряжения, которая должна быть достаточной для включения лампы.

Практическое применение

Благодаря принципу работы тиристор используют в преобразователях напряжения и выпрямителях тока. Вместе с силовым трансформатором полупроводник способен изменять уровень тока. На этой основе собраны зарядные устройства автомобильных аккумуляторов, а также мощные электросварочные аппараты. Способность прибора изменять переменное напряжение на постоянное напряжение используется в преобразователях.

В устройствах сигнализации тиристор включается командой от внешнего датчика, изменяющего напряжение на управляющем электроде. Конструкции, которые контролируют окружающую обстановку, могут реагировать на изменение температурного режима или объёмного наполнения пространства. За освещённостью объекта наблюдает оптотиристор.

Полупроводниковый тиристор предназначен для управления большими токами слаботочным сигналом. С помощью диммерных блоков, на которые подаётся команда от светового пульта, управляются театральные прожекторы и светильники.

Поддержание заданного температурного режима в печи обеспечивается регулятором мощности дуги горения. В электрических двигателях скорость вращения ведущего вала контролирует тиристорный регулятор частоты хода.

Архимед обещал перевернуть Землю, если бы у него была точка опоры. Управляемый тиристорный полупроводник является тем рычагом, который расширяет области применения электронных устройств. Небольшая радиодеталь умножает возможности человека в развитии научно-технического прогресса.

Тиристор SCR (управляемый кремниевый выпрямитель)

Добавлено 8 октября 2018 в 20:57

Сохранить или поделиться

Динисторы (диоды Шокли) и тиристоры SCR (Silicon Controlled Rectifiers, управляемые кремниевые выпрямители)

Динисторы (диоды Шокли) – это довольно любопытные устройства, но довольно ограниченные в применении. Однако их полезность может быть расширена путем оснащения их другим средством отпирания. При этом каждый из них становится настоящим усилительным устройством (только если в режиме отпирания/запирания), и мы называем их кремниевыми управляемыми выпрямителями (silicon-controlled rectifier) или SCR тиристорами.

Тиристор SCR (silicon-controlled rectifier, кремниевый управляемый выпрямитель), или просто тринистор

Развитие от динистора до тринистора достигается с помощью одного небольшого дополнения, фактически не более чем третьего подключения к существующей структуре PNPN (рисунок ниже).

Тиристор SCR (управляемый выпрямитель, тринистор)

Проводимость управляемых выпрямителей SCR (тринисторов)

Если управляющий электрод тринистора остается висящим в воздухе (неподключенным), он ведет себя точно так же, как динистор (диод Шокли). Он может быть отперт напряжением переключения или превышением критической скорости нарастания напряжения между анодом и катодом, всё как у динистора. Запирание осуществляется за счет уменьшения тока до тех пор, пока один или оба внутренних транзистора не упадут в режим отсечки, всё как у динистора. Однако, поскольку управляющий вывод подключается непосредственно к базе нижнего транзистора, он может использоваться как альтернативное средство отпирания тиристора SCR. Прикладывая небольшое напряжение между управляющим электродом и катодом, нижний транзистор будет открываться результирующим тока базы, что приведет к тому, что верхний транзистор будет проводить ток, а затем запитывать базу нижнего транзистора, поэтому он больше не будет нуждаться в активации напряжением управляющего электрода. Разумеется, необходимый для отпирания ток управляющего вывода будет намного ниже, чем ток через SCR тиристор от катода до анода, поэтому, используя SCR тиристор, можно добиться усиления.

Переключение/запуск

Данный метод обеспечения проводимости тиристора SCR называется запуском или переключением, и на сегодняшний день наиболее распространенным способом является тот, которым SCR тиристор отпирается в реальной практике. Фактически, SCR тиристоры обычно выбираются так, чтобы их напряжения переключения находились далеко за пределами наибольшего напряжения, ожидаемого от источника питания, поэтому его можно включить (отпереть) только путем преднамеренного импульса напряжения, подаваемого на управляющий вывод.

Обратное переключение

Следует отметить, что SCR тиристоры иногда могут быть выключены (заперты) путем прямого замыкания управляющего вывода и вывода катода или с помощью «обратного переключения» управляющего вывода отрицательным напряжением (относительно катода), чтобы принудительно перевести нижний транзистор в режим отсечки. Я говорю, что это «иногда» возможно потому, что это включает в себя шунтирование всего тока верхнего транзистора через базу нижнего транзистора. Этот ток может быть существенным, что в лучшем случае затрудняет запирание SCR тиристора. Вариация SCR тиристора под названием запираемый тиристор, или GTO (Gate-Turn-Off), облегчает эту задачу. Но даже с GTO тиристором ток управляющего электрода, необходимый для его отключения, может составлять до 20% от тока анода (нагрузки)! Условное обозначение GTO тиристора показано на рисунке ниже.

Условное обозначение GTO тиристора

SCR тиристоры против GTO тиристоров

Тиристоры SCR и GTO имеют одну и ту же эквивалентную схему (два транзистора, соединенные по принципу положительной обратной связи), единственными отличиями являются детали конструкции, предназначенные для предоставления NPN транзистору большего коэффициента β, чем у PNP транзистора. Это позволяет меньшему току управляющего электрода (прямому или обратному) осуществлять большую степень управления проводимостью от катода к аноду, причем открытое состояние PNP транзистора больше зависит от NPN транзистора, чем наоборот. Запираемый тиристор GTO также известен под названием тиристор GCS (Gate-Controlled Switch).

Проверка работоспособности SCR тиристора с помощью мультиметра

Элементарный тест работоспособности SCR тиристора или, по крайней мере, определение выводов, может выполняться измерителем сопротивления. Поскольку внутреннее соединение между управляющим электродом и катодом является PN переходом, мультиметр должен показывать целостность соединения между этими выводами с красным измерительным щупом на управляющем электроде и черным измерительным щупом на катоде следующим образом (рисунок ниже).

Элементарная проверка SCR тиристора

Все остальные измерения целостности соединений, выполненные на SCR тиристоре, будут показывать «разрыв» («OL» на дисплеях некоторых цифровых мультиметров). Следует понимать, что этот тест очень груб и не является полной оценкой SCR тиристора. SCR тиристор может давать хорошие показания омметра и по-прежнему оставаться неисправным. В конечном счете, единственный способ проверить SCR тиристор – подвергнуть его нагрузочному току.

Если вы используете мультиметр с функцией «проверки диода», показания напряжения перехода управляющий электрод – катод, которые вы получите, могут соответствовать, а могут и нет, тому, что ожидается от кремниевого PN перехода (примерно 0,7 вольта). В некоторых случаях вы будете получать показания намного более низкого напряжения перехода: сотые доли вольта. Это связано с внутренним резистором, подключенным между управляющим электродом и катодом и включенным в некоторые SCR тиристоры. Этот резистор добавляется, чтобы сделать SCR тиристор менее восприимчивым к ложным срабатываниям из-за ложных импульсов напряжения, из-за «шума» схемы или из-за статического электрического разряда. Другими словами, наличие резистора, подключенного к переходу управляющего электрода и затвора, требует большего переключающего сигнала (существенного тока) для отпирания SCR тиристора. Эта функция часто встречается в мощных SCR тиристорах, а не в маленьких. Не забывайте, что SCR тиристор с внутренним резистором, подключенным между управляющим электродом и катодом, будет показывать целостность соединения в обоих направлениях между этими двумя выводами (рисунок ниже).

У больших SCR тиристоров между управляющим электродом и катодом есть встроенный резистор

SCR тиристоры

с чувствительным управляющим электродом

«Обычные» SCR тиристоры, лишенные внутреннего резистора, иногда называются SCR тиристорами с чувствительным управляющим электродом из-за их способности запускаться малейшим положительным сигналом на управляющем электроде.

Тестовая схема для SCR тиристора является практичной в качестве диагностического инструмента для проверки подозрительных SCR тиристоров, а также отличной помощью для понимания основ работы SCR тиристоров. Для питания схемы используется источник питания постоянного тока, а два кнопочных коммутатора используются для отпирания и запирания SCR тиристора (рисунок ниже).

Схема для проверки SCR тиристоров

Нажатие нормально разомкнутой кнопки «вкл» соединяет управляющий электрод с анодом, позволяя протекать току от отрицательного вывода батареи через PN переход катод – управляющий электрод, через кнопку, через резистор нагрузки, и обратно к батарее. Этот ток управляющего электрода должен заставить SCR тиристор отпереться, позволяя протекать току прямо от катода к аноду без дальнейшего отпирания через управляющий электрод. Когда кнопка «вкл» отпущена, нагрузка должна оставаться под напряжением.

Нажатие нормально замкнутой кнопки «выкл» разрывает цепь, заставляя ток через SCR тиристор остановиться, тем самым вынуждая его запереться (величина тока ниже тока удержания).

Ток удержания

Если SCR тиристор не отпирается, проблема может быть связана с нагрузкой, а не с тиристором. Чтобы удерживать SCR тиристор отпертым, требуется определенная величина тока нагрузки. Этот минимальный уровень тока называется током удержания. Нагрузка со слишком большим значением сопротивления может и не набирать достаточный ток, чтобы удерживать SCR тиристор отпертым, когда прекращается ток через управляющий электрод, что дает ложное впечатление о плохом (неотпираемом) SCR тиристоре в тестовой схеме. Значения тока удержания для разных SCR тиристоров доступны у производителей. Типовые значения тока удержания колеблются от 1 миллиампера до 50 миллиампер и более для больших тиристоров.

Чтобы проверка была исчерпывающей, необходимо протестировать более чем переключающее поведение. Прямое напряжение переключения SCR тиристора можно проверить, увеличивая напряжение источника постоянного тока (без нажатия кнопок) до тех пор, пока SCR тиристор не отопрется самостоятельно. Остерегайтесь того, что для теста переключения может потребоваться очень высокое напряжение: многие мощные SCR тиристоры имеют номинальное напряжение переключения 600 вольт и более! Кроме того, если имеется импульсный генератор напряжения, аналогичным способом может быть проверена критическая скорость повышения напряжения SCR тиристора: необходимо подвергнуть тиристор импульсному напряжению с разными скоростями напряжение/время без воздействия на кнопочные переключатели и пронаблюдать, когда тиристор отопрется.

В этом простом виде, схема для проверки SCR тиристоров может быть достаточной в качестве схемы управления запуском/остановкой для двигателя постоянного тока, лампы или другой практической нагрузки (рисунок ниже).

Схема управления запуском/остановкой двигателя постоянного тока

Схема «монтировки»

Другое практическое применение SCR тиристора в схемах постоянного тока – это устройство «монтировки» для защиты от перенапряжения. Схема «монтировки» состоит из SCR тиристора, установленного параллельно выходу источника постоянного напряжения, для установления короткого замыкания на выходе этого источника питания, чтобы предотвратить подачу слишком повышенного напряжения на нагрузку. Повреждение SCR тиристора и источника питания предотвращается путем установки перед SCR тиристором подходящего предохранителя или существенного последовательного сопротивления для ограничения тока короткого замыкания (рисунок ниже).

Схема «монтировки», используемая в источнике питания постоянного тока

Некоторое устройство или схема, определяющие выходное напряжение, будут подключены к управляющему электроду SCR тиристора, поэтому при возникновении состояния перенапряжения между управляющим электродом и катодом будет приложено напряжение, отпирающее SCR тиристор и заставляющее сработать предохранитель. Эффект будет примерно таким же, как кидание стальной монтировки прямо на выходные клеммы источника питания, отсюда и название схемы.

Большинство применений SCR тиристоров предназначены для управления питанием переменным током, несмотря на то, что SCR тиристоры являются устройствами постоянного тока (однонаправленными). Если схеме требуется двунаправленный ток, можно использовать несколько SCR тиристоров, причем для обработки обоих полупериодов волны переменного тока в каждом направлении должны смотреть один или несколько тиристоров. Основная причина, по которой SCR тиристоры вообще используются в приложениях управления питанием переменным током, – это уникальная реакция тиристора на переменный ток. Как мы видели, тиратронная лампа (электронно-ламповая версия SCR тиристора) и симметричный динистор (DIAC), гистерезисное устройство, запускаемое во время части полупериода переменного тока, будут отпираться и оставаться включенными на протяжении всей оставшейся части полупериода до тех пор, пока переменный ток не уменьшится до нуля, так как должен начинать следующий полупериод. Только перед точкой пересечения нуля сигналом переменного тока тиристор отключится (запрется) из-за недостаточного тока (это поведение также называется естественной коммутацией) и должен будет снова отпереться в следующем периоде. Результатом является ток цепи, эквивалентный «обрезанной» синусоиде. Для примера, ниже приведен график отклика симметричного динистора (DIAC) на переменное напряжение, пиковое значение которого превышает напряжение переключения DIAC.

Двунаправленный отклик симметричного динистора (DIAC)

При использовании DIAC предельное напряжение переключения было фиксированной величиной. С SCR тиристором мы контролируем, когда точно устройство отпирается путем переключения управляющего вывода в любой момент времени периода сигнала. Подключив подходящую схему управления к управляющему электроду SCR тиристора, мы можем «обрезать» синусоиду в любой точке, чтобы обеспечить пропорционально времени управление питанием на нагрузке.

Возьмем в качестве примера схему на рисунке ниже. Здесь SCR тиристор помещается в схему для управления питанием нагрузки, потребляемым от источника переменного тока.

Управление питанием переменным током с помощью SCR тиристора

Будучи однонаправленным (односторонним) устройством, самое большее, что мы можем подать на нагрузку, это только одна полуволна во время полупериода переменного тока, когда полярность напряжения питания положительна сверху и отрицательна снизу. Однако для демонстрации базовой идеи управления пропорционально времени эта простая схема подходит лучше, чем схема, управляющая мощностью во время всей волны (для чего потребуется два SCR тиристора).

При отсутствии переключения на управляющем электроде и величине напряжения источника переменного тока значительно ниже номинального напряжения переключения SCR тиристора SCR тиристор никогда не откроется. Подключение управляющего электрода SCR тиристора к аноду через стандартный выпрямительный диод (для предотвращения обратного тока через управляющий вывод в случае, если SCR тиристор содержит встроенный резистор между управляющим выводом и катодом) позволит запускать SCR тиристор почти сразу в начале каждого положительного полупериода (рисунок ниже).

Управляющий электрод подключен напрямую к аноду через диод; через нагрузку протекает почти целая полуволна тока.

Задержка запуска SCR тиристора

Однако мы можем отложить запуск SCR тиристора, вставив некоторое сопротивление в цепь управляющего электрода, тем самым увеличивая величину падения напряжения, требуемого перед тем, как будет достигнут достаточный ток управляющего электрода SCR тиристора. Другими словами, если мы затрудняем движение электронов через управляющий электрод путем добавления сопротивления, переменное напряжение должно будет достигнуть более высокой точки в своем цикле, прежде чем будет достигнут достаточный ток управляющего вывода, чтобы включить SCR тиристор. Результат показан на рисунке ниже.

В цепь управляющего электрода вставлено сопротивление; через нагрузку протекает меньше полуволны тока.

Когда сигнал «полусинусоиды» будет в значительной степени обрезан за счет задержки запуска SCR тиристора, нагрузка получит меньшую среднюю мощность (питание подается на меньшее время в течение всего периода). Сделав последовательный резистор в цепи управляющего электрода переменным, мы можем подстроить мощность пропорционально времени (рисунок ниже).

Увеличение сопротивления повышает уровень порога, в результате чего до нагрузки доходит меньшая мощность.
Уменьшение сопротивления понижает уровень порога, в результате чего до нагрузки доходит большая мощность.

К сожалению, эта схема управления имеет значительные ограничения. При использовании сигнала источника переменного тока в качестве сигнала, переключающего наш SCR тиристор, мы ограничиваем управление первой половиной полупериода сигнала. Другими словами, мы не можем подождать, чтобы переключить SCR тиристор после пика сигнала. Это означает, что мы можем убавить мощность только до того момента, когда SCR тиристор включится на самом пике сигнала.

Схема при установке минимальной мощности

Повышение порога срабатывания переключения приведет к тому, что схема не будет запускаться вообще, так как даже пик переменного напряжения источника питания будет недостаточным для запуска SCR тиристора. В результате питание на нагрузку подаваться не будет.

Гениальное решение этой дилеммы управления обнаруживается при добавлении в схему фазосдвигающего конденсатора (рисунок ниже).

Добавление в схему фазосдвигающего конденсатора

Меньший сигнал, показанный на графике, представляет собой напряжение на конденсаторе. Для иллюстрации фазового сдвига я предполагаю условие максимального управляющего сопротивления, когда SCR не запускается вообще и не подает на нагрузку ток, за исключением того, какой небольшой ток проходит через управляющий резистор и конденсатор. Это напряжение конденсатора будет сдвинуто по фазе от 0° до 90°, отставая от сигнала переменного тока. Когда это сдвинутое по фазе напряжение достигает достаточно высокого уровня, SCR тиристор отпирается.

При напряжении на конденсаторе, достаточном для периодического запуска SCR тиристора, итоговый сигнал тока нагрузки будет выглядеть примерно так, как показано на рисунке ниже.

Сдвинутый по фазе сигнал переключает SCR тиристор в режим проводимости

Поскольку сигнал на конденсаторе всё еще растет после того, как основной сигнал от источника питания достиг своего пика, становится возможным запустить SCR тиристор на пороговом уровне за этим пиковым значением, тем самым обрезая сигнал тока нагрузки дальше, чем это было возможно с более простой схемой. В действительности сигнал напряжения конденсатора немного сложнее, чем показано здесь, его синусоидальная форма искажается каждый раз, когда открывается SCR тиристор. Однако то, что я пытаюсь проиллюстрировать здесь, – это отложенное срабатывание, связанное с фазосдвигающей RC цепью; таким образом, упрощенная, неискаженная форма сигнала хорошо служит этой цели.

Запуск SCR тиристоров сложными схемами

SCR тиристоры также могут быть запущены, или «отперты», более сложными схемами. Хотя ранее показанная схема достаточна для простого применения, такого как управление лампой, управление большими промышленными двигателями часто опирается на более сложные схемы запуска. Иногда для соединения схемы запуска с управляющим электродом и катодом SCR тиристора для обеспечения электрической изоляции между цепями запуска и силовыми цепями используются импульсные трансформаторы (рисунок ниже).

Трансформаторная связь сигнала переключения обеспечивает изоляцию

Когда для управления питанием используется несколько SCR тиристоров, их катоды часто не являются электрически общими, что затрудняет подключение единой схемы запуска ко всем SCR тиристорам одинаково. Примером этого является управляемый мостовой выпрямитель, показанный на рисунке ниже.

Управляемый мостовой выпрямитель

В любой схеме мостового выпрямителя выпрямительные диоды (в этом примере выпрямительные SCR тиристоры) должны проводить ток в противоположных парах. SCR1 и SCR3 должны быть запущены одновременно, и SCR2 и SCR4 должны быть запущены как пара. Однако, как вы заметили, эти пары SCR тиристоров не используют одни и те же соединения катодов, а это означает, что схема не будет работать, если просто запараллелить их управляющие электроды и подключить к ним единый источник напряжения, чтобы запустить оба тиристора (рисунок ниже).

Эта стратегия не будет работать для запуска SCR2 и SCR4 в качестве пары

Хотя показанный источник напряжения запуска запустит SCR4, он не запустит должным образом SCR2, потому что эти два тиристора не имеют общего соединения катодов для использования его в качестве опорной точки для напряжения запуска. Однако импульсные трансформаторы, подключающие два управляющих электрода тиристоров к источнику напряжения запуска, будут работать (рисунок ниже).

Трансформаторная связь управляющих электродов позволяет запускать SCR2 и SCR4

Имейте в виду, что эта схема показывает подключение управляющих электродов только двух из четырех SCR тиристоров. Импульсные трансформаторы и источники запуска для SCR1 и SCR3, а также детали самих импульсных источников были опущены для простоты.

Управляемые мостовые выпрямители не ограничиваются однофазными схемами. В большинстве промышленных систем питание переменным током доступно в трехфазной форме для получения максимальной эффективности, и из-за своих преимуществ в них используются твердотельные схемы управления. Схема трехфазного управляемого выпрямителя, построенная на SCR тиристорах, не показывающая импульсных трансформаторов и схем запуска, будет выглядеть как на рисунке ниже.

Трехфазное мостовое управление нагрузкой на SCR тиристорах

Резюме

  • Кремниевый управляемый выпрямитель, или SCR тиристор, по сути, является динистором (диодом Шокли) с дополнительным выводом. Этот дополнительный вывод называется управляющим электродом, и он используется для переключения устройства в режим проводимости (отпирает его) с помощью прикладывания небольшого напряжения. Для запуска, или отпирания, SCR тиристора напряжение должно быть приложено между управляющим электродом и катодом, плюс на управляющий электрод, минус на катод.
  • При тестировании SCR тиристора кратковременное соединение между управляющим электродом и анодом достаточно по полярности, интенсивности и продолжительности, чтобы отпереть тиристор. SCR тиристоры могут быть запущены с помощью преднамеренного запуска вывода управляющего электрода, повышенного напряжения (переключения) между анодом и катодом или повышенной скорости нарастания напряжения между анодом и катодом. SCR тиристоры могут быть выключены (заперты) падением анодного тока ниже значения тока удержания (выключение по низкому току) или «обратным переключением» управляющего электрода (прикладывание отрицательного напряжения к управляющему электроду). Обратное переключение эффективно только иногда и всегда включает в себя высокий ток через управляющий вывод.
  • Вариант SCR тиристора, называемый запираемым тиристором (GTO (Gate-Turn-Off) тиристор), специально предназначен для отключения с помощью обратного переключения. Даже в этом случае обратное переключение требует довольно высокого тока: обычно 20% от тока анода. Выводы SCR тиристора могут быть идентифицированы с помощью мультиметра в режиме «прозвонки»: единственные два вывода, показывающие какие-либо показания при «прозвонке», должны быть управляющий электрод и катод. Выводы управляющего электрода и катода подключаются к PN переходу внутри SCR тиристора, поэтому мультиметр в режиме «прозвонки» должен выдавать диодо-подобные показания между двумя этими выводами с красным (+) щупом на управляющем электроде и черным (-) щупом на катоде. Однако имейте в виду, что некоторые мощные SCR тиристоры содержат внутренний резистор, подключенный между управляющим электродом и катодом, что повлияет на любые измерения целостности соединения, проводимые мультиметром.
  • SCR тиристоры являются настоящими выпрямителями: они пропускают ток через себя только в одном направлении. Это означает, что они не могут использоваться в одиночку для двухполупериодного управления питанием переменным током. Если диоды в схеме выпрямителя заменить на SCR тиристоры, вы получите схему управляемого выпрямителя, где питание постоянным напряжением может подаваться на нагрузку пропорционально времени отпирания SCR тиристоров в разные моменты периода переменного напряжения питания.

Оригинал статьи:

Теги

SCR / тринистор (кремниевый управляемый выпрямитель)Защита цепейМультиметрОбучениеТиристорТок удержанияЭлектроника

Сохранить или поделиться

Тиристоры для чайников / Хабр

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно тут.

Классификация


В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.

К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров


1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение


Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Источники:
ru.wikipedia.org
electricalschool.info

Тиристоры и симисторы – RadioRadar


Тиристор


   Тиристор – это переключающий полупроводниковый прибор, пропускающий ток в одном направлении. Этот радиоэлемент часто сравнивают с управляемым диодом и называют полупроводниковым управляемым вентилем (Silicon Controlled Rectifier, SCR).

Тиристор имеет три вывода, один из которых – управляющий электрод, можно сказать, “спусковой крючок” – используется для резкого перевода тиристора во включенное состояние.

   Тиристор совмещает в себе функции выпрямителя, выключателя и усилителя. Часто он используется как регулятор, главным образом, когда схема питается переменным напряжением. Нижеследующие пункты раскрывают четыре основных свойства тиристора:

  • тиристор, как и диод, проводит в одном направлении, проявляя себя как выпрямитель;
  • тиристор переводится из выключенного состояния во включенное при подаче сигнала на управляющий электрод и, следовательно, как выключатель имеет два устойчивых состояния. Тем не менее для возврата тиристора в выключенное (разомкнутое) состояние необходимо выполнить специальные условия;
  • управляющий ток, необходимый для перевода тиристора из закрытого состояния в открытое, значительно меньше (несколько миллиампер) при рабочем токе в несколько ампер и даже в несколько десятков ампер. Следовательно, тиристор обладает свойствами усилителя тока;
  • oсредний ток через нагрузку, включенную последовательно с тиристором, можно точно регулировать в зависимости от длительности сигнала на управляющем электроде. Тиристор при этом является регулятором мощности.

Структура тиристора


   Тиристором называется управляемый трехэлектродный полупроводниковый прибор, состоящий из чередующихся четырех кремниевых слоев типа р и n. Полупроводниковый прибор с четырехслойной структурой представлен на рис. 1.

   Крайнюю область р-структуры, к которой подключается положительный полюс источника питания, принято называть анодом, а крайнюю область n, к которой подключается отрицательный полюс этого источника, – катодом.

Рис.1. Структура и обозначение тиристора

Свойства тиристора в закрытом состоянии


   В соответствии со структурой тиристора можно выделить три электронно-дырочных перехода и заменить тиристор эквивалентной схемой, как показано на рис. 2.

   Эта эквивалентная схема позволяет понять поведение тиристора с отключенным управляющим электродом.

   Если анод положителен по отношению к катоду, то диод D2 закрыт, что приводит к закрытию тиристора, смещенного в этом случае в прямом направлении. При другой полярности диоды D1 и D2 смещены в обратном направлении, и тиристор также закрыт.

Рис.2. Представление тиристора тремя диодами

Принцип отпирания с помощью управляющего электрода


   Эквивалентное представление структуры р-n-p-n в виде двух транзисторов показано на рис. 3.

   Представление тиристора в виде двух транзисторов разного типа проводимости приводит к эквивалентной схеме, представленной на рис. 1.4. Она наглядно объясняет явление отпирания тиристора.

   Зададим ток IGT через управляющий электрод тиристора, смещенного в прямом направлении (напряжение VAK положительное), как показано на рис. 4.

   Так как ток IGT становится базовым током транзистора n-p-n, то ток коллектора этого транзистора равен B1xIGT, где B1 – коэффициент усиления по току транзистора Т1.

   Этот ток одновременно является базовым током транзистора р-n-р, что приводит к его отпиранию. Ток коллектора транзистора Т2 составляет величину B1xB2xIGT и суммируется с током IGT, что поддерживает транзистор Т1 в открытом состоянии. Поэтому, если управляющий ток IGT достаточно велик, оба транзистора переходят в режим насыщения.

   Цепь внутренней обратной связи сохраняет проводимость тиристора даже в случае исчезновения первоначального тока управляющего электрода IGT, при этом ток анода (1А ) остается достаточно высоким.

   Типовая схема запуска тиристора приведена на рис. 5

.

Рис.3. Разбиение тиристора на два транзистора

Рис.4. Представление тиристора в виде двухтранзисторной схемы

Рис.5. Типичная схема запуска тиристора

Отключение тиристора


   Тиристор перейдет в закрытое состояние, если к управляющему электроду открытого тиристора не приложен никакой сигнал, а его рабочий ток спадет до некоторого значения, называемого током удержания (гипостатическим током).

   Отключение тиристора произойдет, в частности, если была разомкнута цепь нагрузки (рис. 6а) или напряжение, приложенное к внешней цепи, поменяло полярность (это случается в конце каждого полупериода переменного напряжения питания).

Рис.6. Способы отключения тиристора

   Когда тиристор работает при постоянном токе, отключение может быть произведено с помощью механического выключателя.

   Включенный последовательно с нагрузкой этот ключ используется для отключения рабочей цепи.

   Включенный параллельно основным электродам тиристора (рис. 6б) ключ шунтирует анодный ток, и тиристор при этом переходит в закрытое состояние. Некоторые тиристоры повторно включаются после размыкания ключа. Это объясняется тем, что при размыкании ключа заряжается паразитная емкость р-n перехода тиристора, вызывая помехи.

   Поэтому предпочитают размещать ключ между управляющим электродом и катодом тиристора (рис. 1.6в), что гарантирует правильное отключение посредством отсечения удерживающего тока. Одновременно смещается в обратном направлении переход р-n, соответствующий диоду D2 из схемы замещения тиристора тремя диодами (рис. 2).

   На рис. 6а-д представлены различные варианты схем отключения тиристора, среди них и ранее упоминавшиеся. Другие, как правило, применяются, когда требуется отключать тиристор с помощью дополнительной цепи. В этих случаях механический выключатель можно заменить вспомогательным тиристором или ключевым транзистором, как показано на рис. 7.

Рис.7. Классические схемы отключения тиристора с помощью дополнительной цепи

Симистор


   Симиcmop – полупроводниковый прибор, который широко используется в системах, питающихся переменным напряжением. Упрощенно он может рассматриваться как управляемый выключатель. В закрытом состоянии он ведет себя как разомкнутый выключатель. Напротив, подача управляющего тока на управляющий электрод симис-тора ведет к переходу его в проводящее состояние. В это время симистор подобен замкнутому выключателю.

   При отсутствии управляющего тока симистор во время любого полупериода переменного напряжения питания неизбежно переходит из состояния проводимости в закрытое состояние.

   Кроме работы в релейном режиме в термостате или светочувствительном выключателе, разработаны и широко используются системы регулирования, функционирующие по принципу фазового управления напряжением нагрузки, или, другими словами, плавные регуляторы.

Структура симистора


   Симистор можно представить двумя тиристорами, включенными встречно-параллельно. Он пропускает ток в обоих направлениях. Структура этого полупроводникового прибора показана на рис. 8. Симистор имеет три электрода: один управляющий и два основных для пропускания рабочего тока.

Рис.8. Структура симистора

Функционирование симистора


   Симистор открывается, если через управляющий электрод проходит отпирающий ток или если напряжение между его электродами А1 и А2 превышает некоторую максимальную величину (на самом деле это часто приводит к несанкционированным срабатываниям симистора, происходящим при максимуме амплитуды напряжения питания).

   Симистор переходит в закрытое состояние после изменения полярности между его выводами А1 и А2 или если значение рабочего тока меньше тока удержания Iу.

Отпирание симистора


   В режиме переменного питания смена состояний симистора вызывается изменением полярности напряжения на рабочих электродах А1 и А2. Поэтому в зависимости от полярности управляющего тока можно определить четыре варианта управления симистором, как показано на рис. 9.

   Каждый квадрант соответствует одному способу открывания симистора. Все способы кратко описаны в табл. 1.

Рис.9. Четыре возможных варианта управления симистором

Таблица 1. Упрощенное представление способов открывания симистора

КвадрантVA2-A1VG-A1IGTОбозначение
I>0>0Слабый+ +
II>0Средний+ –
IIIСредний– –
IV>0Высокий– +

   Например, если между рабочими электродами симистора прикладывают напряжение VA1-A2>0 и напряжение на управляющем электроде отрицательно по отношению к аноду А1, то смещение симистора соответствует квадранту II и упрощенному обозначению + -.

   Для каждого квадранта определены отпирающий ток I от (IGT), удерживающий ток Iуд(Iн) и ток включения Iвыкл(IL).

   Отпирающий ток должен сохраняться до тех пор, пока рабочий ток не превысит в два-три раза величину удерживающего тока Iн. Этот минимальный отпирающий ток и является током включения симистора IL.

   Затем, если убрать ток через управляющий электрод, симистор останется в проводящем состоянии до тех пор, пока анодный ток будет превышать ток удержания Iн.

Ограничения при использовании


   Симистор накладывает ряд ограничений при использовании, в частности при индуктивной нагрузке. Ограничения касаются скорости изменения напряжения (dV/dt) между анодами симистора и скорости изменения рабочего тока di/dt.

   Действительно, во время перехода симистора из закрытого состояния в проводящее внешней цепью может быть вызван значительный ток. В то же время мгновенного падения напряжения на выводах симистора не происходит. Следовательно, одновременно будут присутствовать напряжение и ток, развивающие мгновенную мощность, которая может достигнуть значительных величин. Энергия, рассеянная в малом пространстве, вызовет резкое повышение температуры р-п переходов. Если критическая температура будет превышена, то произойдет разрушение симистора, вызванное чрезмерной скоростью нарастания тока di/dt.

   Ограничения также распространяются на изменение напряжения двух категорий: на dV/dt применительно к закрытому симистору и на dV/dt при открытом симисторе (последнее также называется скоростью переключения).

   Чрезмерная скорость нарастания напряжения, приложенного между выводами А1 и А2 зарытого симистора, может вызвать его открытие при отсутствии сигнала на управляющем электроде. Это явление вызывается внутренней емкостью симистора. Ток заряда этой емкости может быть достаточным для отпирания симистора.

   Однако не это является основной причиной несвоевременного открытия. Максимальная величина dV/dt при переключении симистора, как правило, очень мала, и слишком быстрое изменение напряжения на выводах симистора в момент его запирания может тотчас же повлечь за собой новое включение. Таким образом, симистор заново отпирается, в то время как должен закрыться.

Рис.10. Симистор с защитной RC-цепочкой

   При индуктивной нагрузке симистора или при защите от внешних перенапряжений для ограничения влияния dV/dt и тока перегрузки желательно использовать защитную RC-цепочку (рис. 10).

   Расчет значений R и С зависит от нескольких параметров, среди которых – величина тока в нагрузке, значения индуктивности и номинального сопротивления нагрузки, рабочего напряжения, характеристик симистора.

   Совокупность этих параметров с трудом поддается точному описанию, поэтому часто принимают во внимание эмпирические значения. Включение сопротивления 100-150 Ом и конденсатора 100 нФ дает удовлетворительные результаты. Однако отметим, что значение сопротивления должно быть гораздо меньше (или одного порядка), чем величина полной нагрузки, являясь достаточно высоким для того, чтобы ограничить ток разряда конденсатора с целью соблюдения максимального значения di/dt в момент отпирания.

   RC-цепочка дополнительно улучшает включение в проводящее состояние симистора, управляющего индуктивной нагрузкой. Действительно, ток разряда конденсатора устраняет влияние задержки индуктивного тока, поддерживая рабочий ток выше минимального значения удерживающего тока Iуд(Iн).

Рис.11. Защита симистора с помощью варистора

   Дополнительная защита, заслуживающая внимания, может быть обеспечена с помощью варистора, подключенного к выводам индуктивной нагрузки. Другой варистор, включенный параллельно питающему напряжению, задержит помехи, распространяющиеся по сети питания. Защита симистора также обеспечивается при подключении варистора параллельно его выводам А1 и А2 (рис. 11).

Источник

  1. Кадино Э. Цветомузыкальные установки.-М.: ДМК Пресс, 2000.

6.     Тиристоры | Электротехника

Тиристор – это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три (или более) выпрямляющих перехода, который может переключаться из закрытого состояния в открытое и наоборот.

Перевод тиристора из закрытого состояния в открытое в электрической цепи осуществляется внешним воздей­ствием на прибор. К числу факто­ров, наиболее широко используе­мых для отпирания тиристоров, относится воздействие напряжени­ем (током) или светом (фототиристоры). Основными типами тиристоров являются диодные (рис. 6.1, а) и триодные (рис. 6.1,  б – г).

В диодных тиристорах (динисторах) переход прибора из закрытого состояния в открытое связан с тем, что напряжение между анодом  и катодом достигает некоторой граничной величины, являющейся параметром прибора.

В триодных тиристорах управление  состоянием прибора производится по цепи третьего – управляющего электрода. По цепи управляющего электрода при этом могут выполняться либо одна, либо две операции изменения состояния тиристора. В зависи­мости от этого различают одно- и двухоперационные тиристоры.

В однооперационных тиристорах (рис. 6.1, б) по цепи управляющего электрода осуществимо только отпирание ти­ристора. С этой целью на управляющий электрод подается положительный относительно катода импульс напряжения. Запирание одно­операционного тиристора, а также динистора производится по цепи анода изменением полярности напряжения анод-катод.

Двух­операционные тиристоры (запираемые тиристоры) допускают по цепи управ­ляющего электрода как отпирание, так и запирание прибора. Для запирания на управляющий электрод подается отрицательный им­пульс напряжения.

В фототиристорах (рис. 6.1, г) отпирание прибора производит­ся с помощью светового им­пульса.

Все перечисленные приборы выполняют функцию бесконтактного ключа, обладающего односторонней проводимостью тока. Прибор, позволяющий проводить ток в обоих направлениях, называют сим­метричным тиристором (симистором). По своему назначению симистор (рис. 6.1, д) призван выполнять функции двух обычных тиристоров (рис. 6.1, б), включенных встречно-параллельно.

Мощный управляемый выпрямитель на тиристорах


Мощный управляемый выпрямитель на тиристорах

  Управляемый выпрямитель на тиристорах — элементах, обладающих большим коэффициентом усиления по мощности, позволяет получать большие токи в нагрузке при незначительной мощности, затрачиваемой в цепи управления тиристора. На первых двух рисунках изображены варианты выпрямителей на тиристорах, которые обеспечивают максимальный ток в нагрузке до 6 А с пределом регулировки напряжения от 0 до 15 в (рис. 1) и от 0,5 до 15 в (рис. 2). На рис. 3 представлена диаграмма напряжений, помогающая понять принцип работы выпрямителя собранного по схеме рис. 1. В течение одного полупериода к аноду тиристора приложено положительное относительно катода напряжение.

  Пока на управляющий электрод не подан положительный сигнал определенной амплитуды со схемы запуска, тиристор не пропускает ток в прямом направленип. Через некоторый произвольный угол задержки а между напряжениями на управляющем электроде и катоде прикладывается положительный запускающий сигнал, вызывающий протекание тока через тиристор и соответственно через нагрузку. При перемене полярности напряжения на аноде тиристора последний закрывается независимо от величины управляющего напряжения, при этом аналогично рассмотренному ранее начинает работать другое плечо схемы. Регулируя угол задержки включения а по отношению к приложенному напряжению, можно изменять соотношение фаз начала протекания тока и приложенного напряжения и регулировать величину среднего значения выпрямленного тока (напряжения) нагрузки от максимума (а = 0) до нуля (а = Пи).

  Угол задержки включения тиристоров Д1 и Д4 изменяется потенциометром R1. Диоды Д3 защищают цени управления (запуска) от отрицательного напряжения в то время, когда напряжение на анодах тиристоров отрицательное. Для получения широких пределов регулировки а (0 — Пи) применены RC – цепи. В выпрямителе (рис.2) тиристор и схема запуска работают как в положительный, так и в отрицательный полупериоды, время разряда конденсаторов сокращается, что приводит к уменьшению диапазона изменения угла а и, соответственно, к уменьшению пределов регулирования напряжения на нагрузке. Для устранения этого явления включен диод Д3.

  Тиристоры для выпрямителя (рис. 1) желательно выбирать с близким значением сопротивления участка управляющий электрод — катод. Если не удается подобрать одинаковые тиристоры, то схему можно симметрировать с помощью дополнительного сопротивления. Для этого включают эквивалент нагрузки и изменением величины сопротивления потенциометра R1 устанавливают максимальный ток. Поочередно отключая цепи управления тиристоров, измеряют ток каждого плеча выпрямителя. Переменное сопротивление величиной 10 ком. подключается параллельно управляющему электроду к катоду того тиристора, через который течет больший ток. Изменяя величину этого сопротивления, добиваются одинаковых показаний тока.

  Учитывая разброс параметров тиристоров, необходимо скорректировать сопротивления резисторов R1 и R2. Вначале R1 берется несколько больше рассчитанного, а R2 определяется как остаточное сопротивление потенциометра R1 при условии, что его изменение не приводит к увеличению тока нагрузки. Максимальная величина R1 ограничивается сопротивлением, при котором ток нагрузки равен нулю.

  Конструктивно тиристоры необходимо размещать на радиаторах с площадью 50 кв.см (рис. 1), 250 кв.см – (рис. 2). Во всех вариантах использован трансформатор, собранный на обычном сердечнике УШ35х55. Для намотки взят провод марки ПЭВ. Первичная обмотка содержит 550 витков, диаметр провода 0,55 мм. Данные вторичных обмоток: для варианта на рис.1 – число витков 2х60 проводом ПЭЛ диаметром 1,35 мм.; для варианта на рис.2 – число витков 2х64 проводом ПЭЛ диаметром 1,35 мм.

И. СЕРЯКОВ
Ю. РУЧКИН
Радио №2, 1971

Источник: shems.h2.ru

Силовые тиристоры импортные, мощные высоковольтные тиристоры.


Силовые тиристоры IGCT
IGCT (мощные тиристоры с интегрированным управлением) – это прогрессивный ключ с функциями включения и выключения для современных преобразовательных устройств средней и высокой мощности во всех сферах применения. Все управляемые тиристоры IGCT фирмы ABB Semiconductors – прижимные приборы. Они прижимаются с достаточно большим усилием к охладителям, которые обеспечивают тепловой и электрический контакт к выводам тиристора. Так как управляемый тиристор IGCT по форме и содержанию является родственником GTO, он интересен заказчикам, использующим GTO для перехода к новым системам разработки и для совершенствования существующего оборудования (с минимальными изменениями) используя современные технологии высоковольтных зарубежных тиристоров IGCT.
Фазовые силовые тиристоры
Мощные тиристоры обычно используются как вентили тока фазового управления для преобразования переменного тока в постоянный и наоборот, работающие на низких частотах (часто на линейной частоте переменного тока). В проводящем состоянии силовые тиристоры имеют очень малые потери, что делает их привлекательными для эффективного управления большими токами и энергией.
Запираемые силовые тиристоры (GTO)
Запираемый тиристор (GTO) — это ключ, который может быть выключен или включен посредством управляющего электрода. Для его работы требуется источник тока, а потребляемая им мощность выше, чем у ключей IGBT и IGCT. Все ключи GTO производятся в таблеточных корпусах. Такая конструкция позволяет им надежно прижиматься к охладителям, которые обеспечивают электрический и тепловой контакт к выводам управляемого силового тиристора.

Силовые тиристоры высоковольтные – нормально-разомкнутый ключ, включаемый подачей малого импульса тока на управляющий электрод. Однажды включенные мощные тиристоры остаются в проводящем состоянии даже когда прекращается воздействие импульса управления. Он возвращается в “закрытое” (блокирующее состояние), когда ток спадает до определенного минимального значения (ток удержания) или когда направление тока меняется на обратное.

Силовые тиристоры, высоковольтные, обладают четырехслойной p-n-p-n структурой и тремя выводами

  • управляющий электрод – G
  • анод A
  • катод C

Структура силового тиристора

К катоду подключается положительный полюс источника питания, а к аноду отрицательный.


Открытое состояние тиристора.

Отрытое состояние силового тиристора наступает при подаче положительного смещения на затвор относительно катода. После достижения порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), управляемый тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс), пиковое значение порогового напряжения необходимо увеличить.

После достижения тока нагрузки значения IL, управляемый тиристор будет оставаться в открытом состоянии, при отсутствии тока затвора.

Следует отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25°C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи мощного тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре

Коммутация тиристора.

Для перехода тиристора в закрытое состояние ток нагрузки должен опустится ниже значения тока удержания IH на время, в течение которого все свободные носители заряда смогут освободить переход. При работе в цепях постоянного тока этого можно достичь уменьшением тока нагрузки до нуля, что дает возможность выключения тиристора. В схемах переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этот момент мощные тиристоры, высоковольтные возвращается в закрытое состояние.

Возможен переход управляемого тиристора в проводящее состояние в случае не удерживания тока ниже IH достаточное время.

Следует отметить, что значение IH указывается для температуры перехода 25°C и, подобно IL, оно уменьшается при повышении температуры. Поэтому, для успешной коммутации, цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода.

Тиристоры с полевым управлением | Тиристоры | Учебник по электронике

Двумя относительно недавними технологиями, разработанными для снижения требований к «возбуждению» (току триггера затвора) классических тиристорных устройств, являются тиристор с МОП-управлением и тиристор с МОП-управлением, или MCT.

Тиристор с МОП-управлением

В МОП-управляемом тиристоре используется МОП-транзистор для инициирования проводимости через верхний (PNP) транзистор стандартной тиристорной структуры, тем самым запуская устройство.Поскольку полевой МОП-транзистор требует пренебрежимо малого тока для «возбуждения» (его насыщения), это очень упрощает запуск тиристора в целом: (рисунок ниже)

Схема замещения тиристоров с МОП-управлением

Учитывая тот факт, что обычные тиристоры довольно легко «управлять», практическое преимущество использования еще более чувствительного устройства (полевого МОП-транзистора) для инициирования срабатывания триггера является спорным. Кроме того, размещение полевого МОП-транзистора на входе затвора тиристора теперь делает невозможным, , его выключение сигналом обратного запуска.Только слабый ток отключения может заставить это устройство перестать проводить после того, как оно было зафиксировано.

Тиристор с МОП-управлением

Устройство, возможно, большей ценности, было бы полностью управляемым тиристором, при этом небольшой сигнал затвора мог бы одновременно запускать тиристор и заставлять его выключаться. Такое устройство действительно существует, и оно называется MOS Controlled Thyristor или MCT . Он использует пару полевых МОП-транзисторов, подключенных к общей клемме затвора, один для запуска тиристора, а другой для его «отключения».

Эквивалентная схема тиристора с МОП-управлением (MCT)

Положительное напряжение затвора (относительно катода) включает верхний (N-канальный) полевой МОП-транзистор, пропуская базовый ток через верхний (PNP) транзистор, который фиксирует пару транзисторов в состоянии «включено». Как только оба транзистора будут полностью заблокированы, между анодом и катодом будет небольшое падение напряжения, и тиристор будет оставаться заблокированным до тех пор, пока контролируемый ток превышает минимальное (удерживающее) значение тока.Однако, если приложено отрицательное напряжение затвора (по отношению к аноду, который находится почти на том же напряжении, что и катод в заблокированном состоянии), нижний полевой МОП-транзистор включится и «закоротит» между базой нижнего (NPN) транзистора. и клеммы эмиттера, тем самым заставляя его отключаться. Как только NPN-транзистор отключается, PNP-транзистор теряет проводимость, и весь тиристор выключается. Напряжение затвора имеет полный контроль над проводимостью через MCT: для включения и выключения.

Но это устройство все еще тиристорное.Если между затвором и катодом приложено нулевое напряжение, ни один из полевых МОП-транзисторов не включится. Следовательно, пара биполярных транзисторов останется в том состоянии, в котором она была последней (гистерезис). Таким образом, короткий положительный импульс на затвор включает MCT, короткий отрицательный импульс вынуждает его отключиться, и никакое приложенное напряжение затвора не позволяет ему оставаться в том состоянии, в котором он уже находится. По сути, MCT является версией IGBT с фиксацией. (Биполярный транзистор с изолированным затвором).

ОБЗОР:

  • A МОП-управляемый тиристор использует N-канальный МОП-транзистор для запуска тиристора, что приводит к чрезвычайно низким требованиям к току затвора.
  • Тиристор, управляемый МОП-транзистором или MCT , использует два полевых МОП-транзистора для полного управления тиристором. Положительное напряжение затвора запускает устройство; отрицательное напряжение затвора заставляет его выключиться. Нулевое напряжение затвора позволяет тиристору оставаться в том состоянии, в котором он был ранее (выключен или зафиксирован).

Тиристор, управляемый МОП-схемой, работа и применение

Тиристор, управляемый МОП-схемой, был разработан компанией V.A.K Temple. Это регулятор напряжения, а тиристор полностью управляемый тиристор.Работа тиристора, управляемого МОП, очень похожа на тиристор GTO, но затворы с управляемым напряжением изолированы. Он имеет два полевых МОП-транзистора (полевой транзистор металл-оксид-полупроводник), используемых для включения и выключения, и имеет противоположную проводимость в эквивалентной схеме. Если эквивалентная схема имеет один тиристор и используется для включения, она называется МОП-управляемым тиристором.

Что такое тиристор с МОП-управлением?

Тиристор с МОП-управлением – это тип силового полупроводникового прибора.Он имеет возможность измерения тока и напряжения тиристора через МОП-затвор, используемый для включения и выключения. Он используется в приложениях с высокой мощностью, таких как высокая мощность, высокая частота, низкая проводимость, и используется в дальнейшем процессе. Следующие символы – это P-MCT и N-MCT, показанные ниже.


МОП-управляемый тиристор

Работа MCT

На следующей схеме показан принцип работы регулирующего МОП-тиристора. Это комбинация возможностей по току и напряжению с помощью МОП-транзистора.MOS gated используется для включения / выключения MCT.

Когда полевой МОП-транзистор включен MCT

Используя импульс отрицательного напряжения, устройство переводится во включенное состояние по отношению к аноду. Вывод затвора становится отрицательным по отношению к аноду с помощью импульса напряжения между выводами анода и затвора. Следовательно, тиристор управления MOS находится в состоянии ВКЛ. В начальной стадии управляющий тиристор МОП имеет прямое смещение. Если отрицательное напряжение приложено к отрицательному импульсу напряжения, то полевой транзистор в режиме ВКЛЮЧЕНА включается, а режим ВЫКЛЮЧЕННОГО полевого транзистора уже существует как состояние ВЫКЛЮЧЕНО.

MOSFET включен MCT

Когда полевой транзистор находится во включенном состоянии, ток проходит от анода через включенный полевой транзистор, затем проходит через базовый ток и транзистор n-p-n на выводе эмиттера, и, наконец, ток проходит через катод. Следовательно, этот процесс включает транзистор n-p-n. Транзистор NPN действует как базовый ток транзистора P-N-P, если OFF FET находится в режиме OFF. Точно так же транзистор P-N-P включается, если оба транзистора находятся в состоянии «включено» и происходят соответствующие действия, следовательно, MCT включается.

Когда MOSFET выключен MCT

Устройство выключается с помощью положительного импульса напряжения. Он наносится на вывод затвора по отношению к аноду. Затем OFF FET переключился в режим ON, а ON FET переключился в состояние OFF. Если выключенный полевой транзистор включен, то p-n-p транзистор закорочен клеммами эмиттера и базы. Таким образом, анодный ток протекает через выключенный полевой транзистор. Следовательно, базовый ток транзистора N-P-N уменьшается. Отрицательным моментом этого устройства является возможность блокировки обратного напряжения.

Эквивалентная принципиальная схема

На следующей схеме показана эквивалентная принципиальная схема управляющего тиристора МОП. Схема состоит из двух MOSFET-транзисторов, которые являются N-канальными, а другой – P-каналом. P-канал используется для включения ON FET, а n-канал используется для выключения OFF FET. Схема состоит из двух транзисторов, которые являются транзисторами n-p-n и p-n-p. Если эти два транзистора соединить вместе, чтобы сформировать структуру n-p-n-p тиристора управления МОП.MOSFET с каналом p обозначен стрелкой, которая подключена к клемме затвора.

Принципиальная схема управляющего тиристора MOS
Применения MCT

Применения MCT включают следующие

  • MCT используются в автоматических выключателях.
  • Он используется в приложениях с более высокой мощностью, таких как преобразователи большой мощности.
  • MOS control Тиристоры используются в индукционном нагреве.
    Системы ИБП
  • Он также используется в преобразователях, таких как преобразователь постоянного тока в постоянный.
  • Переменные коэффициенты мощности, операции используются в MCT в качестве принудительного переключателя мощности.
Преимущества MCT
  • Управляющий МОП-тиристор имеет низкое падение прямой проводимости.
  • Обладает низкими коммутационными потерями.
  • Обладает высоким входным сопротивлением затвора.
  • Он может включаться / выключаться очень быстро.

В этой статье описывается, что такое тиристор с МОП-управлением, работа и приложения. Надеюсь, что информация в статье дает некоторые базовые знания о работе МОП-управляемого тиристора.Если у вас есть какие-либо вопросы относительно этой статьи или разработки проектов встроенных систем, прокомментируйте их в разделе ниже. Вот вам вопрос. Какова функция тиристора, управляемого МОП?

Выпрямитель с кремниевым управлением

SCR »Примечания по электронике

Тиристоры из кремния Управляемые выпрямители, тиристоры представляют собой полупроводниковые устройства, которые могут действовать как электронные переключатели, иногда управляющие цепями с высокими уровнями напряжения и тока.


Triac, Diac, SCR Учебное пособие Включает:
Основы тиристоров Конструкция тиристорного устройства Работа тиристора Затвор отключающий тиристор, ГТО Характеристики тиристора Что такое симистор Технические характеристики симистора Обзор Diac


Тиристоры или кремниевые выпрямители (SCR), как их иногда называют, могут показаться необычными электронными компонентами во многих отношениях, но они особенно полезны для управления силовыми цепями.

Как таковые, эти электронные компоненты используются во многих приложениях управления мощностью, часто там, где уровни тока и напряжения относительно высоки. Тиристоры также могут использоваться в приложениях с низким энергопотреблением, включая управление освещением, а также для защиты источников питания и многих других приложений. Тиристоры просты в использовании и дешевы, что делает их идеальным вариантом для многих схем.

Идея тиристора не нова. Идея устройства была впервые выдвинута в 1950 году Уильямом Шокли, одним из изобретателей транзистора.Хотя некоторые более поздние исследования устройства были предприняты другими несколькими годами позже, они стали доступны только в начале 1960-х годов. После появления тиристоров они вскоре стали популярными для электронных схем переключения и питания.

Сильноточный тиристор / SCR

Что такое тиристор?

Тиристор можно рассматривать как довольно необычную форму электронного компонента, поскольку он состоит из четырех слоев кремния с различным легированием, а не из трех слоев обычных биполярных транзисторов.

В то время как обычные биполярные транзисторы могут иметь структуру pnp или npn с электродами, называемыми коллектором, базой и эмиттером, тиристор имеет структуру pnpn с внешними слоями с их электродами, называемыми анодом (n-типа) и катодом (p -тип). Управляющий вывод SCR называется затвором, и он подключен к слою p-типа, который примыкает к катодному слою.

Основная структура тиристора / SCR

Тиристоры обычно изготавливаются из кремния, хотя теоретически могут использоваться и другие типы полупроводников.Первая причина использования кремния для тиисторов заключается в том, что кремний является идеальным выбором из-за его общих свойств. Он способен выдерживать напряжение и токи, необходимые для приложений большой мощности. Кроме того, он имеет хорошие термические свойства. Вторая важная причина заключается в том, что кремниевая технология хорошо зарекомендовала себя и широко используется для различных полупроводниковых устройств. В результате производители полупроводников могут очень дешево и легко использовать их для своих электронных компонентов.

Применение тиристоров

Тиристоры, или кремниевые выпрямители, тиристоры используются во многих областях электроники, где они находят применение во множестве различных приложений.Некоторые из наиболее распространенных приложений для них описаны ниже:

  • Управление мощностью переменного тока (включая освещение, двигатели и т. Д.).
  • Электронная коммутация питания переменного тока.
  • Лом для защиты от перенапряжения для источников питания.
  • Элементы управления в контроллерах, срабатывающих по углу фазы.
  • В фотовспышках, где они действуют как электронный выключатель, разряжая накопленное напряжение через фотовспышку, а затем отключает его в нужное время.

Тиристоры способны переключать высокие напряжения и выдерживать обратные напряжения, что делает их идеальными для электронных коммутационных приложений, особенно в сценариях переменного тока.

Открытие тиристора

Идея тиристора была впервые описана Шокли в 1950 году. Он упоминался как биполярный транзистор с p-n крючком-коллектором. Механизм операции был дополнительно проанализирован в 1952 году Эберсом.

Затем в 1956 году Молл исследовал механизм переключения тиристора.Разработка продолжалась, и об устройстве стало больше известно, так что первые выпрямители с кремниевым управлением стали доступны в начале 1960-х годов, когда они начали приобретать значительный уровень популярности для переключения мощности.

Когда GE выпустила свои устройства, они использовали термин кремниевый управляемый выпрямитель, или SCR, потому что он работал только в одном направлении и был управляемым. Они использовали название SCR как торговую марку для своей продукции.

Как работает тиристор?

Принцип работы тиристора отличается от работы других устройств.Обычно через устройство не протекает ток. Однако, если к устройству подключен источник питания, и на затвор подается небольшой ток, устройство «срабатывает» и проводит ток. Он будет оставаться в проводящем состоянии до тех пор, пока не будет отключен источник питания.

Чтобы увидеть, как работает тиристор, стоит взглянуть на эквивалентную схему тиристора. Для пояснения схему тиристора можно рассматривать как два встречных транзистора. Первый транзистор с эмиттером, подключенным к катоду тиристора, является транзистором NPN, тогда как второй транзистор с эмиттером, подключенным к аноду тиристора, SCR является транзистором PNP.Затвор подключен к базе транзистора NPN, как показано ниже.

Эквивалентная схема тиристора

Когда на тиристор подается напряжение, ток не течет, потому что ни один из транзисторов не проводит ток. Однако, если на затвор будет подано напряжение, это вызовет протекание тока в базе, и это заставит TR2 включиться. Когда TR2 включен, это опускает базу TR1, вызывая включение этого транзистора, и, в свою очередь, проталкивает ток через базу TR2, что означает, что устройство останется включенным, даже если напряжение затвора будет снято.

Обозначения и основные сведения о тиристорах

Тиристорный или кремниевый управляемый выпрямитель, SCR, представляет собой полупроводниковое устройство, которое имеет ряд необычных характеристик. Он имеет три вывода: анод, катод и затвор, отражающий термоэлектронный клапан / вакуумную трубку. Как и следовало ожидать, затвор является управляющим выводом, в то время как основной ток протекает между анодом и катодом.

Как можно понять из обозначения схемы, показанной ниже, это устройство является «односторонним устройством», отсюда и название GE – кремниевый управляемый выпрямитель.Поэтому, когда устройство используется с переменным током, оно будет работать максимум половину цикла.

В работе тиристор или тиристор изначально не работают. Требуется определенный уровень тока, чтобы течь в ворота, чтобы “выстрелить”. После срабатывания тиристор будет оставаться в проводящем состоянии до тех пор, пока напряжение на аноде и катоде не будет снято – это, очевидно, происходит в конце полупериода, в течение которого тиристор проводит. Следующий полупериод будет заблокирован в результате действия выпрямителя.Затем потребуется ток в цепи затвора, чтобы снова запустить тиристор. Таким образом, тиристор можно использовать как электронный переключатель.

Кремниевый управляемый выпрямитель, тиристор или символ тиристора, используемый для принципиальных схем или схем, стремится подчеркнуть характеристики выпрямителя, одновременно показывая управляющий вентиль. В результате символ тиристора представляет собой традиционный символ диода с входом управляющего затвора рядом с переходом.

Обозначение тиристора или цепи тиристора
Примечание по схемам и конструкции тиристоров:

Тиристоры или тиристоры имеют характеристику, заключающуюся в том, что, когда затвор получает ток срабатывания, он запускает тиристор, позволяя току течь до тех пор, пока не будет снято напряжение между анодом и катодом.Это позволяет тиристору переключать высокие напряжения и токи, хотя это только половина цикла. Цепи могут приглушать свет, управлять двигателями и вообще переключать высокие напряжения и токи.

Подробнее о Схемы и конструкция тиристоров

Характеристики тиристора

Чтобы выбрать правильное тиристорное устройство для любой схемы, необходимо изучить спецификации и убедиться, что устройство имеет правильные характеристики для предполагаемой схемы или применения.

Тиристоры – довольно уникальные компоненты, и их характеристики и параметры таблицы отличаются от других более широко используемых электронных компонентов, таких как биполярные транзисторы и полевые транзисторы, полевые МОП-транзисторы и т. Д.

Другие типы тиристоров или тиристоров

Существует ряд тиристоров разных типов – это варианты базового компонента, но они предлагают разные возможности, которые могут использоваться в различных случаях и могут быть полезны для определенных схем.

  • Тиристор с обратной проводимостью, RCT: Хотя тиристоры обычно блокируют ток в обратном направлении, существует одна форма, называемая тиристором с обратной проводимостью, который имеет встроенный обратный диод для обеспечения проводимости в обратном направлении, хотя нет контроля в этом направлении.

    Внутри тиристора с обратной проводимостью само устройство и диод не проводят одновременно. Это означает, что они не производят тепло одновременно. В результате они могут быть объединены и охлаждены вместе.

    RCT может использоваться там, где в противном случае потребовался бы диод обратного хода или обратного хода. Тиристоры с обратной проводимостью часто используются в преобразователях частоты и инверторах.

  • Тиристор с автоматическим выключением, GATT: GATT используется в случаях, когда необходимо быстрое отключение.Чтобы помочь в этом процессе, иногда может применяться отрицательное напряжение затвора. Помимо снижения анодного катодного напряжения. Это обратное напряжение затвора помогает истощить неосновные носители, хранящиеся в базовой области n-типа, и гарантирует, что переход затвор-катод не будет смещен в прямом направлении.

    Структура GATT аналогична структуре стандартного тиристора, за исключением того, что часто используются узкие катодные полоски, чтобы обеспечить больший контроль затвора, поскольку он находится ближе к центру катода.

  • Тиристор отключения затвора, GTO: GTO иногда также называют выключателем затвора. Это устройство необычно для семейства тиристоров, потому что его можно выключить, просто приложив отрицательное напряжение к затвору – нет необходимости снимать напряжение с анода и катода. См. Дальнейшую страницу в этой серии с более полным описанием GTO.
  • Асимметричный тиристор: Это устройство используется в цепях, где тиристор не воспринимает обратное напряжение и, следовательно, выпрямитель не требуется.В результате можно сделать второй переход, часто называемый J2 (см. Стр. О структуре устройства), можно сделать намного тоньше. Результирующая n-базовая область обеспечивает уменьшенное V на , а также улучшенное время включения и выключения.

Тиристоры широко используются во многих областях электроники, действуя как электронные переключатели. Тиристорные схемы можно использовать во многих энергетических приложениях, поскольку эти электронные компоненты могут очень легко переключать большие токи.В дополнение к этому они очень дешевы и широко доступны.

Другие электронные компоненты:
резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Тиристоры MCT и SCS

К семейству тиристоров относятся несколько маломощных устройств, которые в основном используются в схемах запуска для включения тиристора.Основными из них являются кремниевый управляющий переключатель (SCS) и тиристор с МОП-управлением (MCT). MCT – новое, но очень многообещающее коммутационное устройство.

Кремниевый управляемый коммутатор (SCS)

Кремниевый управляемый коммутатор SCS представляет собой четырехуровневое устройство PNPN. На рисунке 1 показана конструкция и обозначение устройства. SCS имеет два затвора, анодный затвор (AG) и катодный затвор (KG).

Рисунок 1: SCS (a) Структура (b) Обозначение

На рисунке 2 показана электрическая эквивалентная схема.Как показано, обе базы транзистора доступны для подачи импульсов затвора. Как и SCR, SCS может быть включен путем подачи положительного импульса на катодный затвор. Устройство также можно включить, подав отрицательный импульс на затвор анода. Если SCS включен, для его выключения требуется положительный импульс на затворе анода или отрицательный импульс на затворе катода. Обычно величина включения анодного затвора больше, чем требуемый ток затвора катода.

Рисунок 2: Эквивалентная схема для SCS

Тиристор с МОП-управлением (MCT)

Тиристор с МОП-управлением – это новое устройство, сочетающее в себе характеристики полевого МОП-транзистора и тиристора.Он имеет низкое прямое падение напряжения во включенном состоянии и малое время выключения. Он имеет высокие возможности di / dt и dv / dt. Функционально он аналогичен GTO, но требует меньшего тока затвора выключения. Его главный недостаток – очень низкая способность блокировать обратное напряжение. На рисунке 3 показаны символ и эквивалентная схема MCT. В MCT SCR и два MOSFET объединены в одно устройство. Оба имеют один и тот же терминал источника, который является анодом MCT. N-канальный полевой МОП-транзистор Q OFF , который подключен между анодом и одним из его внутренних слоев, выключает SCR, в то время как P-канальный полевой МОП-транзистор Q ON , подключенный между затвором и анодом, включает его.

Рисунок 3: MCT (a) Символ (b) Эквивалентная схема

В отличие от GTO, который включается и выключается путем установления тока затвора, MCT переключается путем установления надлежащего напряжения от затвора до анод. Когда напряжение затвор-анод составляет примерно -5 В, ВКЛ. включается и подает ток затвора на тиристор. Это включает SCR. MCT выключается путем подачи напряжения затвора на анод приблизительно + 10 В, которое переключает в положение OFF и в положение ON. Это отводит ток от SCR и выключает его.

MCT V-I Характеристика

На рисунке 4 показаны V-I характеристики MCT. Если анод (A) положительный по отношению к катоду (K). Когда на затвор не подается напряжение, MCT остается в состоянии блокировки, допуская только небольшой ток утечки ( I LEAK ). MCT остается в выключенном состоянии до тех пор, пока не будет достигнуто напряжение переключения В BO , после чего произойдет пробой MCT. Однако MCT таким образом не включается.

Рисунок 4: Характеристика MCT V-I

Если катод (K) становится положительным по отношению к аноду (A) с положительным или отрицательным напряжением, приложенным к затвору, MCT выходит из строя при низком напряжении. Этой ситуации следует избегать.

Обычный способ включить устройство – это прямое смещение MCT, сделав анод положительным по отношению к катоду и приложив отрицательное напряжение к затвору и аноду. Когда он включен, падение напряжения на MCT ( В, , ВКЛ, , ) очень мало (около 1 В), а анодный ток ограничивается только сопротивлением нагрузки.После включения MCT снятие напряжения затвора не отключит его. Если MCT включен, приложение положительного напряжения к затвору выключает устройство до тех пор, пока отрицательное напряжение не будет снова приложено к затвору.

MOS- управляемый тиристор (MCT)

Из многих полупроводниковых устройств MCT считается самым последним. Устройство представляет собой тиристор с двумя полевыми МОП-транзисторами, встроенными в структуру затвора. MOSFET используется для включения MCT, а другой – для его выключения.Устройство в основном используется для коммутации и имеет другие характеристики, такие как высокая частота, высокая мощность, низкое падение проводимости и т. Д. MCT сочетает в себе особенности как обычного четырехслойного тиристора , имеющего регенеративное действие, так и структуры МОП-затвора. В этом устройстве все стробирующие сигналы применяются относительно анода, который используется в качестве эталона. В обычно используемом SCR катод остается опорным выводом для сигналов затвора.

Базовая структура ячейки MCT показана на рисунке ниже.

Структура тиристора с МОП-управлением (MCT)

На практике MCT будет включать тысячи этих базовых ячеек, соединенных параллельно, как и PMOSFET . Это помогает получить высокую пропускную способность устройства по току.

Эквивалентная схема MCT показана на рисунке ниже.

Эквивалентная схема тиристора с МОП-управлением (MCT)

Он состоит из включенного полевого транзистора, выключенного полевого транзистора и двух транзисторов.МОП-структура MCT представлена ​​в эквивалентной схеме. Он состоит из одного ON-FET, p-канального MOSFET и OFF-FET. И n-p-n, и p-n-p транзисторы объединены вместе, чтобы представить структуру n-p-n-p MCT. N-канальный полевой МОП-транзистор изображен стрелкой в ​​направлении вывода затвора. МОП-транзистор с p-каналом обозначен стрелкой, отведенной от клеммы затвора. Два транзистора в эквивалентной схеме указывают на то, что в MCT есть регенеративная обратная связь, как и в обычном тиристоре.Обозначение схемы MCT показано ниже.

Обозначение схемы тиристора с МОП-управлением (MCT)

Процесс включения

Устройство включается отрицательным импульсом напряжения на затворе относительно анода. Для включения MCT затвор становится отрицательным по отношению к аноду импульсом напряжения между затвором и анодом. Таким образом, MCT должен быть сначала смещен в прямом направлении, а затем подаваться только отрицательное напряжение. При применении этого импульса отрицательного напряжения ON-FET включается, тогда как OFF-FET уже выключен.Когда полевой транзистор включен, ток начинает течь от анода A через полевой транзистор, а затем в качестве базового тока и эмиттера транзистора n-p-n, а затем к катоду K. Это включает транзистор n-p-n. Это заставляет ток коллектора течь через транзистор n-p-n. Когда OFF FET выключен, этот ток коллектора npn-транзистора действует как базовый ток p-n-p транзистора. Впоследствии также включается p-n-p транзистор. Если оба транзистора включены, происходит регенеративное действие схемы подключения, и MCT включается.

Процесс выключения

Устройство выключается подачей положительного импульса напряжения на затвор. Положительный импульс напряжения заставляет OFF-FET включаться, а ON-FET выключаться. После включения OFF-FET выводы эмиттерного p-n-p транзистора закорачиваются накоротко с помощью OFF-FET. Итак, теперь анодный ток начинает течь через OFF-FET и, таким образом, базовый ток p-n-p транзистора начинает уменьшаться. Недостатком устройства является возможность блокировки обратного напряжения.

Преимущества MCT

  1. Низкое падение прямой проводимости
  2. Быстрое включение и выключение раз
  3. Низкие коммутационные потери
  4. Высокое входное сопротивление затвора
Тиристор

, выпрямители с кремниевым управлением, модуль SCR

C&H Technology специализируется на сильноточных тиристорах с фазовой регулировкой и тиристорах с быстрым переключением. Типичные области применения включают переключатели переменного тока, регуляторы затемнения, регулирование температуры для духовок, твердотельные реле, средства управления двигателями постоянного тока, сварку, плавный пуск для приводов двигателей переменного тока и тяговые рынки.

Тиристоры также называют SCR (выпрямители с кремниевым управлением). Модуль SCR используется для управления и выпрямления тока только в одном направлении. Модуль SCR работает как механический переключатель: он либо включен, либо выключен. Когда на затвор SCR подается импульс тока / напряжения, он срабатывает и начинает проводить. SCR будет продолжать проводить, даже когда ток затвора полностью удален. Выпрямитель с кремниевым управлением выключится, когда ток нагрузки упадет ниже нуля.

Тиристоры с фазовым управлением (выпрямители с кремниевым управлением)

  • Ток: от 16А до 4150А
  • Напряжение: от 200 В до 5000 В
  • Пакеты шпилек: компрессионная и паяная
  • Пакеты Hockey Puk: от 19 мм до 100 мм
  • Пакеты модулей SCR: T-Module, Add-A-Pak, Int-A-Pak, Magn-A-Pak, Super Magn-A-Pak
    • Ток: от 25А до 500А
    • Напряжение: от 200 В до 2000 В
    • Высокое напряжение изоляции (2500 В)
    • Соответствует RoHS, одобрено UL
    • Настраивается под конкретные нужды приложения
  • Дискретные пакеты: D2, TO-220, TO-247, Full Pack,

Инвертор, класс

  • Ток: от 110А до 1200А
  • Напряжение: от 200 В до 2100 В
  • Шпилька сжатая
  • Хоккейный Пук

Тиристорная матрица

  • Инвертор с фазовым управлением и быстрым переключением
  • Диапазон напряжения от 200 до 2000 вольт
  • Wire Bondable от.От 180 до 480 мил квадратных
  • Связываемый припой от 19 мм до 77 мм круглый

Свяжитесь с нами сегодня по поводу SCR или других тиристорных изделий.

Тиристор и выпрямитель с кремниевым управлением (SCR)

Конструкция, работа, характеристики тиристора и выпрямителя с кремниевым управлением (SCR)

Что такое тиристор?

Слово « Тиристор » – это греческое слово , которое означает « Дверь ».
Тиристор – это четыре полупроводниковых слоя или устройство с тремя PN переходами . Он также известен как « SCR » (кремниевый управляющий выпрямитель ).

Термин «тиристор» происходит от слов тиратрон (газожидкостная трубка, которая работает как тиристор) и транзистор . Тиристоры
также известны как PN PN Devices . Эти устройства доступны в различных формах и типах, например, однопереходный транзистор (UJT), кремниевый управляемый выпрямитель ( SCR ), триод для переменного тока (TRIAC), DIAC (диод для переменного тока), кремниевый управляющий переключатель (SCS) и т. Д. .

Полезно знать :

Тиристоры и тиристоры также известны как фиксирующие устройства . Защелка – это тип переключателя, когда он закрывается один раз, он остается в закрытом положении, пока кто-нибудь не откроет переключатель.

Другими словами, когда переключатель находится в положении ON, он остается включенным после удаления управляющего сигнала, называемого защелкой .

Полупроводниковые приборы, имеющие четыре слоя с механизмом управления, называются тиристорами.Термин тиристор в основном применяется к кремниевому управляемому выпрямителю (SCR). Термин происходит от тиратрона и транзистора, потому что такое устройство сочетает в себе выпрямление тиратрона и управляющее действие транзисторов.

Тиристоры обладают возможностью управления, быстрым откликом, они очень надежны, поскольку выдерживают большой ток и требуют небольшого обслуживания. Стоимость изготовления тиристоров невысока и очень эффективна. Тиристоры используются для управления двигателями постоянного и переменного тока. Он также используется для повышения коэффициента мощности и в качестве переключающего устройства, а также в линиях передачи HVDC (High Voltage DC).

Тиристоры снизили стоимость разработки приводных систем, сменив акцент с двигателей постоянного тока на двигатели переменного тока. Он заменил электромагнитные системы управления. Он способен выдерживать мощность до 4 МВт (2500 А при 1600 В).

Конструкция тиристора (SCR)

Очевидно, что SCR представляет собой выпрямитель (PN) и переходной транзистор (N-P-N), соединенные вместе, чтобы сформировать устройство PNPN. Все три вывода взяты из внешнего материала P-типа, известного как анод, второй из внешнего материала n-типа, известного как катод, и третьего из основания, известного как затвор.

Как указывалось ранее, для производства SCR используется кремний из-за его способности выдерживать высокие температуры, высокой теплопроводности и меньшей утечки тока в p-n переходе. Переход бывает диффузным или легированным. Материалом, используемым для некоторой диффузии p, является алюминий.

Материалом для диффузии n является фосфор. Контакт с анодом осуществляется алюминиевой фольгой через катод и затвор металлическим листом. Таблетка PNPN должным образом закреплена пластинами из вольфрама или молибдена, что придает ей большую механическую прочность, позволяющую выдерживать большой ток.Одна из пластин очень хорошо припаяна к медной или алюминиевой шпильке с резьбой для крепления к радиатору, что ведет к внутренним потерям в окружающую среду. Номинальное напряжение может быть увеличено за счет легирования двух внутренних слоев и увеличения их толщины.

Основные операции тиристора (работа тиристора)

Все тиристоры имеют схожий, если не одинаковый принцип работы. Поскольку все типы тиристоров имеют одинаковый режим работы, мы будем использовать кремниевый управляемый выпрямитель (SCR) в качестве примера.

Как упоминалось ранее, тиристор (SCR) представляет собой четырехслойный полупроводник. Он имеет три соединения и выводы, известные как PNP, а соединения – как J 1 , J 2 и J 3 . Область p – это анод. Область n является катодом, а внутренняя область p называется затвором. Подключение анода к катоду выполнено последовательно с цепью нагрузки.

Устройство остается в состоянии блокировки напряжения до тех пор, пока и на аноде, и на выводах затвора не будет достаточно положительного напряжения, которое может вызвать его включение, в противном случае оно останется выключенным.Если устройство включено, чтобы вернуть его в состояние блокировки напряжения (выключено), стробирующий сигнал должен быть устранен, а анодный ток уменьшен до нуля, так что ток будет течь только в одном направлении. Каждый слой тиристора состоит из носителей заряда.

Эти носители диффундируют до тех пор, пока не нарастает напряжение, препятствующее дальнейшей диффузии носителей заряда. Некоторые носители обладают достаточной энергией, чтобы пересечь барьер, создаваемый противоположным электрическим полем на каждом стыке.

Типы 0f Тиристоры

Тиристоры бывают многих типов.Ниже приведены несколько и наиболее часто встречающиеся устройства, а именно;

  1. Кремниевый управляемый выпрямитель (SCR)
  2. Запорный тиристор (GTO) и Коммутируемый тиристор со встроенным затвором (IGCT)
  3. Mos-управляемый тиристор (MCT)
  4. Тиристор статической индукции (SITh)
  5. TRIAC: триод для переменный ток – двунаправленное переключающее устройство, которое содержит две тиристорные структуры с общим контактом затвора.
  6. ETO: тиристор выключения эмиттера
  7. DIAC: устройство запуска двунаправленного сигнала
  8. SIDAC: устройство переключения двустороннего действия.И т.д.

Характеристики тиристоров

Зная, что тиристоры не имеют движущихся частей, они не издают звуков во время работы. Он имеет высокую скорость переключения (из состояния прямой проводимости обратно в состояние отсутствия проводимости, то есть состояние прямой блокировки). Стоимость обслуживания невысока, размер и вес невелик. Тиристор может работать очень долго без неисправностей, он также способен выдерживать большой ток.

Кремниевый управляемый выпрямитель (SCR)

Как следует из этого термина, SCR – это управляемый выпрямитель, изготовленный из кремниевого полупроводникового материала, который имеет третий вывод, в основном, для управления напряжением.Кремний был выбран для конструкции SCR из-за его способности выдерживать высокую мощность, а также высокую температуру. Режим работы SCR отличается от режима работы диода из-за третьего вывода, известного как затвор, обозначенного K.

Затвор определяет, когда схема переключается с разомкнутого на короткое замыкание. Устройство выполнено из кремния, потому что в кремнии утечка тока минимальна по сравнению с германием.

Различия между тиристорами и транзисторами
S / No Тиристоры Транзисторы
1 4-слойные устройства, 2 слоя или более 90 , 2 соединительных устройства
2 Очень быстрый отклик Быстрый отклик
3 Очень высокочастотный Высокочастотный
4 Очень высоконадежный Высоконадежный4 5 Очень малое падение напряжения Малое падение напряжения
6 Очень долгий срок службы Длительный срок службы
7 Очень малое, чтобы варьироваться большая номинальная мощность Номинальная мощность от малого до среднего
8 Требуется только небольшой импульс для запуска, а затем Работа в проводящем статике Требуется постоянный ток, чтобы оставаться в проводящем статике
9 Очень низкое энергопотребление Низкое энергопотребление
10 Высокие возможности управления Низкие возможности управления
11 Очень малое время включения и выключения Очень маленькое время включения и выключения

Применение и использование тиристоров и SCR

Ниже приведены применения SCR & тиристоры;

  • Используется как статический переключатель
  • Он контролирует скорость двигателей постоянного и переменного тока
  • Может использоваться для преобразования переменного тока в постоянный (преобразователи)
  • Он также может использоваться для преобразования постоянного тока в переменный (инверторы)
  • Используется в линиях электропередачи HVDC
  • Используется в релейном управлении
  • Используется в управлении фазой
  • Используется в качестве специального источника питания для электроники и самолетов
  • Используется для повышения коэффициента мощности при передаче линии
  • Он может служить выключателем постоянного или переменного тока.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *