Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как работает светодиод: принцип работы

В переводе с английского сокращение LED дословно означает «диод, который излучает свет». Это полупроводниковое устройство, способное трансформировать электрический ток в световое излучение. Это простое приспособление, конструкция которого довольно сильно отличается от привычных нам изделий для освещения (лампы накаливания, разрядные, люминесцентные лампы и т. д.).

Как работает светодиод, будет интересно узнать каждому. Этот прибор не имеет изначально ненадежных хрупких элементов конструкции и стеклянной колбы (в отличие от других ламп). Стоимость диодов настолько мала, что ненамного отличается от батареек, которые служат их источником питания. Популярность подобных изделий объясняется рядом факторов, в том числе и их конструкцией.

История возникновения

Рассматривая вопрос, почему работают светодиоды, следует изучить историю их возникновения. Впервые подобное устройство было создано в 1962 г. ученым Н. Холоньяком. Это был монохромный диод красного свечения. Он имел ряд недостатков, но сама технология была признана перспективной.

Спустя 10 лет после создания красного диода появились зеленые и желтые разновидности. Их применяли в качестве индикаторов во многих электронных приборах. Интенсивность светового потока диодов благодаря научным разработкам постоянно возрастала. В 90-х годах был создан осветитель с эффективностью потока 1 люмен.

Как работает светодиод

В 1993 году С. Накамура создал первый синий диод, который характеризовался высокой яркостью. С этого момента стало возможным создавать любой цвет спектра (в том числе белый). Технологии неустанно развивались.

При соединении синего и ультрафиолетового типа диодов получается белый люминофорный осветитель. Они стали постепенно вытеснять лампы накаливания. К 2005 году выпускались диоды с мощностью светового потока до 100 лм и даже выше. Стали изготавливать белые осветительные приборы с разными оттенками (теплые, холодные).

Устройство светодиода

Чтобы понять, как работает точечный светодиод, необходимо подробно рассмотреть его устройство. Этот осветительный прибор, по мнению представителей Ассоциации развития оптоэлектронной индустрии и департамента энергетики, в скором времени станет самым востребованным источником освещения в обычных домах, офисах, учреждениях.

Светодиод имеет основой полупроводниковый кристалл. Он пропускает электрический ток только в одну сторону. Кристалл расположен на особой подложке. Она не проводит ток. Корпус защищает кристалл от внешних воздействий. Он имеет выходы в виде контактов, а также оптическую систему.

От какого напряжения работают светодиоды

Чтобы повысить продолжительность эксплуатации прибора, пространство между пластиковой линзой и самим кристаллом заполнили прозрачным силиконовым компонентом. Чтобы отводить избыточное тепло, применяется алюминиевая основа. Это обычное устройство современного диода. При работе он выделяет относительно небольшое количество теплоты. Это также является преимуществом прибора.

Принцип работы

Рассматривая, как работает светодиод, необходимо вникнуть в основной принцип работы подобных устройств. Прибор представленного типа имеет один электронно-дырчатый переход. Это связано с разным принципом проводимости компонентов осветителя. Один полупроводник имеет излишек электронов, а другой – излишек дырок.

От скольких вольт работают

При помощи процесса легирования дырчатый материал обогащается носителями отрицательного заряда. Если в месте обогащения полупроводников противоположными зарядами приложить ток, получится прямое смещение. Через переход этих двух материалов побежит электричество.

При этом в корпусе диода происходит сплавление носителей зарядов с различным электрическим статусом. Когда дырки и электроны сталкиваются, выделяется определенное количество энергии. Это квант светового потока. Его называют фотоном.

Цвет светодиода

При создании диодов применяются различные полупроводниковые материалы. Это определяет цвет, который испускает при работе представленное устройство. Разные материалы способны посылать в пространство волны разной длины. Это позволяет человеческому глазу увидеть тот или иной цвет видимого спектра.

Изучая вопрос, как работает светодиод, следует рассмотреть материалы полупроводников. Раньше в подобных целях применялись фосфид галлия, тройные соединения GaAsP, AlGaAs. При этом прибор мог посылать в пространство красный, желто-зеленый световой поток.

Светодиоды работающие от батареек

Представленная технология ныне применяется только для индикаторных устройств. Сегодня для таких изделий используют алюминий индий-галлий (AllnGaP) и индий-нитрид галлия (InGaN). Они выдерживают довольно высокий уровень проходящего тока, высокие показатели влажности и нагрева. Возможна комбинация светодиодов разных типов.

Смешение цветов

Современные диодные ленты могут выдавать разные оттенки светового потока. Один прибор может производить монотонный цвет. При создании многокристального устройства возможно получить огромное количество различных оттенков. Подобно монитору телевизора или компьютера, диод может создать любой цвет при помощи модели RGB (расшифровывается как красный, зеленый, синий).

Как работает точечный светодиод

Это простой принцип, позволяющий понять, как работают RGB-светодиоды. При помощи этой технологии можно создавать и белое освещение. Для этого все три цвета смешиваются в равной пропорции.

Однако, помимо представленной технологии, можно получить белое свечение при соединении диода коротковолнового излучения (ультрафиолетовый, синий) вместе с желтым покрытием люминофорного типа. При комбинации фотонов желтого и синего цвета в итоге получается белое свечение.

Производство

Чтобы понять, от скольких вольт работают светодиоды, необходимо рассмотреть производство этих устройств. В первую очередь следует отметить, что приборы с матрицей типа RGB стоят дороже, чем люминоформы. Причем последние позволяют добиться освещения высокого качества.

Почему работают светодиоды

Недостатком люминофоров является меньшая светоотдача, а также различная окраска (температура) потока. Это устройство стареет быстрее, чем светодиод. Поэтому в продажу поступают осветительные приборы обоих принципов работы. Для создания индикаторов производятся диоды с потреблением 2-4 В напряжения постоянного типа (при токе 50 мА).

Для создания полноценного освещения необходимы устройства с таким же потреблением напряжения, но более высоким уровнем тока - до 1 А. Если в одном модуле диоды подключить последовательно, суммарное напряжение будет достигать 12 или 24 В.

Усиление яркости

Рассматривая вопрос, от какого напряжения работают светодиоды, следует сказать о повышении яркости представленных устройств. Мощность таких приборов достигает 60 мВт. Если подобные диоды установить в средний по габаритам корпус, световых элементов потребуется установить 15-20 шт.

Не работают светодиоды на лампе

Диоды с усиленной яркостью свечения могут нести в себе мощность до 240 Вт. Чтобы обеспечить нормальную подсветку, подобных элементов потребуется 4-8 шт. В продаже представлены устройства, способные полноценно освещать помещения, наружную рекламу, витрины и т. д. Некоторые ленты создаются для выполнения подсветки средней или малой интенсивности.

Для подключения представленного оборудования применяют блоки управления соответствующей мощности. Для цветных лент возможно применять контроллеры, управляющие не только интенсивностью освещения, но и задающие оттенки и режимы работы устройства.

Управление свечением

Существует огромное количество вариантов представленного оборудования. Есть светодиоды, работающие от батареек (например, в фонариках), запитанные в стационарную сеть. Их применяют как для внутренней, так и внешней работы. В зависимости от условий применения подбирается соответствующий класс защиты диода.

Чтобы отрегулировать яркость свечения, напряжение питания не снижают. Для уменьшения интенсивности свечения применяется широтно-импульсная модуляция (ШИМ). В этом случае приобретается блок управления.

Представленный метод заключается в подаче на диод импульсно-модулированного тока. Частота сигнала при этом достигает тысяч герц. Может изменяться ширина импульсов и интервалов пауз. При этом можно управлять свечением прибора. Диод в этом случае не погаснет.

Долговечность

Диоды считаются долговечными устройствами. Это объясняется их конструкцией. Однако если не работают светодиоды на лампе, возможно, срок их эксплуатации вышел. Это можно определить по насыщенности свечения и изменению цвета.

Также специалисты отмечают, что срок эксплуатации маломощных устройств гораздо продолжительнее. Но даже в самых ярких лентах или лампах диоды гарантированно работают 20-50 тыс. часов. Так как они не имеют хрупких элементов конструкции, механические воздействия с большей вероятностью не нанесут вреда подобным осветителям.

Изучив, как работает светодиод, можно понять принцип устройства этого прибора, а также его эксплуатационные характеристики. Это оборудование считается осветителями будущего поколения.

fb.ru

Устройство светодиода. Принцип работы и производство

Здравствуйте, дорогие читатели! Сегодня поговорим про устройство светодиода, разберём особенности разных конструкций, узнаем как их производят. И так…

Излучающие свет полупроводниковые приборы широко используются для работы систем освещения и в качестве индикаторов электрического тока. Они относятся к электронным устройствам, работающим под действием приложенного напряжения.

Поскольку его величина незначительная, то подобные источники относятся к низковольтным приборам, обладают повышенной степенью безопасности по воздействию электрического тока на организм человека. Риски получения травм возрастают тогда, когда для их свечения используются источники повышенного напряжения, например, бытовой домашней сети, требующие включения в схему специальных блоков питания.

Отличительной чертой конструкции светодиода является более высокая механическая прочность корпуса, чем у ламп «Ильича» и люминесцентных. При правильной эксплуатации они работают долго и надежно. Их ресурс в 100 раз превышает показатели нитей накаливания, достигает ста тысяч часов.

Однако, этот показатель характерен для индикаторных конструкций. У мощных источников для освещения применяются повышенные токи, а срок эксплуатации снижается в 2÷5 раз.

Как устроены и работают светодиоды

Обычный индикаторный светодиод изготавливают в эпоксидном корпусе с диаметром 5 мм и двумя контактными выводами для подключения к цепям электрического тока: анодом и катодом. Визуально они отличаются по длине. У нового прибора без обрезанных контактов катод короче.

Запомнить это положение помогает простое правило: с буквы «К» начинаются оба слова:

Когда же ножки светодиода обрезаны, то анод можно определить подачей на контакты напряжения 1,5 вольта от простой пальчиковой батарейки: свет появляется при совпадении полярностей.

Устройство светодиода
   Устройство светодиода

Светоизлучающий активный монокристалл полупроводника имеет вид прямоугольного параллелепипеда. Он размещён около светоотражающего рефлектора параболической формы из алюминиевого сплава и смонтирован на подложке с не токопроводящими свойствами.

Устройство светодиода
   Устройство светодиода на подложке

На окончании светового прозрачного корпуса из полимерных материалов расположена линза, фокусирующая световые лучи. Она совместно с рефлектором образует оптическую систему, формирующую угол потока излучения. Его характеризуют диаграммой направленности светодиода.

 Устройство светодиода
   Девиация угла свечения светодиода

Она характеризует отклонение света от геометрической оси общей конструкции в стороны, что приводит к увеличению рассеивания. Такое явление возникает из-за появления при производстве небольших нарушений технологии, а также старения оптических материалов во время эксплуатации и некоторых других факторов.

Внизу корпуса может быть расположен алюминиевый или латунный поясок, служащий радиатором для отвода тепла, выделяемого при прохождении электрического тока.

Этот принцип конструкции широко распространен. На его основе создают и другие полупроводниковые источники света, использующие иные формы структурных элементов.

 

Устройство светодиода, принципы излучения света

Полупроводниковый переход p-n типа подключают к источнику постоянного напряжения в соответствии с полярностью выводов.

Внутри контактного слоя веществ p- и n-типов под его действием начинается движение свободных отрицательно заряженных электронов и дырок, которые обладают положительным знаком заряда. Эти частицы направляются к притягивающим их полюсам.

Устройство светодиода
   Устройство светодиода, принцип получения света полупроводником

В переходном слое заряды рекомбинируют. Электроны проходят из зоны проводимости в валентную, преодолевая уровень Ферми.

За счет этого часть их энергии освобождается с выделением световых волн различного спектра и яркости. Частота волны и цветопередача зависят от вида смешанных материалов, из которых сделан p-n переход.

Для излучения света внутри активной зоны полупроводника требуется соблюсти два условия:

  1. пространство запрещенной зоны по ширине в активной области должно быть близко к энергии излучаемых квантов внутри видимого человеческому глазу диапазона частот
  2. чистоту материалов полупроводникового кристалла необходимо обеспечивать высокую, а количество дефектов, влияющих на процесс рекомбинации — минимально возможным

Эта сложная техническая задача решается несколькими путями. Один из них — создание нескольких слоев p-n переходов, когда образуется сложная гетероструктура.

Видео, устройство светодиода

 

Влияние температуры

При увеличении уровня напряжения источника сила тока через полупроводниковый слой возрастает и свечение увеличивается: в зону рекомбинации поступает повышенное количество зарядов за единицу времени. Одновременно происходит нагрев токоведущих элементов. Его величина критична для материала внутренних тоководов и вещества p-n перехода. Излишняя температура способна их повредить, разрушить.

Внутри светодиодов энергия электрического тока переходит в световую непосредственно, без излишних процессов: не так, как у ламп с нитями накаливания. При этом образуются минимальные потери полезной мощности, обусловленные низким нагреванием токопроводящих элементов.

 Устройство светодиода
   Рабочая температура светодиода и нити накаливания

За счет этого создается высокая экономичность этих источников. Но, их можно применять только там, где сама конструкция защищена, блокирована от внешнего нагрева.

Особенности световых эффектов

При рекомбинации дырок и электронов в разных составах веществ p-n перехода создается неодинаковое излучение света. Его принято характеризовать параметром квантового выхода — количеством выделенных световых квантов для единичной рекомбинированной пары зарядов.

Он формируется и происходит на двух уровнях светодиода:

  1. внутри самого полупроводникового перехода — внутренний
  2. в конструкции всего светодиода в целом — внешний

На первом уровне квантовый выход у правильно выполненных монокристаллов может достигать величины, близкой к 100%. Но, для обеспечения этого показателя требуется создавать большие токи и мощный отвод тепла.

Внутри самого источника на втором уровне часть света рассеивается и поглощается элементами конструкции, чем снижает общую эффективность излучения. Максимальное значение квантового выхода здесь намного меньше. У светодиодов, испускающих красный спектр, оно достигает не более 55%, а у синих снижается еще больше — до 35%.

Виды цветовой передачи света

Современные светодиоды излучают:

  • желтый
  • зеленый
  • красный
  • синий
  • голубой
  • белый свет

Желто-зеленый, желтый и красный спектр

В основе p-n перехода используются фосфиды и арсениды галлия. Эта технология была реализована в конце 60-х годов для индикаторов электронных приборов и панелей управления транспортной техники, рекламных щитов.

Такие устройства по светоотдаче сразу обогнали основные источники света того времени — лампы накаливания и превзошли их по надежности, ресурсу и безопасности.

Голубой спектр

Излучатели синего, сине-зеленого и особенно белого спектров долго не поддавались практической реализации из-за трудностей комплексного решения двух технических задач:

  1. ограниченных размеров запрещенной зоны, в которой осуществляется рекомбинация
  2. высоких требований к содержанию примесей

Для каждой ступени повышения яркости синего спектра требовалось увеличение энергии квантов за счет расширения ширины запретной зоны.

Вопрос удалось разрешить включением в вещество полупроводника карбидов кремния SiC или нитридов. Но, у разработок первой группы оказался слишком низкий КПД и маленький выход излучения квантов для одной рекомбинированной пары зарядов.

Повысить квантовый выход помогло включение в полупроводниковый переход твердых растворов на основе селенида цинка. Но, такие светодиоды обладали повышенным электрическим сопротивлением на переходе. За счет этого они перегревались и быстро перегорали, а сложные в изготовлении конструкции отвода тепла для них эффективно не работали.

Впервые светодиод голубого свечения удалось создать при использовании тонких пленок из нитрида галлия, наносимых на сапфировую подложку.

Белый спектр

Для его получения используют одну из трех разработанных технологий:

  1. смешивание цветов по методике RGB
  2. нанесение трех слоев из красного, зеленого и голубого люминофора на светодиод ультрафиолетового диапазона
  3. покрытие голубого светодиода слоями желто-зеленого и зелено-красного люминофора

При первом способе на единой матрице размещают сразу три монокристалла, каждый из которых излучает свой спектр RGB. За счет конструкции оптической системы на основе линзы эти цвета смешивают и получают на выходе суммарный белый оттенок.

У альтернативного метода смешение цветов происходит за счет последовательного облучения ультрафиолетовым излучением трех составляющих слоев люминофора.

Особенности технологий белого спектра

Методика RGB

Она позволяет:

  • задействовать в алгоритме управления освещением различные комбинации монокристаллов, подключая их поочередно вручную или автоматизированной программой
  • вызывать различные цветовые оттенки, меняющиеся по времени
  • создавать эффектные осветительные комплексы для рекламы

Простым примером такой реализации служат цветовые елочные гирлянды. Подобные алгоритмы также широко используют дизайнеры.

Недостатками светодиодов RGB конструкции являются:

  • неоднородный цвет светового пятна по центру и краям
  • неравномерный нагрев и отвод тепла с поверхности матрицы, ведущий к разным скоростям старения p-n переходов, влияющий на балансировку цветов, изменению суммарного качества белого спектра

Эти недостатки вызваны разным расположением монокристаллов на базовой поверхности. Они сложно устраняются и настраиваются. За счет подобной технологии RGB модели относятся к наиболее сложным и дорогим разработкам.

Светодиоды с люминофором

Они проще в конструкции, дешевле в производстве, экономичнее при пересчетах на излучение единицы светового потока.

Для них характерны недостатки:

  • в слое люминофора происходят потери световой энергии, которые понижают светоотдачу
  • сложность технологии нанесения равномерного слоя люминофора влияет на качество цветовой температуры
  • люминофор обладает меньшим ресурсом, чем сам светодиод и быстрее стареет при эксплуатации

Устройство светодиода, особенности разных конструкций

Модели с люминофором и RGB-изделия создаются для разного промышленного и бытового применения.

Способы питания

Индикаторный светодиод первых массовых выпусков потреблял около 15 мА при питании от чуть меньшей величины, чем два вольта постоянного напряжения. Современные изделия имеют повышенные характеристики: до четырех вольт и 50 мА.

Светодиоды для освещения питаются таким же напряжением, но потребляют уже несколько сотен миллиампер. Производители сейчас активно разрабатывают и проектируют устройства до 1 А.

С целью повышения эффективности светоотдачи создаются светодиодные модули, которые могут использовать последовательную подачу напряжения на каждый элемент. В таком случае его величина возрастает до 12 либо 24 вольт.

При подаче напряжения на светодиод требуется учитывать полярность. Когда она нарушена, то ток не проходит и свечения не будет. Если же используется переменный синусоидальный сигнал, то свечение происходит только при прохождении положительной полуволны. Причем его сила так же пропорционально меняется по закону появления соответствующей величины тока с полярным направлением.

Следует учитывать, что при обратном напряжении возможен пробой полупроводникового перехода. Он происходит при превышении 5 вольт на одном монокристалле.

Способы управления

Для регулировки яркости излучаемого света применяют один из двух методов управления:

  1. величиной подключаемого напряжения
  2. использованием широтной импульсной модуляции (ШИМ)

Первый способ простой, но неэффективный. При снижении уровня напряжения ниже определённого порога светодиод может просто потухнуть.

Метод же ШИМ исключает подобное явление, но он значительно сложнее в технической реализации. Ток, пропускаемый через полупроводниковый переход монокристалла, подается не постоянной формой, а импульсной высокой частоты со значением от нескольких сотен до тысячи герц.

За счет изменения ширины импульсов и пауз между ними (процесс называют модуляцией) осуществляется регулировка яркости свечения в широких пределах. Формированием этих токов через монокристаллы занимаются специальные программируемые управляющие блоки со сложными алгоритмами.

Спектр излучения

Частота выходящего из светодиода излучения лежит в очень узкой области. Ее называют монохроматической. Она кардинальным образом отличается от спектра волн, исходящего от Солнца или нитей накаливания обычных осветительных ламп.

О влиянии такого освещения на человеческий глаз ведется много дискуссий. Однако, результаты серьезных научных анализов этого вопроса нам неизвестны.

Производство

При изготовлении светодиодов используется только автоматическая линия, в которой работают станки-роботы по заранее спроектированной технологии.

Устройство светодиода
   Работы на производстве светодиодов

Физический ручной труд человека полностью исключен из производственного процесса.

 Устройство светодиода
    Технологическая линия производства светодиодов

Подготовленные специалисты осуществляют только контроль за правильным протеканием технологии.

 Устройство светодиода
   Контроль за производством светодиодов

Анализ качества выпускаемой продукции тоже входит в их обязанности.

 Устройство светодиода
   Контроль за качеством светодиодов

 

Видео, как выращивают светодиоды

 

powercoup.by

устройство, принцип работы, обзор конструкций

Наверняка в наше время нет таких людей, которые ни разу не сталкивались со светодиодами. Ведь сейчас они повсюду – их используют и для простых фонариков, и для ламп домашнего освещения, и для фонарных столбов на улицах, и для автомобилей, и даже для чайников с подсветкой. И это не удивительно, ведь на данный момент более экологичного и энергосберегающего, да к тому же еще и столь компактного вида осветительных приборов не существует.

Конечно, почти каждый видел свечение работающего LED-компонента и знает, что такое светодиод, но очень многие даже представления не имеют, как устроен этот элемент освещения. А ведь такие знания могут пригодиться, и потому имеет смысл попытаться разъяснить устройство светодиода и принцип его работы, рассказать о существующих в наше время видах и модификациях.

Вообще начало этим компактным световым элементам было положено в середине прошлого столетия и применялись они лишь для индикации подсветки в различных приборах, т. к. свет их был не очень ярким, можно сказать, даже тусклым. Однако все изменилось в конце ХХ века с появлением синего светового диода, а уже после появились яркие элементы подобного типа зеленого, желтого и белого цвета.

Светодиод представляет собой миниатюрный световой прибор в корпусе из литого пластика различных цветов с двумя и более контактами на основе кристалла. На сегодняшний день это довольно распространенный вид освещения.

Кто-то может сказать, что в эти дебри не стоит и лезть, что это все очень сложно, но на самом деле светодиоды просты, как все гениальное, и понять, как работает светодиод, не составит труда. Итак, приступим.

Классификация светодиодов

Две различные конструкции светодиодовДве различные конструкции светодиодов

Классифицируют светодиоды по многим характеристикам, но основной из них является небольшая технологическая разница в устройстве, которая вызвана различием по электрическим параметрам, равно как и областью использования осветительного прибора на кристаллах. А из чего состоит светодиод, можно увидеть на картинке выше.

Различают несколько конструкций светодиодов в зависимости от того, как он устроен.

DIP

Имеет корпус в виде цилиндра на два контакта. Это первый из изобретенных светодиодов. Сама его оболочка из эпоксидной смолы, закругленная сверху, работает как линза, направляя световой поток в нужном направлении. Выводные контакты утапливаются ножками в специальные отверстия печатной платы и припаиваются. Сам излучатель располагается на катоде, имеющем форму флажка и присоединенном к аноду тонким проводком.

Различные модификации могут иметь и два, и три кристалла различных цветов, объединенных одним корпусом с двумя-четырьмя выводами. К тому же некоторые могут быть оборудованы и встроенным микроконтроллером, который управляет режимами включения или задает время мерцания кристаллов.

Подобные DIP-элементы являются слаботочными. Используют их в основном, как индикаторы или в качестве световых элементов гирлянд.

DIP светодиодDIP-светодиод

Конечно, как и любой прибор, его пытались усовершенствовать с целью наращивания светового потока, в результате чего был произведен более высокотехнологичный светодиод в том же корпусе на четыре вывода. Такая конструкция светодиода была названа «пиранья».

Но увеличившийся световой поток привел, естественно, и к увеличению элемента, и к нагреву кристаллов, в результате этого «пиранья» не получила широкого применения. Ну а при появлении на рынке радиоэлектроники SMD-компонентов, имеющих другое строение, смысл в производстве подобных светодиодов и вовсе пропал.

SMD

Данный компонент на кристаллах отличен от предыдущего в первую очередь тем, что его монтаж производится непосредственно на поверхность печатной платы. По сути, его изобретение произвело прорыв в данной области. И если при монтаже DIP-светодиодов можно был крепить элементы лишь только по одной стороне платы, т. к. токопроводящие дорожки находились на другой, то с приходом SMD-компонентов появилась возможность монтировать двухсторонние печатные платы.

Это, вкупе с более мелкими габаритами элементов, позволило значительно снизить размеры приборов на их основе и полностью автоматизировать процесс сборки печатных плат.

На сегодняшний день подобные светодиоды являются самыми востребованными и используются для изготовления различных световых приборов. Основание корпуса SMD-светодиода, сверху которого закреплен кристалл, служит ему также и радиатором. К тому же слой люминофора между линзой и полупроводником (от чего зависит цвет светодиода) может иметь различный состав и позволяет нейтрализовать излучение ультрафиолета.

SMD светодиодSMD-светодиод

Есть и такие SMD-светодиоды, у которых нет линзы. Такой элемент выпускается в форме прямоугольника или квадрата и имеет более широкий угол излучения.

СОВ (Chip-On-Board)

Расшифровка названия данного компонента в переводе с английского звучит как «чип на доске». Новейшая разработка, которая, скорее всего, очень скоро станет лидером среди светодиодов в создании искусственного освещения.

Отличаются подобные компоненты тем, что на алюминиевом основании (подложке) посредством диэлектрического клея закрепляется не один, а множество кристаллов, не имеющих корпусов, а после готовая матрица покрывается полностью люминофором.

В итоге получившийся таким образом светодиод равномерно распределяет световой поток, исключающий тенеобразование.

Существует и еще одна разновидность светодиодов СОВ – это компоненты, созданные по технологии COG (Chip-On-Glass, что означает «чип на стекле»). Кристаллы здесь размещены не на алюминиевой подложке, а на стеклянной. Как раз на основе светодиодов, созданных по такой технологии, появилась возможность производства довольно известных филаментных ламп, которые работают от сети с напряжением 220 вольт. Излучателем в них служит стержень из стекла с кристаллами, на которые нанесен слой люминофора.

СОВ светодиодСОВ-светодиод

Принцип действия светодиода

Независимо от описанных технических классификаций принцип работы всех без исключения светодиодов основан на излучающем элементе. Кристалл, который является по своей сути полупроводником, имеющим различные типы проводимости, преобразует электрический ток в свечение. N-проводимый материал получается при помощи легирования электронами, ну а p-проводимый – дырами. В итоге происходит создание новых носителей заряда с противоположной направленностью.

В результате, когда подается прямое напряжение, электроны, как и дыры, начинают движение в сторону p-n-перехода. При преодолении барьера заряженными частицами начинается их рекомбинация. В итоге это и создает возможность прохождения электрического тока. Ну а в процессе рекомбинирования электроны и дыры уже выделяют фотоны.

Применение подобного физического явления относится ко всем элементам, подпадающим под определение полупроводникового диода. Проблема в том, что пределы видимого спектра излучения расположены ближе длины фотонов. По этой причине учеными была проведена огромная работа над тем, чтобы упорядочить движение частиц, заставив их двигаться в промежутке от 400 до 700 нм.

Но зато после всех проведенных экспериментов появилось несколько новых соединений вроде арсенида галлия и фосфида галлия, ну и, конечно, их более сложных форм, которые имеют различную длину волн, т. е. цвет излучения.

Принцип излучения света полупроводникомПринцип излучения света полупроводником

Конечно же, при подобной работе по выделению света должно образовываться и тепло, хотя и в небольших количествах, ведь законы физики никто не отменял. По этой причине (ведь нагрев снижает производительность полупроводников) при установке светодиодов большой мощности появляется необходимость охлаждения, для чего и требуется радиатор. Роль такого охлаждающего элемента в СОВ, к примеру, и играет алюминиевое основание, на котором расположены кристаллы.

Спектры излучения

Современные светодиоды имеют шесть основных спектров, т. е. их свечение может быть желтым, зеленым, красным, синим, голубым и белым. И самым сложным для ученых оказалось создание голубого светового элемента на кристаллах.

Вообще частота исходящих от светодиодов излучений лежит в узком направлении. Опираясь на все данные, ее можно назвать монохромной. И естественно, что она имеет кардинальное отличие от частоты солнечного излучения или ламп накаливания.

Уже не первый год ведутся споры по поводу влияния подобного излучения на зрение человека, равно как и на весь организм в целом. Но проблема заключается в том, что все подобные дискуссии так до сих пор ни к чему и не привели, потому как нет ни одного документального доказательства о проведении исследований в этой области.

Преимущества

Если рассматривать преимущества светодиодов, то их наберется весьма значительное количество.

Во-первых, они очень экономичны в плане расхода электроэнергии. На сегодняшний день нет световых приборов, которые могли бы с ними соревноваться по этому параметру. Причем это никак не отражается на силе светового потока, излучаемого элементами на кристаллах.

К экономичности можно отнести и срок службы подобных LED-компонентов, т. к. частое приобретение приборов освещения негативно сказывается на финансовом состоянии. Если посмотреть на статистику, то светодиодные лампы приходится покупать в 10 раз реже, чем люминесцентные, а лампочки накаливания вообще меняются чаще в 35–40 раз. В то же время расход электроэнергии при использовании светодиодов в сравнении с «лампочкой Ильича» ниже на 87%!

Во-вторых, светодиодные лампы удобны и просты в подключении и не требуют при этом каких-то особых навыков. К тому же, к примеру, в тех же рекламных щитах при выходе из строя нескольких элементов не произойдет ничего страшного. На его работе это никак не отразится. Ну а при огромном сроке службы светодиодов решается и проблема их замены. А главное удобство – это то, что работать такие элементы могут практически при любой температуре.

В-третьих, это, конечно, их надежность. Ведь для того, чтобы расколоть лампу накаливания или люминесцентную трубку, не нужно прикладывать особых усилий. А вот со светодиодом придется повозиться. Эпоксидный корпус так легко не расколоть.

Нельзя обойти вниманием и эстетическую сторону данного вопроса, ведь возможность игры с цветом при применении этих источников освещения практически ничем не ограничена, кроме воображения, фантазии человека. Работу со светодиодами можно сравнить с искусством рисования художником своих полотен.

А потому, несмотря на то, что в наше время продажи подобных световых элементов пока не слишком внушительны, скорее всего, пройдет совсем немного времени, и светодиоды выйдут на первое место по этому показателю, вытеснив остальные виды освещения с прилавков магазинов электротехники.

lampagid.ru

Светодиоды. Виды и устройство. Работа и применение. Особенности

Светодиоды для человечества стали одним из наиболее распространенных источников света для промышленных и бытовых нужд. Этот полупроводниковый прибор имеет один электрический переход, он преобразует электроэнергию в энергию видимого светового излучения. Явление открыто Генри Джозефом Раундом в 1907 году. Первые эксперименты были поставлены советским физиком-экспериментатором О.В. Лосевым, которому в 1929 году удалось получить рабочий прототип современного светодиода.

Первые современные светодиоды (СД, СИД, LED) были созданы в начале шестидесятых годов. У них было слабое красное свечение, их применяли в качестве индикаторов включения в самых разных приборах. В 90-х появились синие, желтые, зеленые и белые светодиоды. Их стали выпускать в промышленных масштабах многие компании. Сегодня LED-диоды применяются повсеместно: в светофорах, лампочках, автомобилях и так далее.

Устройство

Светодиод представляет полупроводниковый прибор с электронно-дырочным переходом, который создает оптическое излучение при прохождении через него тока в прямом направлении.

Стандартный индикаторный светодиод выполнен из следующих частей:

 

1 — Эпоксидная линза
2 — Проволочный контакт
3 — Отражатель
4 — Полупроводник (Определяет цвет свечения)
5 и 6 — Электроды
7 — Плоский срез

В основании светодиода закрепляются катод и анод. Все устройство сверху герметично закрыто линзой. На катоде установлен кристалл. На контактах имеются проводники, которые подсоединены к кристаллу p-n-переходом (проволока соединения для объединения двух проводников с различными типами проводимости). Для создания стабильной работы светодиода применяется теплоотвод, который необходим для осветительных приборов. В индикаторных приборах тепло не имеет решающего значения.

DIP-диоды имеют выводы, которые монтируются в отверстия печатной платы, они при помощи пайки подсоединяются на электрический контакт. Имеются модели с несколькими кристаллами различного цвета в одном корпусе.

SMD-светодиоды сегодня являются наиболее востребованными источниками света любых форматов.

  • Основа корпуса, куда крепится кристалл, является отличным проводником тепла. Благодаря этому в разы улучшился отвод тепла от кристалла.
  • В структуре белых светодиодов между линзой и полупроводником имеется слой люминофора, который нейтрализует ультрафиолет и задает необходимую цветовую температуру.
  • В SMD-компонентах, имеющих широкий угол излучения, линза отсутствует. При этом сам светодиод выделяется формой параллелепипеда.
Chip-On-Board (COB) представляют новейшее практическое достижение, которое должно занять в искусственном освещении лидерство в создании белых светодиодов.

 

Устройство светодиодов по технологии COB предполагает следующее:
  • На алюминиевую основу посредством диэлектрического клея крепят десятки кристаллов без подложки и корпуса.
  • Полученная матрица покрывается общим слоем люминофора. В итоге получается источник света, который имеет равномерное распределение светового потока без возможности появления теней.

Разновидностью Chip-On-Board является Chip-On-Glass (COG) технология, предусматривающая размещение на поверхности из стекла множества мелких кристаллов. К примеру, это филаментные лампы, где излучающим элементом является стеклянный стержень со светодиодами, которые покрыты люминофором.

Принцип действия
Несмотря на технологические особенности и разновидности, работа всех светодиодов основывается на общем принципе функционирования излучающего элемента:
  • Преобразование электроэнергии в световой поток осуществляется в кристалле, который выполнен из полупроводников с самым разным типом проводимости.
  • Материал с n­-проводимостью обеспечивают путем легирования его электронами, а материал с p-проводимостью при помощи дырок. В результате в сопредельных слоях появляются дополнительные носители заряда разной направленности.
  • При подаче прямого напряжения стартует движение электронов, а также дырок к p-n-переходу.
  • Заряженные частицы проходят барьер и начинают рекомбинировать, вследствие этого протекает электрический ток.
  • Процесс рекомбинации электрона и дырки в зоне p-n-перехода идет выделением энергии в качестве фотона.

В целом, указанное физическое явление свойственно всем полупроводниковым диодам. Однако длина волны фотона в большинстве случаев располагается за пределами видимого спектра излучения. Чтобы элементарная частица двигалась в диапазоне 400-700 нм, ученые проводили множество опытов и экспериментов с разными химическими элементами. В итоге появились новые соединения: фосфид галлия, арсенид галлия и более сложные формы. У каждой из них своя длина волны, то есть свой цвет излучения.
К тому же, кроме полезного света, который испускает светодиод, на p-n-переходе образуется некоторое количество теплоты, которое уменьшает эффективность полупроводникового прибора. Именно поэтому в конструкции мощных светодиодов предусматривается эффективный отвод тепла.

Разновидности
На текущий момент LED-диоды могут быть следующих видов:
  • Осветительные, то есть с большой мощностью. Их уровень освещенности равен вольфрамовым и люминесцентным источникам света.
  • Индикаторные – с небольшой мощностью, их применяют для подсветки в приборах.

Индикаторные LED-диоды по типу соединения делятся на:
  • Двойные GaP (галлий, фосфор) – имеют зеленый и оранжевый свет в структуре видимого спектра.
  • Тройные AIGaAs (алюминий, мышьяк, галлий) – имеют желтый и оранжевый свет в структуре видимого спектра.
  • Тройные GaAsP (мышьяк, галлий, фосфор) – имеют красный и желто-зеленый свет в структуре видимого спектра.
По типу корпуса светодиодные элементы могут быть:
  • DIP — устаревшая модель низкой мощности, их применяют для подсветки световых табло и игрушек.
  • «пиранья» или Superflux – аналоги DIP, но с четырьмя контактами. Они применяются для подсветки в автомобилях, меньше нагреваются и лучше крепятся.
  • SMD – самый распространенный тип, применяются во множестве источников света.
  • COB – это усовершенствованные светодиоды SMD.
Применение
Область применений светодиодов условно можно разделить на две широкие категории:
  1. Освещение.
  2. С использованием прямого света.

Светодиод в освещении применяется для освещения объекта, пространства или поверхности, вместо того, чтобы быть непосредственно видимым. Это интерьерная подсветка, фонарики, освещение фасадов зданий, освещение в автомобилях, подсветка клавиш мобильных телефонов и дисплеев и так далее. Широкое применение LED-диоды находят в коммуникаторах и сотовых телефонах.

Прямой светодиодный свет применяется для передачи информации, к примеру, в полноцветных видео дисплеях, в которых LED-диоды формируют пиксели дисплея, а также в алфавитно-цифровых табло. Прямой свет также применяется сигнальных устройствах. К примеру, это индикаторы поворота и стоп-сигналы автомобилей, светофоры и знаки.

Будущее светодиодов

Ученые создают светодиоды нового поколения, к примеру, на основе нано-кристаллических тонких пленок из перовскита. Они дешевые, эффективные и долговечные. Исследователи надеются, что такие LED-диоды будут применяться вместо обычных экранов ноутбуков и смартфонов, в том числе в бытовом и уличном освещении.

Создаются и волоконные LED-диоды, которые предназначены для создания носимых дисплеев. Ученые считают, что создаваемый метод производства волоконных светодиодов позволит наладить массовый выпуск и сделать интеграцию носимой электроники в одежду и текстиль совершенно недорогой.

Типичные характеристики

Светодиоды характеризуются следующими параметрами:

  • Цветовая характеристика.
  • Длина волны.
  • Сила тока.
  • Напряжение (тип применяемого напряжения).
  • Яркость (интенсивность светового потока).

Светодиодная яркость пропорциональна протекающему через него току, то есть чем напряжение будет выше, тем будет больше яркость. Единицей силы света служит люмен на стерадиан, она также измеряется в милликанделах. Бывают яркие (20-50 мкд.), а также сверх яркие (20000 мкд. и более) LED-диоды белого свечения.

Величина падения напряжения – характеристика допустимых значений прямого и обратного включений. Если подача напряжений выше этих значений, то наблюдается электрический пробой.

Сила тока определяет яркость свечения. Сила тока осветительных элементов обычно равняется 20 мА, для индикаторных светодиодов она составляет 20-40 мА.

Цвет излучения светодиода зависит от активных веществ, внесенных в полупроводниковый материал.

Длина волны света определяется разностью энергий при переходе электронов на этапе рекомбинации. Она определяется легирующими примесями и исходным полупроводниковым материалом.

Достоинства и недостатки
Среди достоинств светодиодов можно отметить:
  • Малое потребление электроэнергии.
  • Долгий срок службы, измеряемый 30-100 тысячами часов.
  • Высокая светоотдача. Светодиоды дают 10-250250 люменов светового потока на ватт мощности.
  • Нет ядовитых паров ртути.
  • Широкое применение.
Недостатки:
  • Низкие характеристики у некачественных светодиодов, созданных неизвестными производителями.
  • Сравнительно высокая цена качественных светодиодов.
  • Необходимость качественных источников питания.
Похожие темы:

electrosam.ru

Устройство светодиодов и принцип работы

Устройство светодиодов

В прошлой статье я рассказал о том, каким образом и на какие виды и типы подразделяют светодиоды. Мы определились, что ни один из видов не похож друг на друга. Точнее - конструкция светодиодов не аналогична друг другу. А вот устройство светодиодов практически похожее.

Сегодня рассмотрим каким образом устроены большинство LEDs. За основу возьмем статью, о которой упоминалось выше.

Но для начала нам стоит посмотреть на принцип работы светодиодов.

к оглавлению ↑

Принцип работы светодиодов


Принцип работы светодиодовЧтобы не утруждать Вас научными терминами попробую все рассказать на пальцах. Все светодиоды имеют p-n-p переход. Электронно-дырочный переход. В процессе легирования материал n-типа насыщается положительными электронами, а в материале p-типа атомы насыщаются дырками. Дырки – места на внешних электронных орбитах атомов, где отсутствуют электроны.

После подачи на чип напряжения электроны и дырки в p и n материалах начинают занимать место в p-n переходе. Как только носители заряда подходят к p-n-переходу, электроны вводятся в материал р-типа.

Если к n-материалу приложить отрицательное напряжение, через диод пойдет электрический ток от материал n-типа к p-типу. Такой процесс называется прямым смещением.Поэтому материал из которого производят светодиод выбирают таким образом, чтобы испускаемые фотоны находились в видимой области спектра. Каждый материал испускает фотоны со своей длиной волны, отчего зависят цвета света.

к оглавлению ↑

Устройство светодиодов индикаторных


Устройство индикаторных светодиодовПервенцами в светодиодной промышленности можно назвать индикаторные светодиоды 3мм и т.п. типа. Устройство светодиодов индикаторных конструкционно  отличается от SMD, COB и filament диодов.

На графической картинке мы видим, что устройство 3 мм диодов не сложное. Линзу производят из эпоксидной смолы. Есть и другие материалы, но как точно они называются я сейчас не припомню. Я уже давно перестал следить за тем, как идет "жизнь" данных светодиодов. Они мне не интересны. Если кто-то желает дополнить мой материал, то милости прошу в комментарии.)

В корпус интегрированы анод и катод. Светодиодный кристалл помещают в рассеиватель. От анода к кристаллу припаивается проводник. Как правило выполнен он из золота. Более дешевые модели ( китайские ) оснащаются медными проводниками.

На этом вся сложность и заканчивается. Далее остается только не ошибиться с определением "плюса и минуса". В зависимости от конструкции линзы свет может рассеиваться до 90 градусов.

к оглавлению ↑

Устройство индикаторного светодиода – «Пиранья»


Устройство светодиоов ПираньяМаломощные светодиоды. За счет того, что конструкционно на них размещаются четыре пина, увеличивается механическая прочность. Большое распространение этот вид диодов получил в автомобилестроении. Устройство LEDs пиранья понятно из картинки. Как говорится - без комментариев. Ну и дополню еще, что у данного типа полупроводников отмечается более качественная теплопроводность.

к оглавлению ↑

Устройство светодиода на основе волокон


Устройство Волоконные светодиодыИнтересная разработка, которая появилась в конце 2015 года. Разработка представлена корейскими учеными института науки передовых технологий ((Korea Advanced Institute of Science and Technology, KAIST).

Как заявляют ученые, в скором будущем технология получения волоконных светодиодов станет основой создания источников света на волокнах различны тканей. Сейчас мощность у них очень маленькая и составляет всего 0,3 Вт. Подождем, посмотрим, когда удасться перенести их в группу осветительных. Сейчас же посмотрим на устройство светодиодов из волокон.

Основой будущих диодов является волокно терефталата полиэтилена. погруженного в раствор PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate. Следующим этапом происходит сушка волокна при 130 градусах в течении получаса. На просушенную заготовку наносят OLED раствор poly-(p-phenylenevinylene) polymer organic LED (OLED) имеющий желтое свечение. Затем будущий диод снова отправляют в сушку и покрывают слоем фторида лития-алюминия (Lithium Fluoride/Aluminum (LiF/Al)).

к оглавлению ↑

Устройство осветительных мощных светодиодов


Устройство SMD чиповУстройство осветительных мощных диодов несколько отличается от тех, что мы рассматривали выше. Общая конструкция состоит из корпуса с кристаллом, подложку. Также на подложке монтируются выводные контакты. проводники кристаллов, теплоотвод и линзы.

По сравнению с индикаторными устройство осветительных имеет одно существенное различие. А именно, наличие теплоотвода. Индикаторные полупроводники маломощные, а следовательно практически не выделяют тепла. А если таковое и имеется. то легко рассеивается в линзе. Осветительные не могут похвастаться таким счастьем. Их припаивают к алюминиевой подложке для более быстрого распространения тепла. Ну и для тех, кто еще не понял - теплоотвод необходим для большинства светодиодов.

Некоторые различия также можно наблюдать и в устройствах SMD и COB чипах. Первые имеют как правило один кристалл ( есть исключения. в частности SMD 3528 ). COBовские имеют большее количество кристаллов и заливаются единым слоем люминофора.

к оглавлению ↑

Устройство светодиодов filament - филаментных


Устройство filamentПервое упоминание о филаментных светодиодах датируется 2008 годом. Однако, настоящее признание пришло к ним только в 2014-2015 году, когда на их основе стали выпускать лампы.

Сами по себе led filament - ни что иное, как отрезок из сапфира или стекла диаметром до 1.5 мм и длиной 3 см. Разные источники относят филаменты или  к COB или COG ( chip on glass ). Это зависит от того, на какой подложке будет расти светодиод. Для удешевления процесса большинство маленьких производителей используют стеклянную подложку. Дешевизна - не единственное преимущество филаментов. Расположенные на нем диоды способны распространять свет на 360 градусов. Чего мы не сможем добиться. если будем применять обычные СМД или СОБ полупроводники. Стекло по сравнению с сапфиром плохо передает тепло, плюс к этому очень хрупкое. Поэтому, если заказывать лампы на основе филаментов, то необходимо просить продавцов о тщательной упаковке.

Устройство светодиодов filamen led основано на размещении 28 кристаллов на один отрезок последовательно. Для получения более теплого свечения в линейку добавляют красные диоды. Число кристаллов от этого не меняется. Их всегда будет только 28. Вся полученная конструкция заливается люминофором. Каждый отрезок потребляет от 0,8 до 1,3 Вт.Филаменты

Далее полученные отрезки формируют в единое целое и "замуровывают" в колбу. Вот... На основании этой статьи родилась мысль написать статью о производстве именно филаментных ламп...

Филаментными диодами мы завершаем сегодняшнюю статью об устройстве светодиодов. В принципе, все идентично. За исключением лишь некоторых моментов. Так как мир не стоит на месте, то скорее всего будут появляться новые виды светодиодов. Возможно будет другое устройство. И если доживу, то обязательно буду дополнять этот материал. Если что-то пропустил, то прошу указать на это. Принимается только конструктивная критика).

к оглавлению ↑

Вывод об устройстве светодиодов


Решил не много дополнить материал. Времени особо нету сейчас переделывать статью, поэтому даю ссылку на свою другую работу, в которой рассказано устройство светодиода MCOB. На сегодняшний момент это самый продвинутый вид светодиодов. Как только соберусь с силами и "подточу" материал об MCOB, чтобы воткнуть его в эту статью,так сразу и опубликую. А пока - простите и сильно не пинайте.

leds-test.ru

Устройство и принцип работы светодиодной лампы

Содержание:
  1. Принцип действия светодиодных ламп
  2. Общее устройство светодиодных источников света
  3. Преимущества светодиодных ламп
  4. Видео: как устроена светодиодная лампа

Вопросы снижения потребляемой электроэнергии решаются не только на государственном уровне. Эта проблема актуальна и для рядовых потребителей. В связи с этим, в квартирах, офисах и других учреждениях, начинают широко внедряться не только мощные, но и экономичные источники света. Среди них все более широкое распространение получают светодиодные лампы. Устройство и принцип работы светодиодной лампы позволяет использовать ее со стандартным патроном и подключать в электрическую сеть напряжением 220 В. Для того чтобы сделать правильный выбор, нужно знать основные преимущества и особенности современных источников света.


Принцип действия светодиодных ламп

В работе светодиодных ламп используются физические процессы, которые значительно сложнее тех, что применяются в обычных лампах накаливания с металлической нитью. Суть явления заключается в появлении светового потока в точке соприкосновения двух веществ из разнородных материалов, после того как через них пропущен электрический ток.

Основной парадокс заключается в том, что каждый из используемых материалов, не является проводником электрического тока. Они относятся к категории полупроводников и способны пропускать ток лишь в одну сторону при условии их соединения между собой. В одном из них должны обязательно преобладать отрицательные заряды – электроны, а в другом – ионы с положительным зарядом.

Кроме движения электрического тока, в полупроводниках происходят и другие процессы. При переходе из одного состояния в другое происходит выделение тепловой энергии. Путем экспериментов удалось найти такие сочетания веществ, у которых наряду с выделением энергии появлялось световое излучение. В электронике все устройства, пропускающие ток лишь в одном направлении стали называться диодами, а те из них, которые обладают способностью испускать свет, стали называться светодиодами.

В самом начале испускание фотонов полупроводниковыми соединениями охватывало только узкую часть спектра. Они могли испускать только красный, желтый или зеленый свет, с очень низкой силой свечения. Поэтому в течение длительного времени светодиоды использовались только в качестве индикаторных ламп. К настоящему времени были получены такие материалы, соединения которых позволили значительно расширить диапазон светового излучения и охватить практически весь спектр. Тем не менее, длина каких-то волн всегда преобладает в свечении. Поэтому светодиодные лампы разделяются на источники холодного света – синего и теплого свечения – преимущественно красного или желтого.


Устройство светодиодных источников света

Внешний вид светодиодных ламп практически не отличается от традиционных источников света с металлической нитью накаливания. Они оборудованы стандартным цоколем с резьбой, что позволяет использовать их с обычными патронами и не вносить изменений в электрооборудование помещений. Однако светодиодные лампы существенно отличаются сложным внутренним устройством.

В их состав входят контактный цоколь, корпус, выполняющий функцию радиатора, плата питания и управления, плата со светодиодами и прозрачный колпак. Планируя использование светодиодных ламп в сети 220 В, следует помнить, что они не смогут работать с таким током и напряжением. Для того чтобы исключить перегорание светильников, в их корпусах устанавливаются платы питания и управления, снижающие напряжение и выпрямляющие ток.

Устройство такой платы оказывает серьезное влияние на срок эксплуатации лампы. В некоторых моделях перед диодным мостом устанавливается лишь резистор, а в некоторых случаях недобросовестные производители обходятся без него. В результате, лампы дают очень яркое свечение, но очень быстро сгорают из-за отсутствия стабилизирующих устройств. Поэтому качественные светильники непременно оборудуются стабилизаторами, например, балластными трансформаторами. В наиболее распространенных управляющих схемах используются сглаживающие фильтры, в состав которых входит конденсатор и резистор. В наиболее дорогих моделях в блоках управления и питания используются микросхемы.

Каждый отдельно взятый светодиод излучает довольно слабый свет. Поэтому для достижения нужного светового эффекта, группируется необходимое количество элементов. С этой целью используется плата, изготовленная из диэлектрического материала, с нанесенными токопроводящими дорожками. Примерно такие же платы применяются в других электронных устройствах.

Светодиодная плата является еще и понижающим трансформатором. С этой целью все элементы включаются последовательно в общую цепь, и сетевое напряжение равномерно распределяется между ними. Единственным существенным недостатком такой схемы является обрыв всей цепочки в случае перегорания хотя-бы одного светодиода.

Защиту всей лампы от попадания влаги, пыли и других негативных воздействий обеспечивает прозрачный колпак. Некоторые свойства колпака позволяют усилить общее свечение. Дело в том что его внутренняя сторона покрыта слоем люминофора, который начинает светиться под действием энергии квантов. Поэтому снаружи поверхность колпака выглядит матовой. Люминофор обладает более широкий спектр излучения, в несколько раз превышающий аналогичный показатель у светодиодов. В результате, излучение становится сравнимо с естественным солнечным светом. Без такого покрытия светодиоды оказывают раздражающее действие на глаза, вызывая усталость и болевые ощущения.

Лучше всего изучать полезные качества, устройство и принцип действия светодиодных ламп на схемах при напряжении электрической сети 220 вольт. Чаще всего такие светильники применяются в промышленном и уличном освещении, а в бытовых условиях традиционные источники света заменяются светодиодными лампочками, работающими при низком напряжении, в основном от 12 вольт. Однако мощность лампы и ее светоотдача не имеют прямой зависимости между собой. Этот фактор следует учитывать при выборе светодиодных светильников.

В светодиодных лампах, рассчитанных на 220 вольт, в схеме отсутствует трансформатор. В связи с этим возникает дополнительная экономия при эксплуатации таких светильников. Данная особенность отличает их от светодиодных ламп с другими мощностями. Поэтому выбор светильников происходит не по мощности, а по степени освещенности, создаваемой ими.


Преимущества светодиодных ламп

В настоящее время большое значение придается экономичной и долговечной работе осветительных приборов. Поэтому на первый план выходят светильники, создающие яркое освещение с выделением минимального количества тепла и небольшим энергопотреблением.  Они обладают низкой чувствительностью к перепадам тока и напряжения, могут выдерживать большое количество включений и выключений.

Всеми этими качествами в полной мере обладают светодиодные лампы. Они имеют несколько разновидностей, отличающихся по конструктивным и техническим характеристикам, что позволяет выбрать наиболее подходящий вариант. Все лампы отличаются наличием или отсутствием мерцания, степенью экологической безопасности, необходимостью в использовании выпрямителей тока и других дополнительных приборов.


electric-220.ru

Устройство светодиода и принцип действия

Светодиод сокращённо (СД), светоизлучающий диод (СИД), light emitting diode сокращённо LED – это полупроводниковое устройство, которое способно создавать световое излучение различной интенсивности при подключении его в прямом направлении к электрическому току.

Светодиод: устройство.

Основа светодиода – полупроводниковый кристалл. Кристалл размещается на металлическое основание катод, который также является отражателем.

Кристалл соединяется тонкой проволокой с анодным выводом. Вся конструкция помещается в корпус колбу нужной формы, верхняя часть колбы состоит из рассеивающей или собирающей линзы. От формы линзы зависит угол рассеивания светового потока, чем более плоская линза, тем шире угол рассеивания и наоборот, чем выпуклей линза, тем уже световой поток.

Для изготовления кристалла светодиода могут, используются такие  полупроводниковые материалы как арсенид галлия, алюминия галлия арсенид, галлия фосфид, галлия арсенид-фосфид, кремний и пр.

В зависимости от материала, из которого сделан кристалл, светодиод может излучать заданный спектр свечения.

Все светодиоды можно поделить на два основных типа:

Индикаторные – маломощные светодиоды используются как индикаторы в различных приборах (см. рис. сверху).

Осветительные – более мощные светодиоды, используются в осветительных приборах.

Типы осветительных диодов:

  • SMD.
  • HP – высокой яркости.
  • HP – высокой мощности.

Устройство осветительного светодиода.

Светодиод: принцип действия.

Принцип действия светодиода основан на так называемом p-n (электронно-дырочном) переходе.

Светодиод включает в себя полупроводниковый p-n переход, где материал — n обогащён отрицательными носителями заряда (приобретают дополнительные электроны), а материал – p положительными носителями заряда (приобретают «дырки» места, где отсутствуют электроны на орбитах атомов).

Когда в диоде возникает электрическое поле, электроны из материала — n и дырки из материала – p, устремляются к p – n переходу, где электроны инжектируются в – p материал.

При подаче отрицательного напряжения со стороны – n проходит ток в материал – p (прямое смещение).

При переходе из – n в – p избыточные электроны рекомбинируют с «дырками» при этом выделяется энергия из элементарных частиц фотонов и светодиод испускает свечение.

Обозначение светодиода в электрических схемах.

Светодиод может работать только при пропускании через него тока в прямом направлении (анод положительный потенциал относительно катода).

Недопустимо подключение светодиода обратной полярностью к источнику напряжения, светодиоды обычно имеют невысокое обратное пробивное напряжение, поэтому если в схеме возможно обратное напряжение светодиод нужно дополнительно защитить параллельно подключённым обычным диодом.

Подключать светодиод к источнику напряжения можно только через ограничитель тока, например через последовательно подключённый резистор.

Некоторые диоды могут иметь встроенную в корпус токоограничивающую цепь.

Для мощных светодиодов также применяются схемы, с широтно импульсной модуляцией которые могут поддерживать среднее значение тока на заданном уровне.

При пропускании через светодиод тока превышающего предельно допустимые параметры, светодиод мгновенно перегревается и выходит из строя.

Преимущества применения светодиодов в качестве источников света.

Высокая светоотдача до 146 люмен на ватт.

Современные светодиоды имеют широкий спектр свечения от 2700 К (теплый белый) до 6500 К (холодный белый).

Низкая инерционность, светодиод включается сразу на полную яркость.

Угол излучения от 15 до 180 градусов.

Механическая прочность и вибростойкость.

Светодиоды не чувствительны к низким температурам.

Продолжительный срок службы светодиодов, некоторые светодиоды могут работать до 100000 часов.

На продолжительность службы светодиодов не влияет количество циклов включения-выключения, в отличие от газоразрядных ламп и ламп накаливания.

Экологичность – в отличие от люминесцентных ламп для производства светодиодов не используются опасные материалы, такие как ртуть и фосфор.

Недостатки светодиодов.

При недостаточном отводе тепла у мощных светодиодов происходит деградация и падение яркости кристалла.

Светодиоды чувствительны к перепадам напряжения, повышенное напряжение приводит к перегреву светодиода и сокращает срок его службы.

Применение светодиодов.

Современные мощные светодиоды применяются в промышленном и бытовом освещении, светодиоды используются в качестве источников света в лампах, фонарях, светильниках, светодиодных лентах.

Светодиоды применяются в подсветке жидкокристаллических экранов телевизоров, мониторов, мобильных телефонов.

Маломощные светодиоды применяются в качестве индикаторов для бытовых и промышленных приборов, используются в панелях управления и пр.

Поделиться в соц. сетях

led-lampu.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о