Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Принцип работы люминесцентной лампы и ее устройство

Принцип работы люминесцентной лампы базируется на эффекте классической люминесценции.

Электрическим разрядом в ртутных парах создаётся ультрафиолетовое излучение, преобразуемое посредством люминофора в видимое свечение.

При самостоятельном подключении и ремонте таких осветительных приборов учитываются особенности устройства и принцип их действия.

Устройство люминесцентной лампы

Люминесцентная лампа относится к категории классических разрядных источников освещения низкого давления. Стеклянная колба такой лампы всегда имеет цилиндрическую форму, а наружный диаметр может составлять 1,2см, 1,6см, 2,6см или 3,8см.

Цилиндрический корпус чаще всего прямой или U-изогнутый. К торцевым концам стеклянной колбы герметично припаиваются ножки с электродами, выполненными из вольфрама.

Устройство лампочки

Внешней стороной электроды подпаиваются к цокольным штырям. Из колбы осуществляется тщательное откачивание всей воздушной массы через специальный штенгель, расположенный в одной из ножек с электродами, после чего происходит заполнение свободного пространства инертным газом с ртутными парами.

На некоторые типы электродов в обязательном порядке производится нанесение специальных активирующих веществ, представленных окислами бария, стронцием и кальцием, а также незначительным количеством тория.

Схема

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Как загорается люминесцентная лампа?

Как работает люминесцентная лампа? Функционирование люминесцентного осветительного прибора обеспечивается следующими поэтапными действиями:

  • на электроды, расположенные на цокольных штырях, подаётся напряжение;
  • высокое сопротивление газовой среды в лампе провоцирует поступление тока через стартер с образованием тлеющего разряда;
  • ток, проходящий через электродные спирали, в достаточной степени прогревает их, а разогретые стартерные биметаллические контакты замыкаются, что прекращает разряд;
  • после остывания стартерных контактов происходит их полное размыкание;
  • самоиндукция вызывает возникновение импульсного напряжения дросселя, достаточного для включения освещения;
  • проходящий через газовую среду ток уменьшается, а полное отключение стартера обуславливается недостаточностью напряжения.

Лампы спецназначения

Основным назначением устанавливаемых конденсаторов является эффективное снижение помех. Входные конденсаторы обеспечивают существенное понижение реактивной нагрузки, что важно при необходимости получить качественное освещение и продлить срок службы прибора.

Блок 1

Для чего нужен дроссель в люминесцентной лампе

Дроссель позволяет обеспечить требуемый для полноценного функционирования лампы электрический импульс. Принцип такого дополнительного устройства основан на сдвиге фазы переменного тока, что способствует получению необходимого количества тока для горения паров, которыми наполнена внутренняя часть лампы.

В зависимости от уровня мощности, рабочие параметры дросселя и сфера его использования могут варьироваться:

  • 9 Вт — для стандартной энергосберегающей лампы;
  • 11 w и 15 w — для миниатюрных или компактных осветительных приборов и энергосберегающих ламп;
  • 18 w — для настольных осветительных приборов;
  • 36 Вт — для люминесцентного светильника с малыми показателями мощности;
  • 58 Вт — для потолочных светильников;
  • 65 Вт — для многоламповых приборов потолочного типа;
  • 80 Вт — для мощных осветительных приборов.

При выборе нужно также ориентироваться на индуктивное сопротивление, регулирующее показатели мощности тока, подающегося на контакты люминесцентного осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Устройство и принцип работы люминесцентного светильника

Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.

Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.

Светильник люминесцентный

Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.

Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.

Блок 2

Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей.

Видео на тему

proprovoda.ru

Принцип работы люминесцентной лампы

Категория: Источники освещения

Применение светильников дневного света позволяет экономить электроэнергию по сравнению с использованием обыкновенных осветительных приборов накаливания. О принципе работы люминесцентной лампы необходимо знать специалистам, занятым работой с электричеством.

Историческая справка

Газоразрядная колба появилась еще в 1856 году и называлась трубкой Гейслера. Использование высоковольтной катушки позволило возбудить в ней свечение газа зеленого цвета. Через несколько лет предложено было покрыть внутреннюю поверхность колбы люминофором.

Изделия более яркого белого спектра появились лишь в 1926 году благодаря исследованиям Эдмунда Гермера. По своему устройству они уже стали похожи на те, которые можно видеть сегодня.

Устройство люминесцентной лампы

Для того чтобы понять принцип работы однолампового светильника, надо познакомиться с его схемой. Светильник состоит из следующих элементов:

  • стеклянная цилиндрическая трубка;
  • два цоколя с двойными электродами;
  • стартер, работающий на начальном этапе поджига;
  • электромагнитный дроссель;
  • конденсатор, подключенный параллельно питающей сети.

Колба изделия выполнена из кварцевого стекла. На начальном этапе ее изготовления из нее откачан воздух и создана среда, состоящая из смеси инертного газа и паров ртути. Последняя находится в газообразном состоянии за счет избыточного давления, созданного во внутренней полости изделия. Стенки покрыты изнутри фосфоресцирующим составом, он превращает энергию ультрафиолетового излучения в видимый человеческому глазу свет.

К выводам электродов на торцах устройства подводится переменное напряжение сети. Внутренние вольфрамовые нити покрыты металлом, который при разогреве испускает со своей поверхности большое количество свободных электронов. В качестве таких металлов могут применяться цезий, барий, кальций.

Электромагнитный дроссель представляет собой катушку, намотанную для повышения индуктивности на сердечнике из электротехнической стали с большой величиной магнитной проницаемости.

Стартер работает на начальном этапе процесса тлеющего разряда, протекающего в газовой смеси. В его корпусе находятся два электрода, один из которых биметаллический, способный под действием температуры изгибаться и изменять свои размеры. Он выполняет роль замыкателя и размыкателя электрической цепи, в которую включен дроссель.

Принцип работы люминесцентного светильника

Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.

Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.

На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.

Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.

Для чего нужен дроссель в люминесцентной лампе

Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:

  • включение светильника в работу;
  • поддержание нормального безопасного режима.

На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.

При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.

Принцип работы стартера люминесцентной лампы

Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.

Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.

Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.

Варианты исполнения

Существует большое разнообразие электролюминесцентных ламп, но все они могут иметь различие по:

  • форме исполнения;
  • виду балласта;
  • внутреннему давлению.

Форма исполнения может быть как у обычных люминесцентных ламп – линейная трубка либо трубка в виде латинской буквы U. К ним добавились компактные варианты, выполненные под привычный цоколь с использованием различных спиральных колб.

Балласт является приспособлением, стабилизирующим работу изделия. Электронный и электромагнитный виды являются самыми распространенными схемами включения.

Внутреннее давление определяет область использования изделий. В бытовых целях или общественных местах нашли применение лампы низкого давления или энергосберегающие образцы. В промышленных помещениях или местах с пониженными требованиями к цветопередаче используют экземпляры высокого давления.

Для оценки способности освещения применяют показатель мощности лампы и ее светоотдачи. Можно привести еще много различных параметров классификации и вариантов исполнения, но их количество постоянно увеличивается.

simplelight.info

устройство, праметры, схема, плюсы и минусы

Современные люминесцентные лампы (ЛЛ) прекрасно справляются с освещением жилых, рабочих и технических помещений большой площади и позволяют снизить общее потребление электричества на 50-83%, уменьшив таким способом счета за коммунальные услуги.

В этой статье рассмотрим рабочие характеристики ЛЛ, их устройство, разберем основные преимущества и недостатки в сравнении с другими типами осветительных приборов. В дополнение приведем тематические фото и схемы, а также видеоролики о принципе работы лампочек люминесцентного типа и особенностях их применения.

Содержание статьи:

Принцип работы и устройство ЛЛ

Люминесцентный прибор представляет собой газозарядный источник света, где в ртутных парах электрический разряд создает интенсивное ультрафиолетовое излучение.

Компактные модули люминесцентного типа имеют стандартный цоколь, благодаря которому становятся удобной заменой ярких, но более энергозатратных ламп накаливания.

Как работает люминесцентная лампочка?

В видимый человеческому глазу свет его преображает специальный состав под названием люминофор, состоящий из галофосфата кальция, смешанного с дополнительными элементами.

После подключения к центральной электросети люминесцентной лампы, внутри стеклянной колбы требуется поддерживать так называемый тлеющий разряд.

Он дает возможность обеспечить свечение люминофорного слоя в постоянном режиме и даже в период кратковременного отключения центрального электропитания.

Раньше классическая лампа люминесцентного типа имела вид запаянной с двух сторон трубки, внутри которой находятся пары ртути. Сейчас приборы выпускаются в более разнообразных формах и конфигурациях

Конструкционные особенности прибора

Традиционная лампа люминесцентного типа — это стеклянный цилиндр с внешним диаметром 12, 16, 26 и 38 мм, обычно представленный как:

  • прямая удлиненная трубка;
  • изогнутый U-образный модуль;
  • кольцо;
  • сложная фигура.

В торцевые края герметично впаяны ножки. На их внутренней стороне размещены вольфрамовые электроды, конструктивно напоминающие биспиральные тела накала, встроенные в лампочки «Ильича».

В отдельных типах люминесцентных ламп используются более прогрессивные триспирали, представляющие собой закрученную биспираль. Оснащенные ими приборы имеют повышенный уровень КПД и более низкий порог теплопотери, существенно поднимающие общую эффективность светопотока

С наружной части электродные элементы подпаяны к металлическим штырькам металлического , на которые подается рабочее напряжение.

U-подобные и прямые приборы обычно оснащены цоколями G5 и G13, где буквенная кодировка означает штырьковый тип цокольного элемента, а цифровая показывает, на каком расстоянии друг от друга располагаются рабочие элементы.

Электропроводная среда, располагающаяся внутри стеклянной колбы, обладает отрицательным сопротивлением. Когда между двумя противоположными электродами возникает рост тока, требующий ограничения, оно проявляется и снижает рабочее напряжение.

В схему цепи включения обычной люминесцентной лампочки входит или балластник. Он отвечает за создание высокоуровневого импульсного напряжения, необходимого для корректной активации лампы.

Рисунок показывает внутреннее обустройство лампы люминесцентного типа и наглядно объясняет базовый принцип работы ее основных составных элементов

Помимо этой детали, ЭмПРА комплектуется . Он представляет собой элемент тлеющего разряда, внутри которого располагаются два электрода, окруженные средой инертного газа.

Один из них состоит из биметаллической пластины. В спящем режиме оба электрода находятся в разомкнутом состоянии.

Распространенные виды таких лампочек

Первичная классификация изделий на люминесцентной основе производится по уровню базового давления. Приборы высокого давления используются для осветительных установок большой мощности и наружного уличного освещения.

Лампы низкого давления применяются в быту для подачи света в производственные, технические и жилые помещения различного назначения.

Вид #1 — модули высокого давления

Устройства высокого давления вырабатывают насыщенный светопоток хорошей плотности. Внутренняя поверхность колбового элемента имеет специальное люминофорное покрытие из фторогерманата или арсената магния.

Рабочая мощность таких люминесцентных ламп колеблется в диапазоне 50-2000 Вт.

Ртутные модули высокого давления для корректной работы нуждаются в 220 ваттном номинальном сетевом напряжении. Коэффициент их пульсации обычно составляет от 61 до 74%

Полный розжиг осветительного модуля происходит в течение 3 секунд. Срок службы 80-125-ваттных изделий составляет около 6 000 ч, а лампы от 400 Вт и более могут проработать до 15 000 ч при беспрекословном соблюдении правил эксплуатации, установленных изготовителем.

Вид #2 — изделия низкого давления

ЛЛ низкого давления применяется для обеспечения светопотоком жилых, технических и производственных помещений.

Конструкционно прибор является трубкой из прочного стекла, содержащей внутри аргон под давлением 400 Па и в небольшом количестве ртуть либо амальгаму. На рынке предлагается в самых разнообразных модификациях и оснащается двумя электродными элементами.

Самая низкая температура, которую могут переносить ЛЛ низкого давления, составляет -15 °C. Поэтому для использования на открытых площадках эти источники света считаются неактуальными

Стеклянная колба может иметь самый разный диаметр. Уровень светоотдачи варьируется в зависимости от мощности самого устройства. Для его корректной работы требуется стартер дроссельного типа. Средний срок службы составляет 10 000 часов.

Особенности компактных ЛЛ

ЛЛ компактного типа – это изделия-гибриды, соединяющие в себе некоторые специфические отличительные черты ламп накаливания и характеристики люминесцентов.

Благодаря прогрессивным технологиям и расширившимся инновационным возможностям, имеют небольшой диаметр и некрупные габариты, свойственные лампочкам «Ильича», а также высокий уровень энергоэффективности, характерный для линейки приборов ЛЛ.

ЛЛ компактного типа выпускаются под традиционные цоколи E27, E14, E40 и очень активно вытесняют с рынка классические лампы накаливания за счет обеспечения качественного света при существенно меньшем потреблении электроэнергии

КЛЛ в большинстве случаев оснащаются электронным дросселем и могут использоваться в осветительных приборах специфического типа. Также применяются для замены в новых и раритетных светильниках простых и привычных ламп накаливания.

При всех достоинствах у компактных модулей есть такие специфические недостатки, как:

  • стробоскопический эффект или мерцание – основные противопоказания здесь касаются эпилептиков и людей с различными заболеваниями глаз;
  • выраженный шумовой эффект – в процессе пролонгированного применения появляется акустический фон, способный вызвать определенный дискомфорт у человека, находящегося в помещении;
  • запах – в некоторых случаях изделия издают едкие, неприятные ароматы, раздражающие обоняние.

Последняя позиция чаще наблюдается у безымянных поделок китайского происхождения, а первыми двумя часто страдают даже брендовые приборы, изготовленные согласно всем правилам и современным требованиям. Рейтинг лучших производителей КЛЛ мы привели .

Базовый спектр цветовых температур

Цвет свечения – один из самых важных параметров, напрямую зависящий от состава люминофора, преображающего ультрафиолетовое излучение в свет.

Сегодня к наиболее распространенным относятся 7 определений оттенков потока, вырабатываемого люминесцентными лампами:

  • ЛЕБ – естественный белый с заметным холодным оттенком;
  • ЛДЦ – натуральный дневной с улучшенным качеством цветопередачи;
  • ЛТБ – теплый белый;
  • ЛД – традиционный дневной белый;
  • ЛБ – классический белый;
  • ЛЕЦ – естественный с максимально качественной передачей оттенков;
  • ЛХБ – простой холодный белый.

Для жилых помещений, где человек проводит много времени, подходят оттенки теплой гаммы или натуральные дневные лампы с повышенным уровнем цветопередачи.

Белые и дневные тона, как правило, присутствуют в офисных, рабочих, промышленных помещениях, кабинетах и аудиториях. Они способствуют концентрации внимания, повышают мозговую активность и улучшают общую обучаемость и производительность труда.

Самые холодные оттенки применяются в медицинских учреждениях, лабораториях, больницах и технических помещениях. Они придают предметам дополнительную четкость и усиливают остроту зрения.

Люминесценты для мясных витрин продовольственных магазинов отличаются специально подобранным спектром излучения розового цвета. Он подчеркивает естественные оттенки продукции, делая ее более привлекательной в глазах покупателей

Цветовые компоненты, добавленные в люминофор, позволяют получать розовый, голубой, зеленый и другие необычные ламповые оттенки.

Такие приборы используются в дизайнерских, рекламных и коммерческих целях. С их помощью создают оригинальное свечение, необходимое в конкретном отдельно взятом случае.

Больше информации о цветовой температуре света, особенностях восприятия цвета человеком и нюансах выбора мы писали .

Сильные и слабые стороны устройств

Как у любых технических приспособлений, предназначенных для освещения бытовых и рабочих помещений, у люминесцентных ламп имеются свои слабые и сильные стороны.

На основании этой информации можно определить, где разумнее их использовать, а в каких случаях стоит отдать предпочтение источникам света иного плана.

Положительные стороны ламп

Основным преимуществом люминесцентных изделий считается повышенная светоотдача и хороший уровень КПД. Они обеспечивают помещение освещением, не раздражающим глаз, и демонстрируют нормальную выносливость даже в условиях интенсивной эксплуатации.

Модуль примерно в 5 раз превышает базовую мощность обычной лампочки «Ильича». А 20-ваттный люминесцент дает световой поток, равный тому, что обеспечивает лампа накаливания в 100 Ватт

Разнообразные температуры световых оттенков, приближенные по гамме к естественному солнечному свету, позволяют подобрать подходящий осветительный прибор под различные цели и для помещений любого назначения.

Поток света, выдаваемый модулем, получается не направленным, а рассеянным. Спокойное, приятное глазу сияние исходит не только от вольфрамовой нити, располагающейся внутри, но и от всей наружной поверхности колбы.

Это позволяет использовать люминесцентные источники как для создания общего фонового освещения, так и для организации зонального света.

Для применения в местах, где освещение включается автоматически, согласно сигналам датчиков движения, люминесценты не подходят. Они ограничены по допустимому количеству включений за определенный временной период и при слишком частой активации могут выйти из строя

Продолжительность службы люминесцентных изделий варьируется в зависимости от модели и доходит до 20 000 часов или до 5 лет.

Однако, покупателю следует знать, что этот ресурс лампа вырабатывает только при соблюдении таких условий, как:

  • наличие достаточного объема качественного электропитания без скачков и перепадов;
  • качественный ;
  • определенное количество активаций, обычно, не более 2000 за первые 2 года использования, что составляет всего 5 включений в день.

Нарушение этих базовых условий существенно ухудшит эффективность осветительного прибора, и значительно укоротит срок его жизни.

Модули можно использовать для освещения теплиц. Они обеспечивают естественный свет, максимально приближенный к солнечному, не потребляют много электропитания и проявляют хорошую стойкость к перепадам напряжения, характерным для загородных энергоподающих сетей

Уровень энергопотребления у люминесцентов почти в 5 раз ниже, чем у традиционных изделий, поэтому их можно отнести к источникам света.

С их помощью удастся эффективно осветить большое помещение, не расходуя при этом больших денег на коммунальные платежи.

Рабочая температура на поверхности колбы не превышает 50 градусов. Это дает возможность эксплуатировать лампу в помещениях, где к пожарной безопасности предъявляются повышенные требования.

Основные недостатки модулей

Первым большим минусом изделий является излишняя чувствительность к температурным перепадам. Они сильно реагируют на движение ртутного столбика и могут перестать работать при похолодании ниже -20 °C.

Жара, превышающая +50 °C, далеко не лучшим образом сказывается на функционировании и серьезно ограничивает спектр использования этих источников света.

Влаговоспримчивость тоже не относится к плюсам и не позволяет широко применять изделия в ванных комнатах и санитарных помещениях.

Со временем люминофор в ламповых колбах деградирует и спектр излучения изменяется. Параллельно падает уровень светоотдачи прибора и заметно снижается КПД

Иногда к недостаткам причисляется и сам светопоток, имеющий линейчатый, неравномерный спектр, искажающий естественные оттенки находящихся в комнате предметов.

Не все ощущают это визуально, но для тех, кто улавливает этот минус слишком явственно, продаются лампы с люминофором, приближенным к сплошному, более натуральному спектральному цвету. Правда, их светоотдача существенно меньше.

Случаются ситуации, когда люминесценты мерцают с удвоенной частотой питающей сети. Проблема эта решаема некоторым усовершенствованием прибора, в частности, применением с подходящим уровнем емкости сглаживающего конденсатора выпрямленного тока на входе инвертора.

Но то, что производители пытаются сэкономить и не комплектуют приборы конденсаторами необходимой емкости, несколько огорчает.

Бытовые ЛЛ модули лучше всего себя чувствуют, когда температура окружающего воздуха держится в диапазоне от +5 до +35 ˚С. Когда градусник демонстрирует меньшие показатели, пуск устройства существенно затрудняется, а время эксплуатации заметно сокращается

Потребность в дополнительном пусковом устройстве тоже немного снижает популярность ламп. Им обязательно требуется либо чрезмерно шумный и довольно громоздкий дроссель со стартером низкой надежности или более прогрессивный ЭПРА, имеющий функцию корректировки мощности, но при этом стоящий солидных денег.

Еще одно уязвимое место люминесцентов – высокая чувствительность к включению. Во время непосредственной активации лампы на электродах выгорает и осыпается особый состав, который обеспечивает стабильность разряда и защищает внутреннюю вольфрамовую нить от перегрева.

Постоянное включение существенно снижает срок службы прибора. Кроме того, появляется заметное глазу, раздражающее мерцание, а края ламповой колбы темнеют и теряют эстетичность.

Химическая угроза здоровью

Одним из основных недостатков люминесцентных источников света является химическая опасность. В ламповой колбе содержится высокотоксичная ртуть, причем ее количество колеблется от 1 до 70 мг.

Пары этого вещества могут нанести вред здоровью людей, постоянно находящихся в помещениях, освещаемых приборами ЛЛ типа.

Целостность отработавшей лампы нельзя нарушать, иначе токсичная ртуть попадет во внешнюю среду. За несанкционированную утилизацию предусмотрен штраф, поэтому лучше передать изделие в центр, занимающийся переработкой элементов, опасных для природы и человека

Когда модуль выходит из строя, его ни в коем случае нельзя разбивать или отправлять в обыкновенную урну. Его необходимо и правилам, четко описанным в действующем законодательстве.

Например, отвозить на полигоны, где от населения принимают токсичные материалы для их корректного уничтожения или переработки.

Сравнение с другими источниками света

Изделия ЛЛ-типа существенно отличаются как от устаревающих ламп накаливания, так и от прогрессивных светодиодных.

По сравнению с первыми они потребляют в 5 раз меньше электроэнергии, обеспечивая при этом такой же уровень насыщенности светопотока. Зато LED-приборам они несколько уступают по мощности в сочетании с энергопотреблением.

Таблица наглядно в цифрах показывает, насколько выгоднее использовать вместо традиционных лампочек Эдисона более современные источники качественного освещения

Правда, лампа накаливания весь период работы горит с одинаковой интенсивностью, тогда как люминесценты теряют часть насыщенности из-за выгорания внутреннего слоя, отражающего ультрафиолет.

LED-изделия в процессе эксплуатации приобретают некоторую тусклость благодаря деградации рабочих диодов. А в отдельных моделях есть возможность регулировки яркости освещения при помощи диммера.

В лампах накаливания или люминесцентах такая функция не предусмотрена. Но этот удобный режим в LED-приборах не бесплатен и за него придется отдать дополнительную сумму.

По уровню конструкционной хрупкости лампы накаливания и люминесценты схожи, так как имеют стеклянную колбу. Лед-модули в этом плане более устойчивы к ударам и механическим повреждениям. Да и отсутствие внутри каких-либо вредных и токсичных элементов делает их значительно привлекательнее для эксплуатации в домашних условиях.

Самые высокие расходы за весь эксплуатационный период влечет за собой использование ламп накаливания. Люминесценты расходуют энергию в разумных пределах, а светодиоды дают возможность снизить затраты до самых минимальных показателей

Что касается финансовой стороны, то изначально меньше других стоит лампочка накаливания. Однако, учитывая ее рабочий ресурс всего в 1 000 часов, это вряд ли можно считать ярко выраженным достоинством.

Базовая цена люминесцентов выше, однако, и служат они значительно дольше. Как говорят солидные производители, их хватает на 10 000-15 000 часов в том случае, если количество ежедневных активаций не превышает 5-6 раз.

Светодиодные модули могут похвастаться еще лучшими показателями, но и заплатить за это удовольствие придется намного больше, а это не во всех случаях целесообразно. Хотя тенденция замены одних источников света другими, прослеживается повсеместно. О необходимости замены люминесцентных лампочек светодиодными и порядке выполнения этой работы .

Выводы и полезное видео по теме

По какому принципу работают люминесценты. Подробное объяснение всех нюансов функционирования экономичных и энергоэффективных приборов для освещения:

В чем заключаются основные отличия люминесцентных элементов от простых и традиционных ламп накаливания. Сравнение мощности, светопотока и энергопотребления двух современных осветительных изделий:

Что собой представляют компактные энергосберегающие лампочки люминесцентного типа. Как они работают, сколько ватт потребляют и для каких целей используются:

Прибор люминесцентного типа – это практичный аналог классической лампы накаливания. С его помощью можно обеспечить качественным светопотоком помещение любых габаритов, снизив при этом энергопотребление. Прослужит он долго и не доставит владельцам никаких существенных хлопот.

Потом, когда лампы отработают свой срок, их понадобится утилизировать, а взамен купить новые, более прогрессивные модули.

А какой тип лампочек предпочитаете вы и что думаете о лампочках-люминесцентах? Поделитесь с другими пользователями своим мнением, расскажите, в чем вы видите основные плюсы ЛЛ, а что, лично для вас, является существенным недостатком этих приборов.

Если вы владеете хорошими теоретическими знаниями по теме вышеизложенной статьи и хотите дополнить наш материал полезными нюансами, пишите, пожалуйста, свои комментарии в блоке ниже.

sovet-ingenera.com

Устройство и схема включения люминесцентной лампы

Люминесцентная лампа (ЛЛ) представляет собой источник света, создаваемый электрическим разрядом в среде паров ртути и инертного газа. При этом возникает невидимое ультрафиолетовое свечение, действующее на слой люминофора, нанесенный изнутри на стеклянную колбу. Типовая схема включения люминесцентной лампы представляет собой пускорегулирующее устройство с электромагнитным балластом (ЭмПРА).

Устройство и описание ЛЛ

Колба большинства ламп всегда имела цилиндрическую форму, но сейчас она может быть в виде сложной фигуры. На торцах в нее вмонтированы электроды, конструктивно похожие на некоторые спирали ламп накаливания, изготовленные из вольфрама. Они подпаяны к расположенным снаружи штырькам, на которые подается напряжение.

Газовая электропроводная среда внутри ЛЛ имеет отрицательное сопротивление. Оно проявляется в снижении напряжения между противоположными электродами при росте тока, который необходимо ограничивать. Схема включения люминесцентной лампы содержит балластник (дроссель), основное назначение которого - создание большого импульса напряжения для ее зажигания. Кроме него в ЭмПРА входит стартер - лампа тлеющего разряда с размещенными внутри нее двумя электродами в среде инертного газа. Один из них изготовлен из биметаллической пластины. В исходном состоянии электроды разомкнуты.

Принцип работы ЛЛ

Стартерная схема включения люминесцентных ламп работает следующим образом.

  1. На схему подается напряжение, но сначала через ЛЛ ток не идет из-за большого сопротивления среды. По спиралям катодов ток проходит и разогревает их. Кроме того, он поступает также на стартер, для которого подаваемого напряжения достаточно, чтобы внутри возник тлеющий разряд.
  2. При разогреве контактов пускателя от проходящего тока биметаллическая пластина замыкается. После этого проводником становится металл, и разряд прекращается.
  3. Биметаллический электрод остывает и размыкает контакт. При этом дроссель выдает импульс высокого напряжения из-за самоиндукции, и ЛЛ зажигается.
  4. Через лампу идет ток, который затем в 2 раза уменьшается, поскольку напряжение на дросселе падает. Его недостаточно для повторного запуска стартера, контакты которого остаются разомкнутыми при горении ЛЛ.

Схема включения двух ламп люминесцентных, установленных в одном светильнике, предусматривает использование для них одного общего дросселя. Они подключаются последовательно, но на каждой лампе установлено по одному параллельному стартеру.

Недостатком светильника является отключение второй лампы, если одна из них вышла из строя.

Важно! С люминесцентными лампами необходимо использовать специальные выключатели. У бюджетных устройств стартовые токи большие, и контакты могут залипать.

Бездроссельное включение люминесцентных ламп: схемы

Несмотря на дешевизну, электромагнитные балласты имеют недостатки. Они и явились причиной создания электронных схем зажигания (ЭПРА).

Как запускается ЛЛ с ЭПРА

Бездроссельное включение люминесцентных ламп производится через электронный блок, в котором формируется последовательное изменение напряжения при их зажигании.

Достоинства электронной схемы запуска:

  • возможность пуска с любой временной задержкой;
  • не нужны массивный электромагнитный дроссель и стартер;
  • отсутствие гудения и моргания ламп;
  • высокая светоотдача;
  • легкость и компактность устройства;
  • больший срок эксплуатации.

Современные электронные балласты обладают компактными размерами и низким потреблением энергии. Их называют драйверами, помещая в цоколь малогабаритной лампы. Бездроссельное включение люминесцентных ламп позволяет использовать обычные стандартные патроны.

Система ЭПРА преобразует сетевое переменное напряжение 220 В в высокочастотное. Сначала разогреваются электроды ЛЛ, а затем подается высокое напряжение. При высокой частоте повышается КПД и полностью исключается мерцание. Схема включения люминесцентной лампы может обеспечивать холодный запуск или с плавным увеличением яркости. В первом случае срок эксплуатации электродов существенно сокращается.

Повышенное напряжение в электронной схеме создается через колебательный контур, приводящий к резонансу и зажиганию лампы. Запуск совершается намного легче, чем в классической схеме с электромагнитным дросселем. Затем также снижается напряжение до необходимого значения удерживания разряда.

Выпрямление напряжения осуществляется диодным мостом, после чего оно сглаживается параллельно подключенным конденсатором С1. После подключения к сети сразу заряжается конденсатор С4 и пробивается динистор. Запускается полумостовой генератор на трансформаторе TR1 и транзисторах Т1 и Т2. При достижении частоты 45-50 кГц создается резонанс c помощью последовательного контура С2, С3, L1, подключенного к электродам, и лампа зажигается. В этой схеме также есть дроссель, но с очень малыми габаритами, позволяющими поместить его в цоколь лампы.

ЭПРА имеет автоматическую подстройку под ЛЛ по мере изменения характеристик. Через некоторое время для изношенной лампы требуется повышение напряжения для зажигания. В схеме ЭмПРА она просто не запустится, а электронный балласт подстраивается под изменение характеристик и тем самым позволяет эксплуатировать устройство в благоприятных режимах.

Преимущества современных ЭПРА следующие:

  • плавное включение;
  • экономичность работы;
  • сохранение электродов;
  • исключение мерцания;
  • работоспособность при низкой температуре;
  • компактность;
  • долговечность.

Недостатками являются более высокая стоимость и сложная схема зажигания.

Применение умножителей напряжения

Способ дает возможность включать ЛЛ без электромагнитного балласта, но применяется преимущественно для продления жизни лампам. Схема включения сгоревших люминесцентных ламп позволяет им проработать еще некоторое время, если мощность не превышает 20-40 Вт. При этом нити накала могут быть как целыми, так и перегоревшими. В обоих случаях выводы каждой нити накала нужно закоротить.

После выпрямления напряжение удваивается, и лампа загорается моментально. Конденсаторы С1, С2 выбираются под рабочее напряжение 600 В. Их недостаток заключается в больших габаритах. Конденсаторы С3, С4 устанавливают слюдяные на 1000 В.

ЛЛ не предназначена для питания постоянным током. Со временем ртуть скапливается около одного из электродов, и свечение ослабевает. Для его восстановления изменяют полярность, перевернув лампу. Можно установить переключатель, чтобы ее не снимать.

Бесстартерная схема включения люминесцентных ламп

Схема со стартером требует долгого разогрева лампы. Кроме того, его иногда приходится менять. В связи с этим существует другая схема с подогревом электродов через вторичные обмотки трансформатора, который также выполняет функцию балласта.

Когда производится включение люминесцентных ламп без стартера, на них должно быть обозначение RS (быстрый старт). Светильник со стартерным запуском здесь не подойдет, поскольку его электроды дольше разогреваются, и спирали быстро перегорят.

Как включить сгоревшую лампу?

Если спирали вышли из строя, ЛЛ можно зажечь без умножителя напряжения, используя обычную схему ЭмПРА. Схема включения перегоревшей люминесцентной лампы незначительно изменяется по сравнению с обычной. Для этого к стартеру последовательно подключают конденсатор, а штырьки электродов замыкают накоротко. После такой небольшой переделки лампа проработает еще какое-то время.

Заключение

Конструкция и схема включения люминесцентной лампы постоянно совершенствуется в сторону экономичности, уменьшения размеров и повышения срока службы. Важно правильно ее эксплуатировать, разбираться во всем многообразии выпускаемых типов и знать эффективные способы подключения.

fb.ru

Устройство люминесцентной лампы

Люминесцентные лампы — второй в мире по распространенности источник света, а в Японии они занимают даже первое место. Ежегодно в мире производится более одного миллиарда люминесцентных ламп.

Схема питания люминесцентной лампы.

Первые образцы люминесцентных ламп современного типа были показаны американской фирмой General Electric на Всемирной выставке в Нью-Йорке в 1938 году.

За 70 лет существования они прочно вошли в нашу жизнь, и сейчас уже трудно представить какой-нибудь крупный магазин или офис, в котором не было бы ни одного светильника с люминесцентными лампами.

Люминесцентная лампа — это типичный разрядный источник света низкого давления, в котором разряд происходит в смеси паров ртути и инертного газа, чаще всего аргона. Устройство лампы показано на рис. 1.

Колба лампы — это всегда цилиндр 1 из стекла с наружным диаметром 38, 26, 16 или 12 мм. Цилиндр может быть прямым или изогнутым в виде кольца, буквы U или более сложной фигуры. В торцевые концы цилиндра герметично впаяны стеклянные ножки 2, на которых с внутренней стороны смонтированы электроды 3. Электроды по конструкции подобны биспиральному телу накала ламп накаливания и также делаются из вольфрамовой проволоки. В некоторых типах ламп электроды сделаны в виде триспирали, то есть спирали из биспирали. С наружной стороны электроды подпаяны к штырькам 4 цоколя 5. В прямых и U-образных лампах используется только два типа цоколей: G5 и G13 (цифры 5 и 13 указывают расстояние между штырьками в мм).

Рисунок 1. Устройство лампы: 1- цилиндр из стекла, 2- стеклянные ножки, 3- электроды, 4- штыри, 5-цоколь, 6- штенгель, 7- инертный газ.

Как и в лампах накаливания, из колб люминесцентных ламп воздух тщательно откачивается через штенгель 6, впаянный в одну из ножек. После откачки объем колбы заполняется инертным газом 7 и в него вводится ртуть в виде небольшой капли 8 (масса ртути в одной лампе обычно около 30 мг) или в виде так называемой амальгамы, то есть сплава ртути с висмутом, индием и другими металлами.

На биспиральные или триспиральные электроды ламп всегда наносится слой активирующего вещества — это обычно смесь окислов бария, стронция, кальция, иногда с небольшой добавкой тория.

Если к лампе приложено напряжение большее, чем напряжение зажигания, то в ней между электродами возникает электрический разряд, ток которого обязательно ограничивается какими-либо внешними элементами. Хотя колба наполнена инертным газом, в ней всегда присутствуют пары ртути, количество которых определяется температурой самой холодной точки колбы. Атомы ртути возбуждаются и ионизируются в разряде гораздо легче, чем атомы инертного газа, поэтому и ток через лампу, и ее свечение определяются именно ртутью.

В ртутных разрядах низкого давления доля видимого излучения не превышает 2 % от мощности разряда, а световая отдача ртутного разряда — всего 5-7 лм/Вт. Но более половины мощности, выделяемой в разряде, превращается в невидимое ультрафиолетовое излучение с длинами волн 254 и 185 нм. Из физики известно: чем короче длина волны излучения, тем большей энергией это излучение обладает. С помощью специальных веществ, называемых люминофорами, можно превратить одно излучение в другое, причем, по закону сохранения энергии, «новое» излучение может быть только «менее энергичным», чем первичное. Поэтому ультрафиолетовое излучение можно превратить в видимое с помощью люминофоров, а видимое в ультрафиолетовое — нельзя.

Вся цилиндрическая часть колбы с внутренней стороны покрыта тонким слоем именно такого люминофора 9, который и превращает ультрафиолетовое излучение атомов ртути в видимое. В большинстве современных люминесцентных ламп в качестве люминофора используется галофосфат кальция с добавками сурьмы и марганца (как говорят специалисты, «активированный сурьмой и марганцем»). При облучении такого люминофора ультрафиолетовым излучением он начинает светиться белым светом разных оттенков. Спектр излучения люминофора — сплошной с двумя максимумами, около 480 и 580 нм (рис. 2).

Рисунок 2. Спектр излучения люминофора.

Первый максимум определяется наличием сурьмы, второй — марганца. Меняя соотношение этих веществ (активаторов), можно получить белый свет разных цветовых оттенков, от теплого до дневного. Так как люминофоры превращают в видимый свет более половины мощности разряда, то именно их свечение определяет светотехнические параметры ламп.

В 70-е годы минувшего века начали делать лампы не с одним люминофором, а с тремя, имеющими максимумы излучения в синей, зеленой и красной областях спектра (450, 540 и 610 нм). Эти люминофоры были созданы первоначально для кинескопов цветного телевидения, где с их помощью удалось получить вполне приемлемое воспроизведение цветов. Комбинация трех люминофоров позволила и в лампах добиться значительно лучшей цветопередачи при одновременном увеличении световой отдачи, чем при использовании галофосфата кальция. Однако новые люминофоры гораздо дороже старых, так как в них используются соединения редкоземельных элементов: европия, церия и тербия. Поэтому в большинстве люминесцентных ламп по-прежнему применяются люминофоры на основе галофосфата кальция.

Электроды в люминесцентных лампах выполняют функции источников и приемников электронов и ионов, за счет которых и протекает электрический ток через разрядный промежуток. Для того чтобы электроны начали переходить с электродов в разрядный промежуток (как говорят, для начала термоэмиссии электронов), электроды должны быть нагреты до температуры 1100 - 1200 градусов по Цельсию. При такой температуре вольфрам светится очень слабым вишневым цветом, испарение его очень мало. Но для увеличения количества вылетающих электронов на электроды наносится слой активирующего вещества, которое значительно менее термостойко, чем вольфрам, и при работе этот слой постепенно распыляется с электродов и оседает на стенках колбы. Обычно именно процесс распыления активирующего покрытия электродов определяет срок службы ламп.

Подключение люминесцентных ламп.

Для достижения наибольшей эффективности разряда, то есть для наибольшего выхода ультрафиолетового излучения ртути, необходимо поддерживать определенную температуру колбы. Диаметр колбы выбирается именно из этого требования. Во всех лампах обеспечивается примерно одинаковая плотность тока — величина тока, деленная на площадь сечения колбы. Поэтому лампы разной мощности в колбах одного диаметра, как правило, работают при равных номинальных токах. Падение напряжения на лампе прямо пропорционально ее длине. А так как мощность равна произведению тока на напряжение, то при одинаковом диаметре колб и мощность ламп прямо пропорциональна длине. У самых массовых ламп мощностью 36 (40) Вт длина равна 1210 мм, у ламп мощностью 18 (20) Вт — 604 мм.

Большая длина ламп постоянно заставляла искать пути ее уменьшения. Простое уменьшение длины и достижение нужных мощностей за счет увеличения тока разряда нерационально, так как при этом увеличивается температура колбы, что приводит к увеличению давления паров ртути и снижению световой отдачи ламп. Поэтому создатели ламп пытались уменьшить их габариты за счет изменения формы: длинную цилиндрическую колбу сгибали пополам (U-образные лампы) или в кольцо (кольцевые лампы). В СССР уже в 50-е годы делали U-образные лампы мощностью 30 Вт в колбе диаметром 26 мм и мощностью 8 Вт в колбе диаметром 14 мм.

Однако кардинально решить проблему уменьшения габаритов ламп удалось только в 80-е годы, когда начали использовать люминофоры, допускающие большие электрические нагрузки, что позволило значительно уменьшить диаметр колб. Колбы стали делать из стеклянных трубок с наружным диаметром 12 мм и многократно изгибать их, сокращая тем самым общую длину ламп. Появились так называемые компактные люминесцентные лампы. По принципу работы и внутреннему устройству компактные лампы не отличаются от обычных линейных ламп.

В середине 90-х годов на мировом рынке появилось новое поколение люминесцентных ламп, в рекламной и технической литературе называемое «серией Т5» (в Германии — Т16). У этих ламп наружный диаметр колбы уменьшен до 16 мм (или 5/8 дюйма, отсюда и название Т5). По принципу работы они также не отличаются от обычных линейных ламп. В конструкцию ламп внесено одно очень важное изменение: люминофор с внутренней стороны покрыт тонкой защитной пленкой, прозрачной и для ультрафиолетового, и для видимого излучения. Пленка защищает люминофор от попадания на него частиц ртути, активирующего покрытия и вольфрама с электродов, благодаря чему исключается «отравление» люминофора и обеспечивается высокая стабильность светового потока в течение срока службы. Изменены также состав наполняющего газа и конструкция электродов, что сделало невозможной работу таких ламп в старых схемах включения. Кроме того. впервые с 1938 года были изменены длины ламп таким образом, чтобы размеры светильников с ними соответствовали размерам стандартных модулей очень модных сейчас подвесных потолков.

Люминесцентные лампы, особенно последнего поколения, в колбах диаметром 16 мм, значительно превосходят лампы накаливания по световой отдаче и сроку службы. Достигнутые сегодня значения этих параметров равны 104 лм/Вт и 40000 часов.

Однако люминесцентные лампы имеют и множество недостатков, которые необходимо знать и учитывать при выборе источников света:

  1. Большие габариты ламп часто не позволяют перераспределять световой поток нужным образом.
  2. В отличие от ламп накаливания, световой поток люминесцентных ламп сильно зависит от окружающей температуры.
  3. В лампах содержится ртуть — очень ядовитый металл, что делает их экологически опасными.
  4. Световой поток ламп устанавливается не сразу после включения, а спустя некоторое время, зависящее от конструкции светильника, окружающей температуры и самих ламп. У некоторых типов ламп, в которые ртуть вводится в виде амальгамы, это время может достигать 10-15 минут.
  5. Глубина пульсаций светового потока значительно выше, чем у ламп накаливания, особенно у ламп с редкоземельными люминофорами. Это затрудняет использование ламп во многих производственных помещениях и, кроме того, отрицательно сказывается на самочувствии людей, работающих при таком освещении.

Как было сказано выше, люминесцентные лампы, как и все газоразрядные приборы, требуют для включения в сеть использования дополнительных устройств.

fazaa.ru

Устройство люминесцентного светильника


Люминесцентные светильники (светильники с люминесцентными лампами) бывают совершенно разнообразные. Кроме дизайна, они отличаются так же формой, количеством, размером, типом используемых люминесцентных ламп, а также электронной начинкой. И это далеко не весь список отличий между светильниками, которые в настоящее время можно купить в любом специализированном магазине. Но при всем при этом, их объединяет общий принцип работы, схема подключения и общее устройство.


Рассмотрим устройство светильника под трубчатые люминесцентные лампы T8, цоколь G13, это один из самых распространенных видов люминесцентных светильников, который вы наверняка встречали в повседневной жизни.

В качестве примера, возьмем светильник накладной люминесцентный 2х36 Вт «Айсберг» со степенью защиты ip65.

 



 

 

Устройство люминесцентного светильника

 

Конструктивно люминесцентный светильник состоит из:

 

1. Пластикового корпуса.

Который закрывает и защищает все элементы электрической схемы, а также несет на себе крепежные элементы как для монтажа светильника на стену или потолок, так и для сборки всех составляющих осветительного прибора в единое целое.


2. Металлической монтажной панели – основания.

На ней располагаются все электронные составляющие, необходимые для работы светильника, а также фурнитура для установки люминесцентных ламп.

3. Светопрозрачного рассеивателя.

Который создает более комфортное для нашего зрения освещение, так как равномерно распределяет световой поток люминесцентных ламп.

Кроме этих основных компонентов, из которых состоит светильник, в комплекте поставки обычно присутствуют:

- крепежные элементы для установки люминесцентного светильника на стены или потолок.

- Фиксаторы, соединяющие светопрозрачный рассеиватель с корпусом. Позволяющие достаточно просто получать доступ к внутренностям светильника, в первую очередь к лампам, для их замены.

- Заглушки – мембраны. Которыми закрываются неиспользуемые вводные отверстия в светильник, а также герметизируется место ввода питающего кабеля.

Обратите внимание!Люминесцентные лампы, чаще всего, не входят в комплект поставки светильника и их необходимо покупать отдельно.


Устройство электрической части люминесцентного светильника


Чтобы разобраться в устройстве электрических компонентов, входящих в схему люминесцентного светильника, необходимо понимать принцип работы люминесцентных ламп.  

Обычно, люминесцентная лампа представляет собой трубку, заполненную инертным газом с парами ртути. Внутренняя поверхность лампы покрыта специальным веществом – люминофором. По краям трубки установлены электроды, между которыми, при включении электричества, образуется дуговой разряд, при этом, при прохождении электрического тока внутри лампы, образуется ультрафиолетовое (УФ) излучение, которое и воздействует на люминофор, вызывая его свечение.

Как вы понимаете, при таком сложном принципе действия, люминесцентная лампа не сможет полноценно работать при простом подключении к электрической сети. Более подробно причины этого, мы рассмотрим в одном из следующих материалах, всецелом посвященном люминесцентным лампам.

Сейчас же стоит отметить одно, для полноценной работы люминесцентых ламп в осветительных приборах, применяются специальные пускорегулирующие аппараты (ПРА) или по-другому балласты. Наиболее распространены электромагнитные балласты/пускорегулирующие аппараты (ЭмПРА) и электронные балласты/пускорегулирующие аппараты (ЭПРА).

 


В нашем примере, люминесцентном светильнике "Айсберг", использован электронный балласт, который установлен на монтажной панели – основании. Так же к пускорегулирующему аппарату подведены все необходимые провода. К одной из сторон балласта подходят провода идущие до гнезд подключения ламп, с другой стороны до клемм, к которым в подключается питающий кабель. На балласте присутствует схема подключения, согласно которой в любой момент можно восстановить соединение, или заменить неисправный ПРА, безошибочно подключив все провода к соответствующим клеммам.

Общую схему подключения люминесцентных светильников, которая разумеется полностью подходит для данного осветительного прибора Айсберг 2х36Вт, мы уже описывали в нашей статье «Схема подключения люминесцентного светильника».

Теперь, в общих чертах познакомившись с устройством люминесцентного светильника, можно переходить к его установке. В следующем материале «Установка люминесцентного светильника», мы подробно описываем весь процесс сборки и установки светильника с люминесцентными лампами. Для лучшего понимания устройства люминесцентного светильника, обязательно ознакомьтесь с этой статьей. Там довольно подробно оказаны все компоненты светильника, их взаимодействие и многое другое.

Все вопросы, которые у вас возникли после прочтения материала, задавайте в комментариях к статье, постараемся помочь!

rozetkaonline.ru

Устройство люминесцентной лампы низкого давления. Устройство и принцип работы люминесцентной лампы

Первые люминесцентные лампы появились в США в начале 30-х годов прошлого столетия. Однако их активное внедрение началось лишь 20 лет спустя.

Этот процесс продолжается до сих пор – по распространенности люминесцентные лампы все еще уступают классическим лампам накаливания.

И это несмотря на то, что производителям удалось существенно уменьшить их размеры. В 80-х годах разработка качественных люминофоров позволила уменьшить диаметр трубки до 12 мм. После многократного сгибания она превращалась в достаточно компактную конструкцию. Со временем масса и размеры были уменьшены еще больше, что позволило полностью заменить лампы накаливания.

Компактная люминесцентная лампа включает два основных элемента: колбу и цоколь. В колбе размещены вольфрамовые электроды, покрытые специальным активирующим соединением – смесью окислов стронция, кальция и бария. Внутри изогнутой несколько раз колбы — инертный газ с парами ртути, который обеспечивает ионизацию и свечение после включения лампы.

Поскольку компактные люминесцентные лампы не работают напрямую от электросети, в конструкции предусмотрено специальное вспомогательное приспособление — электронная пускорегулирующая аппаратура (ЭПРА) или “электронный балласт”. Она питается высокочастотным напряжением до 50 кГц, что позволяет устранить неприятное мерцание, усилить световой поток и световую отдачу лампы. Специальный инвертор преобразует ток высокой частоты в высокочастотные импульсы.

Электронный балласт также увеличивает коэффициент мощности (практически до 1), благодаря чему лампа фактически превращается в активную нагрузку. При запуске он подогревает электроды и поддерживает номинальную мощность в случае колебания питающего напряжения. От надежности работы ЭПРА во многом зависит срок эксплуатации всей компактной люминесцентной лампы.

После подачи напряжения между электродами возникает электрический заряд и лампа зажигается. Поскольку основная часть света после генерации находится в ультрафиолетовом диапазоне (порядка 98%), внутренние стенки колбы покрывают люминофором. При облучении ультрафиолетовым излучением он начинает светиться. Поэтому эффективность, цветность и другие светотехнические параметры освещения зависят от качества и состава люминофора.

В настоящее время производители используют 3-х и 5-слойные люминофоры на основе редкоземельных элементов. Такой состав в несколько десятков раз дороже аналога, который используется при изготовлении обычных люминесцентных ламп. Использование редкоземельных элементов позволяет люминофору светиться при более высокой поверхностной плотности облучения в разрядной трубке существенно меньшего диаметра.

Какие бывают компакт

elecmaster.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о