Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

принцип работы и алгоритм выбора

Все чаще в составе современных электронных устройств можно встретить суперконденсаторы. Суперконденсаторы способны выступать как в качестве основных элементов питания, так и в качестве буферных элементов для сглаживания провалов напряжения аккумуляторов при работе с импульсной нагрузкой.

Наравне с термином «суперконденсатор» в литературе часто применяют альтернативные названия, например, «ультраконденсатор» или «ионистор». Все эти именования используются для обозначения одного и того же компонента – конденсатора с двойным электронным слоем. Впервые суперконденсатор был создан в далеком 1957 году компанией General Electric. Позднее аналогичные компоненты выпускались различными производителями по всему миру, в том числе и в СССР (например, ионисторы КИ1-1).

Принцип работы суперконденсатора

Структура и принцип работы суперконденсатора поясняются на рис. 1. Суперконденсатор состоит из электродов, графитового сепаратора и электролита.

При приложении внешнего напряжения носители заряда образуют два электронных слоя на границе сепаратора и электролита. Чем больше площадь поверхности сепаратора, тем больше будет накапливаемый заряд. Из рисунка видно, что в отличие от аккумуляторов в суперконденсаторе отсутствуют химические реакции, а энергия накапливается в виде статического заряда, как и в обычных конденсаторах.

Рис. 1. Структура и принцип действия суперконденсатора

Основные характеристики суперконденсаторов

По своим характеристикам суперконденсаторы занимают промежуточное положение между аккумуляторами и обычными конденсаторами. В последнее время, благодаря большой емкости, суперконденсаторы становятся отличной альтернативой для аккумуляторов в широком спектре малопотребляющих устройств. Сравнение некоторых параметров суперконденсаторов и аккумуляторов приведено в таблице 1.

Таблица 1. Сравнение параметров суперконденсаторов и аккумуляторов

Параметр

Суперконденсатор

Литий-ионный аккумулятор

Время заряда

1–10 с

10–60 мин

Срок службы (циклов)

1 миллион циклов
или 30 000ч

500 и более

Напряжение

2,3…2,75 В (тип)

3,6 В (ном)

Удельная энергия (Вт·ч/кг)

5 (тип)

120–240

Удельная мощность (Вт/кг)

До 10 000

1 000…3 000

Стоимость кВт·ч

$10,000 (тип)

$250–$1,000

Время наработки на отказ)

10-15 лет

5-10 лет

Диапазон температур заряда

–40…65 °C

0…45 °C

Диапазон температур разряда

–40 to 65 °C
 

–20…60 °C


Емкость – один из важнейших параметров для любого накопителя энергии.

По величине удельной емкости на единицу массы суперконденсаторы значительно превосходят обычные конденсаторы (в том числе, электролитические), но в свою очередь так же сильно уступают аккумуляторам (рис. 2). По этой же причине стоимость единицы емкости для суперконденсаторов оказывается существенно выше, чем для аккумуляторов.

Рис. 2. Сравнение удельной емкости накопителей энергии

Вторым по важности параметром накопителя энергии является разрядный ток. По этому показателю лидируют обычные конденсаторы, которые из-за низкого собственного сопротивления способны выдерживать огромные импульсы тока. Аккумуляторы наоборот отличаются высоким сопротивлением и чрезвычайно чувствительны к большим разрядным токам. Например, литий-ионные аккумуляторы склонны к перегреву и разрушению при быстром разряде. Суперконденсаторы характеризуются более высоким последовательным сопротивлением, чем простые конденсаторы, однако существуют модели, способные выдерживать разрядные токи до сотен ампер.

Высокое сопротивление создает проблемы не только с точки зрения разогрева, но и с точки зрения просадки напряжения при импульсной нагрузке. Импульсное потребление характерно для большинства современных систем, но особенно ярко оно проявляется в устройствах с беспроводными радиопередатчиками. На рис. 3 представлен пример преждевременного отключения системы с аккумуляторным питанием из-за просадки напряжения. При передаче данных по беспроводному каналу потребление системы существенно возрастает, однако аккумулятор не способен выдать требуемую мощность мгновенно. Из-за этого напряжение на нагрузке проседает и может опуститься ниже порогового значения. Пороговое значение ограничивает минимально допустимое напряжение питания, ниже которого происходит отключение устройства. На рис. 3 пороговое значение составляет 1 В. В результате просадки напряжения устройство отключается, несмотря на то, что уровень заряда аккумулятора на самом деле остается высоким. Во многих случаях с данной проблемой не могут справиться даже развязывающие конденсаторы.

Рис. 3. Провалы напряжения из-за высокого внутреннего сопротивления аккумулятора

Суперконденсаторы способны выдавать достаточно высокую импульсную мощность и позволяют решить проблему просадки напряжения (рисунок 4). Для этого суперконденсатор включается параллельно с аккумулятором. В данном случае ультраконденсатор не только предотвращает ложные выключения системы, но и защищает аккумулятор от пиковых токов, которые негативно влияют на срок его службы и могут в некоторых случаях банально вызвать его перегрев и разрушение. Таким образом, режим буферного элемента является одним из основных вариантов использования суперконденсаторов. Подробнее об этом вопросе рассказывается в статье «Расстояние не помеха. Эффективный радиус действия суперконденсаторов CAP-XX».

Рис. 4. Суперконденсатор не только предотвращает ложные выключения, но и защищает аккумулятор от пиковых токов

В последнее время наблюдается бурное развитие малопотребляющей электроники. Современные электронные системы могут потреблять всего лишь сотни мкА в активном режиме и доли мкА в режиме ожидания. Очень часто для питания таких устройств используют различные маломощные харвестеры энергии: солнечные батареи, виброхарвестеры, термогенераторы и т.д. Для накопления энергии этих преобразователей не всегда можно использовать конденсаторы. Например, устройство может накапливать энергию несколько часов, после чего выполнять быструю отправку данных по радиоканалу и снова засыпать. Высокий саморазряд конденсаторов не позволит работать в таком режиме. В то же время суперконденсатор окажется вполне приемлемым вариантом на роль накопителя энергии. Пример такого режима работы рассматривается в статье «Использование суперконденсаторов CAP-XX в устройствах с питанием от солнечных батарей».

Однако при использовании суперконденсатора в качестве основного элемента питания необходимо учитывать две важные особенности. Во-первых, суперконденсаторы обладают низким рабочим напряжением 2,3…2,75 В (хотя на рынке присутствуют модели с напряжением 3 В, например, суперконденсаторы от VINATech).

Этого не всегда достаточно, а значит, может потребоваться последовательное включение нескольких элементов, что приведет к уменьшению суммарной емкости. В то же время у литий-ионных аккумуляторов номинальное напряжение составляет 3,6 В, что является оптимальным значением для большинства современных микросхем.

Во-вторых, еще одним недостатком суперконденсаторов становится линейный характер разряда. Разумеется, предсказуемая форма разряда это хорошо, но не всегда. На рис. 5 представлен пример, в котором система достигает граничного напряжения (минимально допустимое напряжение питания) в тот момент, когда суперконденсатор разряжен всего лишь на 50%. По этой причине для нормальной работы устройства может потребоваться дополнительный повышающий регулятор. В то же время аккумуляторы характеризуются относительно небольшим уменьшением напряжения в рабочем диапазоне.

Рис. 5. Разрядные характеристики аккумуляторов и суперконденсаторов

Еще одним преимуществом суперконденсаторов перед аккумуляторами является широкий диапазон рабочих температур. Это касается как процесса заряда, так и процесса разряда. На рынке присутствуют модели суперконденсаторов, которые способны работать при отрицательных температурах до -40°С и при положительных до +125 °С. В качестве примера можно привести ультраконденсторы от компания FastCAP (рис. 6). Разумеется, на рынке присутствуют и аккумуляторы с широким диапазоном рабочих температур, однако речь идет о специализированных решениях.

Рис. 6. Существуют модели ультарконденсаторов, способные работать в широком диапазоне температур, например, ультраконденсторы от компания FastCAP

Примеры суперконденсаторов

В заключение краткого экскурса по суперконденсатором приведем некоторые конкретные примеры.

Широкий спектр суперконденсаторов выпускает компания LS Mtron, которая была создана на базе одного из подразделений LG Electronics. В номенклатуре LS Mtron можно найти модели с традиционной рулонной и прямоугольной конструкцией, а также суперконденсаторные батареи и модули (рис.

7).

Рис. 7. Суперконденсаторы FastCAP отличаются широким диапазоном рабочих температур -40…+125 °С

Еще одним известным производителем суперконденсаторов является компания SPSCAP, которая предлагает несколько серий одноячеечных суперконденсаторов с диапазоном выходных токов 0,9…250 А (рис. 8). SPSCAP также выпускает ультраконденсаторные батареи.

Рис. 8. Суперконденсаторы от компании SPSCAP

Интересный модельный ряд суперконденсаторов предлагает корейская компания VINATech. Кроме того, это один из немногих производителей, который выпускает суперконденсаторы с рабочим напряжением 3,0 В.

Рис. 9. Суперконденсаторы и суперконденсаторные батареи от VINATech с рабочим напряжением до 3 В

На портале УНИТЕРа мы также неоднократно рассказывали и о некоторых уникальных решениях, к числу которых можно отнести и сверхтонкие суперконденсаторы DMHA14R5V353M4ATA0 от компании Murata. Эти суперконденсаторы имеют толщину всего 0,4 мм (рис. 10).

Рис. 10. Сверхтонкие суперконденсаторы DMHA14R5V353M4ATA0 имеют толщину всего 0,4 мм

В одной из статей мы также рассказывали о суперконденсаторах от компании FastCAP , которые отличаются широким диапазоном рабочих температур -40…+125 °С (рис. 11).

Рис. 11. Суперконденсаторы от компании FastCAP с широким диапазоном рабочих температур

Алгоритм выбора суперконденсаторов

Как уже отмечалось выше, суперконденсаторы могут использоваться либо в качестве основного накопителя энергии, либо в качестве буферного элемента при работе в связке с основным аккумулятором. Разумеется, алгоритм выбора суперконденсатора в этих случаях будет отличаться, однако основные шаги будут примерно одинаковыми.

Для начала следует определиться с основными параметрами суперконденсатора – с рабочим напряжением и с максимальным выходным током.

Суперконденсаторы не любят перенапряжений, по этой причине при выборе подходящего накопителя следует позаботиться о согласовании рабочего напряжения. Для увеличения рабочего напряжения можно использовать последовательное включение суперконденсаторов, однако не стоит забывать, что в таком случае емкость будет уменьшаться. Кроме того, при необходимости следует предусмотреть защитные цепи для ограничения напряжения.

Далее следует рассчитать величину емкости. Рассмотрим алгоритм расчета, предложенный компанией SPSCAP. Для начала необходимо выбрать сценарий разряда суперконденсатора. Разряд может происходить либо с постоянным током, либо с постоянным напряжением.

Разряд с постоянным током. При таком сценарии ток разряда имеет фиксированное значение, а емкость будет рассчитываться по формуле:

C = It / (Vwork -Vmin),

где Vwork – номинальное рабочее напряжение, Vmin – минимально допустимое напряжение, I – ток разряда (постоянная величина в данном случае), t – время разряда.

Например, если Vwork=5 В, Vmin=4,2 В, t = 10 с, I =100 мА = 0,1 А, тогда:

C = 0,1 * 10 / (5 -4,2) = 1,25 Ф.

При выборе конкретной модели суперконденсатора необходимо предусмотреть некоторый запас по емкости. Кроме того, следует учесть температурную зависимость емкости. После выбора конкретной модели суперконденсатора следует свериться с температурной характеристикой, чтобы убедиться в том, что емкость превышает рассчитанное значение во всем диапазоне рабочих температур.

Разряд с постоянной мощностью. В таком случае мощность разряда остается фиксированной, а  емкость будет рассчитываться по формуле:

C = 2Pt/ (Vwork2 -Vmin2)

где Vwork – номинальное рабочее напряжение, Vmin – минимально допустимое напряжение, P – мощность разряда (постоянная величина в данном случае), t – время разряда.

Например, если предполагается разряд суперконденсатора в течение 10 секунд при постоянной мощности 200 кВт, а диапазон рабочего напряжения составляет 450 В – 750 В, тогда требуемая емкость составит:

С = 2 * 200 кВт * 10 / (7502-4502) = 11 Ф

В данном случае вновь следует предусмотреть некоторый запас и температурную зависимость емкости.

Источник:

  • https://www.spscap.com/choose-ultra-capacitor.html                                                                                                                                                                                      
  • http://www.patronicgroup.com/how-to-choose-super-capacitor–b5.html                                                                                                                                                                 
  • https://batteryuniversity.com/learn/article/whats_the_role_of_the_supercapacitor    


Автор: Вячеслав Гавриков, г. Смоленск

Разделы: Конденсаторы электролитические алюминиевые, Ионисторы

Опубликовано: 26.11.2019

что это, зачем и где применяется / Хабр

Энергетика — крайне интересная сфера, которая развивается бурными темпами много лет подряд. На Хабре публикуются самые разные статьи об альтернативных источниках энергии, аккумуляторных батареях от Маска, электромобилях и т.п.

Но есть одна тема, которая затрагивается не так уж и часто. Речь идет о суперконденсаторах. Им как раз посвящена эта статья, в ней раскрывается суть суперконденсатора, сферы применения, плюс описываются кейсы из разных отраслей — промышленности, транспорта и т.п., где используются эти системы.

Суперконденсатор, что ты такое?

Все мы знаем, что такое аккумулятор — это источник постоянной мощности, ограниченный током разряда. Батареи бывают большие и маленькие, применяются они крайне широко — от транспорта до игрушек.

Но эта статья посвящена суперконденсаторам, так что пришло время рассказать о них. Так вот, любой суперконденсатор — это источник не постоянной, а импульсной мощности. Она ограничена лишь эквивалентным внутренним сопротивлением, которое позволяет элементу работать, фактически, на токах короткого замыкания.

Но при этом, в отличие от аккумулятора, это источник кратковременных, хотя и мощных импульсов энергии. Соответственно, и используются суперконденсаторы там, где нужна большая мощность на небольшой срок.

Суперконденсаторы называют еще ионисторами. Эти элементы состоят обычно из двух погруженных в электролит электродов и сепаратора. Последний нужен для того, чтобы не допустить перемещение заряда между двумя электродами с противоположной полярностью.

У суперконденсаторов два положительных свойства — высокая мощность и низкое внутренне сопротивление, чем они и отличаются от конденсаторов и аккумуляторных батарей. Чаще всего материал электрода суперконденсаторов — активный углерод, у которого две важные особенности, включая очень большую площадь поверхности и небольшое расстояние между разделенными зарядами.

Еще один положительный момент — длительный срок хранения и продолжительный срок службы суперконденсаторов. Все это — благодаря особенностям накопления энергии. Так, суперконденсаторы работают за счет разделения зарядов. Этот процесс легко обратим, так что отдавать энергию суперконденсаторы могут действительно быстро.

Теперь немного об определении характеристик суперконденсаторов. В отличие от аккумуляторов, где основная характеристика — это емкость, измеряемая в Ампер-часах, у суперконденсаторов это Фарад. Вот формула, которая позволяет определить энергию суперконденсатора:
Энергия (Дж) = 1/2*Емкость (Ф) * Напряжение в квадрате (В)

Есть несколько видов суперконденсаторов:

  • Двойнослойные, или ДСК.
  • Псевдоконденсаторы.
  • Гибридные конденсаторы.

В первом случае система состоит из двух пористых электродов, разделенных заполненным электролитом сепаратором. Запас энергии идет за счет разделения заряда на электродах с очень большой разностью потенциалов.

Во втором — система включает два твердых электрода и базируется на двух механизмах сохранения энергии. Это фарадеевские процессы и электростатическое взаимодействие.

Третий вариант — переходный между конденсаторами и аккумуляторами. Электроды здесь выполнены из разных материалов, а накопление заряда осуществляется благодаря разным механизмам.

Где могут использоваться суперконденсаторы?

Вполне логичный ответ — в отраслях, где нужно отдавать энергию быстро и в большом объеме. В частности, это может быть:

  • Альтернативная энергетика, накопление энергии при помощи топлива, волн ветра и солнца.
  • Транспортные системы — это может быть запуск двигателя машин, гибридные электрические транспортные средства, локомотивы и т.п.
  • Накопители энергии в домохозяйствах — например, там, где используются фотоэлементы или ветрогенераторы.
  • Электронные устройства, где суперконденсаторы используются в качестве источника кратковременного питания.
  • ИБП — как небольшого размера, так и очень большие. В системах бесперебойного электропитания суперконденсаторы можно использовать совместно с топливными элементами и другими источниками.
  • Традиционная энергетика, в сферах, где неизбежны критические нагрузки, но где требуется бесперебойная работа всего и вся. Это могут быть аэропорты, вышки связи, больницы и т.п.
  • Электронные устройства разного размера и мощности.

Что касается ветроэнергетики и солнечной энергетики, то суперконденсаторы здесь стоит использовать для развертывания гибридных систем накопления энергии, которые включают в себя как накопитель на Li-Ion батареях, так и накопитель на основе суперконденсаторов.

Примеры

Их можно привести большое количество, но разумно будет ограничиться тремя наиболее показательными.

Частотно-регулируемый электропривод. Здесь суперконденсаторы нужны при просадках напряжения и кратковременном, не более 10 секунд, блэкауте. Такие приводы используются на участках непрерывного технологического цикла на производственных объектах. Кроме того, суперконденсаторы стоит использовать на предприятии и в системах, которые снабжают объект газом, водой, теплом и энергией, т.п. на компрессорных станциях, в котельных, насосных станциях и т.п.

Источник бесперебойного питания. В этом случае суперконденсаторы дают возможность компенсировать провалы напряжения, которые приводят к проблемам с непрерывностью технологических процессов. Здесь речь идет о крупных объектах, включая промышленность и разного рода инфраструктуру — например, транспортную.

Суперконденсаторы, в частности, используются на заводе Skoda в Чехии, а именно — роботизированном цехе по покраске корпусов автомобилей. Если процесс окрашивания по какой-либо причине остановится, потом корпус придется возвращать в начало цикла.

Регулирование выходной мощности турбин ветрогенераторов. Большая проблема альтернативной энергетики — сложность поддержания выходной мощности турбин на одном уровне. Чем выше скорость ветра и сам он мощнее, тем больше вырабатывается энергии. Чем ниже, соответственно — тем энергии меньше. В итоге выходная мощность турбин может меняться, и очень значительно.

В этом случае суперконденсатор может помочь, причем сразу несколькими способами:

  • Поддержание электропитания на прежнем уровне на время кратковременного пропадания напряжения.
  • Обеспечение стабилизации частоты и напряжения в передающих и распределительных сетях с высокой концентрацией возобновляемых источников энергии.

Производят ли суперконденсаторы в России?

Да, на Хабре еще несколько лет назад публиковалась новость о том, что в НИТУ «МИСис» разработала технологию, которая открыла возможность отечественной компании запустить производство суперконденсаторов.

Так, в 2017 году компания ТЭЭМП запустила в г. Химки производство высокоэффективных суперконденсаторов и модулей на их основе. При этом все это — чисто российские разработки. ТЭЭМП, к слову, производит плоские единичные элементы в ламинированном корпусе, который может использоваться в химических источниках тока с органическими электролитами: суперконденсаторах, литий-ионных аккумуляторах, металло-воздушных источниках тока.

При этом, ТЭЭМП производит ячейки собственной запатентованной конструкции – призматическая ячейка с токосъемом по всей ее поверхности. И сделано это не для того, чтобы показать свою уникальность, а чисто с практической точки зрения – распределенный по всей поверхности токосъем обеспечивает равномерность тепловых полей, тем самым замедляя процесс деградации и продлевая срок службы суперконденсатора.

Продукция «ТЭЭМП» уникальна по многим параметрам. Суперконденсаторные модули компании успешно работают при температурах до -60°С. Они отличаются низким внутренним сопротивлением, а значит, способны обеспечить большие импульсные токи. Собственная конструкция ячеек и модулей позволяет снизить массу и размер суперконденсаторной сборки на 30% по сравнению с аналогичными устройствами.

В сухом остатке

В качестве вывода можно подвести итоги, указав преимущества и недостатки суперконденсаторов. Некоторые из них упоминались выше, но сейчас стоит перечислить все это отдельно.

Итак, достоинства:

  • Относительно невысокая стоимость устройства накопления энергии в расчете на 1 Фарад.
  • Крайне высокая плотность мощности.
  • Высокий КПД цикла, который достигает 95% и выше.
  • Надежность, длительный срок службы.
  • Широкий диапазон рабочих температур.
  • Огромное количество циклов с неизменными параметрами.
  • Высокая скорость заряда и разряда.
  • Допустимость разряда до нуля.
  • Относительно небольшой вес.

Недостатки:

  • Относительно небольшая энергетическая плотность.
  • Высокая степень саморазряда. Небольшое напряжение из расчета на единицу элемента.

Достоинств все же больше, чем недостатков, и благодаря этому технология активно внедряется во все большее количество отраслей. Сейчас удельная емкость суперконденсаторов увеличивается, а время заряда — наоборот, снижается. При достижении определенного предела можно будет говорить о полной замене аккумуляторов на суперконденсаторов в некоторых сферах, что, в целом, уже и происходит.

Выбор электролита для сверхемкостных устройств: критический обзор

Бхупендер Пал, и Шэнъюань Ян, б Субраманиам Рамеш, c Венкатараман Тангадурай д и Раджан Хосе * и

Принадлежности автора

* Соответствующие авторы

и Лаборатория наноструктурированных возобновляемых источников энергии, Факультет промышленных наук и технологий, Университет Малайзии Паханг, 26300 Гамбанг Куантан, Малайзия
Электронная почта: bhupender@ump. edu.my, [email protected].

б Государственная ключевая лаборатория модификации химических волокон и полимерных материалов, Международная совместная лаборатория перспективных волокон и низкоразмерных материалов, Колледж материаловедения и инженерии, Университет Дунхуа, Шанхай 201620, КНР

с Центр ионики Университета Малайи, кафедра физики, факультет естественных наук, Университет Малайи, 50603 Куала-Лумпур, Малайзия

д Кафедра химии, Университет Калгари, 2500 University Drive NW, Калгари, AB, Канада

Аннотация

rsc.org/schema/rscart38″> Электролиты являются одним из жизненно важных компонентов электрохимических накопителей энергии, и их физические и химические свойства играют важную роль в работе этих устройств, включая емкость, удельную мощность, характеристики скорости, циклируемость и безопасность. В этой статье рассматривается текущее состояние понимания взаимодействия электрод-электролит в суперконденсаторах и гибридных устройствах батарея-суперконденсатор. В статье обсуждаются факторы, влияющие на общие характеристики устройств, такие как ионная проводимость, подвижность, коэффициент диффузии, радиус голых и гидратированных сфер, ионная сольватация, вязкость, диэлектрическая проницаемость, электрохимическая стабильность, термическая стабильность и дисперсионное взаимодействие. Также были выделены требования, необходимые для разработки более качественных электролитов, и проблемы, которые еще предстоит решить для создания более совершенных сверхемкостных устройств для конкурентного рынка хранения энергии.

  • Эта статья входит в тематические подборки: Последние обзорные статьи и достижения в области нанотехнологий Самые популярные статьи

Высокопроизводительное асимметричное суперконденсаторное устройство на основе лилиевидных наноструктур Co3O4, собранных из нанопроволок

Высокоскоростное асимметричное суперконденсаторное устройство на основе лилиевидных Co

3 O 4 наноструктур, собранных из нанопроволок†

Янцзе Ван, и Шаобо Хуан, и Инь Лу, и Шичжун Цуй, и Вэйхуа Чен* б и Ливэй Ми * и

Принадлежности автора

* Соответствующие авторы

и Центр передовых исследований материалов, Технологический университет Чжунъюань, Чжэнчжоу, Хэнань 450007, Китай
Электронная почта: mlwzzu@163. com

б Колледж химии и молекулярной инженерии Чжэнчжоуского университета, Чжэнчжоу, Хэнань, Китай
Электронная почта: [email protected]

Аннотация

В связи с растущим спросом на высокоэффективные системы хранения энергии необходимы суперконденсаторные устройства с высокой плотностью тока; однако их разработка все еще остается проблемой. Электродный материал с высокой электронной проводимостью и большим количеством ионных каналов является важной областью исследований. Здесь иерархические лилиевидные Co 3 O 4 наноструктуры, образованные с использованием нанопроволок с большим 9Соотношение 0118 L / D на никелевой пене было синтезировано in situ с использованием простого термического метода растворителя и последующей обработки спеканием.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *