Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Ветрогенератор своими руками. Самодельный ветрогенератор для дома. Чертежи ветрогенератора.

В ветрогенераторах промышленного производства обычно используют винтовые пропеллерные двигатели. В отличие от роторных, они имеют весомое преимущество – более высокий КПД. Но винтовые двигатели значительно сложнее изготовить, поэтому если вы хотите сделать ветрогенератор своими руками, а попросту – самодельный ветрогенератор, рекомендуют применять именно роторные двигатели.

Рис. 1. Схема роторной ветроэлектроустановки:
1 — лопасти, 2 — крестовина, 3 —вал, 4 —подшипники с корпусами, 5 — соединительная муфта, 6 — силовая стойка (швеллер № 20), 7 — коробка передач, 8 — генератор, 9 — растяжки (4 шт.), 10 — ступени лестницы.


Важная деталь: ротор необходимо поднять достаточно высоко – на 3-4 метра над уровнем земли. Тогда ротор окажется в зоне свободного ветра, а зона завихрений от обтекаемых ветром строений останется ниже его. ВЭУ, высоко поднятая над землей к тому же будет выполнять функцию молниеотвода, а это для сельской местности немаловажно.

Рис. 2. Крепление лопастей ротора на крестовине:
1 — лопасти, 2 — крестовина, 3 — вал, 4 — болты крепления (М12—М14).


В конструкции, предложенной В. Самойловым, ротор имеет 4 лопасти, что обеспечивает ему более равномерное вращение. Ротор – важнейшая часть ветряка. Его форма и размеры лопастей играют особую роль – от них зависит мощность, а также скорость вращения вала ветрового двигателя. Чем больше будет общая поверхность лопастей, которые образуют ометаемую поверхность, тем меньшим будет число оборотов ротора.

Рис. 3. Двухъярусное роторное колесо:
1 — подшипник, 2 — корпус подшипника, 3 — дополнительное крепление вала четырьмя растяжками, 4 — вал.


Ротор вращается благодаря аэродинамической несимметричности. Поток ветра, набегающий поперек оси ротора, соскальзывает с округлой стороны лопасти и затем попадает на ее противоположный карман. Разность давлений на округлую и вогнутую поверхности создает тягу, которая, раскручивая ротор, приводит его в движение. Такой ротор имеет большой крутящий момент. Мощность ротора диаметром 1 м соответствует пропеллеру с тремя лопастями диаметром 2,5 м.
При резких колебаниях ветра роторные ветродвигатели обеспечивают более стабильную работу, чем винтовые. К тому же, роторы имеют тихий ход, работают при любом направлении ветра, но при этом могут развивать лишь от 200 до 500 об/мин. При сильных порывах ветра роторные ветроколеса в разнос не идут. Повышение количества оборотов асинхронного генератора не дает рост напряжения на выходе. Поэтому мы не рассматриваем автоматическое изменение угла лопастей ротора при разных скоростях ветра.
Существуют разные виды роторных ветрогенераторов на вертикальном валу. Вот некоторые из них:
1. Четырехлопастое роторное ветряное колесо тихоходное, имеет КПД до 15%.
2. Двухъярусное роторное колесо немного проще, и имеет более высокое КПД (до 19%), а также развивает большее по сравнению с четырехлопастным, число оборотов. Но, чтобы сохранить прочность и жесткость установки, целесообразно увеличивать диаметр вала.
3. Ротор Савониуса развивает меньшее количество оборотов по сравнению с двухлопастным. Коэффициент применения ветровой энергии не выше 12%. В основном используется для привода поршневых насосов.
4. Карусельное ветряное колесо — простейшая конструкция. Колесо развивает малые обороты, а также, имея низкую удельную мощность, обладает КПД — до 10%
Ниже рассмотрим самодельный ветрогенератор, разработанный на основе четырехлопастного ветроколеса.
Лопасти ротора можно сделать из железной бочки на 100, 200 или 500 литров. Бочку нужно разрезать шлифмашиной, а вот резать сваркой в этом случае недопустимо, т.к. металл покоробится от высокой температуры. Усилить борта вырезанной лопасти можно, приварив к ним прутья арматуры или катанки диаметром от 6 до 8 мм.
Лопасти первого ротора нужно прикрепить к 2 крестовинам 2 болтами М12…М14. Верхняя крестовина вырезается и листа стали толщиной 6…8 мм. Между бортами лопастей и валом ротора необходим зазор 150 мм. Нижняя крестовина должна быть более прочной, ведь на нее приходится общий вес лопастей. Чтобы ее изготовить, нужно взять швеллер длиной не меньше 1 м ( что будет зависеть от применяемой бочки), и с высотой стенки 50-60 мм

Строительная часть и главный вал.


В рассматриваемой ВЭУ рама из уголков для закрепления генератора приварена к стойке, изготовленной из швеллера. Нижний конец стойки соединен с угольником, забитым в землю. Вал 3 ротора целесообразней сделать из двух частей, тогда будет удобней растачивать его концы под подшипники. Подшипники в корпусах (буксах), соответствующих по размерам валу, закрепляются на стенке швеллера болтами. Части вала ротора сваривают между собой или соединяют на шпонке. Диаметр вала составляет 35—50 мм.
К одной из полок швеллера рассматриваемого ВЭУ приварены куски труб длиной 500 мм м диаметром 20 мм, выполняющие роль лестницы. Стойка погружена в землю не менее, чем на 1200 мм в глубину, а также для предотвращения качки и дополнительной устойчивости закреплена 4-мя растяжками. Для защиты от ржавчины ветровую энергоустановку можно покрасить алюминиевой пудрой, замешанной на основе олифы.

Рис. 4. Возможные схемы укрепления роторных ветроколес на вертикальном валу:
а, б — карусельные ветроколеса; в — ветроколесо Савониуса.



Рис. 5. Лопасть ветряка, изготовленная из 1/4 бочки и схема раскроя:
1 — отверстие крепления к крестовине, 2 — усиление борта, 3 — контур лопастей.

Электросхема.


Изготавливая своими руками ветрогенератор для дома, проще всего использовать электросистему автомобиля или трактора. Исходя из ее мощности, определяются эксплуатационные возможности ВЭУ. Поэтому необходимо применять электроузлы таких достаточно мощных автомашин, как автобус или трактор. Важно помнить, что использовать подобные узлы необходимо комплектно: аккумулятор, реле-генератор, генератор. Например, для генератора Г 250-Г 1 вполне подойдут реле-регулятор РР 362, а также аккумулятор 6 СТ 75.

Рис. 6. Схема электрооборудования ВЭУ, взятое от автомобильного генератора на 12 В:
1 — генератор, 2 — реле-регулятор, 3 — аккумулятор, 4 — амперметр, 5 — выключатель генератора от разряда аккумулятора в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
В случае, если ветряк укомплектован автогенератором на 24 В, лучше использовать марку Г-228 с мощностью 1000 Вт. Подобные генераторы имеют более надежное реле напряжения, особенно в сравнении с интегральными регуляторами напряжения марки Я-120. Вместе с тем, постоянное напряжение 12 В, получаемое с автогенератора, не очень удобно для освещения, т.к. необходимо учитывать специфику цоколей автолампы и патронов. Хоть лампочки на 12 В бывают и с обычным цоколем Ц-27, их трудно найти в продаже.

Рис. 7. Схема электрооборудования ВЭУ от автомобильного генератора на 24 В:
1 — генератор Г-288, 2 — регулятор напряжения 11.3702, 3 — аккумуляторы 6СТ75, амперметр АП-170, 4 — амперметр, 5 — выключатель генератора от разряда аккумуляторов в безветренную погоду, 6 — выключатель освещения, 7 — предохранитель, 8 — лампочки освещения.
Чтобы перейти от постоянного тока к переменному, нужно изготовить преобразователь напряжения. При необходимости переменный ток без проблем можно превращать в постоянный, используя мостовой выпрямитель.

Преобразователь мощностью 100 Вт позволяет включать две лампочки накала или дневного света по 40 Вт на 220 В. Схема преобразователя довольно проста. Он не требует настройки, достаточно надежен в работе и имеет внушительный КПД (более 80%).
Вы можете ознакомиться с видео, на котором показан пример самодельного ветрогенератора. Так же, Вы можете воспользоваться специальным калькулятором для расчета ветрогенератора.

Самодельный вертикальный ветрогенератор: чертежи, размеры, описание изготовления

Вертикальный ветрогенератор своими руками, чертежи, фото, видео ветряка с вертикальной осью.

Ветрогенераторы подразделяются по типу размещения вращающейся оси (ротора) на вертикальные и горизонтальные. Конструкцию ветрогенератора с горизонтальным ротором мы рассматривали в прошлой статье, теперь поговорим о ветрогенераторе с вертикальным ротором.

Рассмотрим преимущества и недостатки вертикального ветряка

Преимущества:

  • Низкий уровень шума – ветровое, колесо практически не издаёт шум и не мешает, нет характерного свиста винта.
  • Простота конструкции – сделать такой ветрогенератор и установить не составит особой сложности.
  • Надёжная конструкция – все узлы компактны, удобны в обслуживании.

Недостатки:

  • Основным недостатком конструкции ветрогенератора с вертикальным ротором являются его низкие обороты, такой ветряк нужно устанавливать в местности с преобладающей скоростью ветра более 4 м/с.
  • Практически нет защиты от ураганного ветра – если в горизонтальном ветряке при урагане автоматически срабатывает складывающийся хвостовик который поворачивает ветроколесо, то в такой конструкции нужно вручную заклинивать ротор, как вариант замыкать контакты на выходе из катушек.

Изготовление вертикального ветрогенератора

Прежде всего, ели вы решили изготовить ветряк с вертикальной осью нужно определиться с генератором. Поскольку вертикальный ветрогенератор низкооборотный, то соответственно понадобится генератор способный выдавать зарядку на аккумулятор при достаточно низких оборотах.

Автомобильный генератор для этой конструкции не совсем подходит, так как он выдаёт зарядный ток при оборотах более 1000 об/мин. Для автомобильного генератора нужно использовать шкив с передаточным числом 4 – 5 и доработать сам генератор.

В качестве генератора практичней использовать аксиальный генератор, его можно изготовить самостоятельно, процесс изготовления описан в этой статье.

Схема аксиального генератора для ветрогенератора.

Аксиальный генератор.

Изготовление ветроколеса

Ветроколесо (турбина) вертикального ветрогенератора состоит из двух опор верхней и нижней, а также из лопастей.

Ветроколесо изготовляется из листов алюминия или нержавейки, также ветроколесо можно вырезать из тонкостенной бочки. Высота ветроколеса должна быть не менее 1 метра.

В этом ветроколесе угол изгиба лопастей задаёт скорость вращения ротора, чем больше изгиб, тем больше скорость вращения.

Ветроколесо крепится болтами сразу к шкиву генератора.

Для установки вертикального ветрогенератора можно использовать любую мачту, изготовление мачты подробно описано в этой статье.

Схема подключения ветогенератора

Генератор подключается к контроллеру, тот в свою очередь к аккумулятору. В качестве накопителя энергии практичней использовать автомобильный аккумулятор. Поскольку бытовые приборы работают от переменного тока, нам понадобится инвертор для преобразования постоянного тока 12 V в переменный 220V.

Для подключения используется медный провод сечением до 2,5 квадрата. Схема подключения подробно описана тут.

Видео где показан ветрогенератор в работе.

Ветрогенератор своими руками: фото и описание изготовления

Подробное описание, как сделать ветрогенератор своими руками в домашних условиях: фото и описание изготовления аксиального генератора.

Приветствую! Понадобилось сделать качественный и надежный ветрогенератор из подручных материалов.

Мне не нужна была большая мощность и много энергии. Но хотелось иметь надежный ветрогенератор, чтобы на обычном ветру он стабильно вырабатывал 30-40 ватт/ч электроэнергии.


От старых ветрогенераторов у меня сохранились 10 катушек, там намотано примерно по 60 витков проводом 1.5мм. Эти катушки я решил применить для этого генератора. После недолгих поисков дешевых магнитов их удалось приобрести всего по 1,5$ за штуку, в количестве 20шт.

Генератор будет однофазный, 10 катушек и на каждую катушку по два магнита на дисках ротора.

Изготовление ветрогенератора начал с рамы, так сказать основы ветрогенератора. Ветряк решил сделать как и все по классической схеме со складывающимся хвостом. Нашел у себя куски профильной трубы из которой сварил раму со смещением ветроголовки относительно поворотной оси. От старого прицепа нашел ступицу, которую применил. Просверлил отверстие и вставил вал оси, далее приварил с обоих сторон.

Далее на фото можно видеть, как сделано крепление для хвоста и на сколько смещена от центра ось вращения генератора. Ось генератора приварена не совсем горизонтально. Я ее немного задрал в верх, примерно на 2-3градуса, это чтобы лопасти были подальше от мачты, ведь при сильном ветре они сильно прогибаются и могут побиться о мачту.

Штырь для хвоста приварен под углом 45 градусов относительно оси вращения винта, по вертикали отклонение на 20 градусов.

Потом готовый хвост просто одевается на этот штырь. Когда ветрогенератор на ветру, то хвост смотрит в сторону, так-как ось вращения винта смещена от центра, таким образом достигается баланс, но если ветер становился сильнее, то винт уходит в сторону и хвост складываетя. Обычно трудно точно рассчитать хвост, его лучше потом подогнать под нужный ветер смотря когда он начинает складываться.

Площадь хвоста должна быть 20% от ометаемой площади винта.

Далее из металла были выточены два диска будущего ротора под магниты. Для дисков я вырезал две восьмиугольные заготовки, которые отнес к своим знакомым и они их них выточили мне на токарном станке два диска. Потом на дисках были размечены и просверлены отверстия для крепления.

Статор изготавливался тоже уже по отработанной всеми схеме. Из фанеры вырезается заготовка, потом кладутся и спаиваются катушки между собой.

Если вы делаете как я, однофазный генератор, то катушки между собой соединяются так, конец первой с концом второй катушки, а начало второй с началом третьей , и конец третьей с концом четвертой и т.

д. Если перепутать соединение катушек, то генератор работать не будет.

Для трехфазного катушки в фазах соединяются в одном направлении, то-есть все катушки каждой из трех фаз конец с началом. (описание трёхфазного генератора здесь)

Вот моя заготовка для заливки статора, стыки и всю форму я промазал клеем ПВА, просто под рукой не оказалось ничего другого. Лучше форму смазывать например вазелином, жиром, воском, в общем тем что не позволит полиэфирной смоле прилипнуть к форме, иначе потом будет трудно выковырять статор из формы.

Чтобы катушки не куда не сдвинулись, я их закрепил на красный скотч, потом аккуратно залил приготовленную смолу и сверху притянул крышкой, которая у меня осталась после вырезания круга в фанере под статор.

Как смола полностью отвердела я извлек статор и сразу решил собрать генератор и проверить что получилось. Сначала покрутил руками без диодного моста, удалось руками раскрутить генератор до 15 вольт. Результат осень обрадовал, потом собрал диодный мост и уже измерения делал по постоянному току.

От руки до 15 вольт так-же, ток короткого замыкания от руки до 5А, генератор сильно сопротивляется, но результат превзошел все ожидания и оказался мощнее.

Пробовал крутить руками и заряжать аккумулятор, удалось получить ток зарядки до 1.1А, это где то при 300об/м, значит на ветру будет гораздо больше так-как винт легко должен раскручивается до 1000 об/м при наличие хорошего ветра.

На фото:  самодельный аксиальный генератор.

Так-же чтобы магниты не отпадали с дисков я их тоже залил, но уже эпоксидной смолой. Чтобы было хорошее сцепление смолы с металлом диски были еще раз зачищены.

Магниты на дисках должны чередоваться полюсами, и два диска должны притягиваться, то-есть магниты на дисках на против друг друга должны быть противоположными полюсами и притягиваться.

 

Лопасти изготовил из сосновой доски, решил сделать на этот раз быстроходные лопасти. Ранее я делал и ставил на свои ветряки много лопастей с большими углами относительно ветра. У них получался большой крутящий момент, но очень маленькие обороты.

Теперь я сделал три лопасти с углом всего 3 градуса. У них низкий стартовый момент, но он не важен так как генератор не имеет залипаний и легко начинает вращаться. Зато у лопастей большая быстроходность, это значит что генератор будет крутится на больших оборотах.

Вот ветрогенератор уже наконец собран и установлен на мачту. Как видно на фото труба одета на трубу, это самый простой вариант. Провод пустил снаружи без всяких токосьемных колец. Потом пущу его внутри трубы. После установки сразу-же подсоединил ветрогенератор напрямую к аккумулятору через амперметр. Ветер в этот день был небольшой и ток зарядки доходил до 5А. Но потом ветер стал сильней и ток бывало переваливал за 10А.

Нашел новый амперметр со шкалой до 30А, в сильные порывы ветра стрелка отклонялась практически до конца. Ниже как-раз запечатлен момент, когда ток зарядки составил 28А. Ток может быть значительно больше, но срабатывает защита от сильного ветра и винт отворачивается от него и сбрасывает мощность и обороты.

Конструкция крепкая и можно защиту сделать на срабатывание на более сильных ветрах, но провод катушек тонковат и будет сильно греться, поэтому лучше так не делать чтобы не перегрелся статор и не расплавился лак в катушках и смола.

Потом попробую поставить на этот ветрогенератор заводские скоростные лопасти, комплект стоит не дорого и должен дать существенную прибавку по оборотам на средних ветрах, а значит и мощность. На этом все, более подробно как это сделать вы можете найти на других страницах сайта.

схема и чертеж, инструменты и материалы, подробная инструкция

Один из простых способов получить дешёвую электроэнергию — ветрогенератор. Его необязательно покупать, можно построить своими руками, используя правильно составленные чертежи и схемы, детали и материалы.

Принцип работы ветрогенератора

Принцип действия ветрогенератора прост: ветер приводит в движение лопасти, вращающие ротор турбины, который преобразует энергию ветра в механическую. Ветровые турбины бывают:

  • с роторами горизонтальной оси;
  • с роторами вертикальной оси.

Преимущество последних в том, что они работают независимо от направления ветра и его силы. Мощность, генерируемая самодельным ветрогенератором, составляет от 100 до 6000 Вт. Минимальная скорость, при которой турбина может начать вырабатывать электроэнергию — 2,5-3 м/с, но для достижения номинальной мощности необходима скорости ветра от 10 м/с.

Ротор обычно вращается со скоростью 15–20 об/мин, тогда как типичный асинхронный генератор вырабатывает электричество со скоростью более 1500 об/мин. Для самодельного ветряка подойдёт автомобильный генератор на 12 вольт.

Принцип работы ветрогенератора

Как сделать ветрогенератор своими руками

Основой создания ветрогенератора является грамотно сделанный проект и подготовленный чертёж. Это очень важно, потому что без чёткого представления о том, как должен выглядеть прибор, будет трудно построить его правильно, не нарушив порядок монтажа всех элементов.

Чертежи и схемы

Начинать нужно с составления общего эскиза ветротурбины, пометив ключевые элементы: башню, генератор, деревянное основание, лопасти и ступицу, которая соединяет их вместе. Самостоятельно составленная схема может быть не сильно подробной: в этом нет необходимости. Её следует использовать для общего представления о том, каким будет расположение различных частей ветряного двигателя, и как конструкция будет выглядеть на завершающих этапах.

Схема сборки ветроэлектрического генератора

После подготовки схемы нужно выставить правильные размеры ветрогенератора. Они должны включать в себя высоту, длину и ширину деревянного основания, которое соединяет генератор и хвостовой плавник с башней. Также определить размеры для лопастей из металлических труб или труб из ПВХ, в зависимости от того, какой материал будет использоваться. Отдельные измерения нужны для хвостового плавника: высота, ширина и длина, а также диаметр – для лезвий, которые определяют размер ветровой турбины.

После того как будет готов чертёж и черновой набросок устройства с выставленными размерами, можно переходить к подготовке материалов и инструментов для работы.

Необходимые инструменты и материалы

Для изготовления самодельного ветряка потребуются такие детали:

  • ротор с лопастями;
  • редуктор для регулирования скорости вращения ротора;
  • гелевый или щелочной аккумулятор для питания электроприборов;
  • инвертор для трансформации тока;
  • хвостовая часть;
  • мачта.

Ротор с лопастями можно сделать самостоятельно, тогда как остальные элементы, вероятно, придётся купить или собрать из необходимых деталей. Кроме этого, для сборки самодельного ветряка потребуются такие инструменты и материалы:

  • пила по дереву;
  • ножницы по металлу;
  • горячий клей;
  • паяльник;
  • дрель.

Обязательно нужны винты и болты для соединения лезвий со ступицей и для скрепления металлической трубы с деревом.

Лопасти для ветрогенератора своими руками

Изготавливая лопасти самостоятельно, стоит особое внимание уделить соблюдению заданной чертежом формы изделий. Лопасти могут быть крыльчатого или парусного типа. Второй более прост в изготовлении, но имеет невысокий КПД, что делает его неэффективным в самодельных ветрогенераторах даже средних размеров.

Для изготовления лопастей самодельного ветрогенератора подойдут такие материалы как:

  • пластик;
  • дерево;
  • алюминий;
  • стекловолокно;
  • поливинилхлорид.

Устройство лопастной части ветрогенератора

Если выбирать поливинилхлорид, то для создания лопастей отлично подойдут ПВХ-трубы диаметром от 160 мм. Пластик и дерево — менее износостойкие материалы, которые под воздействием осадков и сильного ветра через несколько лет придут в негодность. Оптимальный вариант — алюминий: он прочный и лёгкий, устойчивый к разрыву и залому, невосприимчивый к влаге и повышенным температурам.

Пошаговая инструкция по изготовлению

Когда все чертежи будут составлены, а материалы и инструменты подготовлены, можно начинать собирать ветрогенератор своими руками, руководствуясь следующим порядком:

  1. Подготовить бетонный фундамент. Глубина ямы и объём бетонной смеси рассчитывается исходя из типа грунта и климатических условий. После заливки фундаменту нужно несколько недель, чтобы набрать нужную прочность. Только после этого можно устанавливать в него мачту на глубину 60-70 см, закрепив её растяжками.
  2. Поместить подготовленные лопасти в трубу, закрепить их с помощью винтов и гаек на втулке, на которую будет установлен двигатель.
  3. Расположить диодный мост рядом с двигателем и закрепите его с помощью саморезов. Подсоединить провод от двигателя к диодному мосту «плюс», а другой провод к отрицательному мосту.
  4. Закрепить вал двигателя, надеть на него втулку и плотно затянуть её против часовой стрелки.
  5. Уравновесить основание трубы с прикреплённым к нему двигателем и валом и отметить точку баланса.
  6. Закрепить основание прибора болтами.

Ветрогенератор может прослужить гораздо дольше, если покрасить не только лопасти, но основание, вал и крышку двигателя. Чтобы включить установку потребуется комплект проводов, зарядное устройство, амперметр и аккумулятор.

Подготовка автомобильного генератора

Для того чтобы сделать ветрогенератор своими руками из автомобильного генератора? потребуется установка силой от 95A с напряжением 12 В. При 125 оборотах в минуту он вырабатывает 15,5 Вт, а при 630 оборотах этот показатель составит 85,7 Вт. Если говорить о нагрузке в 630 об/мин, то вольтметр покажет 31,2 вольт, а амперметр – 13,5 ампер. Таким образом, мощность генератора составит 421,2 Вт. Для достижения этого показателя необходимо использовать неодимовые магниты, которые в 7 раз эффективнее, чем ферритовые.

В начале подготовки автомобильного генератора нужно удалить роторную обмотку магнитного возбуждения и электронные щётки с коллектором. На место кольцевых ферромагнетиков нужно установить неодимовые магниты в количестве 3 штук, размер каждого из них должен составлять 85 х 35 х 15 миллиметров. Недостатком использования мощных магнитов может стать «залипание», затрудняющее движение вала. Для его уменьшения магниты должны размещаться под небольшим углом относительно друг друга.

Перед запуском генератора, его нужно протестировать на токарном станке, раскрутив вал до 950–1000 об/мин. Если устройство работает нормально, отдача будет составлять не менее 200 Вт. В большинстве случаев подойдёт классическая силовая установка с вертикальной осью: она характеризуется низкими оборотами и бесшумностью.

В процессе эксплуатации ветрогенератора рекомендуется периодически проверять надёжность креплений у основания мачты, смазывать подшипники поворотного устройства, проводить балансировку наклона установки. Раз в полгода рекомендуется проверять и менять электроизоляцию, которая нередко повреждается из-за использования в неблагоприятных условиях.

Самодельный ветрогенератор, собранный из автомобильного генератора и простых деталей, способен обеспечить электроэнергией небольшой дом и стать автономным резервным источником питания. Экологически безопасный и нетребовательный в обслуживании, он окупится в течение 2–4 лет в зависимости и прослужит десятки лет.

Роторный ветрогенератор своими руками: чертежи, схемы, инструкция по сборке: a_forester — LiveJournal

     Ветровая электростанция, которая имеет горизонтальную ось вращения, хоть и обладает высокими показателями КПД, имеет некоторые недостатки. Например, осуществляемая передача через коллектор тока в состоянии вызвать значительные потери энергии и привести к таким неприятностям, как нарушение контактов из-за их окисления, снижение упругости пластин.

 Во многих ситуациях более практичным и выгодным будет вертикальный (роторный) ветрогенератор, который имеет свойство работать при ветре любого направления. Роторный ветрогенератор, как правило, устанавливается на мачте или столбе. Интересно, что сделать своими руками данное устройство не так сложно, как может показаться на первый взгляд, так как простота конструкции – одно из главных достоинств роторного ветрогенератора.


Для того чтобы соорудить роторный ветрогенератор своими руками необходимо:
1. Взять три диска из фанеры, имеющими диаметр 1000 миллиметров. Толщина каждого должна составлять не менее 10 миллиметров. Это будут аэродинамические шайбы-перегородки.
2. Потребуется четыре пластины с параметрами 500 на 1050 миллиметров и толщиной около 5. Это будут лопатки ротора.
3. Необходимо произвести стыковку данных элементов при помощи специальных дюралюминиевых уголков, которые имеют сечение 2x30x30 мм, также для соединения используются винты марки М5 вместе с шайбами и гайками.
4. Усиливается данная конструкция стяжками, выполненными из стальных стержней, имеющих диаметр 6 миллиметров и на концах резьбу.
5. Нижняя шайба должна быть укреплена брусками из дерева с сечением 40 на 40 миллиметров.
 

 После того, как была осуществлена предварительная сборка, ветряк полностью разбирается для того чтобы все элементы из фанеры примерно три раза пропитать олифой. Только после этого процесса и полного высыхания покрытия, конструкция собирается в окончательной сборке и после окрашивается алкидной эмалью.

В качестве подшипникового узла можно использовать специальный тормозной мотоциклетный барабан. Ротор устанавливается на него посредством дистанционных втулок и болтов уже марки М8 с шайбами и гайками. В процессе монтажа между узлом и самим ротором необходимо установить самодельную ведущую звездочку цепного мультипликатора, также ведомая звездочка должна быть установлена на вал генератора. Звездочка, обладающая ведущими функциями, вырезается из дюралюминиевого листа, который имеет толщину около 4 миллиметров. Технология изготовления состоит в том, чтобы сначала на ее делительной окружности разметить центры отверстий, которые образуют впадины для зубьев, потом при помощи сверла, напильника и ножовки следует сформировать сами зубья.

    Если есть желание или     необходимость применить   электрогенератор под   ветродвигатель, то рекомендуется   использовать тот, который   предназначен легковому   транспортному средству.
   Стоит   отметить, что данная   конструкция   совсем неплохо   работает вместе с   насосом, при   необходимости поднять   из   скважины воду или из колодца и       направить в водонапорную башню.  
  Для этой цели можно использовать   топливный автомобильный насос или   специальную водяную помпу, которая   раньше находилась в стиральной   машине.

  Первый изготавливается при   помощи одного или нескольких   кулачков, на одинаковом расстоянии расположенных по всему валу ветродвигателя, вторая – посредством ременной передачи.

Есть еще один способ изготовления ветрогенератора. Для этой цели необходимо:
Разрезать пополам пластиковую бутыль.
Закрепить части друг с другом при помощи специальных заранее приготовленных кружков из текстолита или фанеры.
Прямо по центру кружков необходимо установить ось вращения.
На ось закрепить сам генератор электрической энергии.

При желании можно сделать ветряк разборным, тогда появляется возможность применять его в походах для того чтобы осуществить подзарядку аккумуляторов фотоаппаратов, мобильных телефонов или батарей от ноутбука. Кроме того при помощи данного приспособления можно легко провести освещение всей палатки, опять же в походе, а при желании можно осветить вообще весь палаточный городок, если установить несколько подобных конструкций. Переносить такой генератор очень удобно, так как в разобранном виде он занимает совсем немного места. Чаши из пластика можно уложить одна в другую, а затем в них же уложит сам электрогенератор.

Для того чтобы стационарно установить данную конструкцию, например на садовом участке или на даче, лучше соорудить более надежный вид генератора — не разборный и капитально закрепить его на крыше.

Источник

Самодельный мини ветрогенератор | Строительный портал

При наличии дома, старого кулера от компьютера, можно соорудить отличную ветровую установку, которая будет производить электричество. Мини ветрогенератор – отличная вещь, особенно для местности с частыми и сильными ветрами. Об особенностях и технологии его изготовления узнаем далее.

Оглавление:

  1. Как сделать мини ветрогенератор своими руками
  2. Мини ветрогенератор своими руками из моторчика
  3. Делаем мини ветрогенератор своими руками
  4. Технология изготовления мини ветрогенератора своими руками

Как сделать мини ветрогенератор своими руками

Начинать работу над мини ветрогенератором следует с изготовления чертежей будущей ветровой установки. Кроме того, следует подготовить материалы в виде:

  • толстой бутылки из пластика;
  • старого охладительного кулера или вентилятора, от его размеров и мощности, напрямую зависит мощность самого генератора;
  • слаботочный провод в количестве 5-8 метров;
  • деревянный брус, сечение и размеры которого определяются индивидуально;
  • две стальные трубы, которые заходят одна в одну;
  • диоды;
  • клей на эпоксидной основе и супер клеевой состав;
  • крепежные элементы в виде затяжных галстуков;
  • старый СД диск.

Прежде всего, начать работу нужно с поиска подходящего охладительного механизма. Предлагаем использовать кулер от старого компьютера. Изначально кулер разбирается, пропеллерная его часть находится на электрическом двигателе. Чаще всего, он фиксируется на стопорном кольце, оно находится под уплотнителем из резины. После демонтажа кольцевого уплотнителя, снимите лопасти на вентиляторе.

Далее следует процесс пайки кабелей, обеспечивающих работу генераторной установки. На медных катушках вентилятора находятся два соединения для проводов, они являются коннекторами на катушках. Один из участков отличается наличием подсоединяемого провода из меди, а второй имеет два провода. Два провода соединяются с ножками одного провода методом пайки.

На следующем этапе создания небольшого ветрогенератора, выполняется создание выпрямителя. Основной функцией данного прибора является преобразование переменного тока в постоянный. Для этих целей потребуется наличие четырех диодов, они обрезаются таким образом, чтобы одна пара от черной отметки осталась с 10 см отрезком. Длинный конец диода загибается, таким образом, получится п-образное соединение. Все диоды соединяются между собой методом спаивания. Для тестирования ветрового генератора, подсоедините к нему диоды, если светодиод работает, то ветрогенератор функционирует правильно. Наружная пластиковая часть кулера удаляется, для обработки всех неровностей, используйте нож.

Далее следует процесс изготовления лопасти ветрогенератора. Для изготовления лопастей, используйте старую бутылку, например, из-под шампуня. Верхняя и нижняя части бутылки срезаются. Получится изделие цилиндрической формы, его нужно разрезать вдоль. Предварительно изготовьте чертеж в виде лопастей, согласно ему, вырежьте из бутылки лопасти для ветрогенератора. Учтите, что конечная часть лопастей должна быть срезана под углом в сто двадцать градусов. Далее следует процесс фиксации лопастей на кулере.

На следующем этапе выполняется изготовление хвостовика ветряка. Для фиксации мотора используется брус, выполненный из дерева. Его вращение выполняется с помощью стальных трубок. Для изготовления хвостовика используйте ненужный диск. Деревянный брусок оборудуется сквозным отверстием, его диаметр должен быть чуть больше диаметра стальной трубы. При не плотной установке трубки, зафиксируйте ее с помощью клея на эпоксидной основе. На конечной части бруска обустраивается пропил для монтажа диска. Место, на котором соединяется мотор с бруском, необходимо также обработать клеевым составом. Провода и пайку, рекомендуется также покрыть клеем, для предотвращения появления коррозии.

Далее следует процесс, на котором изготавливается опора. Для ее сооружения используйте две трубки. Одна из них зафиксирована на деревянном бруске, а вторая устанавливается в соотношении с вращением. Для их соединения можно использовать подшипники, а для улучшения скольжения воспользуйтесь фторопластом.

Мини ветрогенератор своими руками из моторчика

Предлагаем вариант изготовления ветрогенератора от мотора из старого принтера. Данная модель отличается средней производительностью и работает, даже при малейшем ветре. Для работы ветрогенератора потребуется также аккумулятор, максимальная мощность прибора составляет 100мА.

В качестве основной детали ветряка используется моторчик, от неработающего принтера струйного типа. Предварительно принтер необходимо разобрать и вынуть из него мотор.

Для фиксаторов лопастей используется транзистор. Его необходимо просверлить в соотношении с размером устанавливаемого вала. Далее все детали фиксируются с помощью клеевого состава на эпоксидной основе. Кроме того, с помощью данного состава обеспечивается защита особо важных частей устройства от влаги и непогоды.

Используя отрезок пластиковой трубы, диаметром около 12 см, вырежьте лопасти для ветряка. Для этих целей используется отрезная машинка. Оптимальное значение ширины детали составляет 90 мм, отверстия сооружаются специальным приспособлением, а затем вал устанавливается на генераторный мотор с помощью винтовых соединений.

В качестве основы для изготовления ветряка используется труба диаметром 55 мм. Для изготовления хвоста используйте фанеру. Мотор устанавливается внутри трубы, Далее выполняется сооружение выпрямителя. Так как мотор не воспроизводит большое количество электричества при небольшом ветре. Таким образом, удается применить схему удвоения, включаемую последовательно.

Схему устанавливается в полиэтиленовый пакет и устанавливается во внутрь трубы вместе с выпрямителем. Далее выполняется фиксация мотора с помощью проволоки. Кроме того, все отверстия заделываются силиконовым пистолетом. Одно отверстие используется для стока воды, а второе для испарения конденсатных масс.

Для фиксации хвоста ветрового генератора используется болт и проволока. Таким образом, удастся надежно зафиксировать установку. Следите за жесткостью полученных соединений.

Для того, чтобы соорудить мачту для установки ветряка используйте брусья, соединенные между собой с помощью саморезов. Зафиксируйте ветряк на мачте и установите на предварительно отведенное место. С помощью такой установки удается зарядить мобильный телефон или организовать подсветку.

Делаем мини ветрогенератор своими руками

Перед началом работы над ветровым генератором, необходимо определиться с количеством ветров в вашем климатическом регионе. Серо-зеленые – безветренные зоны подразумевают использование исключительно ветрогенераторов парусного типа. При необходимости в обеспечении постоянного тока, к ним добавляется прибор в виде бустрера. Данное устройство выполняет функцию выпрямителя, а также стабилизирует напряжение. Также потребуется наличие зарядного устройства, высокомощной батареи, преобразователя. Стоимость изготовления данной установки запредельно высокая и не всегда оправдывается.

В зонах со слабыми ветрами, обозначенных желтым цветом, возможен вариант изготовления ветрогенератора тихоходного типа. Данные устройства отличаются хорошей производительностью.

Для ветреных регионов подойдут любые ветровые установки. Чаще всего, используются приборы вертикального типа – лопастники или парусники.

Для того, чтобы выполнить расчеты по определению мощности ветровой установки, необходимо учесть такие факторы как:

  • постоянная скорость ветра в том или ином регионе;
  • воздух является сплошной средой, поэтому от качества и производительности ротора зависит мощность ветрогенератора;
  • воздушные потоки обладают кинетической энергией.

Предлагаем рассмотреть особенности парусных ветрогенераторов. Данные устройства изготавливают из износостойкого материала, которые отлично противостоят ветрам. Если вы решили изготовить такую установку самостоятельно, то необходимо прежде всего, провести ряд подсчетов, связанных с данными приборами.

В качестве материалом для изготовления ветрогенератора, можно использовать различные железки, которые завалялись у вас дома. Самый дорогостоящий элемент – аккумулятор. Его мощность определяет размеры установки и ее производительность.

Самодельный ветрогенератор аксиального типа изготовить в домашних условиях довольно просто. Начинать работу следует с мачты. Для ее изготовления чаще всего используют трубы, по диаметру они должны быть разными. Для соединения труб между собой используется сварочный аппарат. Мачта устанавливается на забетонированную площадку. При этом, несколько ее метров углубляются в землю, для получения устойчивой конструкции. На отдельных деталях установки нужно наклеить два магнита, Для более прочной фиксации они дополнительно заливаются с помощью эпоксидной смолы.

Далее следует процесс изготовления формы и фанеры. Для этих целей используются катушки, соединенные между собой фазой. Процесс изготовления статора выглядит таким образом: на ранее вырезанный квадрат из фанеры устанавливается вощеная бумага. Далее следует монтаж фанеры, на которой предварительно вырезаны отверстия под монтаж статора. Далее следует процесс монтажа кружка из стеклоткани и устанавливаются катушки.

После этого, производится извлечение готового статора из ранее подготовленной формы. Для изготовления винта используется дюралюминиевая труба. Винт изготавливается диаметром в один метр. Для вырезания лопастей используйте электрический лобзик. В центральной части установки оборудуйте отверстие, с помощью которого будет фиксироваться винт на генераторе.

Ветрогенератор имеет смещенный по отношению к оси хвостовой элемент. При сильных порывах ветра происходит давление на поверхность ветрового генератора и он смещается в сторону. Данная схема позволяет защитить устройство от сильных ветров. Данная модель ветрогенератора позволяет вырабатывать достаточное количество энергии для обеспечения уличной подсветки дома. Сделать ветрогенератор не сложно, главное условие получения качественного прибора – сопоставление силы ветра в вашем регионе с его мощностью.

Технология изготовления мини ветрогенератора своими руками

Для ветрогенератора изготовления необходим минимальный запас инструментов и материалов. Предлагаем вариант сооружения мини ветрогенератора для дачи. Данный прибор способен обеспечить небольшой дом с минимальным количеством электроприборов – электричеством.

Для изготовления такого ветрогенератора потребуется прежде всего диск, на котором устанавливаются магниты. Далее следует процесс наматывания медных катушек, которые заливаются с помощью смолы. Для осуществления вращения, генератор устанавливается на ранее предусмотренном основании.

Данные ветрогенераторы отличаются хорошей производительностью и качественной работой. Соотношение магнита с полюсами составляет два к трем, если ветрогенератор имеет две фазы, для однофазного устройства достаточно соотношение один к трем. Все полюса соотносятся между собой в зависимости от используемых вариантов катушек.

Мощность ветрового генератора определяется прежде всего размерами используемых в его конструировании магнитов. В качестве мачты под генератор достаточно использования стальной трубы или бревна. Аккумуляторы не обязательно использовать новые, сгодятся и любые, подходящие по мощности приборы.

Возможен вариант изготовления сразу нескольких ветрогенераторов, при этом, каждый из них будет выполнять определенные функции – один обеспечивает жилище светом, второй отвечает за работу телевизора, а третий – за ночное освещение.

Изготовление лопастей для ветрогенератора своими руками

Использование альтернативных источников энергии – один из основных трендов нашего времени. Чистая и доступная энергия ветра может преобразовываться в электричество даже у вас дома, если построить ветряк и соединить его с генератором.

Соорудить лопасти для ветрогенератора своими руками можно из обычных материалов, не используя специального оборудования. Мы расскажем, какая форма лопастей эффективнее, и поможем подобрать подходящий чертеж для ветровой электростанции.

Содержание статьи:

Как работает простой ветрогенератор?

Ветрогенератор – прибор, позволяющий преобразовывать энергию ветра в электричество.

Принцип работы его заключается в том, что ветер вращает лопасти, приводит в движение вал, по которому вращение поступает на генератор через редуктор, увеличивающий скорость.

Работа ветряной электростанции оценивается по КИЭВ – коэффициенту использования энергии ветра. Когда ветроколесо вращается быстро, оно взаимодействует с большим количеством ветра, а значит забирает у него большее количество энергии

Подразделяют две основные разновидности ветряных генераторов:

  • ;
  • горизонтальные.

Вертикально ориентированные модели построены так, чтобы ось пропеллера была расположена перпендикулярно земле. Таким образом, любое перемещение воздушных масс, независимо от направления, приводит конструкцию в движение.

Такая универсальность является плюсом данного типа ветряков, но они проигрывают горизонтальным моделям по производительности и эффективности работы

Горизонтальный ветрогенератор напоминает флюгер. Чтобы лопасти вращались, конструкция должна быть повернута в нужную сторону, в зависимости от направления движения воздуха.

Для контроля и улавливания изменений направления ветра устанавливают специальные приборы. КПД при таком расположении винта значительно выше, чем при вертикальной ориентации. В бытовом применении рациональней использовать ветрогенераторы этого типа.

Какая форма лопасти является оптимальной?

Один из главных элементов ветрогенератора – комплект лопастей.

Существует ряд факторов, связанных с этими деталями, которые сказываются на эффективности ветряка:

  • вес;
  • размер;
  • форма;
  • материал;
  • количество.

Если вы решили сконструировать лопасти для самодельного ветряка, обязательно нужно учитывать все эти параметры. Некоторые полагают, что чем больше крыльев на винте генератора, тем больше энергии ветра можно получить. Другими словами, чем больше, тем лучше.

Однако это далеко не так. Каждая отдельная часть движется, преодолевая сопротивление воздуха. Таким образом, большое количество лопастей на винте требует большей силы ветра для совершения одного оборота.

Галерея изображений

Фото из

Лопасти ветряка в форме турбин

Вертикальное расположение лопастей

Ветряк нестандартной конфигурации

Лопасти в виде обычных лопаток

Кроме того, слишком много широких крыльев могут стать причиной образования так называемой «воздушной шапки» перед винтом, когда воздушный поток не проходит сквозь ветряк, а огибает его.

Форма имеет большое значение. От нее зависит скорость движения винта. Плохое обтекание становится причиной возникновения вихрей, которые тормозят ветроколесо

Самым эффективным является однолопастной ветрогенератор. Но построить и сбалансировать его своими руками очень сложно. Конструкция получается ненадежная, хоть и с высоким коэффициентом полезного действия. По опыту многих пользователей и производителей ветряков, самой оптимальной моделью является трехлопастная.

Вес лопасти зависит от ее размера и материала, из которого она будет изготовлена. Размер нужно подбирать тщательно, руководствуясь формулами для расчетов. Кромки лучше обрабатывать так, чтобы с одной стороны имелось закругление, а противоположная сторона была острой

Правильно подобранная форма лопасти для ветрогенератора является фундаментом его хорошей работы.

Для домашнего изготовления подходят такие варианты:

  • парусного типа;
  • крыльчатого типа.

Лопасти парусного типа представляют собой простые широкие полосы, как на ветряной мельнице. Эта модель наиболее очевидна и проста в изготовлении. Однако ее КПД настолько мал, что эта форма практически не применяется в современных ветрогенераторах. Коэффициент полезного действия в данном случае составляет около 10-12%.

Гораздо более эффективная форма – лопасти крыльчатого профиля. Здесь задействованы принципы аэродинамики, которые поднимают в воздух огромные самолеты. Винт такой формы легче приводится в движение и вращается быстрее. Обтекание воздухом значительно сокращает сопротивление, которое встречает на своем пути ветряк.

Правильный профиль должен напоминать крыло самолета. С одной стороны лопасть имеет утолщение, а с другой – пологий спуск. Воздушные массы обтекают деталь такой формы очень плавно

КПД этой модели достигает значения 30-35%. Хорошая новость заключается в том, что построить крыльчатую лопасть можно и своими руками с применением минимума инструментов. Все основные расчеты и чертежи можно легко адаптировать под свой ветряк и пользоваться бесплатной и чистой энергией ветра без ограничений.

Из чего делают лопасти в домашних условиях?

Материалы, которые подойдут для строительства ветрогенератора – это, прежде всего, пластик, легкие металлы, древесина и современное решение – стеклоткань. Главный вопрос заключается в том, сколько труда и времени вы готовы потратить на изготовление ветряка.

Галерея изображений

Фото из

Лопасти из жесткого технологичного материала

Металлическая спиралевидная турбина

Лопасти ветряка из полимерной трубы

Сборка ветряка с фанерными лопастями

Канализационные трубы из поливинилхлорида

Самый популярный и широко распространенный материал для изготовления пластиковых лопастей для ветрогенератора является обыкновенная канализационная ПВХ-труба. Для большинства домашних генераторов с диаметром винта до 2 м хватит трубы 160 мм.

К преимуществам такого метода относят:

  • невысокую цену;
  • доступность в любом регионе;
  • простоту работы;
  • большое количество схем и чертежей в интернете, большой опыт использования.

Трубы бывают разными. Это известно не только тем, кто изготавливает самодельные ветряные электростанции, но всем, кто сталкивался с монтажом канализации или водопровода. Они отличаются по толщине, составу, производителю. Труба стоит недорого, поэтому не нужно пытаться еще больше удешевить свой ветряк, экономя на ПВХ-трубах.

Некачественный материал пластиковых труб может привести к тому, что лопасти треснут при первом же испытании и вся работа будет проделана впустую

Сначала нужно определиться с лекалом. Вариантов существует много, каждая форма имеет свои недостатки и преимущества. Возможно, имеет смысл сначала поэкспериментировать, прежде чем вырезать итоговый вариант.

Поскольку цена на трубы невысокая, а найти их можно в любом строительном магазине, этот материал отлично подойдет для первых шагов в моделировании лопастей. Если что-то пойдет не так, всегда можно купить еще одну трубу и попробовать сначала, кошелек от таких экспериментов не сильно пострадает.

Опытные пользователи энергии ветра заметили, что для изготовления лопастей для ветрогенератора лучше использовать оранжевые, а не серые трубы. Они лучше держат форму, не изгибаются после формирования крыла и дольше служат

Конструкторы-любители предпочитают ПВХ, так как во время испытаний сломанную лопасть можно заменить на новую, изготовленную за 15 минут прямо на месте при наличии подходящего лекала. Просто и быстро, а главное – доступно.

Фото-инструкция по изготовлению лопастей ветряка из полимерных труб поможет наглядно освоить шаги и последовательность процесса:

Галерея изображений

Фото из

Шаг 1: Разметка абриса лопастей ветряка

Шаг 2: Раскрой лопастей блогаркой

Шаг 3: Разметка выступа для крепления

Шаг 4: Вырезание выступа и удаление заусенцев

Шаг 5: Подготовка металлических пластин

Шаг 6: Разрезание монтажной пластины на две части

Шаг 7: Выравнивание разрезанных пластин

Шаг 8: Зачистка орезанной стороны наждачкой

Все подготовительные шаги выполнены, теперь лопасти надо присоединить к вращающейся вслед за ветром детали:

Галерея изображений

Фото из

Приложив к выступу на лопасти обрезанную монтажную пластину, отмечаем через отверстия точки предстоящего крепления

Сверлим отверстия для установки крепежа, подложив под лопасть обрезок доски или брусок. Для этого лучше взять сверло диаметром чуть меньше, чем диаметр ножки шурупа

Оставшуюся после сверления полимерную стружку из отверстий надо аккуратно извлечь, стараясь не отрывать так, чтобы увеличился размер гнезд для крепления

На металлическом диске отмечаем центр, в который будет установлен анкерный болт, и вычерчиваем равносторонний треугольник, каждая вершина которого отметит положение монтажной пластины

Приклеим пластины к металлическому диску, расположив их в вершинах треугольника. Это нам облегчит работу во время сварки

В центре диска располагаем и привариваем гайку для введения в нее анкерного болта. Приклеенные пластины привариваем выпуклым швом

Прикручиваем вырезанные из труб лопасти к сваренной детали. Устанавливаем их так, чтобы изгиб у всех был направлен в одну сторону

На каждый шуруп с тыльной стороны накручиваем гайку. Для того чтобы крепеж не развинчивался при вращении лопастей, их желательно закрепить пайкой или сваркой

Шаг 9: Разметка точек крепления

Шаг 10: Сверление отверстий для крепления

Шаг 11: Подготовка отверстий к сборке

Шаг 12: Разметка диска для установки лопастей

Шаг 13: Приклеивание пластин перед сваркой

Шаг 14: Подготовка диска вращения к сборке

Шаг 15: Крепление пластиковых лопастей

Шаг 16: Закручивание гаек на шурупы

Алюминий – тонкий, легкий и дорогой

Алюминий – легкий и прочный металл. Его традиционно используют для изготовления лопастей для ветрогенераторов. Благодаря небольшому весу, если придать пластине нужную форму, аэродинамические свойства винта будут на высоте.

Основные нагрузки, которые испытывает ветряк во время вращения, направлены на изгиб и разрыв лопасти. Если пластик при такой работе быстро даст трещину и выйдет из строя, рассчитывать на алюминиевый винт можно гораздо дольше.

Однако если сравнивать алюминий и ПВХ-трубы, металлические пластины все равно будут тяжелее. При высокой скорости вращения велик риск повредить не саму лопасть, а винт в месте крепления

Еще один минус деталей из алюминия – сложность изготовления. Если ПВХ-труба имеет изгиб, который будет использован для придания аэродинамических свойств лопасти, то алюминий, как правило, берется в виде листа.

После вырезания детали по лекалу, что само по себе гораздо сложнее, чем работа с пластиком, полученную заготовку еще нужно будет прокатать и придать ей правильный изгиб. В домашних условиях и без инструмента сделать это будет не так просто.

Вместо недешевого алюминия можно использовать обрезки кровельной жести или куски профнастила, оставшиеся после укладки:

Галерея изображений

Фото из

Шаг 1: Подготовка материала к изготовлению лопастей

Шаг 2: Загибание кромок лопастей

Шаг 3: Обработка всех лопастей ветряка

Шаг 4: Подгонка всех лопастей под равный размер

Шаг 5: Придаине формы желобов

Шаг 6: Разметка отверстий для крепления

Шаг 7: Сборка рабочей части ветряка

Шаг 8: Установка ветрогенератора на мачту

Стекловолокно или стеклоткань – для профессионалов

Если вы решили подойти к вопросу создания лопасти осознанно и готовы потратить на это много сил и нервов, подойдет стекловолокно. Если ранее вы не имели дела с ветрогенераторами, начинать знакомство с моделирования ветряка из стеклоткани – не лучшая идея. Все-таки этот процесс требует опыта и практических навыков.

Лопасть из нескольких слоев стеклоткани, скрепленных эпоксидным клеем, будет прочной, легкой и надежной. При большой площади поверхности деталь получается полая и практически невесомая

Для изготовления берется стеклоткань – тонкий и прочный материал, который выпускается в рулонах. Помимо стекловолокна пригодится эпоксидный клей для закрепления слоев.

Начинают работу с создания матрицы. Это такая заготовка, которая представляет собой форму для будущей детали.

Матрица может быть изготовлена из дерева: бруса, доски или бревна. Прямо из массива вырубают объемный силуэт половины лопасти. Еще вариант – форма из пластика

Сделать заготовку самостоятельно очень сложно, нужно иметь перед глазами готовую модель лопасти из дерева или другого материала, а только потом по этой модели вырезают матрицу для детали. Таких матриц нужно как минимум 2. Зато, сделав удачную форму однажды, ее можно применять многократно и соорудить таким образом не один ветряк.

Дно формы тщательно смазывают воском. Это делается для того, чтобы готовую лопасть можно было легко извлечь впоследствии. Укладывают слой стекловолокна, промазывают его эпоксидным клеем. Процесс повторяют несколько раз, пока заготовка не достигнет нужной толщины.

Затем клей должен высохнуть. Некоторые рекомендуют поместить форму в вакуумный пакет и откачать воздух. Так клей лучше проникает во все слои стеклоткани, не оставляя непропитанных участков

Когда эпоксидный клей высохнет, половину детали аккуратно вынимают из матрицы. То же делают со второй половиной. Части склеивают между собой, чтобы получилась полая объемная деталь. Легкая, прочная, правильной аэродинамической формы лопасть из стекловолокна – вершина мастерства домашнего любителя ветряных электростанций.

Ее главный минус – сложность реализации задумки и большое количество брака на первых порах, пока не будет получена идеальная матрица, а алгоритм создания не будет отточен.

Дешево и сердито: деревянная деталь для ветроколеса

Деревянная лопасть – дедовский метод, который  легко осуществим, но малоэффективен при сегодняшнем уровне потребления электричества. Сделать деталь можно из цельной доски легких пород древесины, например, сосны. Важно подобрать хорошо высушенную деревянную заготовку.

Если дерево будет сырым, в процессе высыхания винт может “повести” и он деформируется. Да и вес влажного дерева существенно выше сухого

Нужно выбрать подходящую форму, но учитывать тот факт, что деревянная лопасть будет не тонкой пластиной, как алюминиевая или пластиковая, а объемной конструкцией. Поэтому придать заготовке форму мало, нужно понимать принципы аэродинамики и представлять себе очертания лопасти во всех трех измерениях.

Придавать окончательный вид дереву придется рубанком, лучше электро. Для долговечности древесину обрабатывают антисептическим защитным лаком или краской

Главный недостаток такой конструкции – большой вес винта. Чтобы сдвинуть с места эту махину, ветер должен быть достаточно сильным, что трудноосуществимо в принципе. Однако дерево – доступный материал. Доски, подходящие для создания винта ветрогенератора, можно найти прямо у себя во дворе, не потратив ни копейки. И это главное преимущество древесины в данном случае.

КПД деревянной лопасти стремится к нулю. Как правило, время и силы, которые уходят на создание такого ветряка не стоят полученного результата, выраженного в ваттах. Однако, как учебная модель или пробный экземпляр деревянная деталь вполне имеет место быть. А еще флюгер с деревянными лопастями эффектно смотрится на участке.

С шагами изготовления ветряка с вырезанными из фанеры лопастями ознакомит следующая подборка фотоснимков:

Галерея изображений

Фото из

С отслужившего велосипеда снимаем генератор и сверлим в нем отверстия для крепления рабочей части ветряка – фанерного диска с лопастями

На листе фанеры вычерчиваем лопасти будущего ветрогенератора. Для того чтобы сократить расход материала, лучше расположить их не так, как показано на фото, а направить основанием в противоположные стороны

Все детали рабочей части фанерного ветряка сначала вычерчиваем на бумаге, затем переносим на лист фанеры

В соответствии с разметкой выпиливаем детали сначала грубо электролобзиком, потом дорабатываем вручную по необходимости

Учитывая условия работы собираемой мини электростанции, обрабатываем ее перед сборкой. Покрываем антисептической пропиткой и антипиреном

Срезанные на один угол отрезки бруска прикручиваем к центральному диску, к которому будут крепиться все детали фанерного винта ветрогенератора

К закрепленным на диске колышкам прикручиваем фанерные лопасти и генератор от отслужившего велосипеда

После сборки рабочей части ветрогенератора проверяем, насколько свободно вращается диск с генератором. Если что-то мешает, подтачиваем, поправляем

Шаг 1: Подготовка генератора от велосипеда

Шаг 2: Нанесение шаблона для лопастей

Шаг 3: Чертежи шаблонов деталей ветряка

Шаг 4: Выпиливание компонентов рабочей части

Шаг 5: Обработка деталей антисептиком

Шаг 6: Крепление скошенных колышков

Шаг 7: Установка велосипедного генератора

Шаг 8: Проверка свободного вращения винта

Рабочая часть готова и проверена на работоспособность, значит, осталось ее только покрасить и прикрутить к мачте:

Галерея изображений

Фото из

Шаг 9: Фиксация винта ветряка на опоре

Шаг 10: Обработка деталей грунтовкой

Шаг 11: Окрашивание деталей ветряка

Шаг 12: Крепление рабочей части на мачте

Чертежи и примеры лопастей

Сделать правильный расчет винта ветрогенератора, не зная основных параметров, которые отображаются в формуле, а так же не имея понятия, как эти параметры влияют на работу ветряка, очень сложно.

Лучше не тратить свое время, если желания вникать в основы аэродинамики нет. Готовые чертежи-схемы с заданными показателями помогут подобрать подходящую лопасть для ветряной электростанции.

Чертеж лопасти для двухлопастного винта. Изготавливается из канализационной трубы 110 диаметра. Диаметр винта ветряка в данных расчетах – 1 м

Подобный небольшой ветрогенератор не сможет обеспечить вас высокой мощностью. Скорей всего, вы вряд ли сможете выжать из этой конструкции больше 50 Вт. Однако двухлопастной винт из легкой и тонкой ПВХ-трубы даст высокую скорость вращения и обеспечит работу ветряка даже при небольшом ветре.

Чертеж лопасти для трехлопастного винта ветрогенератора из трубы 160 мм диаметра. Расчетная быстроходность в этом варианте – 5 при ветре 5 м/с

Трехлопастной винт такой формы может быть использован для более мощных агрегатов, примерно 150 Вт при 12 В. Диаметр всего винта в этой модели достигает 1,5 м. Ветроколесо будет вращаться быстро и легко запускаться в движение. Ветряк с тремя крыльями встречается в домашних электростанциях чаще всего.

Чертеж самодельной лопасти для 5-ти лопастного винта ветрогенератора. Изготавливается из трубы ПВХ диаметром 160 мм. Расчетная быстроходность – 4

Такой пятилопастной винт сможет выдавать до 225 оборотов в минуту при расчетной скорости ветра 5 м/с. Чтобы построить лопасть по предложенным чертежам, нужно перенести координаты каждой точки из колонок «Координаты лекала фронт/тыл» на поверхность пластиковой канализационной трубы.

По предложенной ниже таблице можно рассчитать диаметр ветряка с 2-16 лопастями. При этом можно подбирать размер с учетом желаемой мощности на выходе.

По таблице видно, что чем больше крыльев у ветрогенератора, тем меньше должна быть их длина для получения тока одинаковой мощности

Как показывает практика, обслуживать ветрогенератор больше 2 метров в диаметре достаточно сложно. Если в соответствии с таблицей вам необходим ветряк большего размера, подумайте над увеличением числа лопастей.

С правилами и принципами ознакомит статья, в которой пошагово изложен процесс производства вычислений.

Выполнение балансировки ветряка

Балансировка лопастей ветрогенератора поможет сделать его работу максимально эффективной. Для осуществления балансировки нужно найти помещение, где нет ветра или сквозняка. Разумеется, для ветроколеса больше 2 м в диаметре найти такое помещение будет сложно.

Лопасти собираются в готовую конструкцию и устанавливаются в рабочее положение. Ось должна располагаться строго горизонтально, по уровню. Плоскость, в которой будет вращаться винт, должна быть выставлена строго вертикально, перпендикулярно оси и уровню земли.

Винт, который не движется, нужно повернуть на 360/х градусов, где х = количество лопастей. В идеале сбалансированный ветряк не будет отклоняться ни на 1 градус, а останется неподвижным. Если лопасть повернулась под собственным весом, ее нужно немного подправить, уменьшить вес с одной стороны, устранить отклонение от оси.

Процесс повторяется до тех пор, пока винт не будет абсолютно неподвижным в любом положении. Важно, чтобы во время балансировки не было ветра. Это может исказить результаты испытаний

Также важно проконтролировать, чтобы все части вертелись строго в одной плоскости. Для проверки на расстоянии 2 мм с обеих сторон одной из лопастей устанавливают контрольные пластины. Во время движения ни одна часть винта не должна коснуться пластины.

Для эксплуатации ветрогенератора с изготовленными лопастями потребуется собрать систему, аккумулирующую полученную энергию, сохраняющую ее и передающую потребителю. Одним из компонентов системы является контроллер. О том, как сделать , узнаете, ознакомившись с рекомендованной нами статьей.

Выводы и полезное видео по теме

Построить ветряк своими руками из подручных материалов вполне возможно. Если начать с более простых моделей, то и первая попытка, вероятно, станет успешной. С опытом беритесь за более сложные задумки, чтобы получить максимально эффективный и мощный ветрогенератор.

Видео #1. Как сделать ветряк из труб ПВХ:

Видео #2. Ветрогенератор своими руками:

Видео #3. Ветряк из оцинкованной стали:

Если вы хотите использовать чистую и безопасную энергию ветра для бытовых нужд и не планируете тратить огромные деньги на покупку дорогостоящего оборудования, самодельные лопасти из обычных материалов будут подходящей идеей. Не бойтесь экспериментов, и вам удастся еще больше усовершенствовать существующие модели винтов ветряка.

Хотите рассказать, как собственноручно делали лопасти для ветряка, снабжающего электроэнергией дачу? Желаете поделиться полезной информацией с посетителями сайта или задать вопрос? Пишите, пожалуйста, комментарии в расположенном ниже блоке.

Создайте свою миниатюрную ветряную турбину

Энергия ветра – один из самых быстрорастущих источников энергии в мире. Благодаря этому быстрому проекту Майкла Аркуина из KidWind Project молодые инженеры могут построить работающую турбину всего за пару часов.

1 Создайте свою собственную миниатюрную ветряную турбину

Возобновляемая энергия – это ветер под лопастями наших турбин. За последние несколько лет ветроэнергетика была одним из самых быстрорастущих источников энергии в мире.Узнайте, как уловить порывистую силу воздушного потока с помощью этой прочной конструкции турбины из ПВХ, созданной Майклом Аркином, основателем проекта KidWind. Этот исследовательский проект учит инженерии и моделированию и, чтобы сделать его подходящим для возраста и навыков, может быть увеличен или уменьшен по сложности для получения большего или меньшего количества электроэнергии, а также для демонстрации таких концепций, как преобразование энергии и эффективность лезвий. Будьте готовы быть потрясенными.

Материалы

• Пять диаметром 1 дюйм.Фитинги из ПВХ под углом 90 градусов
• Три диам. Тройник из ПВХ
• Один диаметром 1 дюйм. Муфта из ПВХ
• Шесть диам. Трубы из ПВХ длиной 6 дюймов
• Одна диаметром 1 дюйм. Труба из ПВХ длиной 24 дюйма
• Одна диаметром 1 дюйм. Труба из ПВХ длиной 2 дюйма

• Два зажима «крокодил»
• Доска для плакатов для лопастей
• 20-дюймовый вентилятор или другой источник ветра
• Скотч
• Горячий клей / клеевой пистолет
• Кусачки
• Сверло

Специальные детали (Доступны в магазине. kidwind.org)

• Комплект основных деталей конструкции турбины KidWind
(включает двигатель постоянного тока с проводами, обжимную втулку с 12 отверстиями и 25 дюбелей)
• Мультиметр
• 5-миллиметровая светодиодная лампа
• Звуковая и световая плата

2 Постройте ротор и гондолу

1. Вставьте 2-дюймовый кусок ПВХ-трубы в 90-градусный фитинг.
2. Наденьте муфту из ПВХ на 2-дюймовую трубу, образуя цельную деталь, называемую гондолой.
3. Оберните кусок клейкой ленты шириной 1/2 дюйма и длиной 18 дюймов по периметру двигателя. Это поможет надежно закрепить его в муфте.
4. Пропустите провода, прикрепленные к двигателю постоянного тока, в горловину муфты через 90-градусный фитинг из ПВХ.
5. Двигатель должен плотно прилегать к муфте, но не вдавливаться до упора.
6. Затем прикрепите обжимную ступицу к двигателю, надавив на приводной вал.
7. Убедитесь, что поверхность двигателя находится на одном уровне с краем трубы.

3 Постройте базу

1. Используя четыре 90-градусных фитинга из ПВХ, два тройника из ПВХ и четыре 6-дюймовых трубных секций из ПВХ, сконструируйте две стороны основания турбины.
2. Вставьте 6-дюймовую трубу в один конец 90-градусного фитинга. На противоположном конце 6-дюймовой трубы установите тройник из ПВХ, а затем еще 6-дюймовую трубу и 90-градусный фитинг.Повторите то же самое, чтобы сделать вторую ножку основы.

3. Просверлите небольшое отверстие в нижней части последнего тройника из ПВХ.
4. Соедините ножки основания, вставив две оставшиеся 6-дюймовые трубы из ПВХ в тройник из ПВХ на каждой ножке. Соедините ножки основания через просверленную тройник из ПВХ.

4 Прикрепите башню к базе

1. Проденьте провода двигателя по 24-дюймовой трубе из ПВХ; этот длинный участок – башня.
2. Присоедините гондолу к верхней части башни; постучите по нему, чтобы он надежно встал на место.
3. Пропустите провода через центральный тройник из ПВХ и выведите их из просверленного отверстия в основании башни.
4. Закрепите башню на тройнике.
5. Прикрепите зажимы типа «крокодил» к оголенным проводам.

5 Сделать лезвия

1. Создайте лезвия из материала диаметром от 6 до 10 дюймов.Мы использовали плакатный картон, но вы можете использовать любой жесткий и легкий материал, например, прочную бумажную тарелку или листы бальзы. (Примечание: напряжение, которое вырабатывает ваша турбина, зависит от крутящего момента и числа оборотов лопастей. Мы обнаружили, что конфигурация из двух или четырех лопастей генерирует много энергии, но не стесняйтесь экспериментировать!)
2. Закрепите лопасти на дюбеля скотчем или горячим клеем.
3. Вставьте дюбели в отверстия обжимной ступицы. После установки затяните ступицу.

6 Заставьте генератор работать

1. Расположите турбину перед коробчатым вентилятором так, чтобы ветер вращал лопасти; это будет производить электричество.
2. Используйте зажимы типа «крокодил» для подключения мультиметра для измерения напряжения. (Вам понадобится примерно 2 вольта.)
3. Когда ваши лезвия вырабатывают энергию, вы можете подключить провода светодиодной лампы
или звуковой и световой платы, используя зажимы из крокодиловой кожи.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

энергии ветра! Проектирование ветряной турбины – мероприятие

(0 Рейтинги)

Быстрый просмотр

Оценка Уровень: 4 (3-5)

Необходимое время: 1 час 45 минут

(можно разбить на два занятия по 50 минут)

Расходные материалы на группу: 4 доллара США.00

Размер группы: 2

Зависимость действий: Нет

Associated Sprinkle: Энергия ветра (для неформального обучения)

Тематические области: Измерения, Физические науки, Наука и Технологии

Ожидаемые характеристики NGSS:


Резюме

Студенты узнают, как инженеры преобразуют энергию ветра в электрическую, создавая свои собственные миниатюрные ветряные турбины и измеряя производимый ими электрический ток.Они исследуют, как дизайн и расположение влияют на производство электроэнергии. Эта инженерная программа соответствует научным стандартам нового поколения (NGSS).

Инженерное соединение

Инженеры проектируют ветряные турбины, чтобы использовать ветер как чистый, возобновляемый и надежный источник выработки электроэнергии. Энергия ветра представляет собой жизнеспособную и экономичную альтернативу обычным электростанциям во многих районах страны. Концепция ветра может также производить энергию в других приложениях, таких как, например, турбокомпрессор, который представляет собой компрессор, используемый в автомобильных или реактивных двигателях внутреннего сгорания для увеличения выходной мощности.Компрессор увеличивает количество воздуха и топлива, поступающего в двигатель, потому что чем больше воздуха может всасывать и сжигать автомобиль, тем большую мощность он может выдать. Этот увеличенный воздушный поток (ветер) можно сравнить с ветряными генераторами. Фактически, турбокомпрессор включает в себя турбину, которая приводит в действие компрессор, используя отходящую энергию выхлопных газов.

Цели обучения

После этого занятия студенты должны уметь:

  • Опишите преобразования энергии, происходящие в ветряной турбине.
  • Опишите, как инженеры конструируют ветряную турбину.
  • Объясните, как конструкция и расположение ветряной турбины влияет на вырабатываемую ею электрическую энергию.

Образовательные стандарты

Каждый урок или задание TeachEngineering соотносится с одним или несколькими научными дисциплинами K-12, образовательные стандарты в области технологий, инженерии или математики (STEM).

Все 100000+ стандартов K-12 STEM, охватываемых TeachEngineering , собираются, обслуживаются и упаковываются сетью стандартов достижений (ASN) , проект D2L (www.achievementstandards.org).

В ASN стандарты иерархически структурированы: сначала по источникам; например , по штатам; внутри источника по типу; например , естественные науки или математика; внутри типа по подтипу, затем по классу, и т. д. .

NGSS: научные стандарты нового поколения – наука
Ожидаемые характеристики NGSS

4-ПС3-4.Примените научные идеи для разработки, тестирования и усовершенствования устройства, преобразующего энергию из одной формы в другую. (4 класс)

Вы согласны с таким раскладом? Спасибо за ваш отзыв!

Щелкните здесь, чтобы просмотреть другие учебные программы, соответствующие этим ожиданиям.
В этом упражнении основное внимание уделяется следующим аспектам трехмерного обучения NGSS:
Наука и инженерная практика Основные дисциплинарные идеи Общие концепции
Применяйте научные идеи для решения задач проектирования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия также может передаваться с места на место с помощью электрического тока, который затем может использоваться локально для создания движения, звука, тепла или света. С самого начала токи могли быть созданы путем преобразования энергии движения в электрическую.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Выражение «производить энергию» обычно относится к преобразованию накопленной энергии в желаемую форму для практического использования.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Возможные решения проблемы ограничены доступными материалами и ресурсами (ограничениями). Успешность разработанного решения определяется с учетом желаемых характеристик решения (критериев). Различные предложения по решениям можно сравнивать на основе того, насколько хорошо каждое из них соответствует указанным критериям успеха или насколько хорошо каждое из них учитывает ограничения.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Энергия может передаваться различными способами и между объектами.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Инженеры улучшают существующие технологии или разрабатывают новые.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Большинство ученых и инженеров работают в группах.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Наука влияет на повседневную жизнь.

Соглашение о выравнивании: Спасибо за ваш отзыв!

Общие основные государственные стандарты – математика
Международная ассоциация преподавателей технологий и инженерии – Технология
  • Студенты разовьют понимание атрибутов дизайна.(Оценки К – 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Студенты разовьют понимание инженерного дизайна.(Оценки К – 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Студенты разовьют понимание отношений между технологиями и связи между технологиями и другими областями обучения.(Оценки К – 12) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Энергия бывает разных форм.(Оценки 3 – 5) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

  • Инструменты, машины, продукты и системы используют энергию для работы.(Оценки 3 – 5) Подробнее

    Посмотреть согласованную учебную программу

    Вы согласны с таким раскладом? Спасибо за ваш отзыв!

ГОСТ Предложите выравнивание, не указанное выше

Какое альтернативное выравнивание вы предлагаете для этого контента?

Список материалов

Каждой группе необходимо:

  • маленький игрушечный мотор постоянного тока; доступно онлайн
  • 2 куска тонкого электрического провода с зажимами из крокодиловой кожи, каждый длиной около 50 см или 20 дюймов
  • резинка
  • жесткая линейка
  • пробка цилиндрической формы диаметром не менее 2 см или ¾ дюйма; альтернатива пробке: пенополистирол
  • 4 скрепки
  • скотч
  • ножницы
  • Картон 4 шт. По 3 х 5 см
  • (опционально) защитные очки или очки
  • Рабочий лист ветряных турбин, по одному на команду

На долю всего класса:

Рабочие листы и приложения

Посетите [www.teachengineering.org/activities/view/cub_energy2_lesson07_activity2], чтобы распечатать или загрузить.

Больше подобной программы

Тар она дует! Ветер как возобновляемый источник энергии

Студенты узнают о ветре как об источнике возобновляемой энергии и исследуют преимущества и недостатки ветряных турбин и ветряных электростанций. Они также узнают об эффективности ветряных турбин в различных погодных условиях и о том, как инженеры работают над созданием более дешевой, надежной и надежной ветровой энергии…

Проектирование возобновляемых источников энергии: ветряные турбины

Студенты знакомятся с реальным техническим инструментом навесного винта ветряной турбины. Это устройство, которое эффективно собирает энергию ветра, и в этом задании они построят собственное, используя ветряную турбину LEGO, вентилятор и счетчик энергии.

Не в сети

Студенты изучают и обсуждают преимущества и недостатки возобновляемых и невозобновляемых источников энергии. Они также узнают об электросети нашей страны и о том, что значит быть «вне сети» для жилого дома.

Питание U.С.

Этот урок дает студентам обзор электроэнергетической отрасли в Соединенных Штатах. Студенты также узнают о воздействии на окружающую среду, связанном с различными источниками энергии.

Введение / Мотивация

Вы когда-нибудь чувствовали сильный ветер? Каково это? Вы когда-нибудь чувствовали себя обдуваемыми ветром? Ветер может делать нам работу, перемещая предметы.Иногда мы не хотим, чтобы ветер двигал вещами, например, когда он развевает наши бумаги, и мы должны их подбирать. Но иногда нам хочется, чтобы ветер двигал за нас вещами. Например, когда ветер перемещает лопасти ветряной турбины (машина, которая преобразует движущуюся энергию ветра в механическую энергию , и электрическую энергию ), турбина вырабатывает некоторую полезную энергию (в форме электричество).

Давайте поговорим о том, что происходит при получении электричества от ветра.Прежде всего, чтобы преобразовать энергию ветра в электричество, лопасти ротора вращают ступицу (в центре) турбины . Внутри турбины находится электрический генератор , который представляет собой вращающуюся машину, которая обеспечивает электрический выход напряжением и током. Вращающее действие ступицы поворачивает магнит внутри катушки с проволокой в ​​генераторе, производя электричество.

Турбина – это двигатель с обратным подключением. Вместо того, чтобы подключать батарею к двигателю, чтобы заставить что-то двигаться, к двигателю подключается ветряная турбина, и ее движение вырабатывает электричество.Вы можете измерить, сколько электричества (напряжения) вырабатывается с помощью вольтметра .

Инженеры проектируют ветряные турбины, которые превращают кинетическую энергию и ветра (движение ветра) в механическую или электрическую энергию.

Итак, когда ветряная турбина работает лучше всего? Мощность, производимая ветряной турбиной, зависит от высоты над уровнем моря, скорости ветра и температуры воздуха. Ветровым турбинам требуется скорость ветра не менее 15 километров (9 миль) в час для небольших ветряных турбин и 21 километр (14 миль) в час для турбин коммунального масштаба.Ветряные турбины лучше всего размещать в районах со скоростью ветра 26-32 км / ч (16-20 миль / ч) с ветряной мельницей на высоте 50 метров (55 ярдов). Это довольно высоко. Чем больше скорость ветра, тем больше энергии вырабатывается. Подумайте об этом: когда ветер дует сильнее, эти бумаги перемещаются еще быстрее. Если скорость ветра удваивается, мощность ветряной турбины увеличивается в восемь раз. Это означает, что мощность удваивается, удваивается и снова удваивается!

Сегодня мы собираемся действовать как инженеры и создавать небольшие ветряные турбины, которые преобразуют энергию ветра, подключенную к двигателю, в электрическую энергию (напряжение).Затем мы измерим, как скорость ветра влияет на наши маленькие ветряки. Это поможет нам понять, что нужно знать инженерам при проектировании и размещении ветряных турбин в лучших местах.

Процедура

Перед мероприятием

  • Полезно заранее построить и протестировать ветряную турбину, чтобы использовать ее в качестве примера.
  • Соберите материалы и сделайте копии рабочего листа ветряной турбины.
  • Подсоедините провода к двигателям постоянного тока.
  • Установите испытательную станцию ​​с вольтметром и источником ветра (вентилятором или феном), где команды могут по очереди измерять мощность своих генераторов ветряных турбин.
  • Проверьте правильность работы двигателей и вольтметров.

Со студентами

  1. Разделите класс на команды по два ученика в каждой. Обеспечьте каждую команду материалами и рабочим местом.
  2. Подчеркните меры безопасности. Учащиеся никогда не должны прикасаться к голому или оголенному металлу в цепи, вырабатывающей электричество.
  3. Попросите учащихся прикрепить электродвигатель к линейке с помощью резиновой ленты, при этом вал электродвигателя должен находиться на конце линейки (см. Рисунок 1). Линейка служит платформой для ветряной турбины.

Рис. 1. Схема действия: прототип ветряной турбины, подключенный к вольтметру. Авторское право

Copyright © 2005 Малинда Шефер Зарске, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  1. Распрямите нижнюю часть каждой из четырех скрепок.
  2. Вырежьте четыре куска картона размером 3 x 5 см. Используйте скотч, чтобы плотно прикрепить кусочек картона к каждой скрепке.
  3. Прикрепите выпрямленную часть каждой скрепки к изогнутым сторонам пробки, чтобы получить четыре лопасти турбины. Убедитесь, что лезвия равномерно распределены по пробке.
  4. Вставьте пробку в вал двигателя. Убедитесь, что стержень входит точно в центр пробки.
  5. Поверните лезвие в пробке так, чтобы оно находилось под углом 45º к плоской плоскости края линейки.Вы завершили свою ветряную турбину! Рисунок 2. Настройка действия. Авторское право

    Copyright © 2007 Эшли Бейли, Программа ITL, Инженерный колледж, Университет Колорадо в Боулдере

  6. В группах попросите учащихся принести свои ветряные турбины на испытательную станцию.
  7. По одной команде, используйте зажимы типа «крокодил», чтобы прикрепить свободные концы проводов к вольтметру постоянного тока. В ожидании попросите другие команды поработать над листом.
  8. Начните с размещения ветряной турбины на расстоянии примерно 30 см (12 дюймов) от источника ветра (вентилятора или фена).Отрегулируйте расстояние в зависимости от силы источника ветра.
  9. Включите источник ветра и измерьте создаваемое напряжение. Запишите на листе.
  10. Повторите это действие с ветряной турбиной на разном расстоянии от источника ветра.
  11. Попросите членов команды работать вместе, чтобы заполнить рабочий лист.
  12. После того, как все команды побывали на испытательной станции и заполнили свои рабочие листы, завершите обсуждение в классе. Опишите движение энергии в вашем генераторе, начиная с ветра и заканчивая вольтметром.Просмотрите результаты и наблюдения каждой команды. Создавала ли конструкция турбины какой-либо команды большее напряжение на том же расстоянии по сравнению с остальными? Кто-нибудь регулировал угол наклона лопастей? Что это сделало? Что произошло, когда вы переместили ветряную турбину ближе или дальше от источника ветра? Как вы можете изменить конструкцию или положение турбины, чтобы лучше улавливать ветер и производить большее напряжение? Какие факторы могут принять во внимание инженеры, решая, где разместить ветряк или ветряную электростанцию?

Словарь / Определения

электрическая энергия: электрическая энергия существует, когда заряженные частицы притягиваются или отталкиваются друг от друга.Телевизоры, компьютеры и холодильники используют электрическую энергию.

энергия: способность выполнять работу.

Генератор: устройство, преобразующее механическую энергию в электрическую.

ступица: центральная часть колеса, вентилятора или пропеллера.

кинетическая энергия: энергия движения. Например, волчок, падающий объект и катящийся шар обладают кинетической энергией. Движение, если ему противодействует сила, действительно работает.Ветер и вода обладают кинетической энергией.

механическая энергия: Механическая энергия – это энергия, которую можно использовать для выполнения работы. Это сумма кинетической и потенциальной энергии объекта.

потенциальная энергия: потенциальная энергия – это энергия, запасенная объектом в результате его положения. Американские горки на вершине холма обладают потенциальной энергией.

возобновляемая энергия: энергия, полученная из источников, которые можно регенерировать.Источники включают солнце, ветер, геотермальные источники, биомассу, океан и гидро (вода).

ротор: вращающаяся часть электрического или механического устройства.

турбина: машина, в которой кинетическая энергия движущейся жидкости преобразуется в механическую энергию путем вращения ряда лопаток, лопастей или лопастей на роторе.

вольтметр: прибор, который измеряет силу электромотора в единицах, называемых вольтами.

ветряная турбина: машина, которая преобразует движущуюся энергию ветра в механическую и / или электрическую энергию.

Оценка

Оценка перед началом деятельности

Мозговой штурм: Предложите учащимся провести открытое обсуждение, чтобы подумать о том, как ветер можно использовать в качестве источника энергии. Напомните им, что ни одна идея или предложение не являются «глупыми». Все идеи следует уважительно выслушивать. Напишите их идеи на классной доске.

Встроенная оценка деятельности

Рабочий лист: Попросите студенческие группы записать свои измерения и наблюдения в рабочий лист ветряных турбин.Просмотрите их ответы, чтобы оценить их уровень владения предметом.

Оценка после деятельности

Вопрос / ответ: Задайте ученикам и обсудите в классе:

  • Когда можно использовать энергию ветра? (Ответ: Ветер должен иметь достаточно высокую скорость.)
  • Почему инженеры могут быть заинтересованы в развитии ветроэнергетики? (Ответ: Ветер – это возобновляемый источник энергии. Энергия ветра не производит парниковых газов или загрязнения. Использование энергии ветра снижает потребление невозобновляемых ископаемых видов топлива.)
  • Почему большие ветряные турбины часто располагаются на холмах? (Ответ: скорость ветра выше над землей.)
  • Если мы снимем двигатель с ротора ветряной турбины, мы не сможем производить электричество, но мы все равно сможем работать с нашей ветряной мельницей. Какую работу мы могли бы сделать? (Ответ: Мы могли бы выполнять механическую работу, заставляя вращаться лопасти ветряной мельницы.)

Инженер Задача Вопрос: Попросите студентов подумать над следующей проблемой инженерного проектирования.Предложите им обсудить свои ответы в группах и поделиться своими мыслями с классом.

  • Домовладелец хочет использовать ветряную турбину для электроснабжения своего дома, но рядом с домом нет холмов. Где инженер мог разместить ветряную турбину? (Ответ: Как можно выше, например, на столбе над крышей или на отдельной конструкции, которая поднимает его очень высоко в воздух.)

Вопросы безопасности

  • Обратите внимание на меры безопасности.Учащиеся никогда не должны прикасаться к голому или оголенному металлу в цепи, вырабатывающей электричество.
  • Напомните студентам, что нельзя класть ничего, в том числе руки, рядом с ветряной турбиной или вентилятором, когда он вращается.

Советы по поиску и устранению неисправностей

Перед началом работы проверьте двигатели и вольтметры, чтобы убедиться, что они работают правильно.

Если упражнение не помогает, попробуйте следующий вариант: прикрепите двигатель постоянного тока к колесу.Клейкая лента 2 Эскимо приклеивается к колесу, образуя прямую линию. Приклейте клейкой лентой прямоугольный кусок картона к каждой палочке для мороженого под таким углом, чтобы возникало вращение, когда ветер дует мимо нее. Прикрепите мотор лентой к линейке, которая будет служить ручкой.

Если время ограничено, ускорите работу, установив два вентилятора, чтобы получить две тестовые станции.

Расширения деятельности

Попросите учащихся разработать свои собственные наборы лезвий, различающихся по размеру, форме, материалу и количеству.Попросите учащихся прикрепить эти новые лопасти к двигателю и отрегулировать их под разными углами для получения максимального напряжения. Попросите их записать свои переменные и результаты в диаграмме данных, которую они создают во время упражнения. Попросите учащихся поделиться своими проектами и сравнить их, предоставив классу краткие инженерные отчеты.

Узнайте, как скорость ветра влияет на количество электроэнергии, производимой при изменении скорости вращения вентилятора.

Изучите «Живую лабораторию возобновляемых источников энергии» для реальных измерений ветра, систем сбора энергии и реальных данных.См .: http://www.teachengineering.org/livinglabs/

Масштабирование активности

  • Для более низких классов подготовьте двигатель. Просто попросите учащихся создать лезвия на скрепках и вдавить их в пробку. Помогите студентам измерить напряжение, генерируемое их ветряными турбинами.
  • Для старших классов попросите учащихся построить график зависимости производимого напряжения от расстояния между вентиляторами. Попросите учащихся решить проблемы с электроэнергией в ветроэнергетике! Математический лист.

использованная литература

Купи ветер и поборись с глобальным потеплением! Планета Чистого Воздуха . Проверено 20 октября 2005 г. (Хорошие фотографии первой крупной ветряной турбины промышленного масштаба, установленной в индейской резервации Роузбад-Сиу) http://www.cleanair-coolplanet.org/action/windbuilders.php

Планы уроков по возобновляемым источникам энергии . Бесконечная мощность, Управление энергосбережения штата Техас. Доступ 19 октября 2005 г.http://www.infinitepower.org/lessonplans.htm

Как работают ветряные турбины . Обновлено 3 октября 2005 г. Программа ветроэнергетических и гидроэнергетических технологий, энергоэффективность и возобновляемые источники энергии, Министерство энергетики США. Проверено 19 октября 20015 г. (Великолепная анимация ветряной турбины, вырабатывающей электричество) http://www1.eere.energy.gov/wind/wind_animation.html

авторское право

© 2005 Регенты Университета Колорадо

Авторы

Ксочитл Замора-Томпсон; Сабер Дурен; Натали Мах; Малинда Шефер Зарске; Дениз В.Карлсон

Программа поддержки

Комплексная программа преподавания и обучения, Инженерный колледж, Университет Колорадо в Боулдере

Благодарности

Содержание этой учебной программы по цифровой библиотеке было разработано за счет грантов Фонда улучшения послесреднего образования (FIPSE), Министерства образования США и Национального научного фонда (грант GK-12 № 0338326). Однако это содержание не обязательно отражает политику Министерства образования или Национального научного фонда, и вам не следует предполагать, что оно одобрено федеральным правительством.

Последнее изменение: 13 августа 2021 г.

создает волны: GE представляет планы по строительству морской ветряной турбины размером с небоскреб, самой мощной в мире

«Когда Винсент Шеллингс начал проектировать ветряные турбины два десятилетия назад, он часто опрашивал своих коллег о том, что, по их мнению, было самой большой турбиной, которую они могли построить.« Мы не продвинулись намного дальше, чем 3-мегаваттная машина со 100-метровым ротором, – вспоминает он.«Но даже это казалось слишком большим».
Schellings, 44 года, никогда не переставал задавать этот вопрос. Сегодня он возглавляет команду GE Renewable Energy, разрабатывающую самую большую в мире ветряную турбину, которая затмевает его юношеские размышления. Этот настоящий гигант будет высотой 260 метров от основания до кончиков лезвий – на 1 метр выше знаменитой нью-йоркской башни 30 Rockefeller Plaza. С лопастями длиной с футбольное поле ротор будет иметь 220 метров в диаметре.

Эти турбины оснащены 12-мегаваттным генератором, установленным на высоте 150 метров над уровнем моря.Каждая из них будет способна обеспечивать электроэнергией 16 000 домов и производить 67 гигаватт-часов в год, исходя из условий ветра на типичной немецкой площадке в Северном море – это на 45 процентов больше энергии, чем у любой другой морской ветряной турбины, доступной сегодня. «Мы спросили себя:« Какой самый большой ротор, с которым мы все еще будем чувствовать себя комфортно? », А затем подтолкнули себя еще немного», – вспоминает Шеллингс. «С технологической точки зрения это кажется натяжкой. Но мы знаем, что это выполнимо. Прелесть турбины в том, что она дает преимущество перед конкурентами.Нет ничего подобного. Даже не близко.”

Сегодня самая большая ветряная турбина имеет ротор диаметром 180 метров, но это прототип. Самые большие действующие турбины имеют роторы высотой 164 метра и генераторы мощностью до 9,5 мегаватт. «Мы решили обойти конкурентов», – говорит Шеллингс.

Размер имеет значение. Огромный ротор позволяет инженерам ловить намного больше ветра и увеличивать то, что в отрасли называют «коэффициентом мощности». Это число описывает количество энергии, которое турбина может производить в год на данном участке, по сравнению с энергией, которую она могла бы произвести, если бы все время работала на полной мощности.Показатель GE Haliade-X составляет 63 процента, «на пять-семь пунктов выше, чем у конкурентов», – говорит Шеллингс. «Фактически, каждая точка коэффициента мощности стоит для наших клиентов 7 миллионов долларов на 100 мегаватт. Это хороший плюс ».


Есть и другие преимущества. Новая конструкция мощностью 12 мегаватт позволит операторам строить ветряные электростанции с меньшим количеством турбин, прокладывать меньше кабелей, сокращать строительные, эксплуатационные и другие капитальные затраты и быстрее окупать свои инвестиции. «Это помогает клиентам, когда они соревнуются на аукционах за строительство морских ферм и предлагают самую низкую цену за киловатт-час», – говорит Джон Лавелль, генеральный директор подразделения GE Renewable Energy Offshore Wind.Он и его команда начинают разговаривать с компаниями, заинтересованными в строительстве ветряных электростанций в ближайшие несколько лет с использованием оборудования, поставки которого начнутся в 2021 году. «Мы пытаемся привлечь этих участников тендера, чтобы они могли учесть ценность, которую мы можем принести. Если они выиграют, мы выиграем ».

Морская ветроэнергетика – самый быстрорастущий сегмент возобновляемой энергетики. «Отрасли возобновляемых источников энергии потребовалось более 20 лет, чтобы установить первые 17 ГВт оффшорной ветроэнергетики», – сказал Жером Пекресс, президент и генеральный директор GE Renewable Energy. «Сегодня отрасль прогнозирует, что в течение следующих 12 лет будет установлено более 90 ГВт.Это вызвано более низкой стоимостью электроэнергии из-за масштабов и технологий. Haliade-X установит новый стандарт стоимости электроэнергии и будет стимулировать дальнейший рост в офшорных зонах ».

Огромные ветряные турбины, такие как Haliade-X, будут играть ключевую роль, но как их построить? GE, инвестирующая в проект 400 миллионов долларов, начала изучать эту идею два года назад. После определения диаметра ротора команда Шеллингса работала в обратном порядке, чтобы рассчитать величину генератора и размер башни, поддерживающей и то, и другое.

Каждый шаг представлял свою задачу. Во-первых, сложно серийно производить лопасти, не говоря уже о лопастях длиной 107 метров каждая. «Здесь много ручного труда, – говорит Шеллингс. «Вам понадобится до 250 рабочих, работающих на одной машине, и все виды строительных лесов и инструментов для правильной обработки материала». «Для создания лезвия такого размера требуется много людей с сильной командной синхронизацией и совместной работой для обработки материалов и инструментов».

Вверху и выше: «Мы спросили себя:« Какой самый большой ротор, с которым мы все еще будем чувствовать себя комфортно? », А затем подтолкнули себя еще немного», – говорит инженер ветряных турбин Винсент Шеллингс.Изображения предоставлены GE Renewable Energy.

Команда обратилась к специалистам LM Wind Power, датского производителя лопастей, приобретенного GE в прошлом году. LM Wind сейчас стремится «индустриализировать» производство самых больших лопастей.

Следующим элементом стал размер самого ротора. «Вы ловите сильный ветер, что хорошо для производства энергии, но недостатком является то, что вам нужна опорная конструкция, чтобы удерживать ротор на ветру», – говорит Шеллингс. «Прискорбно, что по мере увеличения размера ротора затраты на турбину будут расти быстрее, чем дополнительная мощность, которую вы получаете от более крупного ротора.”

Команда решила проблему с помощью программного обеспечения, используя алгоритмы для обработки данных от турбины и компенсации больших сил, создаваемых ветром. «Мы используем программное обеспечение, чтобы контролировать шаг турбины и удерживать ее на ветру», – говорит Шеллингс. «Это помогает нам контролировать размер и вес опорной конструкции».

Когда команда Шеллингса провела свои начальные расчеты, она обратилась к инженерам компании с просьбой помочь в проверке и улучшении конструкции. Шеллингс называет этот подход «лучшим из GE.Его команда работала в тесном сотрудничестве с Виком Абате, главным техническим директором GE, который также руководит GE Global Research, чтобы помочь найти экспертов в различных областях для анализа проектов. «Нагрузка на фундамент, аэродинамика, вес конструкции – мы проработали эти вопросы вместе с учеными GE Global Research», – говорит Лавель. «Мы пригласили экспертов из GE Aviation, Power, LM Wind и других предприятий GE для проведения экспертных оценок. Это вселило в нас уверенность в том, что мы идем в правильном направлении. Поразительно, чего мы можем достичь, когда сотрудничаем и привлекаем лучшие из имеющихся талантов.”

Инженеры еще далеки от завершения. Команды, работающие в Барселоне, Испании, Нанте, Франции, Гамбурге, Германии и других странах Европы и США, потратят следующие несколько месяцев на совершенствование своих конструкций и подготовку к первым испытаниям компонентов. GE планирует построить первую полную испытательную турбину во втором квартале 2019 года.

Но Лавель уже думает о будущем и ищет способы включить в конструкцию новейшие технологии, такие как 3D-печать, продолжить ее совершенствование и снизить затраты.GE Aviation уже печатает целые блоки авиационных двигателей, а GE Additive построила бета-версию 3D-принтера для металлов, который может печатать детали диаметром до 1 метра. «Мы не можем ограничивать свое мышление, – говорит Лавель. «То, что у нас есть сегодня, может не быть нашим пределом в 2020 году».

Лавель должен знать. Он проработал 35 лет в GE, занимаясь разработкой технологий для электростанций. «Все это было весело, и они имели значение, и они были важны, но то, что помогает улучшить окружающую среду, я думаю, это то, что вы можете пойти домой и рассказать своим детям и своей семье, и они гордятся тем, что вы делаете. .””

Текущая модель турбины Haliade может генерировать 6 мегаватт. Эти машины предназначены для огромной морской ветряной электростанции Merkur в Германии. Изображение предоставлено Томасом Келлнером для GE Reports.

Проектирование ветряных турбин – обзор

10.3.1 Аспекты надежности и ремонтопригодности ветроэнергетических систем

При проектировании ветроэнергетических систем мы сталкиваемся с ситуацией, когда различные заинтересованные стороны имеют противоположные интересы, с множеством, а иногда и противоречивые ограничения.Например, производители заинтересованы в сокращении расходов на техническое обслуживание в течение гарантийного периода, который обычно длится два года. Когда у турбин истекает гарантийный срок технического обслуживания, затраты на техническое обслуживание оплачиваются владельцами. До 2005 г. покупатели турбин обычно могли основывать свои решения о закупках исключительно на характеристиках площадки и цене; однако недавний дефицит турбин сделал их доступность ключевым элементом при выборе поставщиков (EWEA, 2009). Следовательно, OEM-производители начали брать на себя большую ответственность за жизненный цикл, продавая рабочее время, то есть время безотказной работы, вместо машин.Производители турбин теперь предлагают своим клиентам возможность выбора из ряда пакетов услуг, которые включают гарантию доступности. Такие производители очень заинтересованы в том, чтобы учитывать вопросы технического обслуживания на ранних этапах планирования и концептуального проектирования ветроэнергетических систем.

Ключевые проблемы, которые необходимо решить для рентабельной эксплуатации ветряной электростанции, – это минимизация требований к техническому обслуживанию и максимальное облегчение доступа, что имеет решающее значение для оффшорной фермы. Дилемма для проектировщиков состоит в том, как лучше всего сбалансировать затраты на минимизацию обслуживания за счет повышения надежности – часто за счет дополнительных затрат в избыточных системах или большей проектной маржи – со стоимостью систем для облегчения и увеличения возможностей обслуживания (EWEA, 2009).Проектирование обслуживания, проектирование системы мониторинга состояния (CMS) и диагностических приборов, систем сбора данных по техобслуживанию, проектирование безопасности обслуживающей бригады и интеграция систем измерения и контроля являются одними из важных факторов, которые следует учитывать на ранней стадии.

Обеспечение и приобретение элементов поддержки надежности и технического обслуживания на данном этапе считается очень важным. Это влияет на ROCOF, время поддержки и время поддержки (Blanchard, 2004).Например, задачи, которые считаются важными для сокращения ROCOF, включают: анализ требований к надежности, моделирование и анализ надежности, прогнозирование надежности, FMECA, анализ последовательности событий и FTA. Кроме того, важны методы структурной надежности, такие как PSA и асимптотические методы, известные как FORM / SORM, которые используются для структурных компонентов. В результате можно определить список критически важных для системы элементов, а также видов и причин критических для системы отказов (EWEA, 2009). Эти критически важные компоненты будут выделяться как элементы высокого риска либо потому, что они являются «слабыми элементами», которые явно подвержены отказам, либо потому, что они абсолютно необходимы для работы турбины, либо потому, что их диагностика и ремонт дороги и требуют много времени.Определение критических компонентов (таких как редукторы, генераторы и преобразователи мощности, а также второстепенных компонентов с высокой частотой отказов) позволяет персоналу по эксплуатации и техническому обслуживанию (O&M) направлять свои усилия по мониторингу, обучению, инвентаризации и логистике в области, которые обеспечивают наибольшую выгоду. (Уолфорд, 2006). Например, согласно исследованию, в котором изучалась статистика отказов на двух фермах в Швеции, одной в Финляндии и одной в Германии, редуктор является наиболее критичным, потому что время простоя на один отказ велико по сравнению с другими компонентами (Ribrant and Bertling, 2007 ).

Blanchard (2004) продемонстрировал, что для сокращения времени поддержки на стадии проектирования следует также учитывать следующие задачи: определение концепции оперативной поддержки; взаимозаменяемость компонентов системы; анализ человеко-машинного интерфейса применительно к обучению; анализ продавцов и поставщиков с точки зрения зрелости и стабильности; анализ технологии с точки зрения зрелости собственности; уровень анализа ремонта; и анализ задач технического обслуживания. Следовательно, могут быть предоставлены следующие результаты: обучение обслуживающего персонала и операторов, список запасных и запасных частей, техническая документация, испытательное и вспомогательное оборудование и определение необходимых средств.

Для повышения ремонтопригодности (времени на обслуживание) необходимо выполнить следующие задачи: определение концепции обслуживания системы; моделирование и анализ ремонтопригодности; прогноз ремонтопригодности; диагностика отказов; человеческий фактор и анализ доступности; и техобслуживание, ориентированное на надежность (RCM). Соответственно, могут быть получены следующие выходные данные: потребности в запланированном техническом обслуживании, требования к обслуживающему персоналу и уровню квалификации (Blanchard, 2004). Обычно обслуживающий персонал очень хорошо умеет находить эффективные способы выполнения рутинных задач и часто имеет представление об оборудовании, которое можно получить только из практического опыта.Поэтому их предложения и комментарии должны регулярно включаться в процесс постоянного улучшения (Walford, 2006).

Несмотря на то, что существует разумное соблюдение международно признанных стандартов проектирования редукторов ветряных турбин, редукторы еще не достигли своего проектного срока службы, и большинство систем по-прежнему требуют значительного ремонта или капитального ремонта задолго до окончания их предполагаемого срока службы, как указано. Автор: Musial et al. (2007). Они попытались пролить свет на природу отказов коробки передач и обнаружили, что большинство проблем носят общий характер.Таким образом, у многих участников цепочки поставок редукторов ветряных турбин есть возможность сотрудничать друг с другом; плохое соблюдение общепринятых практик в области зубчатых передач или плохое качество изготовления , а не являются основным источником отказа. Следовательно, существует необходимость выявления и исправления недостатков в процессе проектирования; Большинство отказов коробки передач не начинаются с отказа шестерен или дефектов зубьев шестерни. Оценка отказов на месте показывает, что до десяти процентов отказов редукторов могут быть связаны с производственными аномалиями и проблемами качества, связанными с зубчатыми передачами, но это не является основным источником проблемы; Большинство отказов редукторов ветряных турбин, по-видимому, происходит в подшипниках, хотя большинство редукторов было спроектировано и разработано с использованием передовых методов проектирования подшипников.Это означает, что очень важно проанализировать, почему коробки передач выходят из строя, и исследовать основную причину проблем с шестернями. Датская ветроэнергетическая академия (DWPA) сообщила о следующих примерах причин отказа редуктора (DWPA, 2008):

Неправильное или плохое масло, вызывающее неестественный износ

Грязное масло ограничение потока масла и засорение охладителей

Пыль и тормозная пыль забивают внутренние охладители

Уровень масла слишком низкий, создает воздух в масляном насосе

Температура масла слишком шланги низкого давления, продувочные шланги и охладители или разрушающие муфты

Механический износ шлангов

Неисправные перепускные клапаны

Изогнутые шланги, ограничивающие поток масла

0

0

Изменение стандартных параметров при решении проблем

Полное отключение сигналов тревоги

9068 0

Игнорирование сигналов тревоги «фильтр засорен»

Неправильная сборка при замене деталей

Не закрываются клапаны отбора проб масла, что приводит к разрушению редукторов

без осмотра

Знаки простоя, медленно вызывающие поломку подшипников

Многие из проблем с редуктором, описанных выше, могут быть связаны с институциональными барьерами, которые препятствуют обмену информацией и обратной связи во время проектирования, эксплуатации и обслуживания турбин .Следовательно, необходимо широкое сотрудничество различных заинтересованных сторон для объединения различных частей процесса проектирования и обмена информацией, необходимой для решения проблем. Здесь мы предлагаем системную инженерию как подход, который может помочь в решении этих проблем.

Шесть инновационных проектов ветряных турбин

Cat DiStasio

Международная энергетическая ассоциация (МЭА) объявила на прошлой неделе, что мощности возобновляемых источников энергии во всем мире впервые в истории затмили угольную.Ветроэнергетика составляет значительную часть мировой возобновляемой энергии, и с учетом всех последних технологических инноваций в конструкции ветряных турбин не секрет, что она стала наиболее быстрорастущей формой чистой энергии. Используя усовершенствованные технологии, инженеры разработали новые устройства, которые более эффективны и безопасны для птиц. Некоторые ветряные турбины могут даже генерировать энергию, пока есть воздух.

Первая в мире турбина против тайфуна

Первая в мире турбина от тайфуна была изобретена Ацуши Симидзу, чтобы использовать огромное количество энергии, содержащейся в штормах, характерных для его родины в Японии.По его оценкам, энергия, накопленная в одном тайфуне, могла бы обеспечивать нацию 50 лет, если бы только ее можно было использовать. Устройство Симидзу, похожее на взбиватель яиц, представляет собой ветряной генератор Magnus с вертикальной осью, достаточно прочный, чтобы противостоять сильным ветрам тайфуна. Испытания, проведенные с использованием масштабной модели ветроэнергетического генератора, были многообещающими, и Shimizu ставит перед собой задачу связаться с инвесторами, чтобы помочь в создании более крупных практических версий в надежде однажды подать энергию тайфуна в национальную сеть.

Гибридная ветро-гидротурбина

Как ветряная турбина вырабатывает электричество, когда нет ветра? Обычные турбины просто не могут, но новый проект от Max Bögl Wind AG и GE Renewable Energy объединяет традиционные лопастные турбины с гидроэнергетической технологией для первого в мире гибридного ветро-гидроэнергетического генератора. Проект, который будет расположен в Швабско-Франконском лесу Германии, первоначально будет включать четыре ветряные турбины мощностью 13,6 мегаватт.Первый этап планируется подключить к сети в следующем году, а второй этап добавит гидроэлектростанцию ​​мощностью 16 МВт, строительство которой ожидается в 2018 году.

Плавающие ветряные турбины с гелием

В то время как большинство проектов в области ветроэнергетики прочно укоренились на земле или в море, некоторые недавние инновации помещают турбины высоко в небо, где ветер движется быстрее всего. Первая в мире воздушная ветряная турбина была запущена в 2014 году над Фэрбенксом, Аляска. Поднимаемая гелием, как гигантский цилиндрический дирижабль, BAT-Buoyant Airborne Turbine была спроектирована и построена стартапом MIT Altaeros Energies, чтобы парить в воздухе на высоте 1000 футов и улавливать ветровые потоки, в пять-восемь раз более мощные, чем ветер на уровне земли.В ходе 18-месячного эксперимента было произведено достаточно энергии, чтобы обеспечить энергией десяток домашних хозяйств. Благодаря своему высокому расположению системы BAT также могут передавать сигналы Wi-Fi и сотовой связи, а также использовать их в качестве датчиков погоды.

Ветрогенератор Vortex Bladeless

Безопасность птиц – большая проблема в мире ветряных турбин. Чтобы уменьшить опасность для наших летающих пернатых друзей, инженеры создали ветрогенератор Vortex Bladeless, который имеет форму высокой и тонкой соломки, а не имеет больших вращающихся лопастей.Устройство собирает энергию из закрученных вихрей в движущемся воздухе, а поскольку безлопастные ветровые генераторы высоки и тонки, некоторые из них могут быть установлены в пространстве, занимаемом одностворчатой ​​турбиной. Его создатели говорят, что Vortex Bladeless сокращает производственные затраты на 53 процента и расходы на обслуживание на 80 процентов по сравнению с традиционными турбинами, а также имеет меньший углеродный след.

Башня в аэродинамической трубе INVELOX от SheerWind

Эта инновационная ветряная турбина способна производить в 600 раз больше энергии, чем обычные ветряные мельницы.Турбина SheerWind Invelox – это туннельный генератор энергии ветра, который использует ветер с уровня земли и направляет его внутрь, увеличивая скорость воздуха. Генератор Invelox может работать даже в условиях слабого ветра и, поскольку у него нет внешних лопастей, вращающихся с высокой скоростью, он не подвергает опасности местную дикую природу. Кроме того, его строительство дешевле, чем традиционные ветряные турбины.

Энергия ветра для ловли птиц

Один из старейших дизайнов в этом обзоре был создан 89-летним ветераном вооруженных сил, который также любит птиц.В 2012 году Раймонд Грин спроектировал генератор Catching Wind Power, который направляет потоки ветра с помощью того, что выглядит как гигантский мегафон, а затем сжимает входящий воздух, чтобы создать больше энергии в турбине внутри. Однако нет внешних движущихся частей, которые представляли бы угрозу для птиц или летучих мышей, что делает Catching Wind Power намного безопаснее, чем традиционные конструкции. Грин разработал масштабируемую систему, надеясь, что как жилые, так и промышленные установки могут генерировать возобновляемую энергию, не подвергая опасности птиц.

Все продукты, рекомендованные Engadget, выбираются нашей редакционной группой, независимо от нашей материнской компании. Некоторые из наших историй содержат партнерские ссылки. Если вы покупаете что-то по одной из этих ссылок, мы можем получать партнерскую комиссию.

Реализуются планы по строительству огромной плавучей морской ветряной турбины в Европе

Иллюстрация того, как может выглядеть турбина.

Iberdrola

Испанская коммунальная компания Iberdrola возглавляет консорциум, целью которого является разработка крупномасштабной плавучей морской ветряной турбины в Северном море, поскольку этот сектор стремится увеличить масштабы технологий и снизить затраты.

В понедельник компания объявила, что турбина будет иметь мощность более 10 мегаватт (МВт) и протестирована в Морском испытательном центре энергии в Норвегии. По данным торговой организации WindEurope, средний размер морских турбин, установленных в 2019 году, составил 7,8 МВт.

Международный консорциум, состоящий из фирм из Испании, Германии, Франции, Норвегии и Дании, нацелен на снижение стоимости производства морской ветровой энергии на плаву. Iberdrola заявила, что надеется снизить нормированную стоимость энергии (LCOE) для плавучих морских ветроэнергетических установок до 40-60 (44-66 долларов) евро за мегаватт-час (МВтч).

Есть определенные возможности для снижения затрат в оффшорном секторе. В ноябре прошлого года Вуд Маккензи заявила, что европейская LCOE для прибрежных морских ветроэнергетических установок снизится в среднем со 133 долларов за МВтч в 2019 году до 51 доллара за МВтч в 2028 году.

Проект связан с исследовательской и инновационной программой Европейской комиссии Horizon 2020, которая предоставляет почти 80 миллиардов евро для финансирования проектов в период с 2014 по 2020 годы. Iberdrola заявила, что надеется подписать соглашение на сумму около 25 миллионов евро с Европейской комиссией во второй половине этого года.

Строительство плавучей платформы для проекта может начаться во втором квартале 2021 года, а установка начнется в первом квартале 2022 года. Еще один проект плавучей морской ветроэнергетики планируется в Испании, хотя в нем будут использоваться технологии, отличные от тех, что используются в Норвегии.

«Во всем мире существует огромный потенциал для плавучих технологий, поскольку они откроют новые рынки, где водные условия ограничивают развитие традиционных морских проектов», – сказал Джонатан Коул, глобальный управляющий директор по морской ветроэнергетике в Iberdrola.

Лидер в области морской ветроэнергетики, Европа уже является домом для первой в мире плавучей морской ветряной электростанции Hywind Scotland. Пилотная схема с пятью турбинами мощностью 30 МВт в водах у побережья Петерхеда. Она начала подавать электроэнергию в сеть Шотландии в 2017 году.

По мере развития технологий размер ветряных турбин увеличивается. В декабре 2019 года голландское коммунальное предприятие Eneco начало закупку электроэнергии, производимой прототипом ветряной турбины Haliade-X 12 МВт GE Renewable Energy, которая имеет мощность 12 МВт, высоту 260 метров и длину лопастей 107 метров.

Проблемы, связанные с коронавирусом

В целом для ветроэнергетики 2019 год был успешным, но пандемия коронавируса бросает тень на сектор, что может повлиять на рост в ближайшие годы.

Согласно недавнему отчету Глобального совета по ветроэнергетике (GWEC), в прошлом году было установлено более 60 гигаватт (ГВт) ветроэнергетических мощностей, что на 19% больше, чем в 2018 году.

Опубликованный на прошлой неделе отчет показал, что 60,4 ГВт мощности было установлено в 2019 году, втором по величине году для добавлений.Около 6,1 ГВт из этого объема пришлось на морской ветроэнергетический сектор, что сделало 2019 год лучшим годом на сегодняшний день. Общая мощность наземных и морских ветроэнергетических установок в настоящее время составляет более 651 ГВт.

GWEC заявила, что на его прогноз продолжения роста в следующие пять лет – более 355 ГВт добавлений – «несомненно, повлияет продолжающаяся пандемия COVID-19 из-за сбоев в глобальных цепочках поставок и реализации проектов в 2020 году».

Однако было «слишком рано прогнозировать степень» воздействия коронавируса как на энергетические рынки, так и на глобальную экономику в целом, добавили в GWEC.

Ветряные электростанции для ураганов Комплекты ветрогенераторов для жилых домов


Малые ветряные генераторы

Немного о том, как работала или работала малая ветряная турбина в прошлом и чем отличается наш продукт. Чтобы понять, как работает ветрогенератор, вы должны сначала понять, что генератор сам по себе не вырабатывает мощность, он преобразует кинетическую энергию и крутящий момент из набора лопастей в электрическую энергию. Казалось бы, в то время как средний потребитель или частное лицо испытывает сжатие этой концепции, когда понимает, что ветряная турбина коммунального масштаба с огромными лопастями вырабатывает больше энергии, чем ветряная турбина микро.В какой-то момент эта логика теряется для многих потребителей, которые, по-видимому, теперь принимают решения о покупке на основе «рейтингов мощности», которые, по моему опыту, являются просто вымышленными счетами, в некоторых случаях сфабрикованными некоторыми небольшими поставщиками ветроэнергетики. Некоторые члены сообщества энтузиастов малого ветра придумали термин и называют его «ваттными войнами». В то время как войны за ватт полезны для некоторых недобросовестных людей, которые стремятся получить какое-либо конкурентное преимущество, которое они могли бы получить на конкурентном рынке, успехи этих компаний, по сути, сбивают потребителей с толку, порождают нереалистичные ожидания от их продуктов и во многих случаях приводят к исходу многих потребителей. и маленький энтузиаст ветра из хобби.Как минимум, эти люди отвлеклись от того, что важно в малом ветре и, в большей степени, от возобновляемых источников энергии в целом.

Так что же важно при покупке небольшой ветряной турбины?

Я сам еще не получал счета за электроэнергию в ваттах. Используемая мера – киловатт-часы. Это просто означает использование нагрузки 1000 Вт в течение всего часа. Это используется для расчета того, сколько энергии используется и как определить размер систем возобновляемой энергии.При обсуждении малых ветряных генераторов было бы лучше понять, какие из них будут производить больше киловатт-часов в день.

Турбина А имеет стабильную мощность 250 Вт, поэтому за 4 часа она производит 1 киловатт-час. В течение дня тот же ветрогенератор в этом примере будет производить 6 киловатт-часов в течение дня. 24 часа, разделенные на 4, составляют 6 кВтч. Оценивая эту скорость, мы можем предположить, что на этой средней турбине A будет генерироваться около 180 кВт / ч в месяц.

Турбина B Эта турбина поставляется от производителя с номинальной мощностью 2000 Вт. 5 лопаток диаметром 28 дюймов с минимальной рабочей площадью.После проверки калькулятора клинков, который мы обнаружили в компании Warlock Engineering, мы обнаружили, что для достижения мощности всего 200-300 Вт при стандартной конструкции энергетической лаборатории Национального исследовательского центра на скорости 24,6 миль в час. Это была бы выходная мощность, если бы турбина была хорошо спроектирована, как рекламируется, и запускалась при слабом ветре, как рекламируется. Реальность такова, что многие из этих турбин плохо спроектированы и построены и со временем вырабатывают незначительную мощность, если только они не работают при сильном ветре. Гипотетически для обсуждения мы дадим турбине В преимущество сомнения и скажем, что она вырабатывает 2000 Вт в течение получаса во время сильного ветра.В этом случае турбина производила бы 1 кВт / ч, а генераторы – минимальную, если вообще мощность, при среднем ветре из-за плохой конструкции, зубчатости и других конструктивных недостатков. Снова предоставляя некоторым из этих продуктов преимущество сомнения и «кредит» от производства еще одного кВтч в течение остальной части дня при подзарядке при ветре 12-18 миль в час, этот продукт может выдавать в целях обсуждения 2 кВтч на день. В течение месяца у вас будет что-то еще, порядка 60 кВт · ч, произведенное за тот же период времени.

Выводы

Глядя на оба гипотетических примера и сравнивая, легко увидеть и теперь понять, почему небольшой ветрогенератор, рассчитанный на необычно высокую выходную мощность, на самом деле может вырабатывать меньше полезной мощности с течением времени в несколько раз. В 3-4 раза меньше, чем на то, что хорошо построено, правильно спроектировано и честно оценено.

При этом и в генераторе у вас есть обмотки. Это провода, которые вы видите в кожухе, которые намотаны в непосредственной близости.Эти провода имеют эмалированное покрытие, которое имеет температурный диапазон, при котором, если он нагревается за пределы покрытия, сгорает, и генератор или даже электродвигатель сгорают. Поэтому важно понимать, что в любом генераторе, если слишком большой крутящий момент приложен к обмоткам такого размера или калибру проводов, ток в силе тока нагнетает тепло, и любой генератор может сгореть, если для данного генератора приложен слишком большой входной крутящий момент. Вот почему важно согласовать ветряную турбину с генераторной установкой.

Понимание обмоток генератора с постоянными магнитами и покупка pma’s

В любом генераторе, будь то переделанный генератор переменного тока с постоянными магнитами delco, наши конструкции с радиальным или даже большим осевым потоком с белой молнией могут использоваться с разными калибрами проводов, которые используются по разным причинам для конкретного применения. Также важно понимать, что, вообще говоря, когда вы смотрите на генератор переменного тока с постоянным магнитом для продажи на нашем сайте ebay youtube Amazon и т. Д., Когда вы видите рекламируемое напряжение, такое как часто модели 12, 24 и 48, это обычно не означает, что есть это своего рода внутренний регулятор, который ограничивает выходное напряжение генератора или pma до адекватного уровня зарядного напряжения для приложения. Это одна из самых больших ошибок, которые, как мы видим, делают сами люди при выборе генератора.Обычно продавцы и производители оценивают генератор с постоянным магнитом как, например, 12 вольт, когда диапазон оборотов генератора достаточен для достижения напряжения отключения для зарядки данной батареи. Термины ветряная мельница, ветряные генераторы, ветряные зарядные устройства или комплекты ветряных турбин для жилых помещений, которые мы часто видим взаимозаменяемыми, пытаются сказать вам, что в приложении с прямым приводом с определенным набором лопастей они будут использовать конкретный генератор для приложения. Так в чем разница? Генератор любого типа имеет емкость «прорези» или область, в которую может поместиться обмотка.Это будет уникально для конкретного генератора. Важно понимать, что в пределах рабочей зоны можно использовать провода разного калибра. В области обмоток генератора больше витков или любая другая терминология, которую вы предпочитаете, могут поместиться в данной области с более тонким проводом, чем с более толстым проводом, в зависимости от того, что физически вписывается в данную катушку статора, обмотку, обмотку и / или паз. «Опять же, какая терминология подходит для данного генератора переменного тока.

Влияние калибра провода в обмотке генератора с постоянным магнитом,

1-й принцип работы ветрогенераторов (который мы преодолели с помощью нашей новой технологии) Я объясню, как это сделать в конце статьи.

Врезка в точку.

Независимо от напряжения аккумуляторной батареи системы или запуска связи с сетью для получения любой полезной мощности, напряжение в обмотках статора или генератора должно быть выше, чем то, на которое он пытается передать мощность.

Когда полюс или магнитное поле проходит через катушку, в результате начинают течь электроны, но для целей нашего обсуждения того, как работают обмотки, важно понимать, что большее количество обмоток в прорези более тонкого провода создает более высокое напряжение с магнитный ротор вращается на более низких оборотах.Это отлично подходит для ветряных генераторов в районах с слабым ветром и встраивается в здания, где люди помнят, что выработать некоторую мощность с течением времени лучше, чем не производить никакой энергии, пока не дует сильный ветер. Это остается балансирующим действием, потому что, хотя многие потребители хотят генератор с низкой частотой вращения. Компромисс заключается в том, что в то время как более тонкий провод будет создавать напряжение для достижения точки разреза, чтобы начать генерировать мощность, нижняя сторона заключается в том, что более тонкий провод ограничивает потенциальный ток, который может нести обмотка. Проволока Найнера также нагревается из-за большего внутреннего сопротивления.

Во многих отношениях то, что происходит с производителем, во многих случаях является тонким балансирующим действием, которое должно учитывать множество переменных. Если провод слишком тонкий, генератор может «включиться», то есть повысить напряжение выше, чем на батарее. Если включение слишком низкое, сопротивление будет затягивать турбину, водяное колесо и т. Д. С резистивной нагрузкой из-за недостатка крутящего момента. Избыточное тепло может накапливаться, когда обмотка пытается пропустить ток при наличии достаточного крутящего момента для преодоления «резистивной нагрузки», т.е.е. когда генератор становится труднее вращать после включения ». И наоборот, в случае, когда в генераторе используется слишком толстая или тяжелая обмотка, существует потенциал для создания большого тока, но из-за ограничений частоты вращения для конкретного приложения мощность не может генерироваться из-за невозможности достичь точки включения. Примерное напряжение аккумулятора составляет 13,3, но напряжение холостого хода генератора составляет 8,8. Напряжение перетекает от более высокого давления к более низкому »

Неправильный генератор Неправильное приложение

Одна из ошибок, которую часто допускают новички, пытающиеся определить размер генератора, заключается в том, что они покупают именно по классификации напряжения.Помните, как мы обсуждали ранее, изготовители ветряных генераторов склонны оценивать свои напряжения при оборотах прямого привода 150–250 при заданном напряжении. Это не означает, что если генератор с постоянным магнитом вращается на более высоких оборотах, напряжение генератора не будет превышать 24 или даже 48 вольт. Это означает, что в случае, если у вас может быть гидромашина с кабелем с более высокой передачей и более высокими оборотами, может быть лучше фактически использовать генератор переменного тока с постоянными магнитами на 24 или даже 12 вольт.

Вольт, умноженное на амперы = ватты

В примере, где потребитель решает использовать генератор, обозначающий 12 вольт, который будет иметь более толстую обмотку, он на самом деле будет иметь возможность проводить больший ток на конкретном генераторе и производить больше мощности при 48 вольт, в то время как фактически работает pma. прохладнее и продлевает продолжительность жизни.

Ураган Белая молния: отклонение от статус-кво

Hurricane white Lightning использует более толстую обмотку, которая позволяет более высокому уровню тока проходить к сетке или батарее. Это позволяет генератору работать с обоими охладителями и пропускать большую силу тока, что дает большую мощность и меньшее сопротивление, проходящее через обмотки. Мы используем запатентованный интеллектуальный контроллер MPPT для повышения выходной мощности, чтобы максимизировать выходную мощность в любых условиях. Если вы могли следить за обсуждением по существу, мы удалили часть действия по уравновешиванию.Мы больше не ограничены использованием более тонкой проволоки в обмотках для достижения точек врезки. У нас меньше тепла в генераторах. Больший контроль над турбинами и, наконец, большая выходная мощность с течением времени, чем что-либо в этом классе. Мы используем наш контроллер, чтобы получать зарядную мощность от турбин, которую другие машины с более легкой обмоткой не могут.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *