Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

планирование и типы ветряных электростанций :: BusinessMan.ru

Ветряные электростанции (ВЭС) – устройства специальной конструкции, в которых энергия ветра преобразуется в электрическую. С каждым днем они становятся популярнее. Использующие природные, а главное, возобновляемые источники энергии, удобные и простые ветроэлектростанции, так называемые ветряки, являются прекрасной альтернативой традиционным электростанциям, особенно в частных домах.

Использование энергии ветра

Ветряные мельницы, а точнее принцип их действия, были незаслуженно забыты в двадцатых годах прошлого века. Впрочем, силу ветра не использовали и тогда для получения электрической энергии. Она приводила в действие жернова мельниц, использовалась в качестве движителя для парусных судов, позднее запускала насосы для закачки воды в резервуары, то есть превращалась в механическую энергию.

Ветроэнергетика начала стремительно развиваться в конце шестидесятых годов прошлого, XX столетия. В это время стало катастрофически не хватать традиционных энергоносителей, кроме того, они резко поднялись в цене, все острее становились экологические проблемы, связанные с их использованием.

Способствовал использованию альтернативных источников электроэнергии, в том числе силы ветра, и технический прогресс. Появились новые высокопрочные и достаточно легкие материалы, позволяющие возводить башни до 120 м высотой и огромные лопасти.

Ветра, дующие во многих регионах планеты, в состоянии вращать турбины электростанции с достаточной скоростью, чтобы обеспечивать энергией частные дома, небольшие фермы или школы в сельской местности.

Но в любой бочке меда найдется хотя бы одна ложка дегтя. Ветер невозможно подчинить, он не дует всегда, тем более в одном направлении и с одинаковой скоростью. Технический прогресс не стоит на месте. Если сегодня ветряные электростанции для частного дома, вырабатывающие сотни киловатт электроэнергии, уже не являются большой редкостью, то завтра, может быть, повседневностью станут и станции мощностью в десятки мегаватт. Во всяком случае, уже есть ветроэлектростанции, мощность которых составляет 5 мВт и больше.

Преимущества и недостатки ветроэлектростанций

Ветряные электростанции обладают кроме использования бесплатной энергии ветра и независимости от внешних источников электроэнергии еще несколькими весомыми преимуществами. Не существует экологической проблемы хранения и утилизации отходов, да и сам способ получения энергии один из самых экологичных. Не говоря уже о том, как эстетично выглядит ветряк на фоне неба, достоинством его можно считать, что установка может быть как стационарной, так и передвижной.

Кроме того, сегодня уже можно подобрать ВЭС подходящей модели и мощности или использовать установку, сочетающую использование нескольких источников энергии, традиционных и альтернативных. Это может быть дизель- или солнечно-ветряная электростанция.

ВЭС имеют и недостатки. Во-первых, они шумные настолько, что крупные установки в ночное время приходится отключать. Во-вторых, создают зачастую помехи для воздушных сообщений или радиоволн. В-третьих, их нужно размещать на поистине огромных площадях. И есть еще один существенный недостаток лопастных конструкций – их нужно отключать во время массовых сезонных перелетов птиц.

Типы ветроэлектростанций

По функциональности электростанции ветряные можно разделить на стационарные и передвижные, или мобильные. Мощные стационарные установки требуют проведения целого комплекса подготовительных работ, но они в аккумуляторных батареях способны накапливать достаточное для использования в безветренную погоду количество электроэнергии.

Передвижные электростанции проще по конструкции, неприхотливы, их легко устанавливать и просто эксплуатировать. Обычно они используются для питания электроприборов или в путешествиях.

По конструкции различают крыльчатые и роторные ветроэлектростанции.

По месту установки ВЭС бывают:

  • наземные. Они устанавливаются на возвышенностях и наиболее распространены на сегодняшний день;
  • прибрежные. Строятся в прибрежной зоне морей и океанов, где из-за неравномерного нагревания суши и воды постоянно дуют ветры;
  • оффшорные. Строятся в море на расстоянии 10-15 км от берега, где постоянно дуют морские ветры;
  • плавающие. Они тоже располагаются примерно на таком же расстоянии от берега, как и оффшорные, но на плавающей платформе.

По сферам применения электростанции ветряные бывают промышленные и бытовые.

Крыльчатые ВЭС

Уже привычными стали крыльчатые ВЭС, которые лидируют на рынке ветроэнергетики. На высокой мечте устанавливается лопастной механизм с горизонтальной осью вращения, преимущественно трехлопастной, и его мощность зависит от размаха лопастей. Максимальной скорости вращения такой агрегат достигает, когда лопасти перпендикулярны ветровому потоку, поэтому в его конструкции предусмотрено устройство автоматического поворота оси вращения в виде крыла стабилизатора на малых и электронной системы управления рысканием на более мощных станциях.

Различаются между собой крыльчатые ветроэлектростанции в основном количеством лопастей. Они могут быть многолопастными, двухлопастными, даже с одной лопастью и противовесом.

Роторные ВЭС

Роторные, или карусельные, электростанции ветряные имеют вертикальную ось вращения и не зависят от направления ветра. Это важное преимущество, если используются приземные рыскающие воздушные потоки. Минусом ВЭС такой конструкции является использование многополюсных генераторов, которые работают на малых оборотах и не имеют широкого распространения.

Эти установки тихоходны и, как следствие, не создают большого шума. Кроме того, их достоинством является простота электрических схем, которые не нарушаются при случайных резких порывах ветра.

Специалисты считают, что роторные ВЭС наиболее перспективны для большой ветроэнергетики. Правда, чтобы раскрутить такую установку, к ней нужно приложить внешнюю энергию. Только когда она достигнет определенных аэродинамических показателей, сама переходит в режим генератора из режима двигателя.

Комбинированная система «ветро-дизель»

Недостаток ветроагрегатов — неравномерная подача электроэнергии – в крупных сетях компенсируется большим количеством установок.

Также компенсировать этот недостаток можно, используя комбинированные системы, в которых есть специальные устройства, распределяющие нагрузки между ветроэнергетической установкой (ВЭУ) и дизелем. Поэтому автономные сети небольшой мощности от 0,5 до 4 МВт в паре с дизелем могут надежно и равномерно функционировать.

Современное оборудование, с помощью которого экономится около 65 % жидкого топлива в год, позволяет всего за несколько секунд при необходимости подключить дизель или отключить его.

Бытовые и промышленные ВЭС

Бытовые ветроэнергетические установки имеют мощность от 250 Вт до 15 кВт, могут работать в комплексе с солнечными батареями, с аккумулятором или без него.

Электроэнергия, вырабатываемая бытовыми ВЭС, достаточно дорогая, но часто бывает, что других ее источников просто нет.

Бытовые ветряные электростанции в России производятся с генератором постоянного тока, который заряжает аккумуляторные батареи емкостью до 800 А/ч. От таких батарей в доме могут работать все бытовые приборы: телевизор, электрочайник и др.

Процесс зарядки батарей после отключения нагрузки может быть достаточно долгим, в зависимости от силы ветра и мощности генератора.

Зарубежные бытовые ВЭС на российском рынке тоже есть, они достаточно дороги, но выдают, как правило, меньше половины номинальной мощности.

Промышленные ВЭС отличаются значительно большей мощностью и объединяются, как правило, в единые сети.

Частные ветряные электростанции в основном имеют мощность от 3 до 5, реже 10 кВт. Если среднегодовая скорость ветра в регионе достигает 3-4 м/с, то такая ВЭС может обеспечить электроэнергией средний загородный дом, СТО или небольшое кафе.

Основные характеристики ВЭС

Номинальная мощность является основным показателем, который характеризует все электростанции, ветряные не исключение. Она определяется мощностью, которую вырабатывает генератор при средней скорости ветра 12 м/с, и зависит от типа станции.

Следующим важным показателем является номинальное напряжение ВЭС, которое вырабатывает генератор. Это может быть как 220 В, так и 12 В, и 24 В.

От мощности турбины зависит электрическая мощность генератора. Поскольку мощность турбины тем выше, чем больше ее диаметр и, следовательно, прочней мачта, то этот показатель важен при выборе и расчете конструкции мачты.

Ветроустановка имеет еще несколько характеристик. Важна ее производительность – это количество электроэнергии, которое устройство вырабатывает в год. Необходимо при выборе ВЭУ знать максимальную скорость ветра, которую выдерживает турбина, и его минимальную (пусковую) скорость, при которой она начинает вращаться. Играют роль при выборе и частота вращения турбины, и количество лопастей.

Принцип работы и устройство ВЭС

На ветряной электростанции поток воздуха вращает колесо с лопастями, с которого крутящий момент передается на другие механизмы. Чем больше размеры колеса, тем больший поток воздуха оно захватывает и, следовательно, быстрее вращается.

Если говорить языком физики, линейная скорость ветра преобразовывается в угловую скорость вращения оси генератора, который, в свою очередь, преобразовывает вращательное движение в электрическую энергию, передавая ее через контроллер на аккумуляторы. На выходе из устройства электроэнергия уже пригодна к бытовому использованию.

То есть, малая электростанция ветровая состоит из турбины, лопастей, хвоста (поворотного механизма), мачты с тросами-растяжками, аккумуляторов, контроллера их заряда и инвертора, который преобразовывает напряжение 12 В в 220 В.

Кроме этих устройств промышленная ВЭС содержит еще системы слежения за направлением ветра и его скоростью, состоянием ветрогенератора и защиты от грозовых разрядов. Кроме того, с нагрузками большего масштаба мачта не справляется, и ее заменяют башней, в которой располагается все дополнительное оборудование.

Проектирование ВЭС

Главный показатель, который позволяет принять решение об использовании ветроэлектростанции, — это среднегодовая скорость ветра, которая должна быть не меньше 5 м/с. Правда, сегодня уже существуют легкоразгоняемые ВЭС, предназначенные для электроснабжения частных домовладений, которые начинают работу с минимальной скорости воздушного потока в 3,5 м/с.

Для определения этого показателя используются специальные карты ветров.

В различных климатических зонах России были проведены измерения скорости ветра, чтобы определить, насколько эффективны там ветровые электростанции. Ветряные установки и станции уже действуют в Калининградской области, на Командорских островах, в Мурманске, Республике Саха (Якутии), в Башкортостане.

Принимая решение об установке ветроэнергетической установки или частной ВЭС, стоит для начала обратиться к специалистам, чтобы провести исследования направления и силы ветра с помощью анемометров и построить карты доступности его энергии. По этим данным рассчитывается и разрабатывается проект ВЭУ или станции из нескольких установок, ее технические и геометрические параметры.

Промышленную ВЭС достаточно большой мощности без инвесторов не построить, а грамотно выполненные расчеты и составленный проект позволят определить срок окупаемости проекта и привлечь дополнительные финансы.

Частные ветряные электростанции

По существенно заниженным данным статистики, не учитывающим отдельно стоящие удаленные здания и сооружения, около 30 % частных хозяйств в сельской местности, куда прокладка электрических сетей невозможна по экономическим причинам, не имеют электроснабжения. Не везде даже стоят генераторы на жидком топливе. И это в XXI веке!

Исследования показали, что ветроэнергетические станции различной мощности можно устанавливать во многих районах севера и Крайнего Севера, на Сахалине и Камчатке, в Нижнем Поволжье, Сибири, Карелии и на Северном Кавказе.

На выбор установки влияют потребности заказчика. Если нужно обеспечить работу сельхозтехники, с такой задачей справится маломощный ветрогенератор. Если же нужно электрифицировать целое здание, наладить уличное освещение, обеспечить отопление дома, нужно выполнять проект ветряной электростанции.

Кроме среднемесячной скорости ветра и его направления нужно рассчитать среднемесячное потребление и пиковую нагрузку электроэнергии. Такие расчеты при желании несложно выполнить самостоятельно.

Существует еще один показатель, который влияет на стоимость оборудования и монтажа ВЭУ. Это высота мачты. Чем сооружение выше, тем больше скорость ветра и тем дороже оно обходится. Оптимальной, по утверждению специалистов, является высота мачты на 10 большая, чем самое высокое дерево или здание в радиусе 100 м.

Ветряная электростанция своими руками

Для работы электронасоса, телевизора, освещения или других маломощных электроприборов на дачном участке ветроэнергетическую установку можно сделать собственноручно, если есть некоторые познания в электротехнике.

Существуют справочные данные и рекомендации по выбору мощности ветрогенератора, размерам и количеству его лопастей и достаточно подробные инструкции, как сделать ветряную электростанцию своими руками, из каких материалов и узлов.

Сегодня в Европе растут капиталовложения в строительство больших ветроэлектростанций. Массовое строительство снижает себестоимость одного киловатта и приближает ее к цене электроэнергии, полученной из традиционных источников.

Конструкция ветроэлектростанций постоянно совершенствуется, улучшаются аэродинамические и электрические показатели, снижаются потери.

Ветряные электростанции для дома, по оценкам экономистов, становятся самыми эффективными в плане окупаемости проектами в области энергетики. В дальнейшем они обещают независимость от негативных тенденций на этом рынке.

businessman.ru

как устроены ветровые электростанции, рентабельность и особенности конструкции

Ветроэнергетика как отрасль может базироваться только на использовании крупных и высокопроизводительных ветровых турбин. Установки малой мощности, обеспечивающие лишь отдельные дома или группы потребителей, интересны только как автономные источники энергии. Крупные ветротурбины успешно используются в странах Запада, США, Китае. Для использования таких устройств требуется достаточно сильный и стабильный ветер, что свойственно не всем регионам.

Как устроены мощные промышленные ветрогенераторы?

Существующие ныне мощные ветрогенераторы имеют практически одинаковую конструкцию. За основу взят горизонтальный ротор с крыльчаткой. Большие размеры лопастей создают высокую площадь сопротивления потоку ветра, поэтому обычно устанавливается по три лопасти. Масса таких установок очень велика — одна из величайших установок Enercon E-126 весит 6000 т. При таких параметрах требуется достаточно сильный и ровный ветер.

Для старта вращения используются специальные электродвигатели. Большинство моделей не имеет устройства наведения, обходятся установкой на преобладающем направлении потока. Обычное место использования — степные или пустынные регионы, прибрежные или шельфовые районы с постоянными и ровными ветрами.

Конструкция мощного ветрогенератора состоит из следующих элементов:

  • опорная башня. У образцов меньших размеров это мачта. Башня имеет коническую форму, способствующую большей устойчивости и равномерному распределению нагрузок. Изготавливается на месте путем последовательной заливки бетоном соответствующей опалубки. В основании имеется мощная бетонная площадка, являющая цоколем фундамента, обеспечивающего неподвижность и устойчивость
  • гондола. Это камера, внутри которой расположены генераторный отсек, устройства передачи вращения. К ней же присоединяется ротор, конструктивно являющийся продолжением гондолы и образуюший вместе с ней обтекаемую форму. Внешняя часть ротора состоит из хаба и лопастей. Хаб — это центральный обтекатель, установленный на валу генератора и служащий для присоединения лопастей. Гондола имеет возможность вращения вокруг башни для установки на ветер, для чего используется асинхронный электродвигатель и зубчатая передача, опоясывающая всю верхнюю часть башни. Возможность вращения имеется не у всех моделей, для шельфовых ветряков, работающих на потоках двух противоположных направлений, эта функция необязательна.
  • генератор турбины представляет собой устройство кольцевого типа. Ротор турбины конструктивно объединен с ротором генератора, это снижает потери и уменьшает материалоемкость. Для подобных конструкций принципиально важно в максимальной степени исключить узлы передачи вращения, взамен применяя единые цельные элементы.

Лопасти изготавливаются из специального композитного волокна с включениями стали. В зависимости от размеров они изготавливаются целиком или набираются из отдельных частей. Устройство лопастей предусматривает возможность изменения профиля или угла поворота, позволяя регулировать аэродинамику в соответствии с режимом ветрового потока.

В зависимости от размеров, фирмы-изготовителя и назначения ветряка, могут иметься какие-либо изменения в конструкции, дополнения или иные особенности, присущие только данной модели.

Размеры ветряка

Промышленные ветрогенераторы большой мощности обладают впечатляющими габаритами. Так, уже упоминавшийся Enercon E-126 имеет полную высоту 198 м при размахе лопастей 128 м. Площадь, которую ометают такие лопасти, составляет 12668 м2.

Размеры других ветряков соответствуют вырабатываемой мощности. Существуют более крупные или мелкие модели, но все они велики и обладают большим весом. При этом, поверхность земли занимает только основание мачты, вся остальная площадь пригодна для использования под сельское хозяйство.

Примечательно, что мощные ветряки нерентабельны по отдельности. Они используются чаще всего в составе больших ветроэлектростанций, занимающих достаточно большие площади. В составе комплексов насчитываются десятки и даже сотни отдельных установок, объединенных в единую систему и выдающие суммарную мощность в несколько мВт. Они создаются в местах с оптимальными ветровыми условиями, способными обеспечить равномерную нагрузку и стабильную производительность оборудования.

Большие размеры означают высокие цены на оборудование. Так, стоимость турбины Enercon E-126 составляет 11 млн евро. Можно примерно подсчитать стоимость целой ветроэлектростанции, эксплуатационные расходы и затраты на доставку и монтаж таких гигантов. Соответственно, себестоимость энергии достаточно высока, а срок службы относительно низок — около 20 лет.

Мощные ветрогенераторы: сравнительная характеристика

Параметры мощных ветряков напрямую зависят от их мощности. Тип конструкции у всех моделей практически одинаков, так как аэродинамика лопастей, оптимальным образом подходящая для установок высокой мощности, должна соответствовать именно такой конфигурации. Поэтому сравнивать можно только пропорции крыльчатки того или иного устройства. Гораздо проще рассматривать мощность установок, поскольку она важнее для любых расчетов и может сказать гораздо больше для потенциального пользователя.

Флагманами в этом направлении являются известные фирмы Siemens, Enercon, Vestas и многие другие. Конкуренция между ними весьма жесткая, так как спрос ограничен, ошибки недопустимы. Отсюда высочайшее качество оборудования, отлаженный механизм работы всех узлов и агрегатов. Примечательно, что спрос на крупные устройства намного ниже, чем на менее производительные. Цена оборудования не позволяет широко распространять его повсеместно, выбор делается в сторону меньших расходов.

Промышленные ветровые электростанции

Функционирование нескольких сотен крупных ветряков способно создавать большие мощности. Создание ветровых электростанций позволило решить проблемы с электроснабжением регионов, не имеющих возможности строительства ГЭС или АЭС.

Примечательно, что запрет на строительство АЭС в ряде регионов мира и отсутствие других возможностей явились причинами возникновения множества ВЭС, хотя эксплуатационные и экономические параметры ветряков уступают более традиционным вариантам выработки энергии. Кроме того, ветроэнергетика признана экологически чистым направлением, что также сыграло немалую роль в развитии отрасли.

В последнее время наблюдаются две параллельные тенденции:

  • рост числа мощных установок, объединенных в большие станции
  • возрастание интереса к частным источникам, дающим возможность автономного существования без использования сетевых ресурсов

Возникает конкурентная ситуация, когда большие вложения в огромные комплексы перестают покрываться доходами от них, а небольшие установки становятся все более выгодными и удобными. Будущее покажет, какая система станет наиболее распространенной и эффективной.

Рекомендуемые товары

energo.house

📌 Ветряная электростанция — это… 🎓 Что такое Ветряная электростанция?

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС.[1]

Офшорная ветряная электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире

Карта потенциала ветроэнергетики США

Ветряная электростанция — несколько ветрогенераторов, собранных в одном или нескольких местах. Крупные ветряные электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветряные электростанции называют ветряными фермами (от англ. Wind farm).

Планирование

Исследование скорости ветра

Ветряные электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветряных электростанций: эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота

Скорость ветра возрастает с высотой. Поэтому ветряные электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30—60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект

При строительстве ветряных электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветряной энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Современные ветряные электростанции прекращают работу во время сезонного перелёта птиц.

Типы ветряных электростанций

Наземная

Наземная ветряная электростанция в Испании. Построена по вершинам холмов.

Наземная ветряная электростанция возле Айнажи, Латвия.

Самый распространённый в настоящее время тип ветряных электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветряной фермы может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветряной электростанцией является электростанция в городе Роско (Roscoe), штат Техас, США. ВЭС Роско была запущена 1 октября 2009 года немецким энергоконцерном E.ON. Станция состоит из 627 ветряных турбин производства Mitsubishi, General Electric и Siemens. Полная мощность — около 780 МВт. Площадь электростанции не менее 400 км².[2]

Прибрежная

Строительство прибрежной электростанции в Германии.

Прибрежные ветряные электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой — с остывшего побережья к водоёму.

Шельфовая

Шельфовые ветряные электростанции строят в море: 10—60 километров от берега. Шельфовые ветряные электростанции обладают рядом преимуществ:

  • их практически не видно с берега;
  • они не занимают землю;
  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией является электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт[3].

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветряной турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года[4]. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания планирует в будущем довести мощность турбины до 5 МВт, а диаметр ротора — до 120 метров.

Панорамы ВЭС

ВЭС в России

На 2008 год общая мощность ВЭС в стране исчислялась 16,5 МВт[5]. Одна из крупнейших ветровых станций России — Зеленоградская ВЭУ, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области. Её суммарная мощность составляет 5,1 МВт. Состоит из ВЭУ датской компании SЕАS Energi Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая).

Мощность Анадырской ВЭС составляет 2,5 МВт.

Мощность ВЭС Тюпкильды (Башкортостан) составляет 2,2 МВт.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

Около Мурманска строится опытная демонстрационная ВЭУ мощностью 250 кВт[6].

См. также

Примечания

Литература

Методы разработки ветроэнергетического кадастра.//АН СССР, ГЛАВНИИ при Госэкономсовете Энергетический институт им. Г. М. Кржижановского. Изд-во АН СССР, 1963.

Ссылки

dic.academic.ru

Ветровая электростанция Википедия

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС[1].
Прибрежная ветровая электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире

Ветровая электростанция  — это несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов.
Иногда ветровые электростанции называют «ветровыми фермами» (от англ. Wind farm).

Планирование[ | ]

Исследование скорости ветра[ | ]

Ветровые электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветровых электростанций, так как эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

ru-wiki.ru

Ветрогенераторы, ветряные электростанции — альтернативные источники энергии

Ветер, и ветровая энергия, давно используются человечеством в своих целях. Жители древнего Вавилона и Китая использовали силу ветра для полива орошаемых культур в сельском хозяйстве. А первые парусные лодки появились еще раньше. В средние века в Европе использовались ветряные мельницы, чтобы размолоть зерно в муку. Поэтому можно смело заявить об эффективности ветровой энергии в истории человечества.

Физически процесс происходит следующим образом. Солнце нагревает атмосферу неравномерно, поэтому некоторые участки теплее, а некоторые – холоднее. Воздух движется из теплых участков — в холодные, создавая ветер.

Эту силу ветра и используют в ветрогенераторах (ветряные электростанции). Ветер обдувает винт ветрогенератора, тем самым приводя его в движение. Для вращения винта, нужен ветер, со скоростью около 25 км/ч.

 

Конструкция ветрогенератора

 

Сам ветрогенератор состоит из следующих основных частей:

 

 

 

  • Ротор (лопасти ветряной электростанции) — преобразует энергию ветра в энергию вращения. Большинство современных роторов ветровых турбин состоит из трех лопастей.
  • Современные лопасти ветряных электростанций в диапазоне 30 метров в длину, как правило, изготовлены из армированного стекловолокном полиэстера или древесно-эпоксидной смолы. Скорость вращения лопастей от 12 до 24 оборотов в минуту на низкой скорости.
  • Редуктор повышает скорость вращения вала с низкой скорости (приблизительно от 12 до 24 оборотов в минуту) до высокой скорости вращения (примерно 1000 — 3000 оборотов в минуту), и приводит в движение генератор. Некоторые современные ветряки имеют генератор, подключенный напрямую к лопастям.
  • Генератор использует магнитные поля, чтобы преобразовать результирующую вращательную энергию в электрическую энергию.
  • Анемометр и флюгер расположены на задней стороне корпуса ветровой турбины и измеряют скорость ветра. Собранная информация используется системой управления для того, чтобы вырабатывать максимальное количество энергии. Данные скорости ветра также используются для контроля работы и позволяют операционной системе начинать и останавливать турбину. Современная ветряная электростанция начинает вырабатывать энергию при скорости ветра от 4 м / с и выключается при скорости около 25 м / с. Механизм рыскания поворачивает ротор в преобладающее направление ветра.
  • Башня ветрогенератора изготавливается из стальных труб, хотя решетчатые башни до сих пор используются в некоторых странах. Башни для современных ветровых электростанций бывают высотой от 60 метров до 100 метров.
  • Трансформатор преобразует напряжение, которое требуется для электрической сети. Трансформатор может быть встроен в башню или расположен у основания башни.

 

Лучшие места для установки ветряных электростанций — это прибрежные районы, которые открыты сильным и постоянным потокам ветра. Некоторые ветрогенераторы устанавливают прямо в море. Лопасти специально поднимают на максимальную высоту, туда, где ветер имеет наибольшую силу.

 

 

 

 

Плюсы использования ветровых электростанций (ветрогенераторов):

 

 

 

 

  • Ветряная энергия довольно дешева, генераторы не нуждаются ни в каком топливе
  • Не производит выбросов, или отходов производства энергии
  • Отлично подходит для обеспечения энергией отдаленных районов

 

 

 

 

Недостатки ветрогенераторов

 

 

 

 

  • Ветер не всегда предсказуем – иногда бывают периоды без ветра по несколько дней
  • Земля под ветрогенераторы рядом с побережьем обычно стоит недешево

 


Одна из самых распространенных проблем в поиске подходящих мест для строительства ветровых турбин является движение военных и гражданских самолетов. Вот почему авиация является одним из первых вопросов, которые исследуются при строительстве ветрогенератора в определенном месте. Здесь есть проблемы и использования радаров и физической посадки – взлета самолета.

Но проблем с авиацией можно избежать несколькими способами:

 

 

 

 

  • Снижение общей высоты турбины ветрогенератора
  • Уменьшение количества или ориентации турбин

 


Проектирование и создание проекта ветряной электростанции проводится в несколько этапов. Проводится полное технико-экономическое. Это технико-экономическое обоснование включает в себя подробные освещение пунктов о местных радарах, авиации, археологии, животного мира, доступе телекоммуникаций, гидрологии местности и расположении.

 

 

 

 

Строительство ветряной электростанции

 


Строительство ветряной электростанции может занять от 4 месяцев постройки одной башни ветрогенератора, до 2 лет — большой электростанции, состоящей из 20 и более турбин.

Срок службы ветрогенератора по проекту считается равным 20 – 25 лет. После этого генераторы или заменяются на новые или демонтируются. Причем в развитых странах демонтаж происходит самым тщательным образом – демонтируются все следы человеческого вмешательства в природу, убираются все остатки кабелей, деталей, строительного мусора, восстанавливается природный слой почвы.

Строительные работы, необходимые для строительства ветряной электростанции меняются от места к месту, но обычно включают следующие этапы:

 

 

  • Временная строительная площадка — размером примерно 50 х 50 м
  • Основание ветряной башни ( из железобетона ) Бетонированная площадка ( в том числе для стоянки автотранспорта), прилегающая к турбине — обеспечивает стабильную основу, на которой держится сама башня генератора.
  • Здание контроля и управления — площадь примерно 6м х 6м, здание строится для размещения электрических распределительных устройств, приборов учета и т.д.

 


Альтернативные и возобновляемые источники энергии пользуются огромной популярностью во всем мире. Стоит отметить, что крупнейшая интернет компания Google, также использует для своего оборудования энергию ветровых электростанций. В Австралии, США, Канаде, Европе сила ветра используется на благо цивилизации. Развитые и развивающиеся страны наращивают потенциал ветровой энергии, возможно что в Европе и Северной Америке уже через несколько лет основным источником энергии станет сила ветра (сейчас этот показатель составляет от 20 до 40 %)

Ян Волховский, promplace.ru

 

promplace.ru

Ветровая электростанция Википедия

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС[1].
Прибрежная ветровая электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире

Ветровая электростанция  — это несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов.
Иногда ветровые электростанции называют «ветровыми фермами» (от англ. Wind farm).

Планирование

Исследование скорости ветра

Ветровые электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветровых электростанций, так как эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота

Скорость ветра возрастает с высотой. Поэтому ветровые электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30—60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект

При строительстве ветровых электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветровой энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Современные ветровые электростанции прекращают работу во время сезонного перелёта птиц.

Типы ветровых электростанций

Наземная

Наземная ветровая электростанция в Испании. Построена по вершинам холмов.
Наземная ветряная электростанция возле Айнажи, Латвия.

Самый распространённый в настоящее время тип ветровых электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветровой электростанции может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветровой электростанцией является электростанция Альта, расположенная в штате Калифорния, США. Полная мощность — 1550 МВт.

Прибрежная

Строительство прибрежной электростанции в Германии.

Прибрежные ветровые электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой — с остывшего побережья к водоёму.

Шельфовая

Шельфовые ветровые электростанции строят в море: 10—60 километров от берега. Шельфовые ветровые электростанции обладают рядом преимуществ:

  • их практически не видно с берега;
  • они не занимают землю;
  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией в 2009 году являлась электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт[2]. В 2013 году крупнейшей стала London Array (Великобритания) с установленной мощностью 630 МВт[3]. 6 сентября 2018 года в 19 км от берегов Великобритании в Ирландском море на северо-западе Англии запущена в эксплуатацию оффшорная ветряная электростанция Walney Extension. Суммарная мощность её ветряков составляет 659 МВт[4]. В 2020 году планируется завершить строительство ветряных электростанции East Anglia One мощностью 714 МВт и Hornsea Project One мощностью 1,2 ГВт, в 2022 году — электростанции Hornsea Project Two мощностью 1,4 ГВт[5].

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветровой турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года[6]. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания в 2017 году довела мощность турбины до 6 МВт, а диаметр ротора — до 154 метра[7].

Парящая

Парящей называют ветровые турбины, размещённые высоко над землёй, для использования более сильного и стойкого ветра[8]. Концепция разработана в 1930-е годы в СССР инженером Егоровым[9].

Текущим рекордсменом считается «Парящая ветровая турбина Altaeros» (Altaeros Buoyant Airborne Turbine (BAT)), которая будет установлена на высоте 1000 футов (304,8 м) над землёй.
Этот пилотный проект промышленного масштаба будет находиться на высоте 275 футов выше, чем текущий рекордсмен — Vestas V164-8.0-MW. Последний совсем недавно установил свой прототип в Датском национальном центре тестирования больших турбин (Danish National Test Center for Large Wind Turbines) в Остерильде (Østerild). Высота расположения оси Vestas 460 футов (140 метров), лопасти турбин в высоту более 720 футов (220 метров).
У Altaeros мощность турбины 30 кВт. этого достаточно для обеспечения энергией 12 домов.
Для поднятия на такую высоту Altaeros использует невоспламеняемую надувную оболочку, наполненную гелием.
Проводником для произведённой энергии служат высокопрочные канаты.[источник не указан 1564 дня]

Горная

Первая на постсоветском пространстве горная ВЭС мощностью 1,5 МВт была запущена на Кордайском перевале в Жамбылской области Казахстана в 2011 году[10]. Высота площадки — 1200 метров над уровнем моря. Среднегодовая скорость ветра 5,9 м/сек. В 2014 году количество ветротурбин «Vista International» мощностью по 1,0 МВт на «Кордайской ВЭС» было доведено до 9 агрегатов при проектной мощности 21 МВт[11]. В дальнейшем планируется введение в строй Жанатасской (400 МВт) и Шокпарской (200 МВт) ветряных электростанций.

В феврале 2015 года в Восточных Карпатах у города Старый Самбор запущена в работу первая в Западной Украине горная ВЭС «Старый Самбор 1» мощностью в 13,2 МВт. Общая мощность 79,2 МВТ. Она представлена ветротурбинами VESTAS V-112 датского производства номинальной мощностью 6,6 МВт[12]. Высота площадки 500 — 600 м над уровнем моря, среднегодовая скорость ветра 6,3 м/сек[13].

Панорамы ВЭС

ВЭС в России

На 2018 год общая мощность ВЭС в стране исчислялась 134 МВт[14].

Крупнейшим ветроэнергетическим комплексом обладает Крымская энергосистема.

Крупнейшая электростанция — Ульяновская ВЭС находится в Ульяновской области, её мощность составляет 35 МВт.

Зеленоградская ВЭУ, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области имела суммарную мощность в 5,1 МВт. Состояла из ВЭУ датской компании SЕАS Energy Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая). Эксплуатировалась в течение 20 лет, в 2018 году вместо неё введена Ушаковская ВЭС (6,9 МВт).

Мощность Анадырской ВЭС составляет 2,5 МВт.

Мощность ВЭС Тюпкильды (Башкортостан) составляет 2,2 МВт.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

Около Мурманска строится опытная демонстрационная ВЭУ мощностью 250 кВт[15]. В селе Пялица, в мае 2014 года, открыта первая в Мурманской области ветровая электростанция. Так же до 2016 года предусматривается дальнейшее введение ветропарков в Ловозерском и Терском районах области[16].

См. также

Примечания

Литература

  • Методы разработки ветроэнергетического кадастра. — АН СССР, ГЛАВНИИ при Госэкономсовете Энергетический институт им. Г. М. Кржижановского. Изд-во АН СССР, 1963.
  • В. Н. Андрианов, Д. Н. Быстрицкий, К. П. Вашкевич, В. Р. Секторов. Ветроэлектрические станции / под редакцией В. Н. Андрианова. — М., Л.: Государственное энергетическое издательство, 1960. — 320 с. — 2000 экз.

Ссылки

Отрасли промышленности

wikiredia.ru

Ветряные электростанции для дома: особенности строительства

Установка ветряной электростанции на даче или в частном доме помогает решить множество проблем, связанных с электроснабжением. Данный агрегат способен перерабатывать и накапливать энергию ветра, используя ее во благо человека. Процесс изготовления ветряной электростанции достаточно простой — он требует минимального количества материалов и прежде всего желания достичь заданной цели. О том как сделать ветряную электростанцию для дома рассмотрим далее.

Оглавление:

  1. Ветряные электростанции для частного дома: особенности и характеристика
  2. Преимущества и недостатки ветряных электростанций
  3. Сфера использования и виды ветряных электростанций для дома
  4. Солнечно ветряная электростанция — общие сведения
  5. Самодельная ветряная электростанция — особенности изготовления
  6. Ветряная электростанция своими руками: выбор генератора

Ветряные электростанции для частного дома: особенности и характеристика

Ветряные электростанции предназначены для преобразования энергии ветра в электрическую энергию. В соотношении с внешним видом и конструктивными особенностями ветряные электростанции для дома бывают расположенными:

  • горизонтально;
  • вертикально.

Первый вариант менее зависим от ветра, но отличается меньшей популярностью, нежели второй. Так как он способен работать лишь при сильном ветре, а для его запуска требуется наличие внешнего источника. Вертикальные ветряные электростанции способны функционировать более качественно и отличаются высоким КПД. Для их работы достаточно силы ветра в 2-4 м/с.

Среди основных компонентов ветровых электростанций следует отметить:

  • мачту, которая бывает простой, телескопической или монолитной;
  • редуктор — часть электростанции, на которой располагаются лопасти;
  • контейнер — подвижная часть ветроэлектростанции, которая двигается в соотношении с ветром;
  • генератор — прибор, который преобразует энергию.

Выбор конструкции и мощности ветряка напрямую зависит от особенностей его эксплуатации.

Более простыми являются приборы, мощностью до 300 Вт. Такие агрегаты способны легко поместиться даже в автомобиль. Для их установки достаточно одного человека, а мощность, которую они вырабатывают, достаточно для зарядки телефона, обеспечения освещения или работы телевизора. Данный вариант отлично подходит для семейного отдыха на даче, в лесу или на море.

С помощью 2, 5, 10 кВт ветровых электростанций осуществляется обеспечение целого дома электроэнергией. Если существует излишняя энергия, то она помещается в аккумуляторах, которые ее расходуют при слабом ветре или при его отсутствии.

Более мощные варианты ветровых электростанций, мощность которых составляет более двадцати киловатт, способны снабдить электроэнергией несколько домов, коттеджей или даже частное предприятие.

Ветряные электростанции фото:

Главным преимуществом ветровой электростанции является экологичность, ведь ее работа никак не влияет на окружающую среду. При этом, энергию получить достаточно легко, главное условие — наличие стабильного ветра.

Среди недостатков ветровых электростанций отмечают их зависимость от ветра. Для работы ветряка ветер должен иметь скорость минимум два метра в секунду. Для достижения номинальной мощности потребуется сила ветра в 10 м/с.

Чтобы накапливать электричество и использовать его во время отсутствия ветра используют аккумуляторы. Срок их службы составляет около 10 лет. Кроме того, использование мощных ветровых электростанций отличается высокой шумопроизводительностью, что снижает комфорт проживания вблизи данного агрегата.

Ветровая электростанция способна препятствовать нормальной работе телевизора, радио и других подобных приборов.

Самыми главными составляющими любой ветроэлектростанции выступает генератор, устройство выпрямительного назначения, аккумулятор-батарея, инвертор, то есть преобразователь напряжения. Для осуществления общего контроля за работой устройства рекомендуется использование микропроцессорного контролера или простых логических схем.

Если планируется покупать ветровую электростанцию, то наиболее оптимальными вариантами станут устройства, имеющие низкий уровень начальной скорости ротора, скорости заряда батареи и выхода на рабочий процесс. Так как от широты восприятия рабочего диапазона ветра зависит количество энергии, которую воспроизводит установка.

Преимущества и недостатки ветряных электростанций

Среди преимущества использования ветровых электростанций отмечают:

1. Длительность применения ветровой энергии еще в древнеримские времена.

2. Экологичность и безвредность для окружающей среды.

3. Дешевизна получения качественной электроэнергии.

4. С помощью использования энергии ветра снижается расход электричества, вырабатываемого на ТЭС, поэтому выбросы парникового газа значительно снижаются.

5. Доступность, так как ветер присутствует в любом уголке всей планеты.

6. Размер ветряной турбины небольшой, поэтому для их установки не потребуется много места.

7. Особо востребованные ветровые установки в местах, которые отдалены от центрального электроснабжения, таких как леса, поля, моря или океаны.

8. Использование ветровой электростанции позволяет существенно снизить материальные расходы на оплату электроснабжения.

Несмотря на большое количество преимуществ, использование частных ветряных электростанций отличается такими недостатками:

1. Ветер отличается переменчивостью в разное время года в разных регионах поэтому кроме ветряной электростанции следует устанавливать накопительные устройства для электроэнергии, а их покупка — процесс весьма дорогостоящий. Кроме того, они требуют периодической замены.

2. Некоторым людям не нравится внешний вид ветряных электростанций и высокий уровень шума, который они производят.

3. Перед постройкой ветряной электростанции следует провести ряд исследований, направленных на определение силы и интенсивности ветра на определенной местности.

4. Цена на покупку ветровых электростанций довольно высокая, хотя и затраты со временем окупаются, первоначальный вклад довольно высокий.

5. Лопасти, которые находятся на ветряке приносят вред определенным насекомым и птицам, обитающих вблизи электростанции.

Сфера использования и виды ветряных электростанций для дома

Если мощность ветряной электростанции не превышает одного киловатта, то для изготовления ее корпуса требуется алюминиевый сплав. Поэтому, такие устройства характеризуются высокой тепловой отдачей и небольшим весом.

Чем ниже расчетная скорость ветра, тем выше уровень электроэнергии, которую преобразует ветряк. Тихоходный ветрогенератор позволяет не использовать редуктор, а, значит, шум, воспроизводимый ветряком уменьшается, а количество энергии — увеличивается.

Еще одним важным параметром ветряной электростанции выступает показатель энергоэффективности. Она зависит от размера, конструкции и уровня наклона лопастей. Если лопасти изготавливаются серийно, то их себестоимость снижается, а надежность находится на высоком уровне.

Минимальная мощность ветровой электростанции, применяемой в частном доме, составляет полкиловата. Если мощность ветряка будет меньше, этой энергии не хватит для полноценного функционирования здания.

Применение малых ветряков актуально в походе, на отдыхе или на яхте. Если рассматривать высокую шумопроизводительность ветряков и их вред для насекомых, то к установкам домашнего использования данные недостатки не относятся, так как данные только большие промышленные установки создают инфранизкочастотное колебание, вредное для вблизи обитающих животных.

Солнечно ветряная электростанция — общие сведения

Данный тип электростанций отличается более высокой выгодой, так как является комбинацией солнечных батарей с ветряком. Если на улице отсутствует солнце или ночью, работает ветряк. В другое время энергоснабжением занимаются солнечные батареи.

Таким образом, удается получить полную энергетическую независимость от центрального электроснабжения. Данные электростанции используют в регионах, с достаточно высокой интенсивностью солнечного и ветрового излучения.

В состав солнечно ветровой электростанции входит наличие:

  • ветрового генератора;
  • башни;
  • солнечных панелей;
  • солнечного контролера;
  • инвертора;
  • аккумуляторов гелиевого типа;
  • температурного батарейного датчика;
  • разного рода кабелей и соединителей.

Самодельная ветряная электростанция — особенности изготовления

Процесс сооружения ветряной электростанции следует начинать с крыльчатки, так как именно данный элемент отвечает за улавливание энергии ветра. Для изготовления лопастей следует приобрести фанеру или металлический лист. Кроме того, возможен вариант применения материалов, таких как дюралюминий или пластик.

Основные требования к лопастям:

  • легкость;
  • строгая симметричность;
  • отсутствие толчков во время вращения.

Учтите, что от количества лопастей не зависит конечный результат работы. То, если некоторые ветроустановки с тремя лопастями способны переработать такое же количество энергии, как и устройства, имеющие пять лопастей.

Самым оптимальным вариантом является сооружение ветряка с четырьмя лопастями. Обеспечить жесткость конструкции поможет шестимиллиметровая проволока, которой обрабатывают торцевые участки каждой лопасти. Данная процедура актуальна для изделий, изготовленных из металла. Если де лопасти у ветряка деревянные, то ее торцы пропитываются с помощью горячей олифы.

Для сооружения четырех крестовин, на которых фиксируются лопасти, следует использовать металлические полоски, размером 5х6 см. Срок их службы будет значительно дольше, чем у деталей изготовленных из дерева.

Вертикальной опорой для электростанции послужит стальная труба, минимальный диаметр которой составляет 30 см, а длина — 200 см. На нижнюю часть трубы крепятся два разных по диаметру шкива, таким образом, с помощью ремня, вращение передается к генератору.

Кроме того, следует обязательно позаботиться об укрытии всех элементов в коробке, выполненной из дерева или металла.

С помощью варочного аппарата, металлическая крестовина ротора приваривается к оси. Не забудьте тщательно измерить интервал между лопастями и осью. Когда роторная часть ветряка собрана, ее следует покрыть с помощью масляной краски.

Станина — довольно важный элемент ветряной электростанции, так как именно на нее крепится установка. Поэтому станина должна быть мощной и обеспечивающей прочность крепления.

Для фиксации четырех точек соприкосновения с поверхностью следует провести их заливку с помощью бетонного раствора.

Если сила ветра не будет превышать 10 м/с, то мощность ветряка составит около 1 кВт. Учтите, что ветрогенератор должен быть снабжен с помощью аккумулятора, в котором будет храниться энергия, используемая в безветренную погоду.

Ветряная электростанция должна располагаться на открытой местности, вдали от деревьев, предпочтительно на возвышенности.




Ветряная электростанция своими руками: выбор генератора

От типа генератора, используемого для переработки энергии, зависит КПД ветровой установки. Довольно высокой популярностью отличаются устройства асинхронного типа. Принцип их работы состоит в несовпадении момента вращения ротора с вращением статорного магнитного поля. Ветер обеспечивает вращение ротора генераторной установки, когда вышеприведенные поля между собой не совпадают, происходит образование дополнительной электрической энергии. Поэтому, КПД ветряка увеличивается.

Затраты на покупку данного генератора вполне себя окупают его высокой производительностью. В сравнении с обычными генераторами, устройства асинхронного типа отличаются более низким весом, более высокой мощностью и доступной стоимостью.

Они не нуждаются в дополнительном источнике питания, так как у них нету электрических щеток, которые требуют периодической замены в процессе работы обычного генератора.

Принцип работы асинхронных двигателей состоит в следующем. В процессе движения ротора с помощью ветра, статор находится под воздействием магнитного поля. Каждая обмотка статора подключена к конденсатору, поэтому происходит появление небольшого количества тока. Он и заряжает конденсатор. Далее происходит образование магнитного поля, воздействующего на вторую обмотку, которая способствует еще более сильному заряду конденсатора. Ротор насыщается и самостоятельно производит энергию.

Асинхронный ветрогенератор, при скорости ветра в 4 метра за секунду способен произвести электричество, мощностью в 3 кВт.

Среди преимущества данного генератора следует отметить:

  • простоту в эксплуатации;
  • материальную и техническую доступность;
  • наличие постоянного устойчивого тока;
  • получение высокой мощности за небольшие деньги.

Среди преимущества синхронных генераторов следует отметить наличие устойчивого и стабильного напряжения. Но в то же время, данные генераторы отличаются необходимостью в периодической замене щеток и высокой стоимостью.

Асинхронные же генераторы довольно просты в работе, кроме того, они не подвержены возникновению короткого замыкания.

В процессе изготовления ветровой электростанции своими руками наилучшим вариантом станет использование автомобильного генератора, который станет отличным прибором, преобразовывающим энергию ветра в электричество.

Ветряные электростанции видео:

strport.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о