Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Ветряная электростанция — Википедия

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС[1]. Прибрежная ветровая электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире

Ветровая электростанция  — это несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветровые электростанции называют «ветровыми фермами» (от англ. Wind farm).

Исследование скорости ветра[править | править код]

Ветровые электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветровых электростанций, так как эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота[править | править код]

Скорость ветра возрастает с высотой. Поэтому ветровые электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30—60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект[править | править код]

При строительстве ветровых электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветровой энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Современные ветровые электростанции прекращают работу во время сезонного перелёта птиц.

Наземная[править | править код]

Наземная ветровая электростанция в Испании. Построена по вершинам холмов. Наземная ветряная электростанция возле Айнажи, Латвия.

Самый распространённый в настоящее время тип ветровых электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветровой электростанции может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветровой электростанцией является электростанция Альта, расположенная в штате Калифорния, США. Полная мощность — 1550 МВт.

Прибрежная[править | править код]

Строительство прибрежной электростанции в Германии.

Прибрежные ветровые электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой — с остывшего побережья к водоёму.

Шельфовая[править | править код]

Шельфовые ветровые электростанции строят в море: 10—60 километров от берега. Шельфовые ветровые электростанции обладают рядом преимуществ:

  • их практически не видно с берега;
  • они не занимают землю;
  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией в 2009 году являлась электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт

[2]. В 2013 году крупнейшей стала London Array (Великобритания) с установленной мощностью 630 МВт[3]. 6 сентября 2018 года в 19 км от берегов Великобритании в Ирландском море на северо-западе Англии запущена в эксплуатацию оффшорная ветряная электростанция Walney Extension. Суммарная мощность её ветряков составляет 659 МВт[4]. В 2020 году планируется завершить строительство ветряных электростанции East Anglia One мощностью 714 МВт и Hornsea Project One мощностью 1,2 ГВт, в 2022 году — электростанции Hornsea Project Two мощностью 1,4 ГВт[5].

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая[править | править код]

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветровой турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года[6]. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания в 2017 году довела мощность турбины до 6 МВт, а диаметр ротора — до 154 метра[7].

Парящая[править | править код]

Парящей называют ветровые турбины, размещённые высоко над землёй, для использования более сильного и стойкого ветра

[8]. Концепция разработана в 1930-е годы в СССР инженером Егоровым[9].

Текущим рекордсменом считается «Парящая ветровая турбина Altaeros» (Altaeros Buoyant Airborne Turbine (BAT)), которая будет установлена на высоте 1000 футов (304,8 м) над землёй. Этот пилотный проект промышленного масштаба будет находиться на высоте 275 футов выше, чем текущий рекордсмен – Vestas V164-8.0-MW. Последний совсем недавно установил свой прототип в Датском национальном центре тестирования больших турбин (Danish National Test Center for Large Wind Turbines) в Остерильде (Østerild). Высота расположения оси Vestas 460 футов (140 метров), лопасти турбин в высоту более 720 футов (220 метров). У Altaeros мощность турбины 30 кВт. этого достаточно для обеспечения энергией 12 домов. Для поднятия на такую высоту Altaeros использует невоспламеняемую надувную оболочку, наполненную гелием. Проводником для произведённой энергии служат высокопрочные канаты.

[источник не указан 1694 дня]

Горная[править | править код]

Первая на постсоветском пространстве горная ВЭС мощностью 1,5 МВт была запущена на Кордайском перевале в Жамбылской области Казахстана в 2011 году[10]. Высота площадки – 1200 метров над уровнем моря. Среднегодовая скорость ветра 5,9 м/сек. В 2014 году количество ветротурбин «Vista International» мощностью по 1,0 МВт на «Кордайской ВЭС» было доведено до 9 агрегатов при проектной мощности 21 МВт[11]. В дальнейшем планируется введение в строй Жанатасской (400 МВт) и Шокпарской (200 МВт) ветряных электростанций.

В феврале 2015 года в Восточных Карпатах у города Старый Самбор запущена в работу первая в Западной Украине горная ВЭС «Старый Самбор 1» мощностью в 13,2 МВт. Общая мощность 79,2 МВТ. Она представлена ветротурбинами VESTAS V-112 датского производства номинальной мощностью 6,6 МВт

[12]. Высота площадки 500 – 600 м над уровнем моря, среднегодовая скорость ветра 6,3 м/сек[13].

В 1931 году в г. Курске была построена Ветроэлектростанция Уфимцева — первая в мире ветроэлектрическая станция с инерционным аккумулятором[14], изобретатель А. Г. Уфимцев.

Вторая в СССР ветроэлектрическая станция была построена в 1931 году в Балаклаве на Караньских высотах. Мощностью 100 кВт, она на момент строительства являлась самой большой в Европе. Экспериментальный ветроагрегат был разработан под руководством изобретателя Ю. В. Кондратюка. До войны он вырабатывал электроэнергию для трамвайной линии Балаклава — Севастополь. Во время Великой отечественной войны был разрушен.[15]


На 2018 год общая мощность ВЭС в стране исчислялась 134 МВт[16].

Крупнейшим ветроэнергетическим комплексом обладает Крымская энергосистема.

Крупнейшая электростанция — Ульяновская ВЭС находится в Ульяновской области, её мощность составляет 35 МВт.

Зеленоградская ВЭУ, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области имела суммарную мощность в 5,1 МВт. Состояла из ВЭУ датской компании SЕАS Energy Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая). Эксплуатировалась в течение 20 лет, в 2018 году вместо неё введена Ушаковская ВЭС (6,9 МВт).

Мощность Анадырской ВЭС составляет 2,5 МВт.

Мощность ВЭС Тюпкильды (Башкортостан) составляет 2,2 МВт.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

Около Мурманска строится опытная демонстрационная ВЭУ мощностью 250 кВт[17]. В селе Пялица, в мае 2014 года, открыта первая в Мурманской области ветровая электростанция. Так же до 2016 года предусматривается дальнейшее введение ветропарков в Ловозерском и Терском районах области

[18].

  • Методы разработки ветроэнергетического кадастра. — АН СССР, ГЛАВНИИ при Госэкономсовете Энергетический институт им. Г. М. Кржижановского. Изд-во АН СССР, 1963.
  • В. Н. Андрианов, Д. Н. Быстрицкий, К. П. Вашкевич, В. Р. Секторов. Ветроэлектрические станции / под редакцией В. Н. Андрианова. — М., Л.: Государственное энергетическое издательство, 1960. — 320 с. — 2000 экз.

Отрасли промышленности

ru.wikipedia.org

Мегаконструкции. Самые большие ветрогенераторы / Habr


Siemens SWT-7.0-154

Кто говорил, что ветряки не способны конкурировать по мощности с атомными электростанциями? Посмотрите на самую большую в мире ветроэлектрическую установку Siemens SWT-7.0-154. С площадью ометания 18 600 м² этот гигант в одиночку генерирует максимальную мощность 7 МВт при скорости ветра 13-15 м/с. Несколько сотен таких ветряков — и вот вам атомная электростанция.

SWT-7.0-154 — это флагманская модель компании Siemens. В её названии зашифрованы генерируемая мощность (7 МВт) и диаметр ротора с лопастями (154 м). Она пришла на смену предыдущему флагману SWT-6.0-154, от которого практически не отличается по техническим спецификациям, но оснащён более мощными магнитами. Более сильное магнитное поле позволяет генерировать больше электроэнергии при том же диаметре. Другими словами, в этой ВЭН параметр снимаемой мощности с квадратного метра площади ометания выше примерно на 16,7%.

Ветрогенератор включается в работу на минимальной скорости ветра 3-5 м/с, а генерируемая мощность поступательно растёт до максимальной 7 МВт при скорости ветра 13-15 м/с. При достижении скорости ветра 25 м/с генерация прекращается.

Казалось бы, на таких скоростях ветра лопасти ВЭУ должны вращаться быстро, но это совершенно не так. На самом деле они вращаются неторопливо и степенно, делая всего 5-11 оборотов в минуту. То есть полный оборот три лопасти совершают примерно за 5-12 секунд, в зависимости от скорости ветра.

Более сильное магнитное поле в новой модели означает также и то, что эту турбину труднее раскрутить. Для достижения той же скорости вращения 5-11 оборотов в минуту и максимальной генерируемой мощности (7 МВт вместо 6 МВт) этой турбине требуется повышенная скорость ветра: 13-15 м/с вместо 12-14 м/с. Соответственно, и начальная скорость ветрогенерации у неё выше. Вот почему данная модель-гигант наиболее оптимально подходит для размещения на территориях с относительно сильными ветрами, лучше всего в море.

Внутри турбины нет редуктора (коробки передач) — здесь работает система прямого привода, подключенная к синхронному генератору переменного тока с постоянными магнитами. Поскольку скорость генератора определяет напряжение и частоту тока, то «грязный переменный ток» преобразуется в постоянный ток, а затем преобразуется обратно в переменный ток перед подачей в сеть.

В последние годы в области ветряной энергетики происходит очень быстрый научно-технический прогресс. Буквально каждый год появляются новые модели ВЭУ большей мощности и эффективности. Большие и маленькие, рассчитанные на целые посёлки или отдельные дома, на большую скорость ветра в море или на среднюю скорость ветра над крышей частного дома.

Например, мировой рекорд по максимальной генерируемой мощности принадлежит вовсе не Siemens, а другой турбине ещё одного немецкого производителя Enercon E126, которая выдаёт до 7,58 МВт. На видео показан процесс установки такой турбины.


Высота стойки Enercon E126 — 135 м, диаметр ротора — 126 м, общая высота вместе с лопастями — 198 м. Общий вес фундамента турбины — 2500 тонн, а самого ветрогенератора — 2800 тонн. Только электрогенератор весит 220 тонн, а ротор вместе с лопастями — 364 тонны. Общий вес всей конструкции со всеми деталями — 6000 тонн. Первая установка подобного типа была установлена около немецкого Эмдена в 2007 году, хотя в той модификации максимальная мощность была меньше.

Впрочем, ветрогенераторы-гиганты — довольно дорогое удовольствие. Один такой ветряк на 7 МВт обойдётся в $14 млн вместе с установкой, если заказывать все работы у сертифицированных немецких специалистов. Конечно, если освоить производство в своей стране, благо металла хватает, то стоимость вполне можно снизить в несколько раз. Кто знает, может такой гигантский проект национальной стройки занял бы население страны и помог выбраться из экономического кризиса.


Одна из самых последних строящихся в Восточной Европе атомных станций — Белорусская АЭС — получит два энергоблока с реакторами ВВЭР-1200 мощностью по 1200 МВт. Казалось бы, несколько сотен ветряков Siemens сравнятся с атомной электростанцией. Стоимость строительства примерно одинаковая, зато «топливо» бесплатное. Что интересно, Белорусскую АЭС как раз строят в районе, где по климатическим данным за 1962-2000 годы почти самая высокая среднегодовая скорость ветра в Беларуси. Но в реальности эта «самая большая» среднегодовая скорость ветра — всего лишь около 4 м/c (на высоте 10 м), чего едва хватит для запуска ВЭУ на минимальной мощности.

Перед установкой следует сверяться с годовой картой ветров в районе дислокации с данными средней удельной мощности ветрового потока на высоте 100 м и выше. Хорошо бы составить такие карты для всей территории страны, чтобы найти места наиболее оптимального строительства ВЭУ. Нужно иметь в виду, что скорость ветра сильно зависит от высоты, что хорошо известно жителям высотных домов. В обычных прогнозах погоды по ТВ сообщают скорость ветра на высоте 10 м над землёй, а для ветровой турбины следует измерять скорость на высоте 100-150 м, где ветры гораздо сильнее.

Так что наиболее оптимально такие гиганты подходят для установки в море, в нескольких километрах от побережья, на большой высоте. Например, если установить такие установки вдоль северного побережья России с шагом 200 метров, то максимальная мощность массива составит 690,3 ГВт (побережье Северного Ледовитого океана составляет 19724,1 км). Скорость ветра там должна быть приемлемая, только при заливке фундаментов придётся иметь дело с вечной мерзлотой.

Правда, по стабильности работы ВЭУ никогда не сравнятся с АЭС или ГЭС. Здесь энергетикам приходится постоянно следить за прогнозом погоды, потому что генерируемая мощность напрямую зависит от скорости ветра. Ветер должен быть не слишком сильным и не слишком слабым. Хорошо, если в среднем ВЭУ будут выдавать хотя бы треть от максимальной мощности.

habr.com

Список ветряных электростанций России — Википедия

Материал из Википедии — свободной энциклопедии

В списке перечисляются действующие ветряные электростанции России. Также отдельно приводится информация о строящихся ВЭС и выведенных из эксплуатации и закрытых ВЭС.

Установленная мощность и структура собственности электростанций приводится в соответствии с официальными годовыми отчётами генерирующих компаний. Полные перечни действующих ВЭС по регионам России, как правило, приводятся в Схемах и программах развития электроэнергетики соответствующего региона, разрабатываемых в соответствии с Постановлением Правительства РФ от 17.10.2009 № 823 «О схемах и программах перспективного развития электроэнергетики».

По данным СО ЕЭС — системного оператора единой электроэнергетической системы России — суммарная установленная электрическая мощность ветряных электростанций ЕЭС России на 1 января 2019 года составляет 183,9 МВт или всего 0,08 % от установленной мощности электростанций энергосистемы[1].

Крупнейшие ВЭС России

ЕЭС России[править | править код]

НазваниеУстановленная
мощность, МВт
РегионСобственникВ реестреИсточник
1 Адыгейская ВЭС 150 Адыгея АО «НоваВинд»[9]
2 Ульяновская ВЭС-2 50,4 Ульяновская область ООО «Первый Ветропарк ФРВ»[3][1]
3 Ульяновская ВЭС 35 Ульяновская область Фортум[3][6]
4 Останинская ВЭС 25 Крым[7] ООО «Ветряной парк Керченский»[8]
5 Тарханкутская ВЭС 22,45 Крым[7] ГУП РК «КГС»[8]
6 Сакская ВЭС 20,82 Крым[7] ГУП РК «КГС»[8]
7 Пресноводненская ВЭС 7,39 Крым[7] ГУП РК «КГС»[3][8]
8 Донузлавская ВЭС 6,78 Крым[7] ГУП РК «КГС»[8]
9 Ушаковская ВЭС 5,1 Калининградская область ОАО «Калининградская генерирующая компания»[1][2]
10 Судакская ВЭС 3,76 Крым[7] ГУП РК «КГС»[8]
11 Восточно-Крымская ВЭС 2,81 Крым[7] ГУП РК «КГС»[8]
12 ВЭС с. Тамар-Уткуль 2,725 Оренбургская область ООО «ЭкоСельЭнерго»[3][4]
13 ВЭС Тюпкильды 1,65 Республика Башкортостан Башкирская генерирующая компания[3]
14 ВЭС г. Орск 0,4 Оренбургская область ООО «Автотранс-М»[4]
15 ВЭС ООО «АльтЭнерго» 0,1 Белгородская область ООО «АльтЭнерго»[3][5]

Изолированные энергосистемы[править | править код]

ru.wikipedia.org

Ветряки в море. Крупнейшая ветряная электростанция в мире.

London Array является, несомненно, наиболее широко известной в Великобритании ветряной электростанцией в открытом море. Ее масштабы и близкое расположение к Большому Лондону (регион на юго-востоке Англии) вызывает большой интерес у политиков и прессы.

Проект на 1000 МВт является на сегодня крупнейшим в мире, ветряную электростанцию планируется построить в два этапа. London Array, как планируется, обеспечит энергией 750 000 домов — около четверти Большого Лондона — и сократит вредные выбросы CO2 на 1,4 млн. тонн в год. Таким образом, это будет благотворно сказываться на окружающей среде, а также поможет обеспечить надежное электроснабжение юго-восточной Англии.

 

Вот какие были разговоры: 

По поводу же объема инвестиций концерны предпочитают пока помалкивать. Эксперты отрасли сходятся на том, что он составит примерно 2,5 млрд фунтов стерлингов (2,8 млрд евро). Подготовка проекта длится много лет, причем в последнее время представители E.ON выражали сомнения в его целесообразности, сетуя на ухудшение рамочных условий: в первую очередь резкое падение цен на нефть и газ сводило на нет преимущества связанных с использованием ветровой энергии проектов. Одновременно отмечался и значительный рост стоимости турбин.

Однако потом  британское правительство просигнализировало о своей готовности усилить поддержку офшорных парков ветряков, которым будет теперь предоставляться больше, чем прежде, т.н. зеленых сертификатов (Renewable Obligation Certificates, ROC). Начиная с 2002 года британские производители электроэнергии используют эти ROC для подтверждения того, что из возобновляемых источников энергии они добывают положенное количество электроэнергии.

Нынче граница этой нормы находится в районе почти 10%. До сих пор действовало правило, согласно которому за каждый выработанный мегаватт экологически чистой электроэнергии производителю полагался один сертификат ROC.

В целях поощрения строительства дорогостоящих офшорных ветряков правительство Великобритании уже приняло решение стимулировать производство каждого экологически чистого мегаватта электроэнергии выдачей 1,5 ROC. В бюджете же на 2009—2010 годы кабинет кабинет пошел на  большую щедрость, пообещав рассмотреть вопрос о возможности увеличения в период с 23 апреля 2009 года по 31 марта 2010 года этого норматива до 2 ROC за каждый мегаватт, а в рамках бюджета следующего года он будет установлен в размере 1,75 ROC.

В планах правительства Великобритании развитию возобновляемых энергий отводится значительное место, так что в осуществлении проектов типа London Array оно очень заинтересовано.

В настоящее время в разных странах Европы E.ON делает миллиардные инвестиции для развития производства электроэнергии на базе альтернативных источников энергии.

 

 

Строительство новой береговой подстанции в Клив Хилл началось в июле 2009 года, а в марте 2011 года проведены первые морские строительные работы, когда были установлены первые 177 платформ для проекта. Первая фаза строительства должна быть полностью завершена была к концу 2012 года.  И вот недавно , после четырёх лет строительства одна из крупнейших ветряных ферм на планете — London Array — официально введена в эксплуатацию. Ветроэлектростанция, состоящая из 175 огромных ветряных турбин Siemens, расположилась на протяжении 20 км в прибрежной полосе графств Кент и Эссекс. Там же расположены две подстанции, еще одна находится на берегу.

 

Как все начиналось?

Проект London Array зародился в 2001 году, когда комплексное исследование в устье Темзы подтвердило возможность размещения на данной территории ветряной электростанции. Два года спустя Crown Estate предоставил London Array Ltd в аренду на 50 лет площадь под строительство и прокладку кабеля к берегу.

План морской ветряной электростанции мощностью 1 ГВт был утвержден в 2006 году, а разрешение на береговые работы было получено в 2007 году. Первый этап работы начался в июле 2009 года, когда началось строительство береговой подстанции в Клив Хилл в графстве Кент.

 

 

 

Первая фаза

Цифры и факты:

– Площадь под проект 100км2
– 175 ветровых турбин
– Две морские подстанции
– Почти 450 км морского кабеля
– Одна береговая подстанция
– 630мВт электроэнергии
– Мощности хватит для обеспечения примерно 480 000 домов в год — две трети домов в графстве Кент
– Выброс CO2 уменьшится на 925 000 тонн в год.

В конце 2012 года планировалось завершить первую фазу строительства, проект будет передан команде по эксплуатационному и техническому обслуживанию в 2013 году.

London Array будет генерировать большое количество электроэнергии, и подстанция нужна для того, чтобы обеспечить напряжение в 400 кВ, принятое в национальной высоковольтной сети электропередачи.

 

 

Проект

Проект подстанции был избран по результатам конкурса летом 2006 года. Победивший проект разработан всемирно известной архитектурной фирмой RMJM (www.rmjm.com). Идея проекта заключалась в том, чтобы расположить подстанцию под прямым углом к дороге Saxon Shore Way. В результате, главной архитектурной особенностью подстанции является Северная Стена, которая достигает 10 м высоты и состоит из ряда бетонных панелей и стабилизаторов.

 

Расположение

Подстанция Клив Хилл находится вблизи деревни Грейвени, что составляет около 1 км вглубь от Северного побережья Кента. Строится подстанция рядом с 400 кВ воздушной линией электропередачи Кентербери-Кемсли на северной стороне Клив Хилл, рядом с существующими зданиями на Клив Фарм. Подстанция строится таким образом, чтобы вписаться в склон холма.

 

 

 

Строительство в 20 км от берега

Это является серьезной проблемой для построения любого морского ветропарка и London Array не является исключением. Расстояние от берега, сильные ветра и непредсказуемые морские условия делают эту территорию трудным местом для строительства.

К счастью, будет использоваться новейшая техника и оборудование, которое поможет завершить работу настолько безопасно и быстро, насколько это возможно. Работы в море начались в марте 2011 года, когда был установлен первый из 177 фундаментов.

 

Что же строиться?

Ключевые компоненты морской ветряной электростанции:

– Фундаменты для закрепления ветряных турбин в море
– Ветряные турбины
– Множество кабелей для совместного подключения группы турбин и соединения с морскими подстанциями
– Морские подстанции для повышения напряжения перед отправкой электроэнергии на берег
– Укладка кабеля по дну моря для соединения морских и береговых подстанций.

 

 

 

Управление морским строительством

Морские строительные работы в настоящее время управляются из временной базы строительства в порту Ramsgate. Строительство базы началось летом 2010 года, а строительная бригада переехала в здание в сентябре 2010 года. До 45 сотрудников будет работать во время морского строительства. Ожидается, что база останется до 2013 года, когда первый этап строительства будет завершен, и она может стать основой для второго этапа строительства в ближайшем будущем.

 

Кто же строит London Array?

London Array Limited – консорциум трех ведущих в мире компаний по использованию источников энергии, которые объединяют свой опыт и знания для разработки и строительства самой большой в мире морской ветряной электростанции.

 

Dong Energy — 50% акций проекта

DONG Energy (Дания) – ведущая европейская энергетическая группа. Она обеспечивает, производит, распределяет и торгует энергией и связанными с ней товарами по всей Северной Европе. DONG Energy является лидером рынка морских ветряных технологий, построившим около половины морских ветряных электростанций, работающих сегодня. DONG Energy активно участвует в производстве и пропаганде использования возобновляемых источников энергии в Великобритании. Компания участвует в строительстве трех новых крупных британских морских ветряных электростанций и управляет в настоящее время морскими ветряными электростанциями Gunfleet Sands (172 МВт), Burbo Bank (90 МВт) и Barrows (90 МВт).

 

E.ON — 30% акций проекта

E.ON (Германия) — одна из самых мощных в мире газовых компаний. Она — ведущий поставщик в Великобритании и обеспечивает энергией около 8 миллионов клиентов. E.ON участвует в строительстве и эксплуатации возобновляемых источников энергии с 1991 года, когда они вложили капитал в первую береговую ветряную электростанцию. Теперь они владеют и управляют 22 ветряными электростанциями в Великобритании, включая Scroby Sands на 60 МВт, морскую ветряную электростанцию недалеко от берега Грейт-Ярмута, и 60-турбинную ветряную электростанцию Robin Rigg в Solway Firth. Многие другие проекты находятся в стадии разработки.

 

Masdar — 20% акций проекта

Masdar (ОАЭ) компания по стратегическому развитию и инвестициям в технологии использования возобновляемых источников энергии. Компания выступает в качестве связующего звена между сегодняшней экономикой ископаемого топлива и энергетической экономией будущего – развития нового представления о том, как жить, и работать завтра.

 

 

 

Трансформаторная подстанция CLEVE HILL

Была построена новая береговая трансформаторная подстанция CLEVE HILL, недалеко от деревни Грэвени (Graveney), на северном побережье графства Кент.

 

 

Это было необходимо, так как London Array будет генерировать большое количество электричества, которое необходимо отправлять с моря прямо в национальную высоковольтную сеть с напряжением в 400 кВ.

 

 

О турбинах

 

Турбины для первой фазы вырабатывают 3.6 МВт каждая. Они изготовлены компанией Siemens Wind Power и оснащены новым 120 метровым несущим винтом Siemens.Высота оси каждой ветровой турбины составляет 87 метров над уровнем моря.

Турбины имеют по три лопасти и окрашены в серый цвет. Турбины генерируют электричество при скорости ветра в 3 метра на секунду.

Полная мощность достигает от 13 м/с. Из соображений безопасности, турбины прекращают свою работу, если ветер становится сильнее, чем 25 м/с – эквивалент шторма в 9 баллов.

Проект London Array играет ключевую роль в программе правительства Великобритании по выполнению целей по защите окружающей среды и возобновляемой энергии. Они включают в себя:

– снижение выбросов двуокиси углерода на 34% к 2020 году;

– производства 15% всей энергии с помощью возобновляемых источников энергии к 2015 году.

 

 

После завершения проекта, выбросы углекислого газа сократятся на 1,4 млн тонн в год. Первая фаза способна возместить 925 тыс.тонн СО2, которые будут компенсироваться каждый год, помогая решать последствия изменения климата и глобального потепления. London Array будет иметь общую мощность до 1000 МВт и будет генерировать электроэнергию на 750000 домов – что является четвертью всех домохозяйств в Большом Лондоне (регион, объединяющий два графства Большой Лондон и Лондонский Сити), или все дома в Кенте и восточном Сассексе. Мощность первой фазы проекта достаточная для подключения около 480 тыс домов, или две трети всех домов в Кенте.

Установка последней турбины на London Array является кульминационным событием огромного количества усилий и координации всех участвующих в проекте. Только за прошедший год были установлены 84 опоры, 175 ветряных турбин, 178 наборов кабелей и 3 экспортных кабеля. London Array сейчас находится в фазе ввода в эксплуатацию и тестирования оставшихся турбин, прежде чем передать их команде по эксплуатации и техническому обслуживанию в течении 2013 года.

 

 

Бэн Сайкс (Benj Sykes), глава британской компании DONG Energy’s UK Wind business, специализирующейся на ветровой энергетике, сказал: «Установка последней турбины это поворотный пункт для Великобритании и DONG Energy в истории этого передового проекта. London Array вскоре станет крупнейшей работающей морской ветровой электростанцией в мире. Создание морских ветровых электростанций такого же масштаба и крупнее в будущем позволит нам получать преимущества из их размера, что является важным элементом нашей стратегии по снижению стоимости энергии.

Помимо стремления создать крупнейший ветропарк в мире, разработчики London Array также позиционируют свое детище как демонстрационный проект, который показывает механизмы эффективного снижения затрат при создании крупных ветровых электростанций. Конечной целю инвесторов является создание оффшорной ветровой фермы, которая к 2020 году сможет выдавать полезную мощность при цене на уровне около $ 152 за мегаватт-час. Объект принадлежит компаниям Dong Energy, Masdar и EON. Доля Dong Energy в проекте составляет 50%, энергетический гигант E.ON владеет 30% акций, а в собственности компании Masdar из Абу-Даби находятся оставшиеся 20% ценных бумаг.

 

 

 

 

[источники]

источники
http://tech-life.org
www.londonarray.com
http://www.facepla.net/

 

Вот тут совсем кстати будет вам напомнить, что мы  про Корабли на ножках уже разговаривали очень подробно, а так же Энергия ветра уже проходила широкой дискуссией. Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия – http://infoglaz.ru/?p=30118

masterok.livejournal.com

планирование и типы ветряных электростанций :: BusinessMan.ru

Ветряные электростанции (ВЭС) – устройства специальной конструкции, в которых энергия ветра преобразуется в электрическую. С каждым днем они становятся популярнее. Использующие природные, а главное, возобновляемые источники энергии, удобные и простые ветроэлектростанции, так называемые ветряки, являются прекрасной альтернативой традиционным электростанциям, особенно в частных домах.

Использование энергии ветра

Ветряные мельницы, а точнее принцип их действия, были незаслуженно забыты в двадцатых годах прошлого века. Впрочем, силу ветра не использовали и тогда для получения электрической энергии. Она приводила в действие жернова мельниц, использовалась в качестве движителя для парусных судов, позднее запускала насосы для закачки воды в резервуары, то есть превращалась в механическую энергию.

Ветроэнергетика начала стремительно развиваться в конце шестидесятых годов прошлого, XX столетия. В это время стало катастрофически не хватать традиционных энергоносителей, кроме того, они резко поднялись в цене, все острее становились экологические проблемы, связанные с их использованием.

Способствовал использованию альтернативных источников электроэнергии, в том числе силы ветра, и технический прогресс. Появились новые высокопрочные и достаточно легкие материалы, позволяющие возводить башни до 120 м высотой и огромные лопасти.

Ветра, дующие во многих регионах планеты, в состоянии вращать турбины электростанции с достаточной скоростью, чтобы обеспечивать энергией частные дома, небольшие фермы или школы в сельской местности.

Но в любой бочке меда найдется хотя бы одна ложка дегтя. Ветер невозможно подчинить, он не дует всегда, тем более в одном направлении и с одинаковой скоростью. Технический прогресс не стоит на месте. Если сегодня ветряные электростанции для частного дома, вырабатывающие сотни киловатт электроэнергии, уже не являются большой редкостью, то завтра, может быть, повседневностью станут и станции мощностью в десятки мегаватт. Во всяком случае, уже есть ветроэлектростанции, мощность которых составляет 5 мВт и больше.

Преимущества и недостатки ветроэлектростанций

Ветряные электростанции обладают кроме использования бесплатной энергии ветра и независимости от внешних источников электроэнергии еще несколькими весомыми преимуществами. Не существует экологической проблемы хранения и утилизации отходов, да и сам способ получения энергии один из самых экологичных. Не говоря уже о том, как эстетично выглядит ветряк на фоне неба, достоинством его можно считать, что установка может быть как стационарной, так и передвижной.

Кроме того, сегодня уже можно подобрать ВЭС подходящей модели и мощности или использовать установку, сочетающую использование нескольких источников энергии, традиционных и альтернативных. Это может быть дизель- или солнечно-ветряная электростанция.

ВЭС имеют и недостатки. Во-первых, они шумные настолько, что крупные установки в ночное время приходится отключать. Во-вторых, создают зачастую помехи для воздушных сообщений или радиоволн. В-третьих, их нужно размещать на поистине огромных площадях. И есть еще один существенный недостаток лопастных конструкций – их нужно отключать во время массовых сезонных перелетов птиц.

Типы ветроэлектростанций

По функциональности электростанции ветряные можно разделить на стационарные и передвижные, или мобильные. Мощные стационарные установки требуют проведения целого комплекса подготовительных работ, но они в аккумуляторных батареях способны накапливать достаточное для использования в безветренную погоду количество электроэнергии.

Передвижные электростанции проще по конструкции, неприхотливы, их легко устанавливать и просто эксплуатировать. Обычно они используются для питания электроприборов или в путешествиях.

По конструкции различают крыльчатые и роторные ветроэлектростанции.

По месту установки ВЭС бывают:

  • наземные. Они устанавливаются на возвышенностях и наиболее распространены на сегодняшний день;
  • прибрежные. Строятся в прибрежной зоне морей и океанов, где из-за неравномерного нагревания суши и воды постоянно дуют ветры;
  • оффшорные. Строятся в море на расстоянии 10-15 км от берега, где постоянно дуют морские ветры;
  • плавающие. Они тоже располагаются примерно на таком же расстоянии от берега, как и оффшорные, но на плавающей платформе.

По сферам применения электростанции ветряные бывают промышленные и бытовые.

Крыльчатые ВЭС

Уже привычными стали крыльчатые ВЭС, которые лидируют на рынке ветроэнергетики. На высокой мечте устанавливается лопастной механизм с горизонтальной осью вращения, преимущественно трехлопастной, и его мощность зависит от размаха лопастей. Максимальной скорости вращения такой агрегат достигает, когда лопасти перпендикулярны ветровому потоку, поэтому в его конструкции предусмотрено устройство автоматического поворота оси вращения в виде крыла стабилизатора на малых и электронной системы управления рысканием на более мощных станциях.

Различаются между собой крыльчатые ветроэлектростанции в основном количеством лопастей. Они могут быть многолопастными, двухлопастными, даже с одной лопастью и противовесом.

Роторные ВЭС

Роторные, или карусельные, электростанции ветряные имеют вертикальную ось вращения и не зависят от направления ветра. Это важное преимущество, если используются приземные рыскающие воздушные потоки. Минусом ВЭС такой конструкции является использование многополюсных генераторов, которые работают на малых оборотах и не имеют широкого распространения.

Эти установки тихоходны и, как следствие, не создают большого шума. Кроме того, их достоинством является простота электрических схем, которые не нарушаются при случайных резких порывах ветра.

Специалисты считают, что роторные ВЭС наиболее перспективны для большой ветроэнергетики. Правда, чтобы раскрутить такую установку, к ней нужно приложить внешнюю энергию. Только когда она достигнет определенных аэродинамических показателей, сама переходит в режим генератора из режима двигателя.

Комбинированная система «ветро-дизель»

Недостаток ветроагрегатов – неравномерная подача электроэнергии – в крупных сетях компенсируется большим количеством установок.

Также компенсировать этот недостаток можно, используя комбинированные системы, в которых есть специальные устройства, распределяющие нагрузки между ветроэнергетической установкой (ВЭУ) и дизелем. Поэтому автономные сети небольшой мощности от 0,5 до 4 МВт в паре с дизелем могут надежно и равномерно функционировать.

Современное оборудование, с помощью которого экономится около 65 % жидкого топлива в год, позволяет всего за несколько секунд при необходимости подключить дизель или отключить его.

Бытовые и промышленные ВЭС

Бытовые ветроэнергетические установки имеют мощность от 250 Вт до 15 кВт, могут работать в комплексе с солнечными батареями, с аккумулятором или без него.

Электроэнергия, вырабатываемая бытовыми ВЭС, достаточно дорогая, но часто бывает, что других ее источников просто нет.

Бытовые ветряные электростанции в России производятся с генератором постоянного тока, который заряжает аккумуляторные батареи емкостью до 800 А/ч. От таких батарей в доме могут работать все бытовые приборы: телевизор, электрочайник и др.

Процесс зарядки батарей после отключения нагрузки может быть достаточно долгим, в зависимости от силы ветра и мощности генератора.

Зарубежные бытовые ВЭС на российском рынке тоже есть, они достаточно дороги, но выдают, как правило, меньше половины номинальной мощности.

Промышленные ВЭС отличаются значительно большей мощностью и объединяются, как правило, в единые сети.

Частные ветряные электростанции в основном имеют мощность от 3 до 5, реже 10 кВт. Если среднегодовая скорость ветра в регионе достигает 3-4 м/с, то такая ВЭС может обеспечить электроэнергией средний загородный дом, СТО или небольшое кафе.

Основные характеристики ВЭС

Номинальная мощность является основным показателем, который характеризует все электростанции, ветряные не исключение. Она определяется мощностью, которую вырабатывает генератор при средней скорости ветра 12 м/с, и зависит от типа станции.

Следующим важным показателем является номинальное напряжение ВЭС, которое вырабатывает генератор. Это может быть как 220 В, так и 12 В, и 24 В.

От мощности турбины зависит электрическая мощность генератора. Поскольку мощность турбины тем выше, чем больше ее диаметр и, следовательно, прочней мачта, то этот показатель важен при выборе и расчете конструкции мачты.

Ветроустановка имеет еще несколько характеристик. Важна ее производительность – это количество электроэнергии, которое устройство вырабатывает в год. Необходимо при выборе ВЭУ знать максимальную скорость ветра, которую выдерживает турбина, и его минимальную (пусковую) скорость, при которой она начинает вращаться. Играют роль при выборе и частота вращения турбины, и количество лопастей.

Принцип работы и устройство ВЭС

На ветряной электростанции поток воздуха вращает колесо с лопастями, с которого крутящий момент передается на другие механизмы. Чем больше размеры колеса, тем больший поток воздуха оно захватывает и, следовательно, быстрее вращается.

Если говорить языком физики, линейная скорость ветра преобразовывается в угловую скорость вращения оси генератора, который, в свою очередь, преобразовывает вращательное движение в электрическую энергию, передавая ее через контроллер на аккумуляторы. На выходе из устройства электроэнергия уже пригодна к бытовому использованию.

То есть, малая электростанция ветровая состоит из турбины, лопастей, хвоста (поворотного механизма), мачты с тросами-растяжками, аккумуляторов, контроллера их заряда и инвертора, который преобразовывает напряжение 12 В в 220 В.

Кроме этих устройств промышленная ВЭС содержит еще системы слежения за направлением ветра и его скоростью, состоянием ветрогенератора и защиты от грозовых разрядов. Кроме того, с нагрузками большего масштаба мачта не справляется, и ее заменяют башней, в которой располагается все дополнительное оборудование.

Проектирование ВЭС

Главный показатель, который позволяет принять решение об использовании ветроэлектростанции, – это среднегодовая скорость ветра, которая должна быть не меньше 5 м/с. Правда, сегодня уже существуют легкоразгоняемые ВЭС, предназначенные для электроснабжения частных домовладений, которые начинают работу с минимальной скорости воздушного потока в 3,5 м/с.

Для определения этого показателя используются специальные карты ветров.

В различных климатических зонах России были проведены измерения скорости ветра, чтобы определить, насколько эффективны там ветровые электростанции. Ветряные установки и станции уже действуют в Калининградской области, на Командорских островах, в Мурманске, Республике Саха (Якутии), в Башкортостане.

Принимая решение об установке ветроэнергетической установки или частной ВЭС, стоит для начала обратиться к специалистам, чтобы провести исследования направления и силы ветра с помощью анемометров и построить карты доступности его энергии. По этим данным рассчитывается и разрабатывается проект ВЭУ или станции из нескольких установок, ее технические и геометрические параметры.

Промышленную ВЭС достаточно большой мощности без инвесторов не построить, а грамотно выполненные расчеты и составленный проект позволят определить срок окупаемости проекта и привлечь дополнительные финансы.

Частные ветряные электростанции

По существенно заниженным данным статистики, не учитывающим отдельно стоящие удаленные здания и сооружения, около 30 % частных хозяйств в сельской местности, куда прокладка электрических сетей невозможна по экономическим причинам, не имеют электроснабжения. Не везде даже стоят генераторы на жидком топливе. И это в XXI веке!

Исследования показали, что ветроэнергетические станции различной мощности можно устанавливать во многих районах севера и Крайнего Севера, на Сахалине и Камчатке, в Нижнем Поволжье, Сибири, Карелии и на Северном Кавказе.

На выбор установки влияют потребности заказчика. Если нужно обеспечить работу сельхозтехники, с такой задачей справится маломощный ветрогенератор. Если же нужно электрифицировать целое здание, наладить уличное освещение, обеспечить отопление дома, нужно выполнять проект ветряной электростанции.

Кроме среднемесячной скорости ветра и его направления нужно рассчитать среднемесячное потребление и пиковую нагрузку электроэнергии. Такие расчеты при желании несложно выполнить самостоятельно.

Существует еще один показатель, который влияет на стоимость оборудования и монтажа ВЭУ. Это высота мачты. Чем сооружение выше, тем больше скорость ветра и тем дороже оно обходится. Оптимальной, по утверждению специалистов, является высота мачты на 10 большая, чем самое высокое дерево или здание в радиусе 100 м.

Ветряная электростанция своими руками

Для работы электронасоса, телевизора, освещения или других маломощных электроприборов на дачном участке ветроэнергетическую установку можно сделать собственноручно, если есть некоторые познания в электротехнике.

Существуют справочные данные и рекомендации по выбору мощности ветрогенератора, размерам и количеству его лопастей и достаточно подробные инструкции, как сделать ветряную электростанцию своими руками, из каких материалов и узлов.

Сегодня в Европе растут капиталовложения в строительство больших ветроэлектростанций. Массовое строительство снижает себестоимость одного киловатта и приближает ее к цене электроэнергии, полученной из традиционных источников.

Конструкция ветроэлектростанций постоянно совершенствуется, улучшаются аэродинамические и электрические показатели, снижаются потери.

Ветряные электростанции для дома, по оценкам экономистов, становятся самыми эффективными в плане окупаемости проектами в области энергетики. В дальнейшем они обещают независимость от негативных тенденций на этом рынке.

businessman.ru

Ветроэнергетика России — Википедия

Материал из Википедии — свободной энциклопедии

Ветряная электростанция в Мурманске рядом с гостиницей Omni

Ветроэнергетика России отсчитывает свою историю с 1920-х годов, когда ЦАГИ разработал первые ветро-электрические станции и ветряки для сельского хозяйства. Мощность подобного «крестьянского ветряка» варьировалась от 3 л. с., 8 л. с. до 45 л. с., установка могла освещать 150—200 дворов или приводить в действие мельницу[1]. В 1931 году в Курске была построена ветроэлектростанция Уфимцева, первая в мире ветроэлектрическая станция с инерционным аккумулятором, она является объектом культурного наследия федерального значения. В том же году в Балаклаве вошла в строй ветроэлектростанция мощностью 100 киловатт, на тот момент самая мощная в мире, разрушена в 1941 году во время боёв Великой Отечественной войны[2]. В настоящее время ветроэнергетика используется преимущественно в сельской местности с малой плотностью населения, где доступ к основным источникам энергии ограничен. На 1 января 2018 года суммарная мощность ветроэлектростанций в стране составляла 134,36 МВт или всего 0,06 % от установленной мощности электростанций энергосистемы[3].

Ветряной насос «Ромашка» производства СССР

Технический потенциал ветроэнергетики России составляет 80 000 ТВтч/год, из которых экономически выгодными являются 6218 ТВтч/год[4]. Большая часть ветровых зон России — это степи на юге России (Нижняя и Средняя Волга, Дон), морские побережья (побережье Северного Ледовитого океана от Кольского полуострова до Камчатки, побережья Каспийского, Чёрного, Азовского, Балтийского и Охотского морей) и некоторые отдельные ветровые зоны (Карелия, Алтай, Тува, Байкал). Максимальная средняя скорость ветра приходится в этих районах на осень и зиму. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири. Плотность населения во многих ветровых зонах не превышает 1 чел. на 2 км²[5].

Суммарная мощность проектов ветроэлектростанций в России насчитывает 1700 МВт. К концу 2010 года реальная мощность из них составляла не более 17 МВт. Ассоциация ветроиндустрии России предсказывает, что в случае достижения доли возобновляемой энергетики в 4,5% к 2020 году мощность ветряных электростанций будет составлять 7 ГВт[6]. В 2010 году было объявлено о начале ряда проектов, в том числе о возведении ВЭС в Ейске с мощностью от 50 до 100 МВт[7], и о начале переговоров Siemens с российскими предпринимателями о строительстве ветряных электростанций[8]. Однако к 2015 году вместо планируемой мощности 1250 МВт[6] она составила всего 15,4 МВт[9].

Динамика ветроэлектрической мощности
год2006200920142018
МВт15[10]1883134

Самые крупные ветроэлектростанции России находятся в Крыму — это Донузлавская (18,7 МВт), Останинская («Водэнергоремналадка», 26 МВт), Тарханкутская (15,9 МВт) и Восточно-Крымская. В общей сложности они располагают 522 ветроагрегатами мощностью 59 МВт. Разрабатываются проекты следующих станций:

  • Азовская ВЭС (90 МВт)[11]
  • Ленинградская ВЭС (Ленинградская область, 75 МВт)
  • Калининградская морская ВЭС (50 МВт)
  • Морская ВЭС (Карелия, 30 МВт)
  • Приморская ВЭС (Приморский край, 30 МВт)
  • Магаданская ВЭС (Магаданская область, 30 МВт)
  • Чуйская ВЭС (Республика Алтай, 24 МВт)
  • Усть-Камчатская ВДЭС (Камчатская область, 16 МВт)
  • Новиковская ВДЭС (Республика Коми, 10 МВт)
  • Дагестанская ВЭС (Дагестан, 6 МВт)
  • Анапская ВЭС (Краснодарский край, 5 МВт)
  • Новороссийская ВЭС (Краснодарский край, 5 МВт)
  • Валаамская ВЭС (Карелия, 4 МВт)

В 2003—2005 годах в рамках РАО ЕЭС были проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций[12]. Также предпринимались попытки серийного выпуска ветроэнергетических установок для индивидуальных потребителей, например водоподъёмный агрегат «Ромашка». В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объём реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт).

Список некоторых ветряных электростанций[править | править код]

Ветряные электростанции
НаименованиеКоординатыГеографическое положениеМощность, МВтПроизводительПримечания[13]
Анадырская ВЭС64°46′00″ с. ш. 177°33′15″ в. д.HGЯOLЧукотский автономный округ2,5[14]Строительство и обслуживание — ООО «АЛТЭН» и Vensys-ElektrotechnikГодовая выработка в 2011 году не превысила 0,2 млн кВт⋅ч
Приютненская ВЭС46°12′32″ с. ш. 44°09′26″ в. д.HGЯOLПриютненский район, Калмыкия2,4 (в планах 51 МВт)[15]Суммарная выработка составляет 10 млн кВт⋅ч в год
Зеленоградская ВЭУ54°56′01″ с. ш. 20°21′00″ в. д.HGЯOLпосёлок Куликово Зеленоградского района Калининградской области5,1SEAS Energi Service A.S. (21 установка)
Мурманская ВЭС68°59′35″ с. ш. 33°07′06″ в. д.HGЯOLМурманск0,2В здании ООО «Контакт-Дизель», работает в комплексе с Кислогубской ПЭС
Сеть-Наволокская ВЭСмыс Сеть-Наволок Кольского полуострова0,1Ветродизельная
Оренбургская ВЭС51°46′59″ с. ш. 55°06′00″ в. д.HGЯOLОренбургская область1
Ростовский ВЭГ57°12′ с. ш. 39°27′ в. д.HGЯOLРостовская область0,3Ветроэлектрогенератор
ВЭС Тюпкильды54°36′00″ с. ш. 53°43′47″ в. д.HGЯOLд. Тюпкильды Туймазинского района, Башкортостан2,5Hanseatische AG (4 ветроагрегата типа ЕТ 550/41 мощностью по 550 кВт)Экспериментальная ВЭС. Годовая выработка в 2008—2010 годах не более 0,4 млн кВт⋅ч
Ейская ВЭС46°28′ с. ш. 38°19′ в. д.HGЯOLКраснодарский край72
Новоазовская ВЭСУкраинское побережье Таганрогского залива21,8Мощность по состоянию на 2010 год
ВЭС на острове Беринга55°11′40″ с. ш. 166°01′16″ в. д.HGЯOLКомандорские острова1,2
Заполярная ВДЭСоколо Воркуты, Республика Коми3 (в планах)
1,5 (де-факто)
Недостроена, на 2006 год действовали 6 установок по 250 кВт (итого 1,5 МВт)

ru.wikipedia.org

Ветряная электростанция — Википедия

Ветроэнергетика: общемировая годовая динамика установленной мощности ВЭС[1]. Прибрежная ветровая электростанция Миддельгрюнден, около Копенгагена, Дания. На момент постройки она была крупнейшей в мире

Ветряная электростанция  — это несколько ВЭУ, собранных в одном или нескольких местах и объединённых в единую сеть. Крупные ветровые электростанции могут состоять из 100 и более ветрогенераторов. Иногда ветровые электростанции называют «ветровыми фермами» (от англ. Wind farm).

Планирование

Исследование скорости ветра

Ветровые электростанции строят в местах с высокой средней скоростью ветра — от 4,5 м/с и выше.

Предварительно проводят исследование потенциала местности. Анемометры устанавливают на высоте от 30 до 100 метров, и в течение одного—двух лет собирают информацию о скорости и направлении ветра. Полученные сведения могут объединяться в карты доступности энергии ветра. Такие карты (и специальное программное обеспечение) позволяют потенциальным инвесторам оценить скорость окупаемости проекта.

Обычные метеорологические сведения не подходят для строительства ветровых электростанций, так как эти сведения о скоростях ветра собирались на уровне земли (до 10 метров) и в черте городов, или в аэропортах.

Во многих странах карты ветров для ветроэнергетики создаются государственными структурами, или с государственной помощью. Например, в Канаде Министерство развития и Министерство Природных ресурсов создали Атлас ветров Канады и WEST (Wind Energy Simulation Toolkit) — компьютерную модель, позволяющую планировать установку ветрогенераторов в любой местности Канады. В 2005 году Программа Развития ООН создала карту ветров для 19 развивающихся стран.

Высота

Скорость ветра возрастает с высотой. Поэтому ветровые электростанции строят на вершинах холмов или возвышенностей, а генераторы устанавливают на башнях высотой 30—60 метров. Принимаются во внимание предметы, способные влиять на ветер: деревья, крупные здания и т. д.

Экологический эффект

При строительстве ветровых электростанций учитывается влияние ветрогенераторов на окружающую среду. Законы, принятые в Великобритании, Германии, Нидерландах и Дании, ограничивают уровень шума от работающей ветровой энергетической установки до 45 дБ в дневное время и до 35 дБ ночью. Минимальное расстояние от установки до жилых домов — 300 м.

Современные ветровые электростанции прекращают работу во время сезонного перелёта птиц.

Видео по теме

Типы ветровых электростанций

Наземная

Наземная ветровая электростанция в Испании. Построена по вершинам холмов. Наземная ветряная электростанция возле Айнажи, Латвия.

Самый распространённый в настоящее время тип ветровых электростанций. Ветрогенераторы устанавливаются на холмах или возвышенностях.

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветровой электростанции может занимать год и более.

Для строительства необходима дорога до строительной площадки, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

Электростанция соединяется кабелем с передающей электрической сетью.

Крупнейшей на данный момент ветровой электростанцией является электростанция Альта, расположенная в штате Калифорния, США. Полная мощность — 1550 МВт.

Прибрежная

Строительство прибрежной электростанции в Германии.

Прибрежные ветровые электростанции строят на небольшом удалении от берега моря или океана. На побережье с суточной периодичностью дует бриз, что вызвано неравномерным нагреванием поверхности суши и водоёма. Дневной, или морской бриз, движется с водной поверхности на сушу, а ночной, или береговой — с остывшего побережья к водоёму.

Шельфовая

Шельфовые ветровые электростанции строят в море: 10—60 километров от берега. Шельфовые ветровые электростанции обладают рядом преимуществ:

  • их практически не видно с берега;
  • они не занимают землю;
  • они имеют большую эффективность из-за регулярных морских ветров.

Шельфовые электростанции строят на участках моря с небольшой глубиной. Башни ветрогенераторов устанавливают на фундаменты из свай, забитых на глубину до 30 метров. Электроэнергия передаётся на землю по подводным кабелям.

Шельфовые электростанции более дороги в строительстве, чем их наземные аналоги. Для генераторов требуются более высокие башни и более массивные фундаменты. Солёная морская вода может приводить к коррозии металлических конструкций.

В конце 2008 года во всём мире суммарные мощности шельфовых электростанций составили 1471 МВт. За 2008 год во всём мире было построено 357 МВт шельфовых мощностей. Крупнейшей шельфовой станцией в 2009 году являлась электростанция Миддельгрюнден (Дания) с установленной мощностью 40 МВт[2]. В 2013 году крупнейшей стала London Array (Великобритания) с установленной мощностью 630 МВт[3].

Для строительства и обслуживания подобных электростанций используются самоподъёмные суда.

Плавающая

Строительство первой плавающей электростанции. Норвегия. Май 2009 года.

Первый прототип плавающей ветровой турбины построен компанией H Technologies BV в декабре 2007 года. Ветрогенератор мощностью 80 кВт установлен на плавающей платформе в 10,6 морских милях от берега Южной Италии на участке моря глубиной 108 метров.

Норвежская компания StatoilHydro разработала плавающие ветрогенераторы для морских станций большой глубины. StatoilHydro построила демонстрационную версию мощностью 2,3 МВт в сентябре 2009 года[4]. Турбина под названием Hywind весит 5 300 тонн при высоте 65 метров. Располагается она в 10 километрах от острова Кармой, неподалёку от юго-западного берега Норвегии.

Стальная башня этого ветрогенератора уходит под воду на глубину 100 метров. Над водой башня возвышается на 65 метров. Диаметр ротора составляет 82,4 м. Для стабилизации башни ветрогенератора и погружения его на заданную глубину в нижней его части размещён балласт (гравий и камни). При этом от дрейфа башню удерживают три троса с якорями, закреплёнными на дне. Электроэнергия передаётся на берег по подводному кабелю.

Компания в 2017 году довела мощность турбины до 6 МВт, а диаметр ротора — до 154 метра[5].

Парящая

Парящей называют ветровые турбины, размещенные высоко над землей, для использования более сильного и стойкого ветра[6]. Концепция разработана в 1930-е годы в СССР инженером Егоровым[7].

Текущим рекордсменом считается «Парящая ветровая турбина Altaeros» (Altaeros Buoyant Airborne Turbine (BAT)), которая будет установлена на высоте 1000 футов (304,8 м) над землей. Этот пилотный проект промышленного масштаба будет находиться на высоте 275 футов выше, чем текущий рекордсмен – Vestas V164-8.0-MW. Последний совсем недавно установил свой прототип в Датском национальном центре тестирования больших турбин (Danish National Test Center for Large Wind Turbines) в Остерильде (Østerild). Высота расположения оси Vestas 460 футов (140 метров), лопасти турбин в высоту более 720 футов (220 метров). У Altaeros мощность турбины 30 кВт. этого достаточно для обеспечения энергией 12 домов. Для поднятия на такую высоту Altaeros использует невоспламеняемую надувную оболочку, наполненную гелием. Проводником для произведенной энергии служат высокопрочные канаты.[источник не указан 1305 дней]

Горная

Первая на постсоветском пространстве горная ВЭС мощностью 1,5 МВт была запущена на Кордайском перевале в Жамбылской области Казахстана в 2011 году[8]. Высота площадки – 1200 метров над уровнем моря. Среднегодовая скорость ветра 5,9 м/сек. В 2014 году количество ветротурбин «Vista International» мощностью по 1,0 МВт на «Кордайской ВЭС» было доведено до 9 агрегатов при проектной мощности 21 МВт[9]. В дальнейшем планируется введение в строй Жанатасской (400 МВт) и Шокпарской (200 МВт) ветряных электростанций.

В феврале 2015 года в Восточных Карпатах у города Старый Самбор запущена в работу первая в Западной Украине горная ВЭС «Старый Самбор 1» мощностью в 13,2 МВт. Общая мощность 79,2 МВТ. Она представлена ветротурбинами VESTAS V-112 датского производства номинальной мощностью 6,6 МВт[10]. Высота площадки 500 – 600 м над уровнем моря, среднегодовая скорость ветра 6,3 м/сек[11].

Панорамы ВЭС

ВЭС в России

На 2008 год общая мощность ВЭС в стране исчислялась 16,5 МВт[12]. Одна из крупнейших ветровых станций России — Зеленоградская ВЭУ, расположенная в районе посёлка Куликово Зеленоградского района Калининградской области. Её суммарная мощность составляет 5,1 МВт. Состоит из ВЭУ датской компании SЕАS Energi Service A.S. (1 новая мощностью 600 кВт и 20 отработавших 8 лет в Дании мощностью 225 кВт каждая).

Мощность Анадырской ВЭС составляет 2,5 МВт.

Мощность ВЭС Тюпкильды (Башкортостан) составляет 2,2 МВт.

Заполярная ВЭС, находящаяся около города Воркута в Коми, имеет мощность 1,5 МВт, построена в 1993 году. Состоит из шести установок АВЭ-250 российско-украинского производства мощностью 250 кВт каждая.

Около Мурманска строится опытная демонстрационная ВЭУ мощностью 250 кВт[13]. В селе Пялица, в мае 2014 года, открыта первая в Мурманской области ветровая электростанция. Так же до 2016 года предусматривается дальнейшее введение ветропарков в Ловозерском и Терском районах области[14].

См. также

Примечания

Литература

  • Методы разработки ветроэнергетического кадастра. — АН СССР, ГЛАВНИИ при Госэкономсовете Энергетический институт им. Г. М. Кржижановского. Изд-во АН СССР, 1963.

Ссылки

Отрасли промышленности

wiki2.red

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *