Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
), скобки и π (число пи), уже поддерживаются на настоящий момент.
  • Из списка выберите единицу измерения переводимой величины, в данном случае ‘вольт [В]’.
  • И, наконец, выберите единицу измерения, в которую вы хотите перевести величину, в данном случае ‘киловольт [кВ]’.
  • После отображения результата операции и всякий раз, когда это уместно, появляется опция округления результата до определенного количества знаков после запятой.

  • С помощью этого калькулятора можно ввести значение для конвертации вместе с исходной единицей измерения, например, ‘458 вольт’. При этом можно использовать либо полное название единицы измерения, либо ее аббревиатуруНапример, ‘вольт’ или ‘В’. После ввода единицы измерения, которую требуется преобразовать, калькулятор определяет ее категорию, в данном случае ‘Электрическое напряжение’. После этого он преобразует введенное значение во все соответствующие единицы измерения, которые ему известны. В списке результатов вы, несомненно, найдете нужное вам преобразованное значение. Как вариант, преобразуемое значение можно ввести следующим образом: ’47

    В в кВ‘ или ’36 В сколько кВ‘ или ’82 вольт -> киловольт‘ или ’82 В = кВ‘ или ’89 вольт в кВ‘ или ’80 В в киловольт‘ или ’92 вольт сколько киловольт‘. В этом случае калькулятор также сразу поймет, в какую единицу измерения нужно преобразовать исходное значение. Независимо от того, какой из этих вариантов используется, исключается необходимость сложного поиска нужного значения в длинных списках выбора с бесчисленными категориями и бесчисленным количеством поддерживаемых единиц измерения. Все это за нас делает калькулятор, который справляется со своей задачей за доли секунды.

    Кроме того, калькулятор позволяет использовать математические формулы. В результате, во внимание принимаются не только числа, такие как ‘(55 * 96) В’. Можно даже использовать несколько единиц измерения непосредственно в поле конверсии.3′. Объединенные таким образом единицы измерения, естественно, должны соответствовать друг другу и иметь смысл в заданной комбинации.

    Если поставить флажок рядом с опцией ‘Числа в научной записи’, то ответ будет представлен в виде экспоненциальной функции. Например, 6,444 521 546 293 1×1027. В этой форме представление числа разделяется на экспоненту, здесь 27, и фактическое число, здесь 6,444 521 546 293 1. В устройствах, которые обладают ограниченными возможностями отображения чисел (например, карманные калькуляторы), также используется способ записи чисел 6,444 521 546 293 1E+27. В частности, он упрощает просмотр очень больших и очень маленьких чисел. Если в этой ячейке не установлен флажок, то результат отображается с использованием обычного способа записи чисел. В приведенном выше примере он будет выглядеть следующим образом: 6 444 521 546 293 100 000 000 000 000. Независимо от представления результата, максимальная точность этого калькулятора равна 14 знакам после запятой. Такой точности должно хватить для большинства целей.

    Содержание

    КИЛОВОЛЬТ – это… Что такое КИЛОВОЛЬТ?

  • киловольт — киловольт …   Орфографический словарь-справочник

  • киловольт — [см. кило… + вольт] – единица электрического напряжения, равная 1 000 вольт Большой словарь иностранных слов. Издательство «ИДДК», 2007. киловольт а, м., род. мн. киловольт, м. ( …   Словарь иностранных слов русского языка

  • киловольт — киловольт, род. мн. киловольт и устарелое киловольтов …   Словарь трудностей произношения и ударения в современном русском языке

  • киловольт — сущ., кол во синонимов: 1 • единица (830) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • киловольт — кВ — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы кВ EN kilovolt …   Справочник технического переводчика

  • Киловольт — Вольт (обозначение: В (рус.), V (лат.)) единица измерения электрического напряжения в системе СИ. Вольт равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт. Единица названа в честь… …   Википедия

  • киловольт — kilovoltas statusas T sritis Standartizacija ir metrologija apibrėžtis Kartotinis SI elektrinės įtampos matavimo vienetas. Žymimas kV: 1 kV = 1000 V. atitikmenys: angl. kilovolt vok. Kilovolt, n rus. киловольт, m pranc. kilovolt, m …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • киловольт — kilovoltas statusas T sritis fizika atitikmenys: angl. kilovolt vok. Kilovolt, n rus. киловольт, m pranc. kilovolt, m …   Fizikos terminų žodynas

  • киловольт — киловольт, киловольты, киловольта, киловольт, киловольту, киловольтам, киловольт, киловольты, киловольтом, киловольтами, киловольте, киловольтах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») …   Формы слов

  • киловольт — килов ольт, а, род. п. мн. ч. ов, счетн. ф. в ольт …   Русский орфографический словарь

  • В ПОМОЩЬ ПИШУЩЕМУ НА ТЕМУ ЭЛЕКТРОЭНЕРГЕТИКИ. ЧАСТЬ-2

    МВАр (Мегавольт Ампер-реактивный)
    Не буду вдаваться в теорию, расскажу упрощенно и для сведения. На самом деле все генераторы на электростанциях вырабатывают два вида мощности. Во-первых, Активную мощность (это те самые Мегаватты – МВт, про которые я рассказал выше). Активная мощность совершает всю полезную работу – по нагреву проводников, по вращению двигателей. Но есть еще и реактивная мощность. Без нее не смогут крутиться двигатели (только активной мощности для приведения во вращение двигателя недостаточно) и работать некоторые потребители. Просто знайте, что она есть. Отсюда вытекает понятие полной мощности – измеряется в Мегавольт Амперах (МВА) – это корень квадратный из суммы квадратов активной и реактивной мощностей. Кстати, косинус фи (может слышали такое понятие, относящиеся к энергетике, показывает соотношение активной и реактивной мощностей, которые берет из сети потребитель). Все, идем дальше.

    кВ (киловольт)
    В Вольтах измеряется электрическое напряжение, обозначается «U». Если подумать – мы постоянно сталкиваемся с этой физической величиной. Электрическое напряжение между «+»-ом и «–»-ом пальчиковой батарейки от пульта телевизора всего 1,5 В, «в розетке на стене», то есть между ее контактами 220 В. Чаще всего напряжение используется журналистами при упоминании в материале линий электропередачи и электрических подстанций. Хочу открыть маленький секрет – если речь идет об отключении линии, зная ее напряжение можно оценить примерный масштаб отключений. Итак, в нашей стране используются следующие классы напряжений (про специфические, которые используются на некотором оборудовании промышленных предприятий писать не буду):
    220 Вольт (220 В) – на такое напряжение рассчитаны бытовые приборы в СССР и соответственно проводка в жилых и административных зданиях.
    0,4 кВ (0,4 киловольта или 400 Вольт, на самом деле 380 Вольт, для удобства округленные до целого значения) – линии такого напряжения прокладывают на очень маленькие расстояния, обычно от «трансформаторной будки» во дворе дома, до подъезда или по сельской улице, в любом случае максимальная длина такой линии – десятки метров. Соответственно если такая линия отключится, об этом узнают не более сотни потребителей электроэнергии.
    6 кВ (6 киловольт или 6 тысяч Вольт, 6 000 В), 10 кВ, 35 кВ – это класс напряжения распределительной внутригородской сети, отключение сразу нескольких таких линий может «погасить» максимум небольшой городской квартал, как правило, длина таких линий несколько километров.
    110 кВ, 220 кВ
    – системообразующая региональная сеть, длина от десятков до сотен километров. Отключение такой линии может оставить без света от 100 000 до 200 000 человек. Правда, обычно такие линии работают по несколько в параллели, так, что для того, чтобы пропал свет должно отключиться сразу нескольких линий или вся подстанция целиком.
    500 кВ – сеть, образующая Единую Электроэнергетическую Систему Казахстана, также линии такого класса напряжения образуют межгосударственные электрические связи. Отключение такой линии может привести к обесточиванию до полумиллиона потребителей (а если отключение получит развитие, без света останется намного больше людей). Однако, как правило, ничего страшного не происходит, поскольку в параллели несколько таких линий. Длина несколько сотен километров. Самая длинная линия 500 кВ в Казахстане – от Актюбинска до Костаная – 500 км. Первые линии напряжением 500 кВ появились в СССР после 1960 года. В Казахстане первая 500-ка это линия между г. Аксу (Ермак) и Экибастузом, построенная в 1972 году.
    1150 кВ (1 миллион 150 тысяч Вольт) – линия (вернее транзит длиной 2500 км, из которых 1500 км проходит по нашей территории) уникальна для Земли. Ни в одной стране мира нет линий такого класса напряжения. Только в Казахстане и России. Линия была построена для обмена мощностью между Сибирью, Казахстаном и Европейской частью СССР. Транзит берет начало в сибирском Итате, затем идет через Барнаул, Экибастуз, Кокшетау, Костанай в Челябинск. Для чего такие «дикие» напряжения, спросите вы? Просто это дает возможность передавать по транзиту 5 500 МВт – это самая мощная ВЛ в мире. Правда, на своем «родном» напряжении линии удалось поработать недолго. Распался Советский Союз, произошел резкий спад потребления – передавать стало нечего. Вот и перевели ее на напряжение 500 кВ. Но кто знает, может все вернется обратно?

    Был один случай. Приехал к нам в Казахстан один иностранец, по линии какой-то международной организации, то ли ООН, то ли USAID, не помню. Приехал обучать аборигенов, так сказать. Достижениям западной цивилизации. Долго парил мозги про «их» успехи (которые, по правде говоря, для нас стали пройденным этапом году эдак в 1970), и по концовке видимо решил нас окончательно добить своим превосходством. У нас, говорит (многозначительно так), системообразующая сеть работает на напряжении… целых 400 тысяч Вольт! Последовавший за этим наш дружный смех он интерпретировал неправильно, подумал, что по причине сильной отсталости, туземцы не верят в существование такой «огромной» цифры, и уже было начал обдумывать продолжение спича. Однако был нами остановлен, и под белы ручки подведен к карте с трассировкой линий по стране. Док долго отказывался верить в то, что у нас буквально весь Казахстан в линиях на 500 кВ, а что построена линия напряжением 1150 кВ он поверил только у себя на родине, когда ознакомился с разведданными ЦРУ:) Больше к нам спецов не присылали.

    Я перечислил все классы напряжения, которые используются в Казахстане и странах бывшего СССР (правда в России, Белоруссии, Прибалтике и на Украине используются еще классы 330 кВ и 750 кВ). В странах дальнего зарубежья классы напряжения отличаются от вышеприведенной шкалы. И это не от большого ума. Например, в США напряжение, используемое бытовыми приборами не 220 В, как у нас, а 127 В. На что это влияет? Если кто помнит, электрические «шнуры» (кабели питания) советской бытовой техники были довольно тонкими. Не то, что сейчас – телевизор, мощностью с лампочку в подъезде, получает питание от сети по кабелю, толщиной чуть ли не с мизинец, а про стиральную машинку я вообще молчу. Кстати, мой советский телевизор «Радуга» потреблял 750 Вт – в 3 раза больше, чем телек 51-ой диагонали LG сегодня. Далекие от школьных уроков физики люди думают, что такая разница в толщине проводов из-за желания иностранных производителей сделать более надежную и безопасную технику. А вот и нет. Просто кабели выпускаются под западные 110 -127В, а при таком напряжении меди в проводе должно быть в 4 (!) раза больше, чем при «советском» напряжении 220 В (для питания бытового прибора той же мощности). Чтобы оценить весь ужас перерасхода цветных металлов в США, помимо неэффективных «шнуров» к бытовой технике нужно учесть такую же проводку в стенах зданий, рассчитанную на 110-127 В. Скажете, что это они, дураки, что ли? Взяли бы да поменяли на 220 В. Не все так просто. Они бы сейчас может и поменяли, да денег это стоит переделывать все по новой стольких, что они запарятся доллары печатать.

    Напряжение – локальный фактор. Если у вас слишком низкое напряжение в квартире, значит, проблема скорее всего существует в совсем небольшом районе. Скорее всего, на местной подстанции неправильно отрегулированы трансформаторы, либо в вашем районе дефицит реактивной мощности, про которую я написал ниже. Локальный – это означает, что если есть проблемы с напряжением в одном из Алматинских дворов, в соседнем может быть все в порядке, тем более все в порядке с напряжением в другом городе.

    Постоянный и переменный электрический ток
    Несмотря на то, что журналисты почти не сталкиваются с понятием электрического тока, для общего развития вкратце напишу и про него. Электрический ток это направленное движение электрически заряженных частиц под воздействием электрического поля. Уфф…:) Заряженными частицами могут быть, например электроны в металлических проводниках (поэтому провода ЛЭП делают из металла). Ионы в электролитах (поэтому «человека может ударить током»). Проще всего объяснить, что такое ток на устройстве простейшей электрической цепи. Есть источник тока – батарейка. Есть лампочка, подключенная к «+» и «–» батарейки при помощи проводника, например медной проволоки. Это простейшая электрическая цепь.



    Батарейка является химическим источником тока. Из-за химических реакций, протекающих в батарейке, на стороне «–» батарейки, накапливаются электроны. Далее. Медная проволока, состоит из атомов, образующих кристаллическую решетку. Сквозь эту решетку могут свободно проходить электроны. Как только цепь замыкается (лампочка через проводки соединяется с обоими концами батарейки), электроны от «–» батарейки начинают перетекать к «+» по проволоке и нити накаливания лампочки (благодаря электродвижущей силе, которую создает батарейка) – это и есть электрический ток. Нить лампочки накаливания тоже металлическая, но кристаллическая решетка металла, из которого она изготовлена (обычно Вольфрам) намного «меньше» чем кристаллическая решетка меди, из которой сделаны проводки. Электронам труднее «протиснуться» через нее, в результате «трения» нить накаливания разогревается до высокой температуры и начинает светиться. Здесь мы коснулись еще одного понятия – электрического сопротивления. У меди оно меньше, чем у Вольфрама. Итак, здесь все понятно. Электроны циркулируют по цепи – это электрический ток, причем постоянный, поскольку они циркулируют в одном и том же направлении.

    На постоянном токе «работает» практически вся бытовая электроника (компьютеры, телевизоры, пульты дистанционного управления). Исторически электрификация (централизованное обеспечение электроэнергией) начиналась с постоянного тока. Вообще, электрификация была голубой мечтой дедушки Томаса Эдисона, которую он, кстати, воплотил в жизнь. «Никогда не изобретай то, чего не сможешь продать!» – любил повторять предприимчивый изобретатель. Действительно, в те времена организация искусственного освещения сулила огромные барыши (в наше время это тоже отличный бизнес). Интересно, что до распространения искусственного освещения люди спали в среднем 10 часов в сутки. Основатель «General Electric», Эдисон стал одним из отцов современной энергетики, он спроектировал и выполнил в натуре первую в мире законченную энергетическую инфраструктуру – и производство электроэнергии на генераторах постоянного тока и ее доставку по линиям электропередачи к потребителям и всякие «мелочи» вроде выключателей, патронов к лампочкам, счетчиков электроэнергии и т.д. Кстати, размер цоколя лампочки до сих пор принято обозначать с большой латинской «E». Например, Е27 или Е14, где «Е» – означает Edison, а цифра это диаметр цоколя в миллиметрах. Сама лампочка накаливания – коллективное творение. Во всяком случае, Эдисон в 1906 году купил у Лодыгина патент на вариант лампочки с вольфрамовой нитью накаливания. Первым электрифицированным районом Земли стал Манхеттен в Нью-Йорке.

    Все у Эдисона было нормально, пока не обнаружилась одна проблемка. Рабочее напряжение Эдисоновской сети постоянного тока было 127 Вольт – такое напряжение давали генераторы. Но чем дальше от генераторов пытались передать электроэнергию, тем меньше ее передавалось – сильно снижалось напряжение (это происходило из-за наличия сопротивления в электрических кабелях). Выход из положения состоял либо в том, чтобы повысить напряжение, но это создавало угрозу поражения электрическим током для конечных потребителей, а самое главное (самое – потому, что не до людей, когда такие деньги) нужно было менять генераторы, но это дорого, либо второй вариант – «понатыкать» электростанций по всему Нью-Йорку (через каждые 1,5-2 км), что, вообще говоря, снижало экономическую эффективность всей системы, про экологию я вообще молчу. Поскольку компания Эдисона была монополистом, он склонялся ко второму варианту.

    Но тут Никола Тесла, который работал у Эдисона, подбросил идею перехода на переменный ток. В чем суть идеи. В 1831 году Майкл Фарадей обнаружил, что если поместить в магнитное поле проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии магнитного поля, то в проводнике возникнет электрический ток. Блин, если так и дальше пойдет скоро и сам начну понимать, о чем пишу:) Проще говоря, что сделал Фарадей, – взял катушку, намотал на нее провод, концы провода подсоединил к вольтметру и как Ослик Иа из мультика про Винни Пуха стал опускать в полую сердцевину катушки магнит на ниточке, а потом поднимать. «Замечательно входит, замечательно выходит», – думал Фарадей. Тут смотрит, а стрелка вольтметра с каждым таким движением и дергается. Так и открыл электромагнитную индукцию.

    Так вот, мо мере опускания магнита, по проводу, намотанному на катушку, начинает течь и возрастать ток, затем он уменьшается, затем становится равным нулю, а потом все повторяется в обратном направлении, а затем снова и снова. Это и есть переменный ток. Только до Теслы, куда его присобачить, этот переменный ток, никто не знал. Ну, есть, мол, такой и все тут.

    Да, и еще изобрели трансформатор.

    На Фарадейевскую катушку надели еще одну, большего диаметра (электрическая матрешка получилась), и тут заметили, что во второй катушке (если число витков отлично от первой катушки), напряжение другим становится. Так вот, Тесла прикинул 2+2 и предложил использовать переменный ток следующим образом. Делаем генератор переменного тока. Затем пропускаем переменный ток через трансформатор и многократно увеличиваем напряжение (это позволит передавать электроэнергию на большие расстояния). Затем доставляем электроэнергию до потребителя по линии электропередачи и снова пропускаем ток через трансформатор, только уже для понижения напряжения. Надо сказать, что такой фокус с постоянным током не проходит. Постоянный ток не трансформируется. Короче, вот проблема и решена, тем более что лампочке, если честно, вообще до лампочки – постоянный или переменный ток через нее проходит, светит почти одинаково. «Так, так, так, – захлопнув крышку карманных часов, сказал Эдисон, не дав Тесле договорить до конца. – А где генератор переменного тока взять, ты, что ли его изобретать будешь?». «Да я и не такое изобрести смогу, самодовольный ты осел», – ответил Никола. «Послушай, чем заниматься ерундой, приложи-ка лучше усилия к решению проблем электрических машин постоянного тока, если получится, дам тебе … $50 000, – прищурив глаза, Эдисон протянул Тесле исписанный листок бумаги. – И ступай уже, работать мешаешь». В подтверждение окончания разговора Эдисон отвернулся к верстаку, с какими-то железками, которым вскоре предстояло стать первым в мире видеовоспроизводящим устройством – кинетоскопом. Тесла довольно быстро решил проблемы с машинами Эдисона, и так же быстро придумал принцип работы генератора переменного тока. Помните Ослика Иа Фарадея с катушкой? Теперь немного изменим опыт. Не будем привязывать магнит за ниточку. Вместо этого, насадим магнит на палочку (тфу ты, детский сад какой-то) и будем палочку крутить, вдоль свой оси. Пишу, а самого почему-то смех разбирает:)) Катушка начнет вырабатывать переменный ток. В промышленном образце, конечно, никакого магнитика с палочкой нет, там есть ротор с мощным электромагнитом, который приводится во вращение паровой турбиной, вместо катушки с проволокой – статор. Итак, Тесла решил все задачи по машинам постоянного тока, которые Эдисон не смог решить сам. А Эдисон денег не дал. «Ну, ты парень даешь, совсем наших американских шуток не понимаешь, какие такие 50 штук баксов, я ж тебе зарплату плачу!» – ехидно улыбаясь, Эдисон похлопал Теслу по плечу и, приложив некоторое усилие, вырвал из рук своего сотрудника папку с чертежами и расчетами. «Нет, все-таки я великий изобретатель», – подумал Эдисон, наблюдая как сутуловатая фигура худощавого Теслы удаляется по коридору. Вот как Тесла и Эдисон рассорились. Да так, что через много лет, когда Тесле присудили Нобелевскую, он от нее отказался, поскольку ее на двоих с Эдисоном давали.

    Почему Эдисон пробросил Теслу – понятно. Чтобы на переменный ток переходить, надо, во-первых, признать, и рассказать инвесторам, что я, Томас Алва Эдисон, в свое время недошурупил, что перспектив у постоянного тока как у снежка в микроволновке, а во-вторых, надо растрясти этих инвесторов на новые вложения. Не так-то это и просто. А что Тесла? А Тесла взял и пошел к Джорджу Вестингаузу, конкуренту Эдисона. Рассказал ему все как есть и сделали они первую в мире ГЭС с генераторами переменного тока на Ниагарском водопаде. Кстати, наш «КaзАтoмПрoм» владеет 10% акций компании «Westinghouse Electric», скажи в те годы Джорджу Вестингаузу, что казахи будут совладельцами его компании, думаю он бы сильно удивился, вот что глобализация делает.

    Надо сказать, что Эдисон тоже не сдавался, какое то время. Что он только не делал, чтобы насолить развеселой компании Коли и Жоры. Статьи заказные писал с кричащими заголовками вроде «Еще одна жертва переменного тока» или «Все, что вы хотели узнать о переменном токе – убийце, но боялись спросить». И стул изобрел «электрический» (конечно же, на переменном токе), дескать, видите, мы этим переменным током преступников на тот свет отправляем, а вы хотите, чтобы он у вас из розетки дома торчал. И через «своих» сенаторов закон провел об ограничении уровня напряжения на линиях электропередачи, что делало бессмысленным использование переменного тока (потом закон конечно отменили). При этом опасность поражения постоянным током при напряжении 127 В ничуть не меньше, чем переменным. Это противостояние назвали «войной токов». Но. Развитие не остановишь, переменный ток взял свое. Других вариантов нет и сегодня. Правда, надо сказать, американцы странные люди – на одной полке с прогрессом у них и технологическая отсталость может лежать. При всех преимуществах переменного тока, последние эдисоновские сети постоянного тока в Нью-Йорке были демонтированы только в 2007 году. Как говорится, дедушка умер, а дело живет, лучше бы было наоборот.

    Предложения со словом «вольт-ампер»

    Мы нашли 44 предложения со словом «вольт-ампер». Также посмотрите синонимы «вольт-ампер».

    • Чтобы снизить потери, требовалось повысить напряжение, однако более чем несколько тысяч вольт постоянный ток дать не мог.
    • Родзянко, ранее уже потерпевший поражение в борьбе с Милюковым, совершил политический вольт: выступил за отказ Михаила от престола.
    • Между тем первичная обмотка электрического осциллятора наполнилась до предела рабочим напряжением в пятьдесят тысяч вольт.
    • Высылаем вам настенный аппарат для снятия вашей пошлой татуировки на 220 вольт.
    • Когда же провели испытание на повышенное напряжение, достигавшее 28 тысяч вольт, коэффициент полезного действия составил 78,9 процента.
    • В 37-м в УФТИ был запущен первый в Европе электростатический ускоритель с напряжением в3,5 миллиона вольт.
    • Все соседние со школой были перегружены, потребителям выдавали не 220, а лишь 180 вольт.
    • Кстати, замечу, что такое изменение молоточка Нефа я сделал еще в 1844 году и назвал тогда получившийся прибор вольт-индуктором.
    • Чтобы не сажать бортовой аккумулятор, подключался генератор, который выдавал 27 вольт бортсети.
    • Особенно примечательна должность главного инспектора университета, которую Ампер занимал 28 лет до самой смерти.
    • Яхта была оснащена четырьмя гелевыми аккумуляторами на 80 ампер-часов и еще одним для того, чтобы заводить мотор.
    • Постоянно растет и количество обязанностей Ампера, связанных с его преподавательской деятельностью.
    • Ампер мирился со всеми кознями женушки ради дочери от этого брака и, пряча гордость, постоянно искал пути к примирению.
    • Ампер больше не в силах оставаться в городе, с которым было связано столько светлых надежд, где казнили отца и умерла супруга.
    • Вот уже к телу изобретателя подведено электрическое напряжение свыше двух миллионов вольт, при этом ни один мускул у него не дрогнул.
    • Ампер необыкновенно оживлял мои прогулки по Риму.
    • Вместе с радостью жизни у Ампера с новой силой проснулось стремление к познанию.
    • Обыкновенная лампочка, рассчитанная на сто десять вольт, мгновенно перегорает, если пустить в нее ток с напряжением двести вольт.
    • Один раз, когда я копался в телевизоре, меня ударило разрядом в 22 тысячи вольт.
    • Опасность представляют линии менее мощные, в частности, широко распространенные линии в десять тысяч вольт.
    • Установленные лампы накаливания на 8, 16 и 25 свечей каждая, при напряжении 50 вольт, запитывались от динамо-машины и аккумуляторов.
    • Вдоль трасс газопроводов быстро построили линии на десять тысяч вольт.
    • https://sinonim.org/
    • Похоронен Андре Мари Ампер на Монмартрском кладбище в Париже.
    • Именно Ампер предсказывает появление новой науки об общих закономерностях процессов управления, которую он называет кибернетикой.
    • На участках стояли трансформаторные подстанции (ТП), которые понижали напряжение до «съедобных» для машин и быта 380/220 вольт.
    • Жан Жак Ампер являлся крупным торговцем шелка.
    • Вольт Суслов, пересказавший «Галльского петуха», основное внимание в этой книге уделил сказкам.
    • Вот уже к телу изобретателя подключено напряжение свыше двух миллионов вольт, но при этом ни один из его мускулов даже не дрогнул.
    • Уже темнеет, но я заранее приготовил освещение: две лампочки на 36 вольт подключаются последовательно, но параллельно сварке.
    • Оказалось, что Ампер долгие годы и не подозревал о четкости этого мира!
    • Она поступала из Иваново по воздушной линии электропередачи (ЛЭП) напряжением 220 тысяч вольт (киловольт, кВ) на главную подстанцию.
    • Изобретение представляло собой механический резонансный осциллятор бесперебойной передачи тока на миллионы вольт.
    • Осенью 1981 года Вольт Суслов сообщил, что Андреев согласился выполнять полномочия представителя ЛО ССП в клубе.
    • Две внезапные смерти накрыли серой пеленой отчаяния и безнадежности всех оставшихся в живых представителей семейства Ампер.
    • Силой ветра тут можно было пилить бревна, качать воду, вырабатывать электричество напряжением в 380 вольт.
    • Дальше за дело взялся другой естествоиспытатель, Андре Мари Ампер.
    • Видимо потому слава и богатство семьи Ампер росли из поколения в поколение.
    • Оба провода термопары плотно скручивались друг с другом, после чего к ним крепился один из проводов, отходящий от вилки на 220 вольт.
    • Всегда необходимо было иметь запас ампер, чтобы в нужный момент использовать его для спасения.
    • Нужна была подстанция для понижения напряжения с 10 киловольт до 380 вольт.
    • Но это оказались не телефонные провода, а линия высоковольтных передач с проводами под напряжением 30 тысяч вольт.
    • Кран опустили, а он в люльке мёртвый лежит: попал под напряжение 380 вольт.
    • Я не совсем еще понял в чем дело, но мне, конечно, было обидно, что о такой прекрасной вещи Вольт уже знал, а я нет.
    • Доверчивый, рассеянный, неказистый Ампер горько переживал череду невзгод.

    Источник – ознакомительные фрагменты книг с ЛитРес.

    Мы надеемся, что наш сервис помог вам придумать или составить предложение. Если нет, напишите комментарий. Мы поможем вам.

    • Поиск занял 0.004 сек. Вспомните, как часто вы ищете, чем заменить слово? Добавьте sinonim.org в закладки, чтобы быстро искать синонимы, антонимы, ассоциации и предложения.

    Пишите, мы рады комментариям

    Пропуская 1,1 миллион вольт через стену

    Линейные вводы являются важным компонентом инновационной технологии UHVDC, которую компания АВВ разработала и внедрила для передачи 12000 мегаватт электроэнергии на расстояние более 3000 км с минимальными потерями.
    Линейные вводы, разработанные для первой в мире линии электропередач постоянного тока на сверхвысокие напряжения (UHVDC) мощностью 1100 кВ, являются частью комплексного решения преобразовательной подстанции АВВ для самой длинной и мощной линии электропередач на планете, расположенной в Китае и обладающей самой высокой пропускной способностью.

    В 2018 году, когда проект будет выполнен, линия электропередач постоянного тока на сверхвысокие напряжения (UHVDC) в Чанцзи-Гугуан сможет передавать 12000 мегаватт мощности. Этого будет достаточно, чтобы удовлетворить потребности 26,5 миллионов человек в электроэнергии. Напряжение линии постоянного тока +/- 1100 кВ почти на 50% больше, чем действующие в настоящий момент линии электропередач постоянного тока на сверхвысокие напряжения +/- 800 кВ.

    Линия UHVDC позволяет эффективно использовать возобновляемую и традиционную энергию от источника, находящегося в отдаленной части северо-западного Китая и передавать ее на более 3000 км по экономичным по площади воздушным линиям в промышленные и населенные пункты, где эта энергия необходима.
    Линейные вводы используются для подключения внутренней преобразовательной подстанции к линии электропередач постоянного тока на сверхвысокие напряжения (UHVDC) на каждом конце этой линии. Вводы проходят через стену преобразовательной подстанции таким образом, чтобы одна часть ввода находилась внутри, а другая – снаружи.
    Восемь из этих гигантских вводов будут смонтированы на стенах преобразовательных подстанций, а еще два будут находиться в резерве на случай чрезвычайной ситуации.

    Технические задачи
    Проектирование и изготовление линейных вводов, способных передавать на 50% больше электроэнергии при более высоких напряжениях, что до этого момента казалось невозможным, оказалось очень непростой задачей.

    Компания АВВ должна была разработать новые концепции в области изоляции и проектирования тепломеханической части для того, чтобы выдерживать жесткие требования эксплуатации при обеспечении высокого уровня безопасности и надежности в работе на сверхвысоких напряжениях постоянного тока.
    Данный ввод на 40% длиннее, в 3 раза тяжелее и имеет на 30% больший диаметр, чем ввод постоянного тока на 800 кВ.

    Во время типовых испытаний вводы должны были выдержать все сценарии работы при экстремальных условиях эксплуатации, которые потенциально могли привести к разрушению ввода, среди которых: минимальная температура воздуха до -42°C, испытания грозовыми импульсами, экстремальные скачки температуры от нагрева протекающим током.
    Существенной была и скорость. Вводы на такое напряжение и преобразовательные трансформаторы, также разработанные компанией АВВ, должны были быть спроектированы, изготовлены и протестированы всего за 18 месяцев.

    Помимо линейных вводов постоянного тока на 1100 кВ для двух преобразовательных подстанций компания ABB также поставляет линейные вводы различных напряжений на подстанции, где мощность будет получена от или подана в систему передачи переменного тока на обоих концах линии электропередачи.

    Пройдите по ссылке, чтобы узнать больше о возможностях преобразовательных трансформаторов на 1100 кВ.

    Двести двадцать тысяч вольт: ammo1 — LiveJournal

    Мне удалось побывать на недавно открывшейся высоковольтной подстанции Объединённой энергетической компании и в центре управления электрическими сетями Москвы.

    Высоковольтная подстанция 220/20 КВ Абрамово расположена на Окружной улице.

    Такая подстанция – третий этап в доставке электроэнергии до потребителя:

    1. Электростанция вырабатывает напряжение 500 или 750 киловольт.
    2. Первая высоковольтная подстанция преобразует его в 220 киловольт.
    3. Вторая высоковольтная подстанция преобразует 220 в 20 киловольт.
    4. Небольшие подстанции преобразуют 20 в 10 или 6 киловольт.
    5. Трансформаторные будки во дворах преобразуют 6 или 10 киловольт в 220 вольт.


    Такие высокие напряжения нужны для передачи очень большой электрической мощности по относительно тонким проводам (чем больше напряжение, тем тоньше провод при той же мощности).

    Напряжение 220 киловольт подводится к подстанции кабелями с изоляцией из сшитого полиэтилена. Каждая фаза – отдельный кабель диаметром 125 мм. Эти кабели прокладываются под землёй. Вот так выглядит 220-киловольтный ввод.

    Монструозное комплектное распределительное устройство (КРУЭ) – всего лишь аналог распределительного щитка в квартире, с той лишь разницей, что напряжение и ток в тысячу раз выше.

    Сюда приходят два вводных трёхфазных кабеля и отходят три кабеля на три трансформатора, стоящих на подстанции.

    В качестве изоляции используется элегаз (http://ru.wikipedia.org/wiki/Элегаз).

    Для оповещения в случае утечки газа постоянно работают газоанализаторы.

    Оказывается, в энергетике фазы обозначаются не номерами, а цветами (красная, зелёная, жёлтая).

    КРУЭ поражает своей монструозностью.

    Но ещё более монструозны трансформаторы, мощностью 100 мегаватт.

    Наверху виден бак с маслом, охлаждающим трансформатор. Масла в системе охлаждения трансформатора 42 тонны.

    При существенном нагреве включается принудительное охлаждение – десять огромных вентиляторов.

    Вводные контакты трансформатора. На этих оголённых проводах те самые двести двадцать тысяч вольт. Маленькие изоляторы с “шапочками” – система кратковременного сброса при перенапряжении.

    Выходные шины с напряжением 20 киловольт.

    Удивительно, что помимо электронных термометров и телеметрии используются вот такие нетрадиционные методы контроля: камера смотрит на здоровенный механический термометр.

    Зал управления подстанцией.

    В стойках – компьютерные системы управления. Все блоки управления задублированы на случай отказа.

    Дежурный диспетчер контролирует работу станции. Всего диспетчеров пять. Каждый работает по пятисуточному циклу: 12-часовая смена с 8 до 20, отдых сутки, ночная смена с 20 до 8, отдых трое суток. Рабочее место диспетчера также полностью задублировано на случай отказа техники.

    На одном из мониторов схема подстанции с индикацией соединений.

    Здесь же системы управления пожарной сигнализацией и видеонаблюдением.

    Вот так устрашающе выглядит электроника пожарной сигнализации (привет, jones_bustopher!).

    Второй монитор отображает журнал событий. Как видно, всё в порядке.

    Заповеди на стене.

    Все двери на подстанции металлические. Даже двери в бытовые помещения надёжно заземлены.

    Длинный переход соединяет подстанцию с новым центром управления сетями.

    В центре несколько диспетчерских с огромными стенами-экранами.

    Это диспетчерская высоковольтных сетей. Сейчас она управляет работой девяти высоковольтных подстанций, об одной из которых я рассказал выше.

    На стене – схема электроснабжения Москвы.

    Вторая диспетчерская будет управлять распределительными сетями (6-20 КВ) московских округов. Сейчас она управляет сетями западного округа. Меня очень удивило, что вся эта навороченная система с большими экранами служит лишь для индикации. Все команды управления диспетчер отдаёт по телефону, а компьютерная система лишь отображает их результат.

    В нескольких серверных размещается компьютерное оборудование и системы связи. Все энергообъекты имеют несколько дублирующихся систем связи – это и обычная, и ip-телефония, и специальная диспетчерская связь и даже радиостанции на случай отказа всех кабельных систем.

    Все системы имеют резервное питание, работающее до шести часов плюс ещё автоматически запускающийся дизель-генератор.

    Мне было очень интересно посетить подстанцию и центр управления, надеюсь и вам был интересен мой рассказ.

    Особую благодарность Объединённой энергетической компании выражает Глафира, которой чрезвычайно понравился сувенирный бумажный пакет.

    Discover Eckher Semantic Web Browser: “http://xmlns.com/foaf/0.1/Person”, “http://schema.org/Organization”, “http://www.w3.org/2004/02/skos/core#definition”, “http://www.wikidata.org/entity/Q1”.

    Discover English pronunciations: “Macedonia”, “mystique”, “myosin”, “myopathy”, “Myomorpha”, “myoclonus”, “azole”, “Ursula von der Leyen”, “bureaux”, “Yvonne”.

    Create sequence logos for protein and DNA/RNA alignments using Eckher Sequence Logo Maker.

    Compose speech audio from IPA phonetic transcriptions using Eckher IPA to Speech.

    Browse place name pronunciation on Eckher IPA Map.

    Enter IPA characters using Eckher IPA Keyboard.

    Navigate the Semantic Web and retrieve the structured data about entities published on the web using Eckher Semantic Web Browser.

    Turn your phone into a compass using Eckher Compass.

    Browse word pronunciations online using Eckher Dictionary.

    Author, enrich, and query structured data using Eckher Database for RDF.

    Create TeX-style mathematical formulas online with Eckher Math Editor.

    Create knowledge graphs using Eckher RDF Graph Editor.

    Send messages and make P2P calls using Eckher Messenger.

    Build event-sourced systems using Eckher Database for Event Sourcing.

    View PDB files online using Eckher Mol Viewer.

    Listen to your text using Eckher Text to Speech.

    View FASTA sequence alignments online with Eckher Sequence Alignment Viewer.

    Convert Punycode-encoded internationalized domain names (IDNs) to Unicode and back with Eckher Punycode Converter.

    Explore the human genome online with Eckher Genome Browser.

    Edit text files online with Eckher Simple Text Editor.

    Send test emails with Eckher SMTP Testing Tool.

    Разбор слов по составу: “уборка”, “хлебный”, “украсить”, “принести”, “говорливый”, “заколка”, “безветренный”, “земляной”, “надрезать”, “приберечь”, “сероватый”, “ракетчик”, “домик”, “вывозить”, “безлюдный”, “кожаный”, “беспосадочный”, “шахматистка”, “слышать”, “бескрайний”, “удалец”, “прошуметь”, “посадка”, “приехать”.

    Преобразование

    вольт в киловольт (вольт в киловольт)

    Введите напряжение в вольтах ниже, чтобы получить значение, переведенное в киловольты.

    Как преобразовать вольт в киловольты

    Чтобы преобразовать измерение вольт в измерение киловольта, разделите напряжение на коэффициент преобразования.

    Поскольку один киловольт равен 1000 вольт, вы можете использовать эту простую формулу для преобразования:

    киловольт = вольт ÷ 1,000

    Напряжение в киловольтах равно вольт, разделенному на 1000.

    Например, вот как преобразовать 5000 вольт в киловольты, используя формулу выше.

    5000 В = (5000 ÷ 1000) = 5 кВ

    Вольт и киловольт – это единицы измерения напряжения. Продолжайте читать, чтобы узнать больше о каждой единице измерения.

    Напряжение – это измерение электродвижущей силы и разности электрических потенциалов между двумя точками проводника. [1] Один вольт равен разности потенциалов, которая сместит один ампер тока на один ом сопротивления.

    Вольт – производная единица измерения напряжения в системе СИ в метрической системе. Вольт можно обозначить как В ; например, 1 вольт можно записать как 1 В.

    Закон Ома гласит, что ток между двумя точками проводника пропорционален напряжению и обратно пропорционален сопротивлению.Используя закон Ома, можно выразить разность потенциалов в вольтах как выражение, используя ток и сопротивление.

    В В = I A × R Ом

    Разность потенциалов в вольтах равна величине тока в амперах, умноженной на сопротивление в омах.

    Один киловольт равен 1000 вольт, что представляет собой разность потенциалов, которая перемещает один ампер тока против одного ома сопротивления.

    Киловольт – это производная единица измерения напряжения в системе СИ, кратная вольту. В метрической системе «килограмм» является префиксом для 10 3 . Киловольты можно обозначить как кВ ; например, 1 киловольт можно записать как 1 кВ.

    Киловольт в Вольт Преобразование (кВ в В)

    Введите напряжение в киловольтах ниже, чтобы получить значение, преобразованное в вольты.

    Как преобразовать киловольты в вольты

    Чтобы преобразовать измерение киловольта в измерение вольт, умножьте напряжение на коэффициент преобразования.

    Поскольку один киловольт равен 1000 вольт, вы можете использовать эту простую формулу для преобразования:

    вольт = киловольт × 1000

    Напряжение в вольтах равно киловольтам, умноженным на 1000.

    Например, вот как преобразовать 5 киловольт в вольт, используя формулу выше.

    5 кВ = (5 × 1000) = 5000 В

    Сколько вольт в киловольте?

    В киловольте 1000 вольт, поэтому мы используем это значение в приведенной выше формуле.

    1 кВ = 1000 В

    Киловольты и вольт – это единицы, используемые для измерения напряжения.Продолжайте читать, чтобы узнать больше о каждой единице измерения.

    Один киловольт равен 1000 вольт, что представляет собой разность потенциалов, которая перемещает один ампер тока против одного ома сопротивления.

    Киловольт – это производная единица измерения напряжения в системе СИ, кратная вольту. В метрической системе «килограмм» является префиксом для 10 3 . Киловольты можно обозначить как кВ ; например, 1 киловольт можно записать как 1 кВ.

    Напряжение – это измерение электродвижущей силы и разности электрических потенциалов между двумя точками проводника. [1] Один вольт равен разности потенциалов, которая сместит один ампер тока на один ом сопротивления.

    Вольт – производная единица измерения напряжения в системе СИ в метрической системе. Вольт можно обозначить как В ; например, 1 вольт можно записать как 1 В.

    Закон Ома гласит, что ток между двумя точками проводника пропорционален напряжению и обратно пропорционален сопротивлению. Используя закон Ома, можно выразить разность потенциалов в вольтах как выражение, используя ток и сопротивление.

    В В = I A × R Ом

    Разность потенциалов в вольтах равна величине тока в амперах, умноженной на сопротивление в омах.

    Перевести вольт [В] в киловольт [кВ] • Конвертер электрического потенциала и напряжения • Электротехника • Компактный калькулятор • Онлайн-конвертеры единиц

    Конвертер длины и расстоянияМассовый преобразовательКонвертер сухого объема и общих измерений при приготовлении пищиПреобразователь площадиПреобразователь объёма и общих измерений при приготовлении пищиПреобразователь температуры Конвертер модулейПреобразователь энергии и работыПреобразователь мощностиПреобразователь силыКонвертер времениЛинейный преобразователь скорости и скоростиКонвертер углаКонвертер топливной эффективности, расхода топлива и экономии топливаКонвертер чиселПреобразователь единиц информации и хранения данныхКурсы обмена валютКонвертер женской одежды и размеров обувиКонвертер мужской одежды и размеров обувиКонвертер угловой скорости и удельной скорости вращенияКонвертер угловой скорости и удельной скорости вращения Преобразователь момента инерции Преобразователь момента силы преобразователь крутящего момента преобразователь удельной энергии, теплоты сгорания (на массу) преобразователя удельной энергии, теплоты сгорания Конвертер температур сгорания (на объем) Конвертер температурного интервалаКонвертер температурного расширенияКонвертер теплового сопротивленияКонвертер теплопроводностиКонвертер удельной теплоемкостиПлотность тепла, плотность пожарной нагрузкиКонвертер плотности потока теплаКонвертер коэффициента теплопередачиКонвертер абсолютного коэффициента теплопередачи Конвертер массового расхода ) Конвертер вязкостиПреобразователь кинематической вязкостиПреобразователь поверхностного натяженияПроницаемость, проницаемость, проницаемость водяного параКонвертер скорости передачи водяного параКонвертер уровня звукаКонвертер чувствительности микрофонаКонвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с выбираемым эталонным давлениемПреобразователь яркостиКонвертер световой интенсивности и световой потокПреобразователь разрешения цифрового изображения Конвертер фокусного расстояния: оптический Powe Преобразователь r (диоптрия) в увеличение (X) Преобразователь электрического зарядаЛинейный преобразователь плотности зарядаПреобразователь плотности поверхностного зарядаПреобразователь объёмной плотности зарядаПреобразователь электрического токаЛинейный преобразователь плотности токаПреобразователь плотности поверхностного токаПреобразователь напряженности электрического поляПреобразователь электрического потенциала и напряженияПреобразователь электрического сопротивленияПреобразователь удельной проводимости Конвертер манометровПреобразование уровней в дБм, дБВ, ваттах и ​​других единицахПреобразователь магнитодвижущей силыПреобразователь напряженности магнитного поляКонвертер магнитного потокаПреобразователь плотности магнитного потокаМощность поглощенной дозы излучения, Конвертер мощности полной дозы ионизирующего излученияРадиоактивность.Конвертер радиоактивного распада Конвертер радиоактивного облученияРадиация. Конвертер поглощенной дозы Конвертер метрических префиксов Конвертер передачи данных Конвертер единиц типографии и цифровых изображений Конвертер единиц измерения объема древесины Калькулятор молярной массы Периодическая таблица

    Плазменный шар

    Обзор

    Когда мы поднимаемся на холм, мы работаем, чтобы противостоять силе тяжести

    Мы живем в эпоху электричество а про электрика напряжение знаю с детства. Многие из нас исследовали окружающую среду и буквально испытали шок, когда мы тайком коснулись электрических розеток, пока родители не наблюдали за нами.Что ж, раз вы читаете эту статью, с вами ничего плохого не случилось, даже если вы изучали электричество в детстве. Почти невозможно жить в эпоху электричества и не быть с ним близко знакомым. Что касается электрического потенциала , это несколько более сложный вопрос.

    Поскольку это математическая абстракция, самый простой способ понять электрический потенциал – рассматривать его как аналогию с гравитацией. Формулы для обоих аналогичны. Разница в отрицательных значениях.У нас может быть отрицательный электрический потенциал из-за наличия как отрицательных, так и положительных зарядов, которые либо притягивают, либо отталкивают друг друга. С другой стороны, гравитационные силы могут вызывать притяжение только между двумя объектами. Мы не до конца поняли отрицательную массу. Как только мы овладеем им, это позволит нам понять антигравитацию.

    Но как только мы оттолкнемся …

    Понятие электрического потенциала играет важную роль в описании явлений, связанных с электричеством.Мы можем определить понятие электрического потенциала как понятие, описывающее взаимодействия электрически заряженных частиц или групп заряженных частиц, которые имеют одинаковые или противоположные заряды.

    Из школьных уроков физики и из повседневного опыта мы знаем, что, взбираясь на холм, мы преодолеваем силу тяжести и выполняем для этого работу. Силы гравитации, которые нам предстоит преодолеть, действуют в потенциальном гравитационном поле Земли. Когда Земля взаимодействует с нами, она пытается уменьшить наш гравитационный потенциал, потому что у нас есть определенная масса.В рамках этого взаимодействия Земля тянет нас вниз, и мы позволяем ей спускаться по горному склону на лыжах или сноуборде. Точно так же электрическое потенциальное поле, которое действует на заряженные частицы, стремится сблизить частицы с противоположным зарядом и раздвинуть частицы с одинаковым зарядом.

    Из вышеизложенного можно сделать вывод, что электрически заряженное тело пытается уменьшить свой электрический потенциал. Для этого он пытается подобраться как можно ближе к мощному источнику электрического поля с противоположным зарядом, пока другие силы не мешают ему сделать это.Если электрический заряд объектов одинаков, каждый из электрически заряженных объектов пытается уменьшить свой электрический потенциал, удаляясь как можно дальше от одинаково заряженного источника мощного электрического поля. Опять же, это только в том случае, если никакие другие силы не препятствуют этому. Если есть силы, которые препятствуют этому, электрический потенциал не изменяется. По аналогии с гравитацией, когда вы стоите на вершине горы, сила тяжести компенсируется силой реакции земли, и ничто не тянет вас вниз и с этой горы.Лыжи толкает только ваш вес. Однако как только вы оттолкнетесь… вы спуститесь с холма!

    Аналогичным образом электрическое поле, создаваемое заряженной частицей или группой частиц, действует на другие заряженные частицы. Он создает электрический потенциал для перемещения этих заряженных частиц друг к другу или от друг друга, в зависимости от того, является ли заряд между этими двумя взаимодействующими частицами или объектами одинаковым или противоположным.

    Сизиф Тициана, Музей Прадо, Мадрид, Испания

    Электрический потенциал

    Когда заряженная частица попадает в электрическое поле, она имеет определенное количество энергии, которое может быть использовано для выполнения работы.Электрический потенциал – это термин, который описывает эту энергию, запасенную в каждой точке электрического поля. Электрический потенциал электрического поля в данной точке равен работе, которую силы этого поля могут совершить, когда единица положительного заряда перемещается за пределы поля.

    Снова глядя на аналогию с гравитационным полем, можно сделать вывод, что понятие электрического потенциала аналогично явлению уровня различных точек на поверхности Земли. Как мы обсудим ниже, работа по поднятию тела над землей зависит от того, насколько высоко нам нужно поднять это тело, и аналогично работа по удалению одного заряда от другого зависит от того, насколько далеко эти заряды находятся.

    Представим себе Сизифа, одного из героев мифов Древней Греции. Он был обречен богами выполнять бессмысленную работу в загробной жизни, перекатывая огромный камень на вершину горы в наказание за грехи, которые он совершил при жизни. Чтобы поднять камень на полпути к горе, он должен выполнить половину работы, которую ему нужно выполнить, чтобы подвести камень полностью к вершине. Как только он довел камень до упора, боги столкнули его с горы. Чтобы добраться до дна, сам камень тоже проделал некоторую работу.Камень, поднятый на гору высотой H , может выполнять больший объем работы, чем камень, поднятый только наполовину, на высоту Н /2. Обычно мы считаем высоту от уровня моря, который считается нулевой высотой.

    Используя эту аналогию, мы можем сказать, что электрический потенциал поверхности Земли является нулевым потенциалом, то есть

    ϕ Земля = 0

    где ϕ Земля – электрический потенциал, скалярная переменная. .Здесь ϕ – буква греческого алфавита, произносимая как «фи».

    Это значение количественно определяет способность электрического поля выполнять работу (W) по перемещению заряда (q) из одной заданной точки в другую:

    ϕ = W / q

    В СИ электрический потенциал измеряется в вольт (В).

    Посетители Канадского музея науки и техники могут генерировать для него электрическую энергию, вращая большое колесо человеческого хомяка. Это колесо вращает генератор, который питает эту катушку Тесла (справа).Катушка генерирует высокое напряжение в десятки тысяч вольт. Этого достаточно, чтобы загорелся разряд электричества.

    Напряжение

    Электрическое напряжение (В) можно определить как разность электрических потенциалов, как в формуле:

    В = ϕ1 – ϕ2

    Понятие напряжения ввел Георг Ом , немец физик. В своей статье, опубликованной в 1827 году, он предложил использовать гидродинамическую модель электрического тока для объяснения эмпирического закона Ома, открытого им в 1826 году.Этот закон можно записать по следующей формуле:

    Катушка Тесла в Канадском музее науки и техники.

    V = I × R,

    где V – разность потенциалов, I – электрический ток, а R – сопротивление.

    Альтернативное определение электрического напряжения описывает его как отношение работы, которую электрическое поле выполняет для перемещения электрического заряда, к величине этого заряда.

    Это определение может быть выражено с помощью следующей формулы:

    V = A / q

    Подобно электрическому потенциалу, напряжение также измеряется в вольтах (В), а также в десятичных кратных и дробных единицах – единицах, производных от вольта. , например, микровольт (одна миллионная вольт, мкВ), милливольт (одна тысячная вольт, мВ), киловольт (одна тысяча вольт, кВ) и мегавольт (один миллион вольт, МВ).

    Напряжение в один вольт эквивалентно напряжению электрического поля, которое выполняет работу в один джоуль по перемещению заряда в один кулон. Мы можем определить вольт, используя другие единицы СИ следующим образом:

    В = кг · м² / (А · с³)

    Напряжение может генерироваться различными источниками, такими как биологические системы и объекты, электронные и механические устройства, и даже различные процессы в атмосфере.

    Боковая линия акулы

    Элементарным элементом любой биологической системы является клетка, которую можно рассматривать как небольшой электрохимический генератор.Некоторые органы живых организмов, такие как сердце, образованные множеством клеток, производят более высокое напряжение. Интересно отметить, что разные виды акул, которые являются идеальными хищниками океанов и морей, имеют очень чувствительные датчики напряжения. Эти датчики известны как боковая линия , и они позволяют акулам обнаруживать свою добычу по сердцебиению. Этот механизм очень надежен. Говоря о напряжении в животном мире, мы должны также упомянуть электрических скатов и угрей, которые разработали метод нападения на свою добычу и борьбы с хищниками, генерируя в процессе эволюции напряжение более 1000 В.

    Люди могли генерировать электричество и создавать разность потенциалов, протирая кусок янтаря шерстью или мехом в течение длительного времени, но гальванический элемент считается первым устройством, вырабатывающим электричество. Он был создан итальянским ученым и врачом Луиджи Гальвани , который обнаружил, что разница потенциалов возникает, когда разные металлы и электролиты контактируют друг с другом. Другой итальянский физик, Алессандро Вольта , продолжил и развил это исследование.Вольта был первым человеком в мире, который погрузил листы цинка и меди в кислоту, чтобы получить постоянный электрический ток. Таким образом, он создал первый химический источник электрического тока. Он соединил несколько из этих источников последовательно, чтобы создать первую химическую батарею. Он стал известен как гальваническая батарея и позволяла людям вырабатывать электричество с помощью химических реакций.

    Вольтовая свая – копия, сделанная в 1999 году Гелсайдом Гваттерини, электриком из музея Вольта в Комо, Италия.Канадский музей науки и технологий

    Единица измерения напряжения, вольт, а также сам термин «напряжение» названы так, чтобы ознаменовать вклад Вольта в исследования электрохимических и электрических явлений. Благодаря ему у нас появились надежные электрохимические источники энергии.

    Говоря об исследователях, которые работали над созданием устройств для выработки электроэнергии, мы не должны забывать голландского физика Ван де Граафф . Он создал генератор высокого напряжения, известный сейчас как генератор Ван де Граафа .При производстве электроэнергии используется тот же принцип разделения зарядов, который мы используем, когда натираем янтарь шерстью или мехом.

    Можно сказать, что два выдающихся американских ученых Томас Эдисон и Никола Тесла были отцами современных электрогенераторов. Тесла работал на компанию Эдисона, но два исследователя разошлись во взглядах на то, как генерировать электрическую энергию, и пошли разными путями. Последовала патентная война, и человечество извлекло из нее выгоду благодаря работе этих двух ученых.Реверсивные машины Эдисона можно использовать в качестве генераторов и двигателей постоянного тока. Сегодня производятся миллиарды устройств, в которых используется механизм этих реверсивных машин. Мы можем найти их под капотом нашей машины, в стеклоподъемнике, блендере и других устройствах. С другой стороны, именно Тесла открыл способы генерации переменного тока и принцип его преобразования. Эти открытия используются в таких устройствах, как электрические трансформаторы, линии электропередач, транспортирующие электричество на большие расстояния, и другие.Также существует множество этих устройств, и они включают в себя множество бытовой электроники, часто используемой нами в повседневной жизни, например вентиляторы, холодильники, кондиционеры, пылесосы и многие другие устройства, которые мы не можем здесь описать из-за объема этого. статья.

    Эта мотор-генераторная установка постоянного тока, изготовленная Westinghouse в 1904 году, использовалась для обеспечения постоянной мощности для генерации магнитного поля в возбудителе на гидроэлектростанции Ниагара-Фолс (Нью-Йорк), построенной Никола Тесла и Джорджем Вестингаузом.

    В конце концов, ученые открыли другие электрические генераторы, использующие другие принципы, в том числе те, которые используют энергию ядерного деления. Некоторые из этих генераторов предназначены для использования в качестве источников энергии во время длительных путешествий в космос.

    Если не рассматривать некоторые из генераторов, созданных для научных исследований, можно сказать, что самыми мощными источниками электрической энергии на Земле по-прежнему являются атмосферные процессы.

    Каждую секунду вблизи поверхности Земли происходит более 2000 вспышек молний.Это означает, что десятки тысяч генераторов Ван де Граафа в природе генерируют токи в десятки килоампер одновременно в форме молнии. Тем не менее, мы не можем даже начать сравнивать созданные человеком генераторы на Земле с электрическими бурями, которые происходят на сестре планеты Земля, Венере, и мы даже не будем пытаться сравнивать их со штормами на более крупных планетах, таких как Юпитер и Сатурн.

    Характеристики напряжения

    Напряжение можно охарактеризовать по величине и форме волны.В зависимости от его поведения во времени мы можем определить постоянное напряжение, которое не меняется со временем, апериодическое напряжение, которое изменяется со временем, и переменное напряжение, которое изменяется со временем по определенному закону и обычно повторяется через определенные промежутки времени. Иногда для достижения поставленной цели может потребоваться как постоянное, так и переменное напряжение. В данном случае речь идет о переменном напряжении с постоянной составляющей.

    Этот вольтметр использовался для измерения напряжения в начале двадцатого века.Канадский музей науки и техники в Оттаве

    Генераторы постоянного тока, также известные как динамо-машины или динамо-электрические машины, используются в электротехнике для обеспечения высокой мощности при относительно стабильном напряжении. Прецизионные электронные устройства используются для подачи электроэнергии и поддержания постоянного уровня напряжения. Они работают с использованием электрических компонентов и также известны как регуляторы напряжения .

    Измерение напряжения

    Измерения напряжения широко используются во многих областях науки и техники, включая фундаментальную физику и химию, прикладную электротехнику и электрохимию, а также в медицине.Трудно представить себе дисциплину, в которой измерение напряжения не использовалось бы для управления различными процессами. Эти измерения выполняются различными типами датчиков, которые фактически являются преобразователями измерений различных свойств в напряжение. Некоторыми исключениями из этого являются или, скорее, были, возможно, некоторые творческие области человеческой деятельности, такие как архитектура, музыка или изобразительное искусство. В наши дни даже музыканты и артисты используют электронные устройства, которые зависят от напряжения. Например, художники и дизайнеры могут использовать электронные планшеты со стилусом.В этих планшетах напряжение измеряется, когда стилус перемещается над поверхностью планшета. Затем он преобразуется в цифровые сигналы и отправляется на компьютер для обработки. Архитекторы также используют планшеты и программное обеспечение, такое как ArchiCAD, на компьютерах. Музыканты и композиторы часто работают с электронными музыкальными инструментами. Напряжение измеряется датчиками клавиш, чтобы определить интенсивность нажатия клавиши.

    Температура мяса измеряется электронным термометром слева путем измерения напряжения на резистивном датчике температуры.Это осуществляется путем подачи небольшого электрического тока через этот датчик. С другой стороны, мультиметр справа определяет температуру путем измерения напряжения, создаваемого термопарой, без подачи тока от внешнего источника питания.

    Единицы напряжения могут изменяться в широком диапазоне: от долей микровольта при исследовании биологических процессов до сотен вольт в бытовой электронике и промышленном оборудовании и десятков миллионов вольт в мощных ускорителях частиц.Измерение напряжения позволяет нам отслеживать и контролировать некоторые функции определенных внутренних органов человека. Например, чтобы отобразить работу мозга, мы записываем электроэнцефалограмму . Чтобы понять, как работает сердце, мы записываем электрокардиограмму или эхокардиограмму сердечной мышцы. С помощью различных промышленных датчиков мы можем успешно и, что более важно, безопасно контролировать различные процессы, происходящие в химическом производстве.Некоторые из этих процессов происходят при экстремальных давлениях и температурах, и из-за этого безопасность является серьезной проблемой. Измеряя напряжение, мы даже можем отслеживать процессы на атомных электростанциях, которые происходят во время ядерных реакций. Инженеры также поддерживают в хорошем состоянии мосты и конструкции, измеряя напряжение, и могут даже предотвратить или уменьшить разрушительные последствия землетрясения.

    Как и вольтметр, пульсоксиметр измеряет напряжение усиленного сигнала с фотодиода.Однако, по сравнению с вольтметром, это устройство отображает процент насыщения гемоглобина кислородом, 97% в этом примере, а не напряжение, измеренное в вольтах.

    Блестящая идея связать разные значения напряжения с логическими уровнями сигналов привела к созданию современных цифровых технологий. Например, в информационных технологиях низкое напряжение представляет собой низкий логический уровень (0), а высокое напряжение представляет собой высокий логический уровень (1).

    Можно сказать, что все современные устройства в вычислительной технике и электротехнике каким-то образом измеряют напряжение, а затем преобразуют свои входные логические состояния с помощью определенных алгоритмов для получения выходных сигналов в требуемом формате.

    Кроме того, точные измерения напряжения являются основой многих современных стандартов безопасности. Соблюдение этих стандартов в соответствии с предписаниями обеспечивает безопасность во время использования устройства.

    Карта памяти, которая используется в персональных компьютерах, содержит десятки тысяч логических вентилей.

    Приборы для измерения напряжения

    На протяжении всей истории, по мере того как мы узнавали больше об окружающем нас мире, наши методы измерения напряжения эволюционировали от примитивных органолептических методов .Примером таких методов является работа русского ученого Петрова, который срезал часть эпителия на пальцах, чтобы повысить его чувствительность к электрическому току. Эти методы эволюционировали до простых детекторов и индикаторов напряжения, а затем и до современных устройств с различными режимами работы, в которых используются электродинамические и электрические свойства материалов и веществ.

    Вкус электричества: давным-давно, когда вольтметры не были столь широко доступны и недороги, мы использовали для определения напряжения по вкусу

    Интересно отметить, что в прошлом, когда современные измерительные приборы, такие как мультиметры, не были легко доступны для широкая публика, энтузиасты радиоэлектроники могли сказать рабочий 4.Аккумулятор для фонаря на 5 вольт от разряжавшегося. Они сделали это, просто облизывая электроды. Произошедшие при этом электрохимические процессы вызывали легкое ощущение жжения и придавали батарее определенный привкус. Некоторые люди даже пытались определить, подходят ли 9-вольтовые батарейки, но это потребовало немалого мужества, потому что ощущение было очень неприятным.

    Рассмотрим пример простого индикатора или измерителя напряжения – обычную лампу накаливания с напряжением не ниже напряжения сети.В наши дни вы также можете купить простые тестеры напряжения, основанные на неоновых лампах и светодиодах и потребляющие малые токи. При работе с электричеством всегда нужно проявлять осторожность, потому что любые ошибки, особенно при использовании устройств DIY, могут быть опасными для жизни!

    Следует отметить, что вольтметры, являющиеся приборами для измерения напряжения, могут значительно отличаться друг от друга, наиболее заметное различие заключается в типе измеряемого напряжения. Например, аналоговые вольтметры могут измерять напряжение постоянного или переменного тока.Свойства измеряемого напряжения очень важны в процессе измерения. Это может быть функция времени и другого типа, например, прямой, гармонический, негармонический, импульсный и т. Д.

    Наиболее распространены следующие типы напряжения:

    • мгновенное напряжение,
    • размах напряжения,
    • среднее напряжение, также известное как среднее напряжение,
    • среднеквадратичное напряжение.

    Мгновенное напряжение U i (на рисунке) – это величина напряжения в данный момент времени.Мы можем отслеживать напряжение во времени на экране осциллографа и определять напряжение в данный момент времени, исследуя кривую.

    Пиковое или амплитудное значение напряжения U a – это наивысшее мгновенное значение напряжения за данный период. Размах амплитуды U p-p – это разница между максимальной положительной и максимальной отрицательной амплитудами сигнала.

    Среднеквадратичное значение напряжения U рассчитывается как квадратный корень из среднего арифметического квадратов мгновенных напряжений в течение заданного периода времени.

    Все цифровые и аналоговые вольтметры обычно калибруются для считывания среднеквадратичных значений.

    Среднее значение напряжения (составляющая постоянного тока) – это среднее арифметическое всех его мгновенных значений за период, в течение которого происходит измерение.

    Среднее напряжение полупериода рассчитывается как среднее арифметическое абсолютных мгновенных значений для выборок напряжения за данный период времени.

    Разница между максимальным и минимальным значениями напряжения называется размахом сигнала.

    В наши дни напряжение часто измеряют с помощью многоцелевых цифровых устройств, таких как осциллографы. Их экран может отображать различные важные характеристики сигнала, а не только форму волны напряжения. Эти характеристики включают частоту измеряемых периодических сигналов. Стоит отметить, что ограничение частоты – очень важная характеристика любого устройства измерения напряжения.

    Измерение напряжения с помощью осциллографа.

    Мы можем проиллюстрировать приведенное выше обсуждение несколькими экспериментами по измерению напряжения.Мы будем использовать генератор функциональных сигналов, источник питания постоянного тока, осциллограф и многофункциональное цифровое измерительное устройство (мультиметр).

    Эксперимент 1

    Ниже представлена ​​схема эксперимента 1:

    Генератор сигналов подключен к резистору с сопротивлением R 1 кОм. Щупы осциллографа и мультиметра подключены параллельно резистору. При проведении этого эксперимента мы должны помнить, что полоса пропускания осциллографа намного превышает пропускную способность мультиметра.Сначала мы попробуем Эксперимент 1.

    Тест 1: Давайте подадим синусоидальный сигнал с частотой 60 Гц и амплитудой 4 вольта от генератора к нагрузочному резистору. На экране осциллографа появится кривая, как на фотографии ниже. Следует отметить, что значение каждого вертикального деления на экране осциллографа составляет 2 В. И осциллограф, и мультиметр покажут среднеквадратичное значение 1,36 В.

    Test 2: Давайте удвоим амплитуду сигнала генератора. .Амплитуда на осциллографе и на мультиметре увеличится вдвое:

    Test 3: Теперь увеличим частоту генератора в 100 раз (до 6 кГц). Частота на осциллографе изменится, но амплитуда и среднеквадратичное значение останутся прежними. Среднеквадратичное значение, которое мультиметр будет неверным, вызвано ограничением полосы пропускания мультиметра всего в 0–400 Гц.

    Тест 4: Давайте попробуем исходную частоту 60 Гц и напряжение 4 В для генератора сигналов, но изменим форму напряжения сигнала с синуса на треугольник.Шкала на осциллографе останется прежней, но значение, отображаемое на мультиметре, уменьшится по сравнению со значением напряжения, которое он показал в тесте 1. Это произошло из-за изменения среднеквадратичного значения сигнала.

    Эксперимент 2

    Мы будем использовать ту же установку для эксперимента 2, что и для эксперимента 1.

    Давайте повернем ручку смещения генератора сигналов, чтобы добавить смещение 1 В постоянного тока к нашему синусоидальному сигналу 4 В pp . Мы установим синусоидальное напряжение на генераторе сигналов равным 4 В с частотой 60 Гц, как в эксперименте 1.Сигнал на осциллографе будет сдвинут на половину деления вверх. Мультиметр отобразит среднеквадратичное значение 1,33 В, что почти такое же, как в тесте 1 эксперимента 1, потому что в режиме измерения переменного тока он имеет вход, связанный по переменному току, и не может измерять составляющую постоянного тока. Кривая на осциллографе со связью по постоянному току будет аналогична кривой в тесте 1 эксперимента 1, но будет сдвинута вверх на одно деление. Среднеквадратичное значение, измеренное осциллографом, будет выше, чем в тесте 1 эксперимента 1, потому что среднеквадратичное значение суммы напряжений постоянного и переменного тока выше, чем среднеквадратичное значение для сигнала без составляющей постоянного тока:

    Указания по безопасности при измерениях Напряжение

    В зависимости от мер безопасности, установленных в помещении или в здании, даже низкое напряжение 12–36 вольт может быть смертельным.Поэтому при работе с электричеством в целом и при измерении напряжения, в частности, крайне важно соблюдать следующие правила техники безопасности:

    1. Если у вас нет специальной подготовки по работе с высоким напряжением, не измеряйте напряжение, превышающее 1000 В.
    2. Не измеряйте напряжение в труднодоступных или высоких местах.
    3. Используйте специальные средства защиты, такие как резиновые перчатки, коврики и обувь, при измерении сетевого напряжения.
    4. Используйте правильно работающие измерительные приборы и избегайте поломок.
    5. При работе с многофункциональными устройствами, такими как мультиметры, убедитесь, что функция и диапазон установлены правильно.
    6. Не используйте измерительные приборы с поврежденными датчиками.
    7. Следуйте инструкциям производителя для измерительного устройства.

    Список литературы

    Эту статью написал Сергей Акишкин

    Есть ли у вас трудности с переводом единицы измерения на другой язык? Помощь доступна! Задайте свой вопрос в TCTerms , и вы получите ответ от опытных технических переводчиков в считанные минуты.

    Определение киловольта по Merriam-Webster

    ки · ло · вольт | \ ˈKi-lə-ˌvōlt , Kē-lə- \

    : единица разности потенциалов, равная 1000 вольт

    киловольт в вольт Преобразование | кВ до

    В

    Используйте этот преобразователь кВ в В для преобразования значений напряжения из киловольт в вольты (1 киловольт равен 1000 вольт).Введите значение напряжения, чтобы узнать, сколько вольт в киловольтах.



    Если вам нравятся наши усилия, поделитесь ими с друзьями.


    Примечание : Единица измерения напряжения в системе СИ – вольт .

    Значение в вольтах = 1000 * Значение в киловольтах.


    В киловольтах 1000 вольт т.е. 1 киловольт равен 1000 вольт. Поэтому, если нас попросят преобразовать киловольты в вольты, нам просто нужно умножить значение киловольт на 1000.

    Пример: преобразовать 34 кВ в

    В

    34 киловольта равно 34 * 1000 вольт i.е 34000 вольт.



    10235 10235 V V 255 V
    киловольт до вольт
    34 кВ 34000 V
    51 кВ 51000 V
    68 кВ 68000 V
    85 кВ
    85 кВ
    119 кВ 119000 V
    136 кВ 136000 V
    153 кВ 153000 V
    170 кВ
    204 кВ 204000 V
    221 кВ 221000 V
    238 кВ 238000 V
    255352 9034 9034
    289 кВ 289000 V
    306 кВ 306000 V
    323 кВ V 323000 V
    340 кВ 340000 V
    357 кВ 357000 V
    V 904 354 904 904 904 904 904 904 904 V V 904 34 663 кВ
    киловольт до вольт
    374 кВ 374000 V
    391 кВ 3
    408 кВ 408000 V
    408000 V
    V
    459 кВ 459000 V
    476 кВ 476000 V
    493 кВ 493000 V
    544 кВ 544000 V
    561 кВ 561000 V
    578 кВ 578000 V
    59435
    629 кВ 629000 V
    646 кВ 646000 V
    663000 V
    680 кВ 680000 V
    697 кВ 697000 V

    киловольт 2100 plc аккумулятор 12 вольт Advanced AGM

    Номинальная энергоемкость
    (ватт-час)
    2160 Вт · ч
    Номинальное напряжение 12 В
    Номинальная емкость в ампер-часах
    (C20-часовой разряд)
    180 Ач
    Напряжение плавающего заряда 13.7В
    Напряжение накопления / абсорбции 14,1 – 14,4 В
    Максимальный ток разряда 500A (5сек)
    Максимальный ток заряда 140A (рекомендуется 100A)
    Макс.конфигурация До 4 параллельных цепочек по 48 В
    (всего 16 батарей)
    Номинальный диапазон рабочих температур 77 ° +/- 5 ° F (25 ° +/- 3 ° C)
    Диапазон рабочих температур Разрядка: -40 – 131 ° F (-40 – 55 ° C)
    Зарядка: -4 – 113 ° F (-20 – 45 ° C)
    Хранение: -4 – 122 ° F (-20 – 50 ° C) )
    Срок службы 3000 (50% DoD)
    Скорость саморазряда Батареи могут храниться до
    24 месяцев при 25 ° C (77 ° F).Для более высоких темпов
    временной интервал
    будет короче. Аккумулятор
    следует подзарядить, когда
    напряжение разомкнутой цепи
    приближается к 12,6 В или когда
    достигается максимальное время хранения
    , в зависимости от того, что произойдет раньше.
    Клеммы Вставка верхней клеммы M8,
    Адаптер передней клеммы M6
    Межблочные соединения / крышки клеммных колодок Включено
    Размеры
    (Д x Ш x В)
    22 дюйма x 4.92 дюйма x 12,6 дюйма
    Масса 127 фунтов
    Гарантия 5 лет

    Вольт в киловольты – Калькулятор и преобразование, таблица, примеры и формула

    С помощью этой онлайн-системы преобразования (онлайн) вы можете легко, быстро и бесплатно преобразовать из вольт в киловольты.

    Мы также объясняем, как преобразовать из вольт в киловольт за 1 шаг, несколько примеров, формулу, которая должна использоваться для расчета, и таблицу преобразования из вольт в киловольт.

    Формула для преобразования, передачи, вычисления и преобразования из вольт в киловольт, однофазный, двухфазный и трехфазный:

    кВ = киловольт.
    Вольт = Вольт.

    Как преобразовать из вольт в киловольт всего за 1 шаг:

    Шаг 1:

    Это просто, вам просто нужно разделить вольт на 1000, например, если у трансформатора есть напряжение 13200 вольт, вы должны разделить 13200 вольт / 1000, что даст 13.2кВ.

    Примеры преобразования вольт в киловольт:

    Пример 1:

    Линия передачи 115000 вольт, сколько киловольт это напряжение?

    Ответ: // Это очень просто, вам просто нужно разделить напряжение между 10000, следующим образом: 115000/1000 = 115 кВ.

    Пример 2:

    Промышленная печь имеет напряжение 4160 вольт, сколько киловольт это напряжение?

    Ответ: // Необходимо разделить напряжение на 1000, таким образом: 4160 вольт / 1000 = 4.16киловольт.

    Пример 3:

    Насосное оборудование имеет напряжение 220 вольт, сколько киловольт это напряжение?

    Ответ: // Вы должны разделить 220 вольт на 1000, результат будет: 0,220 кВ.

    Таблица для преобразования вольт в киловольт, преобразование, эквивалентность, преобразование: 12 киловольт 9034 904 904 277 вольт 440 Вольт 4,16 кВ киловольт Вольт
    Сколько вольт: Эквивалентность в киловольтах
    904 Вольт
    127 вольт 0,127 киловольта
    220 вольт 0,22 киловольта
    240 вольт 0,24 киловольта
    0,44 киловольта
    600 Вольт 0,6 киловольта
    1000 Вольт 1 киловольт
    1500 Вольт 1,525
    5000 В 5 кВ
    7620 Вольт s 7,62 кВ
    8000 В 8 кВ
    11400 Вольт 11,4 кВ
    13200 В 15000 15000
    22000 вольт 22 киловольта
    25000 вольт 25 киловольт
    30000 вольт 30 киловольт киловольт
    4 35 киловольт
    40000 Вольт 40 киловольт
    46000 Вольт 46 киловольт
    57500 Вольт 57,5 ​​киловольт 69 киловольт
    115000 Вольт 1 15 киловольт
    138000 вольт 138 киловольт
    230000 вольт 230 киловольт

    Как пользоваться калькулятором от 5 до 9000 вольт введите вольты, которые вы хотите преобразовать в киловольты, и дайте их преобразовать, если вы хотите ввести новые данные, вы должны нажать на перезагрузку.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *