Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Выбор автомата защиты и контактора по мощности двигателя

Используя информацию из таблицы ниже можно по мощности трехфазного двигателя (или его номинальному току) выбрать автомат защиты двигателя и подходящий контактор. Под таблицей даны ответы на вопросы. В таблице показано наличие изделий: зеленый - в наличии, голубой - ожидается, серый - под заказ.

 

       
Мощность двигателя 3~400В, кВт
 
Диапазон уставки, А
Imin – Iном
Ток мгновенного расцепителя, А
(авт. выключателя)
Ном. откл.
способн., кА
(авт. выключателя)
Автомат защиты двигателя Модуль соединения        Контактор        Адаптер
на DIN-рейку
- 0,10 – 0,16 2,1 100 M4-32T-0,16 M4 32 VK1 K1-09D10 230 -
0,06 0,16 – 0,25 3,3 100 M4-32T-0,25 M4 32 VK1 K1-09D10 230 -
0,09 0,25 – 0,4 5,2 100 M4-32T-0,4   M4 32 VK1 K1-09D10 230 -
0,18 0,4 – 0,63 8,2 100 M4-32T-0,63 M4 32 VK1 K1-09D10 230 -
0,25 0,63 – 1 13 100 M4-32T-1      M4 32 VK1 K1-09D10 230 -
0,55 1,0 – 1,6 20,8 100 M4-32T-1,6   M4 32 VK1 K1-09D10 230 -
0,75 1,6 – 2,5 32,5 100 M4-32T-2,5  
M4 32 VK1
K1-09D10 230 -
1,5 2,5 – 4 52 100 M4-32T-4      M4 32 VK1 K1-09D10 230 -
2,2 4 – 6 78 100 M4-32T-6      M4 32 VK1 K1-09D10 230 -
3 5 – 8 104 100 M4-32T-8      M4 32 VK1 K1-09D10 230 -
4 6 – 10 130 50 M4-32T-10    M4 32 VK1 K1-09D10 230 -
5,5 9 – 13 169 50 M4-32T-13    M4 32 VK1 K1-12D10 230 -
7,5 11 – 17 221 20 M4-32T-17    M4 32 VK3 K3-18ND10 230 -
7,5 14 – 22 286 15 M4-32T-22    M4 32 VK3 K3-22ND10 230 -
11 18 – 26 338 15 M4-32T-26    M4 32 VK3 K3-22ND10 230 -
15 22 – 32 416 15 M4-32T-32    M4 32 VD K3-32A00 230 M4 32 HU1
 
 
             
- 0,10 – 0,16 2,1 100 M4-32R-0,16 M4 32 VK3 K3-10ND10 230 -
0,06 0,16 – 0,25 3,3 100 M4-32R-0,25 M4 32 VK3 K3-10ND10 230 -
0,09 0,25 – 0,4 5,2 100 M4-32R-0,4   M4 32 VK3 K3-10ND10 230 -
0,18 0,4 – 0,63 8,2 100 M4-32R-0,63 M4 32 VK3 K3-10ND10 230 -
0,25 0,63 – 1 13 100 M4-32R-1      M4 32 VK3 K3-10ND10 230 -
0,55 1,0 – 1,6 20,8 100 M4-32R-1,6   M4 32 VK3 K3-10ND10 230 -
0,75 1,6 – 2,5 32,5 100 M4-32R-2,5   M4 32 VK3 K3-10ND10 230 -
1,5 2,5 – 4 52
100
M4-32R-4      M4 32 VK3 K3-10ND10 230 -
2,2 4 – 6 78 100 M4-32R-6      M4 32 VK3 K3-10ND10 230 -
3 5 – 8 104 100 M4-32R-8      M4 32 VK3 K3-10ND10 230 -
4 6 – 10 130 100 M4-32R-10    M4 32 VK3 K3-10ND10 230 -
5,5 9 – 13 169 100 M4-32R-13    M4 32 VK3 K3-14ND10 230 -
7,5 11 – 17 221 50 M4-32R-17    M4 32 VK3 K3-18ND10 230 -
7,5 14 – 22 286 50 M4-32R-22    M4 32 VK3 K3-22ND10 230 -
11 18 – 26 338 50 M4-32R-26    M4 32 VK3 K3-22ND10 230 -
15 22 – 32 416 50 M4-32R-32    M4 32 VD K3-32A00 230 M4 32 HU1
 
 
             
12,5 18 – 26 338 50 M4-63R-26    M4 63 VD K3-32A00 230 M4 63 HU1
15 22 – 32 416 50 M4-63R-32    M4 63 VD K3-32A00 230 M4 63 HU1
18,5 28 – 40
520
50 M4-63R-40    M4 63 VD K3-40A00 230 M4 63 HU1
22 34 – 50 650 50 M4-63R-50    M4 63 VD K3-50A00 230 M4 63 HU1
30 45 – 63 819 50 M4-63R-63    M4 63 VD K3-62A00 230 M4 63 HU1
 
 
             
30 45 – 63 819 50 M4-100R-63   M4 100 VD K3-62A00 230 M4 100 HU1
37 55 – 75 975 50 M4-100R-75   M4 100 VD K3-74A00 230 M4 100 HU1
45 70 – 90 1170 50 M4-100R-90   - K3-90A00 230 -
- 80 – 100 1300 50 M4-100R-100 - K3-115A00 230 -

 

Как осуществлять подбор автоматического выключателя для защиты электродвигателя:

1. Номинальный ток автоматического выключателя должен быть больше или равен номинальному току электродвигателя.

2. Пусковой ток электродвигателя обычно в 7 раз превышает номинальный (точная величина для конкретного двигателя указывается в паспорте). Т.к. автоматический выключатель не должен срабатывать при пуске двигателя, необходимо удостовериться, что величина в колонке "Ток мгновенного расцепления при к.з." с некоторым запасом будет выше пускового тока.
Пусковой ток для этих вылей вычисляем по формуле Iном*KРАТН*КОЭФ, где Iном - номинальный ток электродвигателя,

КРАТН - кратность пускового тока электродвигателя, КОЭФ - поправочный коэффициент, учитывающий отклонение пускового тока от номинального, колебания напряжения (принимаем равным 1,4).

3. Номинальный ток автоматического включателя должен быть меньше предельно допустимого тока кабеля, которым осуществляется подключение электродвигателя.

Пример: возьмем двигатель АИР90L4 мощностью 2. 2кВт, в паспорте указаны: номинальный ток Iн (треугольник/звезда) (220/380В) = 8,91А / 5,16А; кратность пускового тока Iп/Iн=6,8.
По номинальному току электродвигателя (5,16А) выбираем автомат защиты двигателя M4-32T-6 c номинальным током .
Проверяем: пусковой ток 5,16*6,8*1,4=49,12А не превышает "Ток мгновенного расцепления при к.з." равный 78А.
Т.О. автомат не будет срабатывать при пуске двигателя.

Следовательно данный автоматический выключатель подходит для защиты указанного электродвигателя.

 

 

 

Вопросы и ответы:

В: В каких случаях срабатывает автомат защиты двигателя?


О: Автоматические выключатели M4 снабжены: 1. биметаллическим тепловым размыкателем, который срабатывает в зависимости от уставки по номинальному току двигателя (уставка задается регулятором на лицевой панели), данный размыкатель инерционен и срабатывает тем быстрее, чем выше ток. 2. мгновенным электромагнитным размыкателем, срабатывающим в случае к. з., порог срабатывания в 13 раз выше номинала автоматического выключателя и поэтому позволяет исключить ложные срабатывания при запуске электродвигателя.

В: Чем отличаются автоматы защиты M4-32T.. от M4-32R..?
О: Автоматы защиты M4-32T имеют кнопочный механизм включения, в то время как M4-32R оборудованы поворотным переключателем.

В: Для каких условий эксплуатации предназначены автоматы защиты двигателя M4?
Автоматические выключатели M4 подходят для любого климата. Для исключения ложных срабатываний рекомендуется избегать обдува автоматов свежим или холодным воздухом (от системы кондиционирования). Автоматы защиты M4 предназначены для функционирования в закрытых помещениях при нормальных условиях (т.е. без пыли, приводящих к коррозии паров или вредных газов). В случае использования в помещениях с отличными от нормальных условиями эксплуатации, необходимо использовать защитный корпус IP65, например,

M4 32R PFh5 (серый) или M4 32R PFHN4 (желто-красный).

В: Где найти информацию по аксессуарам для автоматов-защиты двигателей M4?
О: См. раздел АКСЕССУАРЫ ДЛЯ МОТОР-АВТОМАТОВ BENEDICT? (блоки доп. контактов, контакты сигнализации срабатывания, расцепитель минимального напряжения, независимый расцепитель, перемычки и т.д.)

В: На какое конкретно значение должна выставляться уставка автомата защиты двигателя?
О: Уставка автоматического выключателя должна выставляться на значение номинального рабочего тока электродвигателя, указанное на шильдике (в паспорте).

В: Возможно ли использование автоматов защиты двигателя M4 для однофазных электродвигателей?
О: Да, возможно. В этом случае подключение должно осуществляться, как показано на рисунке:

В: Какую защиту обеспечивают автоматические выключатели M4?

1. Защита при возникновении токов короткого замыкания. Мгновенный расцепитель при возникновении короткого замыкания в нагрузке, обеспечивает отключение нагрузки от сети питания, таким образом предотвращая возникновение дополнительного ущерба от действия больших токов. Автоматические выключатели M4 имеют отключающую способность 50кА и 100кА, что при напряжениях 380-400В AC является исчерпывающе надежной защитой, т.к. более высокие токи обычно не могут возникать в точке установки данного оборудования. В общем случае использование предохранителей не требуется, однако установка предохранителей дополнительно может производиться в тех случаях, когда ток короткого замкания в точке монтажа оборудования может превышать номинальную отключающую способность автоматического выключателя.

2. Защита двигателя. Характеристики срабатывания автоматических выключателей M4 специально разработаны для защиты трехфазных электродвигателей. Поэтому автоматические выключатели для защиты электродвигателей так же могут называться ручными пускателями двигателя. Номинальный ток защищаемого двигателя выбирается регулятором на лицевой панели устройства.

3. Защита сети. Автоматы защиты двигателя M4 так же обеспечивают защиту сети. Они соответствуют требованиям ГОСТ IEC 60947-3-2016 (Выключатели, разъединители, выключатели-разъединители и комбинации их с предохранителями) и ГОСТ IEC 60947-2-2014 (Аппаратура распределения и управления низковольтная). В соответствии с ГОСТ Р МЭК 60204-1-2007 данные автоматические выключатели могут быть использованы как основной или аварийной выключатель (следует учитывать, что в случае использования аксессуара для дверного сочленения не выполняются требования к изоляции).

Характеристики срабатывания автоматических выключателей M4 для защиты электродвигателя:


I - Кривая показывает средний рабочий ток при температуре 20°С, если устройство было полностью охлаждено перед началом работы.
II - Кривая показывает характеристику мгновенного электромагнитного расцепителя (расцепление при к.з.)

Информация по аксессуарам для автоматов защиты двигателя M4



 

Как выбрать автоматический выключатель

Выбор автоматических выключателей

Автоматический выключатель (автомат) предназначен для защиты электропроводки от токов короткого замыкания (КЗ) и перегрузок электросети. Учитывая описанные ниже критерии, а также данные, приведенные в таблице, Вы сможете самостоятельно осуществить выбор автоматических выключателей. Но, напоминаем, что электромонтажные работы лучше доверить профессионалам!

Основные параметры выбора автоматических выключателей.

  1. Ток КЗ. Автоматические выключатели могут иметь номиналы 3; 4.5; 6 и 10 кА.  Правилами устройства электроустановок (ПУЭ) автоматы с наибольшей отключающей способностью менее 6 кА запрещаются. Если Ваш дом размещен рядом с трансформаторной подстанцией, то необходимо выбрать автомат  номиналом 10 кА. В остальных случаях достаточно 6 кА.
  2. Номинальный ток (рабочий). При превышении значения номинального тока произойдет разъединение цепи, следовательно, защита электропроводки от перегрузок. Выбор подходящего значения осуществляется в зависимости от мощности потребителей электроэнергии и сечения кабеля.
  3. Ток срабатывания. При включении мощных электроприборов пусковой ток может быть значительно выше номинального (до 12 раз). Чтобы автоматический выключатель не сработал, приняв запуск двигателя за КЗ, необходимо правильно выбрать его класс — В, С или D. При отсутствии мощных потребителей достаточно будет устройства класса В. Если установлена электроплита или электрокотел, подходящим выбором будет автомат класса С. Но если задействованы мощные электродвигатели, то необходимо устанавливать автоматические выключатели класса D.
  4. Селективность.  То есть отключение только аварийного участка электросети. Для обеспечения селективности монтаж начинается с вводного автомата, номинал которого не должен превышать максимально допустимую нагрузку на электропроводку, исходя из сечения провода. Номинальный ток автомата на вводе должен превышать значение рабочего тока всех нижестоящих автоматических выключателей в щитке.
  5. Количество полюсов. Для однофазной сети 220В используются однополюсные и  двухполюсные автоматы (как правило, для подключения систем освещения), а также дифференциальные выключатели (для подключения розеток, переносных электроприемников, а также оборудования и устройств, где возможно прикосновение человека к металлическим и токоведущим частям). Для трехфазной электросети 380В используются трех- и четырехполюсные автоматические выключатели (на вводе) и дифференциальные автоматы (на стационарных или переносных электроприемниках, где возможно прикосновение человека к металлическим и токоведущим частям).
  6. Производитель. Приятно отметить, что автоматические выключатели отечественных производителей (например, EKF или IEK) не уступают в качестве зарубежным аналогам ведущих мировых брендов. 
Номинал автомата, А Тип подключения
Однофазное, 220В Однофазное (вводное), 220В Трехфазное (треугольник), 380В Трехфазное (звезда), 220В
 1  0.2 кВт  0.2 кВт  1.1 кВт 0.7 кВт
 2  0.4 кВт   0.4 кВт 2.3 кВт 1.3 кВт
 3 0.7 кВт  0.7 кВт 3.4 кВт 2. 0 кВт
 6 1.3 кВт  1.3 кВт 6.8 кВт 4.0 кВт
 10 2.2 кВт  2.2 кВт 11.4 кВт 6.6 кВт
 16 3.5 кВт  3.5 кВт 18.2 кВт 10.6 кВт
 20 4.4 кВт  4.4 кВт 22.8 кВт 13.2 кВт
 25 5.5 кВт  5.5 кВт 28.5 кВт 16.5 кВт
 32 7.0 кВт  7.0 кВт 36.5 кВт 21.1 кВт
 40 8.8 кВт  8.8 кВт 45.6 кВт 26.4 кВт
 50 11 кВт  11 кВт 57.0 кВт 33.0 кВт
 63 13.9 кВт  13.9 кВт 71.8 кВт 41.6 кВт


Заказать обратный звонок

Выбор ВА47-29 и настройка РТИ в схеме управления асинхронным электродвигателем (2009)

Как подобрать и настроить защитную аппаратуру асинхронного двигателя?

В цепи обмоток электромотора, помимо короткого замыкания, возможен режим перегрузки, возникающий из-за:

  • обрыва фазы;
  • повышения/снижения напряжения;
  • возрастания момента на валу свыше 1,1 Мном.

Ток двигателя при перегрузке увеличивается на 20...50%, нагрев обмоток - пропорционально квадрату тока, соответственно на 40...125%. Если перегрузка кратковременна 2-3 минуты, ею можно пренебречь. Но если более продолжительна, то возрастает вероятность пробоя изоляции обмоток двигателя. Слежением за величиной перегрузки и отключением двигателя занимается тепловое реле. Время его отключения должно быть тем меньше, чем больше ток перегрузки, и пропорционально квадрату отношения величины рабочего тока к току перегрузки.

Рассмотрим типовую схему включения асинхронного электродвигателя. В нее входят: трехполюсный автоматический выключатель, контактор серии КМИ, кнопочная станция, тепловое реле серии РТИ, электродвигатель (см. Рис. 1).

Рисунок 1. Типовая схема включения асинхронного электродвигателя


При выборе автоматического выключателя необходимо учитывать пропускание пускового тока двигателя:

Для двигателя 4А100S2У3 (Рном = 4,0 кВт, пном=2880 об/ мин, КПД=86,5%, CoS9=0,89, Iпуск/Iном=7,5 номинальный ток Іном=Рном/ 380. Cos9 КПД=4000/1, 73.380.0, 89Ю,865=7,9А, пусковой ток Іпуск=7,5.Іном=59,3А) при условии, что пусковой ток 59,3А меньше нижней границы диапазона тока срабатывания ЭМ расцепителя, выбираем ВА47-29 с характеристиками В20, С13 или D8.

Сопоставим выбранные выключатели. По загрузке В20/С13/ D8 соотносятся, как 0,4/0,62/1; В20 загружен на 40%, С13 - на 62%, D8 - на 99%. По тепловыделению в20/С13/ D8 соотносятся как 0,16/0,38/0,98. Мощность тепловых потерь на В20 составляет 1,7 Вт, на С13 - 4 Вт, на D8 - 10,3 Вт. Что выбрать? Вариант с меньшим тепловыделением и загрузкой!

Приведем еще пример расчета и выбора вводного автоматического выключателя ВА47-29 для электродвигателей серии АОП2 (с повышенным пусковым моментом).

При определении пускового тока принимаем его кратность для двигателей 1500 об/мин равной 7,5; для 1000 об/мин - 7, и для 750 об/мин - 6. Расчетный номинальный ток вводного автомата определяем делением пускового тока на кратность нижней границы диапазона настройки расцепителя. Для характеристик: В-3, для С - 5, для D - 10. Второе условие выбора вводного автомата: номинальный ток автомата должен быть больше номинального тока двигателя.

В результате, например, для двигателя АОП2-42-4 мощностью 5,5 кВт и частотой вращения 1440 об/мин (номинальный ток 11,7 А, пусковой ток 88 А), наиболее подходящим с точки зрения надежности будет вариант автоматического выключателя с характеристикой В 32, а не D13 или С18!

Настройка уставки теплового реле

Проведение пуско-наладочных работ предусматривает настройку тепловой защиты. Наиболее верно проводить настройку уставки теплового реле «на горячем двигателе», при установившемся температурном режиме работающего двигателя и теплового реле.

Настройка теплового реле проводится поэтапно. Перед пуском двигателя уставку ставят на максимальное значение. При установившемся температурном режиме, спустя 25...40 минут непрерывной работы при номинальном рабочем режиме, уставку плавно уменьшают до срабатывания теплового реле и отключения электродвигателя.

Слегка «загрубив» уставку, повторно запускают двигатель и проверяют правильность настройки. Если реле опять отключит двигатель, то уставку увеличивают, если не отключит - то, уменьшая уставку, снова проверяют срабатывание теплового реле во второй, и в третий раз.

Оптимальным считается вариант настройки при совпадении теплового режима окружающей среды щитового оборудования и двигателя. Например, при размещении в одном помещении.

Положительным фактором является встроенная термокомпенсация теплового реле. Но если ее нет, необходимо, в зависимости от температуры окружающей среды (лето/зима - день/ночь), проводить корректировку уставки.

Тепловые реле серии РТИ торговой марки IEK имеют термокомпенсацию. Это рычаг между эксцентриком уставки и механизмом переключения контактов, который изготовлен из биметалла.

Более сложный вариант настройки тепловой защиты двигателя - при размещении пускозащитной аппаратуры в щитовом помещении, а двигателя - на открытом воздухе. Именно в летний период при максимальной дневной температуре повышается вероятность перегрузки двигателя. В таких случаях применяют встроенную температурную защиту двигателя. В статорной обмотке двигателя (при его изготовлении) размещают позисторы (резисторы с нелинейной зависимостью сопротивления от температуры), автоматически контролирующие температурный режим обмоток и отключающих питание двигателя при достижении максимально-допустимой температуры обмотки.

Гарантией наиболее верного способа защиты от перегрузки будет правильный выбор мощности приводного двигателя. И если нормы проектирования СССР рекомендовали выбирать двигатель с загрузкой 0,75.0,9 (то есть запас составлял 10-25%), то при выборе мощности двигателя с загрузкой на половину номинала проблем с тепловой защитой будет гораздо меньше.

Итак, подведем итоги:

  • Защита силовой цепи асинхронных электродвигателей автоматическими выключателями серии ВА47-29 с заменой характеристики электромагнитного расцепителя D на В или С, снижает тепловыделение, и, соответственно, температуру в щите управления;
  • Анализ характеристик автоматических выключателей для питания электродвигателей серии АОП2 показывает, что возможна замена автоматического выключателя ВА47-29 с характеристикой D для электродвигателей мощностью до 13 кВт на В, и до 22 кВт на автоматический выключатель ВА47-29 с характеристикой С;
  • Настройку тепловой защиты двигателей необходимо проводить «на горячем двигателе» в установившемся температурном режиме двигателя и теплового реле, подбирая уставку последнего согласно вышеприведенной методике.

Как выбрать автомат для электродвигателя?

Выбрать и рассчитать автомат для электродвигателя

Существуют два распространённых способа выбора включателя для двигателя.

Итак, первый способ это рассчитать общую мощность устройств, которые будут запитаны от этого выключателя. Рассчитываем, что за приборы (телевизор, холодильник, компьютер, стиральная машинка и т.д.) будут подключены в данную цепь электротока, складываем мощность всех этих приборов и на основе этого вычисляем ток розеточной группы. При таких расчетах следует учитывать, сколько фаз в вашем раставшем электродвигателе. Например, в трехфазном, с мощностью в 4 кВт, 4 ∙ 3 = 12А, значит 12А – это сила рабочего тока. Значит, к такому электродвигателю подойдет автомат на 16А.

Второй способ рассчитать максимальную мощность приборов подключенных к автомату, это подсчитать суммарную мощность через паспорта каждого прибора. На паспортах приборов указана мощность, вот суммируем ее и определяем общую мощность. Как пример, 2кВт + 600Вт + 2100Вт = 4700Вт. Теперь просто подставляем значение в общепринятую формулу: I=W/U, где I – это мощность, W – вольтаж и U – ток в сети; I= 4700 делим на 220, вот и получаем 21,36А. Но не забываем, что стиральные машины и некоторые другие приборы имеют свои моторы, и у них есть так называемый пусковой ток, который при запуске намного больше, чем указана мощность прибора. Но производители автоматов это прекрасно знают и поэтому на выключателях есть уставка по току.

Подобрать автомат не так уж и сложно, руководствуясь следующими правилами:

  • Главная характеристика для автоматов это номинальный ток, измеряющийся в Амперах. Диапазон от 6 до 100А.
  • Кратковременное значение тока, при котором автомат не будет срабатывать. Это, по-простому, скачки тока к которым чувствителен выключатель. Приборы выключения относят к трём номиналам: «В», «С», «D». Самый слабый к скачкам номинал «В».
  • Описания включателя должны быть отражены на шильдике автомата.
  • Выключатели делят по фазам.
  • Советуют подбирать для быта сразу несколько выключателей номинала «С». Один ставить на входящий ток, остальные отдельно друг от друга по ходу тока и присоединения приборов.

Электродвигатель 15 кВт ток

Существует множество разновидностей двигателей мощностью 15 кВт ток, но все они имеют различные характеристики. Рассмотрим примеры таких двигателей.

Самыми распространёнными являются вот такие образцы движков:

  • Электродвигатель асинхронный 4АМ160S4 15/1460 380-660В;
  • Электродвигатель 15 квт 1500 об мин;
  • Электродвигатель 15кВт на 3000 об мин АИР160S2 и 15 кВт на 1500 АИР160S4;
  • Электродвигатель АИР160S2 15,0 кВт 3000 об АИР 160 S2;
  • Электродвигатель 15кВт 1000 об мин АИР160M6.

Всех объединяет две характеристики, это мощность на 15 кВт и трёхфазность, и тип двигателя – асинхронный и конечно наличие контактора. Остальные характеристики, такие как частота вращения, тип ротора и марка все отличаются. Электродвигатели такого типа предназначены для выполнения работ от сети с переменным током частоты 50 Гц и производятся на такие номинальные напряжения:

  • 220 В;
  • 380 В/220 В;
  • 380 В;
  • 660 В;
  • 380 В/660 В.

Еще варианты подбора и информации об автоматах для электродвигателей смотрите в видео на соседней вкладке.

Калькулятор расчёта тока нагрузки для выбора автоматического выключателя

С помощью данного калькулятора Вы можете рассчитать номинальный ток автоматического выключателя по мощности подключаемых через него электроприборов.

Введите значения в форму ниже: суммарную мощность электрооборудования, тип потребителя и параметры сети (фазность и напряжение).

*Примерные значения коэффициента мощности представлены в таблице:

Бытовые электроприборы Мощность, Вт cos φ
Электроплита 1200 - 6000 1
Обогреватель 500 - 2000 1
Пылесос 500-2000 0,9
Утюг 1000 - 2000 1
Фен 600 - 2000 1
Телевизор 100 - 400 1
Холодильник 150 - 600 0,95
СВЧ-печь 700 - 2000 1
Электрочайник 1500 - 2000 1
Лампы накаливания 60 - 250 1
Люминесцентные лампы 20 - 400 0,95
Бойлер 1500 - 2000 1
Компьютер 350 - 700 0,95
Кофеварка 650 - 1500 1
Стиральная машина 1500 - 2500 0,9
Электроинструмент Мощность, Вт cos φ
Электродрель 400 - 1000 0,85
Болгарка 600 - 3000 0,8
Перфоратор 500 - 1200 0,85
Компрессор 700 - 2500 0,7
Электромоторы 250 - 3000 0,7 - 0,8
Вакуумный насос 1000 - 2500 0,85
Электросварка (дуговая) 1800 - 2500 0,3 - 0,6

подбор по мощности и нагрузке, подключение в однофазной сети

На чтение 9 мин. Просмотров 233 Опубликовано Обновлено

Для предотвращения короткого замыкания и перегрузки электросети применяется трехфазный автомат. Коммутационное устройство можно использовать для линии с постоянным и переменным током. Конструкция стандартной модели представлена расширителями с переключением в зависимости от частоты цепи.

Какой автомат подойдет на 15 кВт

Назначение трехфазного автомата — защита от перегрузок

Назначение 3-фазного автомата – защита от сверхтоков и перегрузок. Модификация на 15 кВт работает в сети с напряжением 380 В, то есть на ввод понадобится прибор на 25А. При выборе нужно учитывать, что в условиях коротких замыканий сила тока повышается и может стать причиной возгорания электропроводки.

Подбирая модель автомата на 15 кВт для трехфазной нагрузки, понадобится учесть параметры допустимого напряжения и тока при коротком замыкании. Стоит ориентироваться на вычисленные показатели тока кабеля с минимальным сечением, который защищает выключатель и номинальный ток приемника.

При расчетах вводного коммутационного автомата по параметрам мощности в сети 380 В учитывают:

  • электрическую мощность – фактическую и добавочную;
  • интенсивность загрузки кабеля;
  • наличие свободной мощности в проектном показателе жилого дома;
  • удаленность хозяйственных построек и нежилых помещений от точки ввода кабеля.

В сети на 15 киловатт при добавочной мощности устанавливается прибор ВРУ.

Функции трехфазных автоматов

Трехфазник одновременно обслуживает несколько однофазных зон цепи

Перед тем как подобрать автоматический коммутатор, следует разобраться с его функционалом. Пользователи часто заблуждаются, думая, что устройство защищает бытовую технику. На ее электропоказатели автомат не реагирует, срабатывая исключительно при коротком замыкании либо перегрузке. К функциям трехфазника относятся:

  • одновременное обслуживание нескольких однофазных зон цепи;
  • предотвращение образования сверхтоков на линии;
  • совместная работа с выпрямителями сети переменного тока;
  • защита высокомощного оборудования;
  • повышенная мощность за счет установки специального преобразователя;
  • быстрое срабатывание в режиме КЗ на линии с большим количеством потребителей;
  • возможность отключения в ручном режиме при помощи рубильника или выключателя;
  • совместимость с дополнительными защитными клеммами.

Без дифавтомата повышаются риски возгорания кабеля.

Принцип работы и предназначение защитного автомата

Характеристики автоматического выключателя

Трехфазный автоматический выключатель в случаях замыкания на линии активируется при помощи электромагнитного расщепителя. Принцип работы элемента заключается в нагреве биметаллической пластины в момент повышения номинала тока и выключении напряжения.

Предохранитель не дает КЗ и сверхтоку с показателями выше расчетных воздействовать на проводку. Без него кабельные жилы нагреваются до температуры плавления, что приводит к воспламенению изоляционного слоя. По этой причине важно знать, сможет ли сеть выдержать напряжение.

Соответствие проводов нагрузке

Проблема характерна для домов старой застройки, в которых на существующую линию ставятся новые автоматы, счетчик, УЗО. Автоматы подбираются под общую мощность техники, но иногда они не срабатывают – кабель дымиться или горит.

К примеру, у жил старого кабеля с сечением 1,5 мм2 токовый предел составляет 19 А. При единовременном включении оборудования с суммарным током 22,7 А защиту обеспечит только модификация на 25 Ампер.

Провода нагреются, но коммутатор останется включенным до момента оплавления изоляции. Предотвратить пожар может полная замена проводки на медный кабель с сечением 2,5 мм2.

Защита самого слабого участка кабельной проводки

На основании п. 3.1.4 ПУЭ задачей автоматического устройства является предотвращение перегрузки на самом слабом звене электроцепи. Его номинальный ток подбирается по току подсоединенных бытовых приборов.

Если автомат выбран неправильно, незащищенный участок станет причиной возгорания.

Принципы расчета автомата по сечению кабеля

Вычисления 3-фазного дифавтомата осуществляются на основании сечения кабеля. Для модели на 25 А понадобится обратиться к таблице.

Сечение провода, мм2 Допустимый ток нагрузки по материалу кабеля
Медь Алюминий
0,75 11 8
1 15 11
1,5 17 13
2,5 25 19
4 35 28

Модификацию на 25 Ампер можно применять для защиты проводки или установить на ввод.

Например, для проводки используется медный провод с сечением 1,5 мм2 с допустимым током нагрузки 19 А. Чтобы кабель не нагревался, понадобится выбрать меньшее значение – 16 А.

Определение зависимости мощности от сечения по формуле

Таблица выбора сечения кабеля в зависимости от мощности

Если сечение кабеля неизвестно, можно использовать формулу:

Iрасч=P/Uном, где:

  • Iрасч – расчетный ток,
  • P – мощность приборов,
  • Uном – номинал напряжения.

В качестве примера можно рассчитать, автомат, который понадобится ставить на бойлер с нагрузкой 3 кВт и напряжением сети 220 В:

  1. Перевести 3 кВт в Ватты – 3х1000=3000.
  2. Разделить величину на напряжение: 3000/220=13,636.
  3. Округлить расчетный ток до 14 А.

В зависимости от условий окружающей среды и способу прокладки кабеля нужно учесть поправочный коэффициент для сети 220 В. Среднее значение равно 5 А. Его понадобится прибавить к расчетному показателю тока Iрасч=14 +5=19 А. Далее по таблице ПУЭ выбирается сечение медного провода.

Сечение, мм2 Ток нагрузки, А
Одножильный кабель Двухжильный кабель Трехжильный кабель
Одинарный провод 2 провода вместе 3 провода вместе 4 провода вместе Одиночная укладка Одиночная укладка
1 17 16 15 14 15 14
1,5 23 19 17 16 18 15
2,5 30 27 25 25 25 21
4 41 38 35 30 32 27
6 50 46 42 40 40 34

Подбор автоматического коммутатора по мощности

Таблица мощности электроприборов на кухне

Подобрать защитный переключатель поможет вычисление суммарной мощности бытовой техники. Понадобится посмотреть значение в паспорте устройства. Например, на кухне в розетку включаются:

  • кофеварка – 1000 Вт;
  • электродуховка – 2000 Вт;
  • печка СВЧ – 2000 Вт;
  • электрический чайник – 1000 Вт;
  • холодильник – 500 Вт.

Суммируя показатели, получаем 6500 Вт или 6,5 киловатт. Далее понадобится обратиться к таблице автоматов в зависимости от мощности подключения.

Однофазное подключение 220 В Трехфазное подключение Мощность автомата
Схема «треугольник» 380 В Схема звезда, 220 В
3,5 кВт 18,2 кВт 10,6 кВт 16 А
4,4 кВт 22,8 кВт 13,2 кВт 20 А
5,5 кВт 28,5 кВт 16,5 кВт 25 А
7 кВт 36,5 кВт 21,1 кВт 32 А
8,8 кВт 45,6 кВт 26,4 кВт 40 А

На основании таблицы для проводки со стандартным напряжением можно подобрать прибор на 32 А, который подходит для суммарной мощности 7 кВт.

Если планируется подключение дополнительной техники, используется коэффициент повышения. Среднее значение 1,5 умножается на мощность, полученную при вычислениях. Понижающий коэффициент применяется при невозможности одновременной эксплуатации нескольких электроприборов. Он равен 1 или минус 1.

Выбор автомата в зависимости от мощности нагрузки

Для квартир и домов с новой электропроводкой выбор автомата производится на основании расчетного тока нагрузки.

Рассчитать прибор трехфазного типа можно по номинальному току нагрузки или по скорости срабатывания в условиях превышения токового значения. Для вычислений требуется сложить мощность всех потребителей и вычислить ток, проходящий через линию. Работы выполняются по формуле:

 I=Р/U, где:

  • Р — суммарная мощность всей бытовой техники;
  • U — напряжение сети.

К примеру, мощность равняется 7,2 кВт, вычислена по формуле 7200/220=32,72 А. В таблице указаны номиналы 16, 20, 32, 25 и 40 А. Величину 32,72 А с учетом срабатывания устройства при значении в 1,13 раз больше номинала, умножаем: 32х1,13=36,1 А. По таблице видно, что лучше поставить модель на 40 А.

Способы подбора дифавтомата

Номинал дифавтомата и его времятоковая характеристика

Для примера рассмотрим кухню, где подключается большое количество оборудования. Вначале требуется установить номинал общей мощности для помещения с холодильником (500 Вт), микроволновкой (1000 Вт), чайником (1500 Вт) и вытяжкой (100 Вт). Общий показатель мощности – 3,1 кВт. На его основании применяются различные способы выбора автомата на 3 фазы.

Табличный метод

На основании таблицы устройств по мощности подключения выбирается однофазный или трехфазный прибор. Но величина в расчетах может не совпадать с табличными данными. Для участка сети на 3,1 кВт понадобится модель на 16 А – ближайший по значению показатель равняется 3,5 кВт.

Графический метод

Технология подбора не отличается от табличной – понадобится найти график в интернете. На рисунке стандартно по горизонтали находятся переключатели с их токовой нагрузкой, по вертикали – мощность потребления на одном участке цепи.

Для установления мощности устройства понадобится провести линию по горизонтали до точки с номинальным током. Суммарной нагрузке на сеть 3,1 кВт соответствует переключатель на 16 А.

Критерии выбора трехфазного коммутатора

Перед покупкой стоит учесть все параметры, которые будет иметь входной аппарат.

Фаза и напряжение

Однофазные модели на 220 В подключаются к одной клемме, трехфазные на 380 В – к трем.

Ток утечки

На корпусе имеется маркировка – греческая буква «дельта». Токовая утечка частного дома составляет около 350 мА, отдельной группы приборов – 30 мА, светильников и розеток – 30 мА, одиночных звеньев – 15 мА, бойлера – 10 мА.

Разновидности по току

На автомате имеются индексы А (срабатывание при утечке постоянного тока) и АС (срабатывание при утечке переменного тока).

Количество полюсов

Однополюсный автомат применяется для одной фазы

В зависимости от количества полюсов можно приобрести трехфазный выключатель:

  • однополюсный тип аппаратов для защиты одного кабеля и одной фазы;
  • двухполюсный, представленный двумя приборами с общим рубильником – выключение происходит в момент превышения допустимого значения одного из них, одновременно обрываются нейтраль и фаза в однофазной сети;
  • трехполюсный аппарат, обеспечивающий разрыв и защиту фазной цепи – являются тремя приборами с общей рукояткой активации/деактивации;
  • четырехполюсный прибор, который монтируется только на ввод трехфазного РУ – разрывает все три фазы и рабочий ноль. Разрыв заземления защиты недопустим.

Вне зависимости от количества полюсов время отключения устройства не должно превышать 0,3 сек.

Место установки

Для бытового использования предназначен электрический автомат на 3 фазы с маркировкой С на 25 А. На вводе в этом случае лучше устанавливать изделия С50, С65, С85, С95. Для розеток или иных точек – С 25 и С 15, для освещения – С 12 или С 17, для электроплиты – С 40. Они будут срабатывать, когда показатели тока в 5-10 раз превышают номинал.

Нюансы, которые нужно учитывать

Таблица потребления мощности различных электроприборов

Точно знать, какие бытовые приборы будут в доме или квартире, не может никто. По этой причине следует:

  • повысить суммарную расчетную мощность трехфазного дифавтомата на 50 %, или применять коэффициент повышения 1,5;
  • понижающий коэффициент учитывается, когда в помещении не хватает розеток для одновременного подключения техники;
  • для простоты расчетов нагрузку стоит разделить на группы;
  • мощные приборы стоит подключить отдельно с учетом маломощной нагрузки;
  • для вычисления маломощной нагрузки мощность понадобится разделить на напряжение;
  • проводка – основной фактор, на который ориентируются при выборе автоматического 3-фазного выключателя; старые алюминиевые провода выдерживают 10 А, но если их взять для розеток на 16 А, могут расплавиться;
  • в бытовых условиях чаще всего применяются модели с токовым номиналом 6, 16, 25, 32 и 40 А.

При покупке трехфазного дифференциального автомата нужно учитывать, что основные маркировки есть на корпусе или в паспорте. Использование формул и таблиц поможет подобрать модель в соответствии с проводкой в квартире и мощностью бытовой техники.

Выбор автоматического выключателя | Руководство по устройству электроустановок | Оборудование

Страница 47 из 77

Выбор типа автоматических выключателей определяется: электрическими характеристиками электроустановки, условиями эксплуатации, нагрузками и необходимостью дистанционного управления вместе с типом предусматриваемой в будущем телекоммуникационной системы.
Автоматические выключатели с некомпенсируемыми комбинированными расцепителями имеют уровень тока отключения, зависящий от окружающей температуры.
4.4 Выбор автоматического выключателя
Критерии выбора автоматического выключателя
Выбор автоматического выключателя производится с учетом:
электрических характеристик электроустановки, для которой предназначен этот автоматический выключатель
условий его эксплуатации: температуры окружающей среды, размещения в здании подстанции или корпусе распределительного щита, климатических условий и др.
требований к включающей и отключающей способности при коротких замыканиях, эксплуатационных требований: селективного отключения, требований к дистанционному управлению и индикации и соответствующим вспомогательным контактам, дополнительным расцепителям, соединениям.
правил устройства электроустановок, в частности требований в отношении обеспечения защиты людей
характеристик нагрузки, например электродвигателей, люминесцентного освещения, разделительных трансформаторов с обмотками низкого напряжения
Следующие замечания относятся к выбору низковольтного автоматического выключателя для использования в распределительных системах.
Выбор номинального тока с учетом окружающей температуры
Номинальный ток автоматического выключателя определяется для работы при определенной температуре окружающей среды, которая обычно составляет:
30°С для бытовых автоматических выключателей
40°С для промышленных автоматических выключателей
Функционирование этих автоматических выключателей при другой окружающей температуре зависит главным образом от технологии применяемых расцепителей (рис. h50).
Некомпенсируемые термомагнитные комбинированные расцепители

Автоматические выключатели с некомпенсируемыми термомагнитными расцепителями имеют порог тока отключения, который зависит от окружающей температуры. Если автоматический выключатель установлен в оболочке или в помещении с высокой температурой (например, в котельной), то ток, необходимый для отключения (срабатывания) этого автоматического выключателя при перегрузке, будет заметно ниже. Когда температура среды, в которой расположен автоматический выключатель, превышает оговоренную изготовителем температуру, его характеристики окажутся «заниженными». По этой причине изготовители автоматических выключателей приводят таблицы с поправочными коэффициентами, которые необходимо применять при температурах, отличных от оговоренной температуры функционирования автоматического выключателя. Из типичных примеров таких таблиц (рис. h51) следует, что при температуре ниже оговоренной изготовителем происходит повышение порога отключающего тока соответствующего автоматического выключателя. Кроме того, небольшие модульные автоматические выключатели, установленные бок о бок (рис. h37), обычно монтируются в небольшом закрытом металлическом корпусе. В таком случае вследствие взаимного нагрева при прохождении обычных токов нагрузки к их параметрам необходимо применять поправочный коэффициент 0,8.


Рис. h50. Температура окружающей среды
Автоматические выключатели C60a, C60H: кривая C. C60N: кривые B и C (Стандарт. температура: 30°С)


Ном. ток, А

20 °C

25 °C

30 C

35 C

40 C

45 °C

50 °C

55 C

60 °C

1

1. 05

1.02

1.00

0.98

0.95

0.93

0.90

0.88

0.85

2

2.08

2.04

2.00

1.96

1.92

1.88

1.84

1.80

1.74

3

3.18

3.09

3.00

2.91

2.82

2. 70

2.61

2.49

2.37

4

4.24

4.12

4.00

3.88

3.76

3.64

3.52

3.36

3.24

6

6.24

6.12

6.00

5.88

5.76

5.64

5.52

5.40

5.30

10

10. 6

10.3

10.0

9.70

9.30

9.00

8.60

8.20

7.80

16

16.8

16.5

16.0

15.5

15.2

14.7

14.2

13.8

13.5

20

21.0

20.6

20.0

19.4

19.0

18. 4

17.8

17.4

16.8

25

26.2

25.7

25.0

24.2

23.7

23.0

22.2

21.5

20.7

32

33.5

32.9

32.0

31.4

30.4

29.8

28.4

28.2

27.5

40

42. 0

41.2

40.0

38.8

38.0

36.8

35.6

34.4

33.2

50

52.5

51.5

50.0

48.5

47.4

45.5

44.0

42.5

40.5

63

66.2

64.9

63.0

61.1

58.0

56. 7

54.2

51.7

49.2

NS250N/H/L (Стандартная температура: 40°C)


Ном. ток, А

40 °C

45 C

50 °C

55 C

60 °C

TM160D

160

156

152

147

144

TM200D

200

195

190

185

180

TM250D

250

244

238

231

225

    ** Для промышленного использования значения не регламентируются стандартами IEC. Указанные выше значения соответствуют тем, которые обычно используются.

* «О» означает операцию отключения.
«CO» означает операцию включения, за которой следует операция
отключения.

Рис. h51. Примеры таблицдля определения коэффициентов понижения/повышения уставок по току отключения, которые должны применяться к автоматическим выключателям с некомпенсируемыми тепловыми расцепителями в зависимости от температуры
Пример
Какой номинальный ток (In) следует выбрать для автоматического выключателя C60 N? Этот аппарат:
обеспечивает защиту цепи, в которой максимальный расчетный ток нагрузки составляет 34 А
установлен вплотную к другим автоматическим выключателям в закрытой распределительной коробке
эксплуатируется при окружающей температуре 50°С.
При окружающей температуре 50°С уставка автоматического выключателя C60N с номинальным током 40 А снизится до 35,6 А (см. таблицу на рис. h51). Взаимный нагрев в замкнутом пространстве учитывается поправочным коэффициентом 0,8. Таким образом, получим 35,6 x 0,8 = 28,5 А, что не приемлемо для тока нагрузки 34 А.
Поэтому будет выбран автоматический выключатель на 50 А и соответствующая скорректированная уставка по току составит 44 x 0,8 = 35,2 А.
Компенсированные комбинированные расцепители
Эти расцепители содержат биметаллическую компенсирующую пластину, которая обеспечивает возможность регулировки уставки по току отключения при перегрузке (Ir или Irth) в установленных пределах независимо от температуры окружающей среды. Например:
в некоторых странах система заземления TT является стандартной в низковольтных распределительных системах, а бытовые (и аналогичные) электроустановки защищаются в месте ввода автоматическим выключателем, который устанавливается соответствующей энерго- снабжающей организацией. Такой автоматический выключатель, помимо защиты от косвенного прикосновения, обеспечит отключение цепей при перегрузках, если потребитель превысит уровень потребляемого тока, оговоренный в его контракте с энергоснабжающей организацией. Регулировка уставок автоматического выключателя с номинальным током менее 60 А возможна в диапазоне температур от -5 до +40°С.
Электронные расцепители
Важным преимуществом электронных расцепителей является их устойчивая работа при изменении температурных условий. Однако само распределительное устройство часто налагает эксплуатационные ограничения при повышенных температурах, поэтому изготовители обычно приводят рабочую диаграмму, на которой указываются максимальные значения допустимых уровней отключающих токов в зависимости от окружающей температуры (рис. h52).
Электронные расцепители устойчиво функционируют при изменении окружающей температуры


Вариант исполнения выключателя Masterpact NW20

40°C

45°C

50°C

55°C

60°C

h2/h3/h4

Выкатного типа

In (А)

2,000

2,000

2,000

1,980

1,890

 

с горизонтальными

Максимальная

1

1

1

0. 99

0.95

 

контакт. пластинами

регулировка тока Ir

 

 

 

 

 

L1

Выкатного типа

In (А)

2,000

200

1,900

1,850

1,800

 

с вертикальными

Максимальная

1

1

0.95

0. 93

0.90

 

контакт. пластинами

регулировка тока Ir

 

 

 

 

 


Рис. h52. Снижение уровня уставки автоматического выключателя Masterpact NW20 в зависимости от температуры
низковольтные автоматические выключатели с номинальным током менее 630 А обычно оснаща­ются компенсируемыми расцепителями для этого температурного диапазона (-5 до +40 °С).
Выбор уставок срабатывания без выдержки времени или с кратковременной выдержкой
Ниже на рис. h53 представлены сводные основные характеристики расцепителей, срабатывающих мгновенно или с короткой выдержкой времени.

Рис. h53. Различные расцепители (мгновенного действия или срабатывающие с короткой выдержкой времени)

Для установки низковольтного автоматического выключателя требуется, чтобы его отключающая способность (или отключающая способность выключателя вместе с соответствующим устройством) была бы равна или превышала расчетный ожидаемый ток короткого замыкания в месте его установки.
Автоматический выключатель, установленный на вы/ходе самого маленького трансформатора, должен иметь отключающую способность по короткому замыканию, которая превышает отключающую способность любого из других низковольтных автоматических вы/ключателей трансформаторов.
Выбор автоматического выключателя с учетом требований по отключающей способности при КЗ
Автоматический выключатель, предназначенный для использования в низковольтной электроустановке, должен удовлетворять одному из двух следующих условий:
или иметь номинальную отключающую способность Icu (or Icn), которая равна или превышает ожидаемый ток короткого замыкания, рассчитанный для этого места установки, или
если это не выполняется, то использоваться совместно с другим устройством, расположенным выше по цепи и имеющим требуемую отключающую способность.
Во втором случае характеристики этих двух устройств должны быть согласованы так, чтобы ток, который может проходить через вышерасположенное устройство, не превышал максимальный ток, который способны выдержать нижерасположенный выключатель и все соответствующие кабели, провода и другие элементы цепи без какого-либо повреждения. Данный метод целесообразен при использовании:
комбинаций плавких предохранителей и автоматических выключателей
комбинаций токоограничивающих автоматических выключателей и стандартных автоматических выключателей. Этот метод называют «каскадированием» (см. подпункт 4.5 данной главы)
Выбор автоматических выключателей вводных и отходящих линий Случай применения одного трансформатора
Если трансформатор расположен на потребительской подстанции, то в некоторых националь­ных стандартах требуется применение низковольтного автоматического выключателя, в котором были бы явно видны разомкнутые контакты, такого как, например, Compact NS выкатной выключатель.
Пример (рис. h54 на противоположной странице)
Какой тип автоматического выключателя пригоден для главного автомата защиты электроустановки, питаемой от трехфазного понижающего трансформатора мощностью 250 кВА и напряжением во вторичной обмотке 400 В, установленного на потребительской подстанции? Ток трансформатора In = 360 А Ток (трехфазный) Isc = 8,9 кА
Для таких условий подходящим вариантом будет автоматический выключатель Compact NS400N с диапазоном регулировки расцепителя 160 А - 400 А и отключающей способностью (Icu) 45 кА.

Несколько трансформаторов, включенных параллельно (рис. h55)
Каждый из автоматических выключателей CBP, установленных на линиях, отходящих от низковольтного распределительного щита, должен быть способен отключать суммарный ток короткого замыкания от всех трансформаторов, подсоединенных к шинам, т.е. Isc1 + Isc2 + Isc3.
Автоматические выключатели CBM, каждый из которых контролирует выход соответствующего трансформатора, должны быть способны отключать максимальный ток короткого замыкания, например, только ток Isc2 + Isc3 если короткое замыкании возникло в месте, расположенном выше выключателя CBM1.
Из этих соображений понятно, что в таких обстоятельствах автоматический выключатель самого маленького трансформатора будет подвергаться самому большому току короткого замыкания, а автоматический выключатель самого большого трансформатора будет пропускать наименьший ток короткого замыкания.
Номинальные токи отключения автоматических выключателей CBM должны выбираться в зависимости от номинальной мощности к КВА соответствующих трансформаторов.
Примечание: Необходимыми условиями для успешной параллельной работы трехфазных трансформаторов являются следующие:
фазовый сдвиг напряжений во вторичной и первичной обмотках должен быть одинаков во всех параллельно включенных трансформаторах
Отношение напряжений холостого хода в первичной и вторичной обмотках должно быть одинаковым для всех трансформаторов.
Напряжения короткого замыкания (Zsc%) должно быть одинаковыми для всех трансформаторов.
Например, трансформатор мощностью 750 кВА с Zsc = 6% будет правильно делить нагрузку с трансформатором мощностью 1000 кВА, имеющим Zsc = 6%, т.е. эти трансформаторы будут автоматически нагружаться пропорционально их мощностям. Для трансформаторов, у которых отношение номинальных мощностей превышает 2, параллельная работа не рекомендуется. В таблице, приведенной на рис. h56, указаны максимальные токи короткого замыкания, которым подвергаются автоматические выключатели вводных и отходящих линий (соответственно CBM и CBP на рис. h55), для самой распространенной схемы параллельной работы (2 или 3 трансформа­тора одинаковой мощности). Приведенные данные базируются на следующих допущениях:
трехфазная мощность короткого замыкания на стороне высокого напряжения трансформатора составляет 500 МВА
трансформаторы являются стандартными распределительными трансформаторами напряжением 20/0,4 кВ, характеристики которых приведены в таблице
кабели от каждого трансформатора к его низковольтному автоматическому выключателю состоят из одножильных проводников длиной 5 метров
между каждым автоматическим выключателем вводной цепи (CBM) и каждым автоматическим выключателем отходящей цепи (CBP) имеется шина питания длиной 1 м.
распределительное устройство расположено в напольном закрытом распределительном щите, температура окружающего воздуха - 30°С).
Кроме того, в этой таблице указаны модели автоматических выключателей серии производства Merlin Gerin, рекомендуемые для применения в каждом случае в качестве автоматических выключателей вводных и отходящих линий.
Пример (рис. h57 на следующей странице)
выбор автоматического выключателя вводной линии (CBM):
Для трансформатора мощностью 800 кВА In= 1126 А, Icu (минимальный ток)= 38 кА (из рис. h56). При таких характеристиках таблица рекомендует использовать модель Compact NS1250N (Icu = 50 кА)
выбор автоматического выключателя отходящей линии (CBP):
Из рис. h56 требуемая отключающая способность (Icu) для таких автоматических выключателей составляет 56 кА

Рис. h54. Пример установки автоматического выключателя на выходе трансформатора, расположенного на потребительской подстанции

Рис. h55. Параллельное включение трансформаторов
Для трех отходящих линий 1, 2 и 3 рекомендуется использовать токоограничивающие автоматические выключатели типа NS400 L, NS250 L и NS 100 L. В каждом случае номинальная отключающая способность Icu=150 кА.

Количество и мощности (кВА) трансформаторов 20/0,4 кВ

Мин. отключающая способность автомат. выкл. вводных линий (Icu), кА

Автомат. выкл. вводных линий (CBM), Мин. отключ. способность полностью согласованные с автомат. автомат. выкл. отходящих выкл. отходящих цепей (CBP) линий (Icu), кА

Ном. ток In автомат. выкл. отходящих линий (CPB) 250A

2 x 400

 

14

NW08N1/NS800N

27

NS250H

3 x 400

28

NW08N1/NS800N

42

NS250H

2 x 630

22

NW10N1/NS1000N

42

NS250H

3 x 630

 

44

NW10N1/NS1000N

67

NS250H

2 x 800

19

NW12N1/NS1250N

38

NS250H

3 x 800

38

NW12N1/NS1250N

56

NS250H

2 x 1,000

23

NW16N1/NS1600N

47

NS250H

3 x 1,000

47

NW16N1/NS1600N

70

NS250H

2 x 1,250

29

NW20N1/NS2000N

59

NS250H

3 x 1,250

59

NW20N1/NS2000N

88

NS250L

2 x 1,600

38

NW25N1/NS2500N

75

NS250L

3 x 1,600

75

NW25N1/NS2500N

113

NS250L

2 x 2,000

47

NW32N1/NS3200N

94

NS250L

3 x 2,000

94

NW32N1/NS3200N

141

NS250L

Рис. h56. Максимальные токи короткого замыкания, которые должны отключаться автоматическими выключателями вводных и отходящих линий (соответственно CBM и CBP) при параллельной работе нескольких трансформаторов

Уровни токов короткого замыкания в любом месте электроустановки можно определить с помощью таблиц.
Эти автоматические выключатели обеспечивают преимущества:
полного согласования с характеристиками вышерасположенных автоматических выключателей (CBM), т.е. селективность срабатывания защит
использования метода «каскадирования» с соответствующей экономией затрат в отношении всех элементов, расположенных ниже по цепи.
Выбор автоматических выключателей отходящих и оконечных линий Использование таблицы G40
С помощью этой таблицы можно быстро определить величину трехфазного тока короткого замыкания в любом месте электроустановки, зная:
величину тока короткого замыкания в точке, расположенной выше места, предназначенного для установки соответствующего автоматического выключателя
длину, сечение и материал проводников между этими двумя точками.
После этого можно выбрать автоматический выключатель, у которого отключающая способность превышает полученное табличное значение.
Детальный расчет тока короткого замыкания
Для того чтобы более точно рассчитать величину тока короткого замыкания, особенно в случае, когда отключающая способность автоматического выключателя чуть меньше величины, полученной из таблицы, необходимо использовать метод, описанный в пункте 4 главы G.
Двухполюсные автоматические выключатели (для фазы и нейтрали) с одним защищенным полюсом
Такие автоматические выключатели обычно имеют устройство максимальной защиты только на полюсе фазы и могут применяться в системах TT, TN-S и IT. В системе IT должны выполняться следующие условия:
условие (B) из таблицы G67 для максимальной защиты нулевого проводника в случае двойного короткого замыкания
отключающая способность при КЗ: двухполюсный автоматический выключатель (фаза- нейтраль) должен быть способен отключать на одном полюсе (при линейном напряжении) ток двойного короткого замыкания, равный 15% трехфазного тока короткого замыкания в месте его установки, если этот ток не превышает 10 кА; или 25% трехфазного тока короткого замыкания, если он превышает 10 кА.
защита от косвенного прикосновения: такая защита обеспечивается в соответствии с правилами, предусмотренными для систем заземления IT.
Недостаточная отключающая способность при КЗ
В низковольтных распределительных системах, особенно сетях, эксплуатируемых в тяжелых условиях, иногда случается, что рассчитанный ток Isc превышает отключающую способность Icu автоматических выключателей, имеющихся в наличии для установки, или же изменения, произошедшие в системе выше, привели к превышению отключающих способностей автоматических выключателей.
Решение 1: Убедитесь в том, что соответствующие автоматические выключатели, расположенные выше тех, которых это коснулось,являются тогоограничивающими, поскольку в таком случае можно использовать принцип каскадного включения (см. подпункт 4.5).
Решение 2: Установите несколько автоматических выключателей с более высокой отключающей способностью. Такое решение представляется экономически целесообразно в том случае, если затронуты один или два автоматических выключателя.
Решение 3: Установите последовательно с затронутыми автоматическими выключателями и выше по цепи токоограничивающие плавкие предохранители (типа gG или aM). При этом такая схема должна отвечать следующим условиям:
предохранитель должен иметь соответствующий номинал.

Рис. h57. Параллельная работа трансформаторов
предохранитель не должен устанавливаться в цепи нулевого проводника за исключением определенных электроустановок системы IT, в которых при двойном коротком замыкании в нулевом проводнике возникает ток, превышающий отключающую способность автоматического выключателя. В этом случае расплавление предохранителя в нулевом проводнике приведет к тому, что этот автоматический выключатель отключит все фазы.

Метод «каскадирования» основан на использовании токоограничивающих автоматических выключателей и позволяет устанавливать ниже их по цепи коммутационные аппараты, кабели и другие элементы цепи со значительно сниженными номинальными характеристиками по сравнению с теми, которые бы иначе потребовались. Благодаря этому упрощается и удешевляется электроустановка.

Control Engineering | Как выбрать двигатель для промышленного применения

При выборе промышленного двигателя необходимо учитывать множество аспектов, таких как область применения, эксплуатационные, механические и экологические проблемы. Вообще говоря, можно выбрать двигатель переменного тока, двигатель постоянного тока или серво / шаговый двигатель. Знание того, какой из них использовать, зависит от промышленного применения и от того, требуются ли какие-либо особые потребности.

Для промышленного двигателя потребуется постоянный или переменный крутящий момент и мощность в лошадиных силах, в зависимости от типа нагрузки, которую он ведет.Размер нагрузки, требуемая скорость и ускорение / замедление, особенно если оно быстрое и / или частое, будут определять требуемый крутящий момент и мощность в лошадиных силах. Также необходимо учитывать требования к управлению скоростью и положением двигателя.

Типы нагрузки промышленных двигателей

Существует четыре типа нагрузки двигателя промышленной автоматизации:

  • Регулируемая мощность и постоянный крутящий момент
  • Регулируемый крутящий момент и постоянная мощность
  • Регулируемая мощность и крутящий момент
  • Позиционное управление или управление крутящим моментом.

Применения с регулируемой мощностью и постоянным крутящим моментом включают конвейеры, краны и шестеренчатые насосы. В этих приложениях крутящий момент постоянный, поскольку нагрузка не изменяется. Требуемая мощность может варьироваться в зависимости от области применения, что делает двигатели постоянного и переменного тока постоянной скоростью хорошим выбором.

Примером применения переменного крутящего момента и постоянной мощности является машина для перемотки бумаги. Скорость материала остается постоянной, а это означает, что мощность в лошадиных силах не меняется.Однако нагрузка меняется с увеличением диаметра рулона. В небольших системах это хорошее приложение для двигателей постоянного тока или серводвигателя. Регенеративная мощность также является проблемой, и ее следует учитывать при определении размеров промышленного двигателя или выборе метода регулирования энергии. Двигатели переменного тока с энкодерами, замкнутым контуром управления и полноквадрантными приводами могут быть полезны для более крупных систем.

Вентиляторы, центробежные насосы и мешалки требуют переменной мощности и крутящего момента. По мере увеличения скорости промышленного двигателя выходная нагрузка также увеличивается вместе с требуемой мощностью и крутящим моментом.Эти типы нагрузок - это то место, где большая часть обсуждения эффективности двигателей начинается с двигателей переменного тока с инверторным режимом, использующих приводы с регулируемой скоростью (VSD).

Такие приложения, как линейные приводы, которые должны точно перемещаться в несколько положений, требуют точного позиционного управления или контроля крутящего момента и часто требуют обратной связи для проверки правильного положения двигателя. Сервоприводы или шаговые двигатели - лучший вариант для этих применений, но двигатель постоянного тока с обратной связью или двигатель переменного тока с инверторным режимом работы с энкодером часто используется для точного управления крутящим моментом на стальных или бумажных линиях, а также в подобных приложениях.

Различные типы промышленных двигателей

Хотя существует две основные классификации двигателей - переменного и постоянного тока, в промышленности используется более трех десятков типов двигателей.

Несмотря на то, что существует множество типов двигателей, в промышленных приложениях существует много общего, и рынок настаивает на упрощении выбора двигателей. Это сузило практический выбор двигателей для большинства приложений. Шесть наиболее распространенных типов двигателей, которые подходят для подавляющего большинства приложений, - это бесщеточные и щеточные двигатели постоянного тока, двигатели переменного тока с короткозамкнутым ротором и с фазным ротором, а также серводвигатели и шаговые двигатели.Эти типы двигателей подходят для подавляющего большинства приложений, тогда как другие типы используются только в специальных приложениях.

Три основных типа применения промышленных двигателей

Три основных применения промышленных двигателей: постоянная скорость, переменная скорость и управление положением (или крутящим моментом). Различные ситуации промышленной автоматизации требуют разных приложений и вопросов, а также собственного набора вопросов.

Например, коробка передач может потребоваться, если максимальная скорость меньше базовой скорости двигателя.Это также может позволить меньшему двигателю работать с более эффективной скоростью. Хотя в Интернете есть много информации о том, как определить размер двигателя, пользователи должны учитывать множество факторов, поскольку необходимо учитывать множество деталей. Для расчета инерции нагрузки, крутящего момента и скорости пользователь должен знать такие параметры, как общая масса и размер (радиус) нагрузки, а также трение, потери в редукторе и рабочий цикл. Также необходимо учитывать изменения нагрузки, скорости ускорения или замедления, а также рабочего цикла приложения, иначе промышленный двигатель может перегреться.

После выбора типа и размера двигателя пользователям также необходимо учитывать факторы окружающей среды и типы корпуса двигателя, такие как открытая рама и корпус из нержавеющей стали для промывки.

Выбор промышленного двигателя: 3 вопроса

Даже после того, как все эти решения были приняты, пользователь должен ответить на эти три вопроса, прежде чем принимать окончательное решение.

1. Это приложение с постоянной скоростью?

В приложении с постоянной скоростью двигатель часто работает с приблизительной скоростью, практически не заботясь о линейных изменениях ускорения и замедления.Этот тип приложения обычно запускается с использованием сквозного управления включением / выключением. Цепи управления часто состоят из ответвленной цепи, соединенной предохранителем с контактором, промышленным пускателем двигателя с перегрузкой и ручным контроллером двигателя или устройством плавного пуска.

Двигатели переменного и постоянного тока подходят для применения с постоянной скоростью. Двигатели постоянного тока обеспечивают полный крутящий момент при нулевой скорости и имеют большую установленную базу. Двигатели переменного тока также являются хорошим выбором, поскольку они имеют высокий коэффициент мощности и не требуют значительного обслуживания. Для сравнения, высокие рабочие характеристики сервопривода или шагового двигателя будут считаться излишними для простого применения.

2. Это приложение с регулируемой скоростью?

Приложения с регулируемой скоростью обычно требуют резких изменений скорости и скорости, а также определенных рамп ускорения и замедления. Снижение скорости промышленного двигателя в приложениях, таких как вентиляторы и центробежные насосы, часто повышает эффективность за счет согласования потребляемой мощности с нагрузкой вместо работы на полной скорости и дросселирования или демпфирования выходной мощности.Это очень важные соображения при транспортировке, например на линиях розлива.

Двигатели переменного и постоянного тока с соответствующими приводами хорошо работают в системах с регулируемой скоростью. Конфигурация двигателя постоянного тока и привода была единственным вариантом двигателя с регулируемой скоростью в течение длительного времени, и компоненты были разработаны и испытаны. Даже сейчас двигатели постоянного тока популярны в приложениях с регулируемой скоростью и малой мощностью и полезны в низкоскоростных приложениях, поскольку они могут обеспечивать полный крутящий момент на низкой скорости и постоянный крутящий момент в широком диапазоне скоростей промышленных двигателей.

Однако обслуживание двигателей постоянного тока может быть проблемой, поскольку для многих из них требуются щетки для коммутации, и они изнашиваются из-за контакта с движущимися частями. Бесщеточные двигатели постоянного тока устраняют эту проблему, но они более дороги по первоначальным затратам, а диапазон доступных промышленных двигателей меньше.

Износ щеток не является проблемой для асинхронных двигателей переменного тока, а частотно-регулируемый привод (VFD) создает полезный выбор для приложений мощностью более 1 л.с., таких как вентиляторы и насосные устройства, что приводит к повышению эффективности.Тип привода, выбранный для работы промышленного двигателя, может добавить некоторую информацию о положении. К двигателю может быть добавлен энкодер, если этого требует приложение, и можно указать привод для использования обратной связи энкодера. В результате такая установка может обеспечить скорость сервопривода.

3. Требуется ли регулирование положения для приложения?

Жесткий контроль положения достигается путем непрерывной проверки положения двигателя во время его движения. Такие приложения, как позиционирование линейного привода, могут использовать шаговый двигатель с обратной связью или без нее или серводвигатель с собственной обратной связью.

Шаговый двигатель предназначен для точного перехода в позицию с умеренной скоростью и последующего удержания позиции. Шаговая система с открытым контуром обеспечивает надежное позиционное управление при правильном размере. Пока нет обратной связи, шаговый двигатель будет перемещать точное количество шагов, если он не столкнется с нарушением нагрузки, превышающей его возможности. По мере увеличения скорости и динамики приложения шаговое управление с разомкнутым контуром может не соответствовать системным требованиям, что требует обновления до шагового с обратной связью или до системы серводвигателя.

Система с обратной связью обеспечивает точные профили высокоскоростного движения и точное управление положением. Сервосистема будет обеспечивать более высокий крутящий момент на высоких скоростях по сравнению с шаговым двигателем, а также они лучше работают в приложениях с высокими динамическими нагрузками или сложными движениями.

Для высокопроизводительного движения с перерегулированием в нижнем положении инерция отраженной нагрузки должна быть согласована с инерцией серводвигателя как можно точнее. Несоответствие до 10: 1 будет адекватно работать в некоторых приложениях, но совпадение 1: 1 является оптимальным.Редукторное понижение скорости - отличный способ решить проблемы несоответствия инерции, поскольку инерция отраженной нагрузки падает на квадрат передаточного числа, но инерция коробки передач должна быть включена в расчеты.

Применение, знание промышленных двигателей

Производители предлагают широкий выбор двигателей для промышленного применения. Шаговые, сервомоторы, двигатели переменного и постоянного тока могут удовлетворить большинство требований промышленной автоматизации, но идеальный двигатель зависит от области применения. Будь то приложение с постоянной скоростью, переменной скоростью или управлением положением, пользователи должны работать в тесном контакте с двигателем и побуждать поставщика выбрать правильный двигатель для приложения.

Брайан Сислер , менеджер по продукту, AutomationDirect. Отредактировал Крис Вавра, редактор производства, Control Engineering , CFE Media, [email protected]

ПОДРОБНЕЕ

Ключевые концепции

Выбор промышленного двигателя зависит от многих аспектов, включая область применения, эксплуатационные, механические и экологические проблемы.

Пользователи должны определить , является ли приложение постоянной или переменной скоростью или требуется ли регулирование положения.

Рассмотрим это

Какие еще соображения следует учитывать при выборе двигателя?

Как выбрать синхронный двигатель и асинхронный двигатель.

Синхронные двигатели 1 、 в основном используются в больших генераторах.

С другой стороны, асинхронные двигатели почти все используются в двигателях.

Синхронный двигатель может гибко регулировать фазу напряжения и тока на входе через возбуждение, то есть коэффициент мощности; коэффициент мощности асинхронного двигателя не может быть отрегулирован, обычно между 0.75 ~ 0,85, поэтому на некоторых крупных заводах, когда широко используется асинхронный двигатель, дополнительный синхронный двигатель может использоваться в качестве тюнера для регулировки коэффициента мощности на стыке между заводом и электросетью.

Однако из-за высокой стоимости и тяжелого обслуживания синхронного двигателя обычно используется конденсаторный компенсационный коэффициент мощности.

2 、 КПД синхронного двигателя немного выше, чем у асинхронного. При выборе двигателей мощностью более 2000 кВт, как правило, необходимо учитывать, следует ли выбирать синхронный двигатель или нет.

Однако, поскольку синхронные машины имеют обмотки возбуждения и контактные кольца, операторы должны иметь более высокий уровень управления возбуждением. Кроме того, по сравнению с асинхронными двигателями, не требующими обслуживания, объем работ по техническому обслуживанию выше; поэтому двигатели мощностью менее 2500 кВт в настоящее время в основном являются асинхронными.

При низкой мощности разница в эффективности становится незначительной.

3 、 Асинхронный двигатель широко используется из-за его простой, низкой стоимости и простоты установки, использования и обслуживания.

Недостатком является то, что низкий КПД и низкий коэффициент мощности являются невыгодными для энергосистемы.

Высокий КПД синхронного двигателя обусловлен емкостной нагрузкой, которая может улучшить коэффициент мощности энергосистемы.

4 、 синхронная машина требует регулирования напряжения возбуждения и тока, а асинхронная машина - нет; синхронная машина может компенсировать реактивную мощность системы, а асинхронная машина требует специального оборудования для увеличения компенсации мощности.

5 、 синхронный двигатель имеет три основных режима работы: генератор, двигатель и компенсатор.

Поскольку работа генератора является наиболее важным режимом работы синхронного двигателя, а работа двигателя - еще одним важным режимом работы синхронного двигателя.

Коэффициент мощности синхронного двигателя можно регулировать. Когда регулирование скорости не требуется, применение большого синхронного двигателя может повысить эффективность работы.

В последние годы малые синхронные двигатели широко используются в системах регулирования скорости с переменной частотой вращения.

Синхронный двигатель также может быть подключен к электросети в качестве синхронного компенсатора.

В это время, без какой-либо механической нагрузки, двигатель передает требуемую индуктивную или емкостную реактивную мощность в электросеть, регулируя ток возбуждения в роторе, чтобы улучшить коэффициент мощности или отрегулировать напряжение в электросети.

В общих приложениях вы можете выбрать асинхронный двигатель в качестве драйвера устройства.

Если вам необходимо приобрести асинхронные двигатели или узнать больше об асинхронных двигателях, нажмите «Асинхронный двигатель».

Если вам нужно приобрести синхронные двигатели или узнать больше о них, нажмите «Синхронные двигатели».

Или свяжитесь с нами в любое время: [email protected]

Способы пуска трехфазных асинхронных двигателей

Асинхронный двигатель похож на многофазный трансформатор, вторичная обмотка которого короткозамкнута. Таким образом, при нормальном напряжении питания, как в трансформаторах, начальный ток, потребляемый первичной обмоткой, на короткое время очень велик. В отличие от двигателей постоянного тока большой ток при пуске связан с отсутствием обратной ЭДС.Если асинхронный двигатель напрямую включается от источника питания, он потребляет в 5-7 раз больше тока полной нагрузки и развивает крутящий момент, который всего в 1,5-2,5 раза превышает крутящий момент полной нагрузки. Этот большой пусковой ток вызывает большое падение напряжения в линии, что может повлиять на работу других устройств, подключенных к той же линии. Следовательно, не рекомендуется запускать асинхронные двигатели более высоких номиналов (обычно выше 25 кВт) непосредственно от сети.
Ниже описаны различные способы запуска асинхронных двигателей .

Пускатели прямого включения (DOL)

Небольшие трехфазные асинхронные двигатели можно запускать непосредственно от сети, что означает, что номинальное питание подается непосредственно на двигатель. Но, как упоминалось выше, здесь пусковой ток будет очень большим, обычно в 5-7 раз больше номинального тока. Пусковой момент, вероятно, будет в 1,5–2,5 раза больше крутящего момента при полной нагрузке. Асинхронные двигатели могут быть запущены непосредственно в сети с помощью пускателя DOL, который обычно состоит из контактора и устройства защиты двигателя, такого как автоматический выключатель.Пускатель DOL состоит из контактора с катушкой, которым можно управлять с помощью кнопок запуска и останова. При нажатии кнопки пуска контактор включается и замыкает все три фазы двигателя на фазы питания одновременно. Кнопка останова обесточивает контактор и отключает все три фазы, чтобы остановить двигатель.
Чтобы избежать чрезмерного падения напряжения в линии питания из-за большого пускового тока, для двигателей мощностью менее 5 кВт обычно используется пускатель прямого включения.

Запуск двигателей с короткозамкнутым ротором

Пусковой пусковой ток в двигателях с короткозамкнутым ротором регулируется путем подачи пониженного напряжения на статор. Эти методы иногда называют методами пониженного напряжения для пуска асинхронных двигателей с короткозамкнутым ротором . Для этого используются следующие методы:
  1. С использованием первичных резисторов
  2. Автотрансформатор
  3. Выключатели звезда-треугольник

1. Использование первичных резисторов:

Очевидно, что первичные резисторы предназначены для снижения напряжения и подачи пониженного напряжения на статор.Учтите, пусковое напряжение снижено на 50%. Тогда по закону Ома (V = I / Z) пусковой ток также будет уменьшен на такой же процент. Из уравнения крутящего момента трехфазного асинхронного двигателя, пусковой крутящий момент приблизительно пропорционален квадрату приложенного напряжения. Это означает, что если приложенное напряжение составляет 50% от номинального значения, пусковой момент будет только 25% от его нормального значения напряжения. Этот метод обычно используется для плавного пуска малых асинхронных двигателей .Не рекомендуется использовать метод пуска с резисторами первичной обмотки для двигателей с высокими требованиями к пусковому моменту.
Резисторы обычно выбираются так, чтобы на двигатель можно было подавать 70% номинального напряжения. Во время пуска полное сопротивление последовательно соединено с обмоткой статора и постепенно уменьшается по мере увеличения скорости двигателя. Когда двигатель достигает подходящей скорости, сопротивления отключаются от цепи, а фазы статора подключаются непосредственно к линиям питания.

2. Автотрансформаторы:

Автотрансформаторы также известны как автостартеры. Их можно использовать как для двигателей с короткозамкнутым ротором, так и с соединением по схеме звезды или треугольника. По сути, это трехфазный понижающий трансформатор с различными ответвлениями, которые позволяют пользователю запускать двигатель, скажем, при 50%, 65% или 80% сетевого напряжения. При пуске автотрансформатора ток, потребляемый из линии питания, всегда меньше тока двигателя на величину, равную коэффициенту трансформации. Например, когда двигатель запускается от ответвления 65%, приложенное к двигателю напряжение будет 65% от линейного напряжения, а приложенный ток будет 65% от начального значения линейного напряжения, а линейный ток будет 65. % от 65% (т.е. 42%) от начального значения сетевого напряжения. Эта разница между линейным током и током двигателя связана с действием трансформатора. Внутренние соединения автостартера показаны на рисунке. При запуске переключатель находится в положении «пуск», и на статор подается пониженное напряжение (которое выбирается с помощью ответвителя). Когда двигатель набирает соответствующую скорость, скажем, до 80% от его номинальной скорости, автотрансформатор автоматически отключается от цепи, когда переключатель переходит в положение «работа».
Переключатель, изменяющий соединение из положения пуска в положение пуска, может быть пневматическим (малые двигатели) или масляным (большие двигатели). Также предусмотрены условия для обесточивания и перегрузки с цепями выдержки времени на автостартере.

3. Пускатель звезда-треугольник:

Этот метод используется в двигателях, которые предназначены для работы на статоре, соединенном треугольником. Двухпозиционный переключатель используется для подключения обмотки статора по схеме звезды при пуске и треугольнику при работе с нормальной скоростью. Когда обмотка статора соединена звездой, напряжение на каждой фазе двигателя будет уменьшено в 1 / (кв.3) для обмотки, соединенной треугольником. Пусковой крутящий момент будет в 1/3 раза больше, чем для обмотки, соединенной треугольником. Следовательно, пускатель со звезды на треугольник эквивалентен автотрансформатору с соотношением 1 / (квадрат 3) или пониженным напряжением на 58%.

Пуск электродвигателей с фазным ротором

Электродвигатели с контактными кольцами запускаются с полным линейным напряжением, так как внешнее сопротивление может быть легко добавлено в цепь ротора с помощью контактных колец. Реостат, соединенный звездой, соединен последовательно с ротором через контактные кольца, как показано на рис.Введение сопротивления в ток ротора уменьшит пусковой ток в роторе (и, следовательно, в статоре). Кроме того, улучшается коэффициент мощности и увеличивается крутящий момент. Подключенный реостат может быть ручным или автоматическим.
Поскольку введение дополнительного сопротивления в ротор улучшает пусковой момент, электродвигатели с фазным ротором могут запускаться под нагрузкой.
Вводимое внешнее сопротивление предназначено только для пуска и постепенно снижается по мере увеличения скорости двигателя.

Двигатели переменного тока, контроллеры и частотно-регулируемые приводы

Что такое двигатель переменного тока?

Основы двигателя переменного тока

Стандартное определение двигателя переменного тока - это электродвигатель, приводимый в действие переменным током.Двигатель переменного тока используется для преобразования электрической энергии в механическую. Эта механическая энергия создается за счет использования силы, создаваемой вращающимися магнитными полями, создаваемыми переменным током, протекающим через его катушки. Двигатель переменного тока состоит из двух основных компонентов: стационарного статора, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутреннего ротора, который прикреплен к выходному валу.

Как работает двигатель переменного тока?

Основная работа двигателя переменного тока основана на принципах магнетизма.Простой двигатель переменного тока содержит катушку с проводом и два фиксированных магнита, окружающих вал. Когда электрический заряд (переменного тока) прикладывается к катушке с проволокой, она становится электромагнитом, генерирующим магнитное поле. Проще говоря, когда магниты взаимодействуют, вал и катушка проводов начинают вращаться, приводя в движение двигатель.


Обратная связь двигателя переменного тока

Продукты

AC Motor имеют два варианта управления с обратной связью. Эти опции представляют собой преобразователь двигателя переменного тока или датчик двигателя переменного тока.И резольвер двигателя переменного тока, и энкодер двигателя переменного тока могут определять направление, скорость и положение выходного вала. Хотя и преобразователь двигателя переменного тока, и энкодер двигателя переменного тока предлагают одно и то же решение для различных приложений, они сильно отличаются.

В резольверах двигателей переменного тока используется второй набор обмоток статора, называемый трансформатором, для создания напряжения на роторе через воздушный зазор. Поскольку в резольвере отсутствуют электронные компоненты, он очень прочный и работает в широком диапазоне температур. Резольвер электродвигателя переменного тока также естественно устойчив к ударам благодаря своей конструкции.Резольвер часто используется в суровых условиях.

В оптическом кодировщике двигателя переменного тока используется затвор, который вращается для прерывания луча света, пересекающего воздушный зазор между источником света и фотодетектором. Вращение заслонки со временем вызывает износ энкодера. Этот износ снижает долговечность и надежность оптического кодировщика.

Тип приложения определяет, требуется ли преобразователь или кодировщик. Энкодеры двигателей переменного тока проще в реализации и более точны, поэтому они должны быть основным приоритетом для любого приложения.Резолвер следует выбирать только в том случае, если этого требует среда, в которой он будет использоваться.

Основные типы двигателей переменного тока

Электродвигатели переменного тока выпускаются трех различных типов: индукционные, синхронные и промышленные. Эти типы двигателей переменного тока определяются конструкцией ротора, используемого в конструкции. В линейке продуктов Anaheim Automation представлены все три типа.

Асинхронный двигатель переменного тока


Асинхронные двигатели переменного тока называются асинхронными двигателями или вращающимися трансформаторами.Этот тип двигателя переменного тока использует электромагнитную индукцию для питания вращающегося устройства, которым обычно является вал. Ротор в асинхронных двигателях переменного тока обычно вращается медленнее, чем его частота. Наведенный ток - это то, что вызывает магнитное поле, окружающее ротор этих двигателей. Этот асинхронный двигатель переменного тока имеет одну или три фазы.

Синхронный двигатель переменного тока

Синхронный двигатель обычно представляет собой двигатель переменного тока, ротор которого вращается с той же скоростью, что и переменный ток, который к нему подается.Ротор также может вращаться со скоростью, кратной величине подаваемого тока. Контактные кольца или постоянный магнит, на который подается ток, - это то, что создает магнитное поле вокруг ротора.

Промышленный двигатель переменного тока

Промышленные двигатели переменного тока

разработаны для применений, требующих трехфазного асинхронного двигателя большой мощности. Номинальная мощность промышленного двигателя превышает номинальную мощность стандартного однофазного асинхронного двигателя переменного тока. Anaheim Automation предлагает промышленные электродвигатели переменного тока мощностью от 220 до 2200 Вт, работающие в трехфазном режиме при 220 или 380 В переменного тока.

Где используются двигатели переменного тока?

В каких отраслях используются двигатели переменного тока?

Электродвигатели переменного тока в основном используются в быту из-за их относительно низких производственных затрат и долговечности, но также широко используются в промышленных приложениях.

Для чего используются двигатели переменного тока?

Асинхронные двигатели используются во многих бытовых приборах и приложениях, в том числе:
- Часы
- Электроинструменты
- Дисковые накопители
- Стиральные машины и другая бытовая техника
- Аудиопроигрыватели
- Вентиляторы

Их также можно найти в промышленном применении:
- насосы
- нагнетатели
- конвейеры
- компрессоры

Как управляются двигатели переменного тока?

Контроллеры переменного тока:

Основы

Контроллер переменного тока (иногда называемый драйвером) известен как устройство, контролирующее скорость двигателя переменного тока.Контроллер переменного тока также может упоминаться как преобразователь частоты, преобразователь частоты, преобразователь частоты и т. Д. Двигатель переменного тока получает мощность, которая в конечном итоге преобразуется контроллером переменного тока в регулируемую частоту. Этот регулируемый выход позволяет точно контролировать скорость двигателя.

Компоненты контроллера переменного тока

Обычно контроллер переменного тока состоит из трех основных частей: выпрямителя, инвертора и звена постоянного тока для их соединения.Выпрямитель преобразует входной переменный ток в постоянный ток (постоянный ток), а инвертор переключает постоянное напряжение на выходное переменное напряжение регулируемой частоты. При необходимости инвертор также можно использовать для управления выходным током. И выпрямитель, и инвертор управляются набором элементов управления для генерации определенного количества переменного напряжения и частоты, чтобы соответствовать системе двигателя переменного тока в данный момент времени.

Приложения

Контроллер переменного тока может использоваться во многих различных промышленных и коммерческих приложениях.Контроллер переменного тока, который чаще всего используется для управления вентиляторами в системах кондиционирования и отопления, позволяет лучше контролировать воздушный поток. Контроллер переменного тока также помогает регулировать скорость насосов и воздуходувок. В последнее время используются конвейеры, краны и подъемники, станки, экструдеры, линии для производства пленки и прядильные машины для текстильного волокна.

Преимущества и недостатки

Преимущества
- Увеличивает срок службы двигателя за счет высокого коэффициента мощности
- Экономичное регулирование скорости
- Оптимизация пусковых характеристик двигателя
- Более низкие затраты на обслуживание, чем при управлении постоянным током

Недостатки
- генерирует большое количество тепла и гармоник

История

Никола Тесла изобрел первый асинхронный двигатель переменного тока в 1888 году, представив более надежный и эффективный двигатель, чем двигатель постоянного тока.Однако регулирование скорости переменного тока было сложной задачей. Когда требовалось точное регулирование скорости, двигатель постоянного тока стал заменой двигателя переменного тока из-за его эффективных и экономичных средств точного управления скоростью. Только в 1980-х годах регулятор скорости переменного тока стал конкурентом. Со временем технология привода переменного тока в конечном итоге превратилась в недорогого и надежного конкурента традиционному управлению постоянным током. Теперь контроллер переменного тока может управлять скоростью с полным крутящим моментом, достигаемым от 0 об / мин до максимальной номинальной скорости.

Частотно-регулируемые приводы

Основы

Частотно-регулируемый привод - это особый тип привода с регулируемой скоростью, который используется для управления скоростью двигателя переменного тока. Чтобы управлять скоростью вращения двигателя, частотно-регулируемый привод регулирует частоту подаваемой на него электроэнергии. Добавление частотно-регулируемого привода в приложение позволяет регулировать скорость двигателя в соответствии с нагрузкой двигателя, что в конечном итоге позволяет экономить энергию.Частотно-регулируемый привод, обычно используемый во множестве приложений, работает в системах вентиляции, насосах, конвейерах и приводах станков.

Как работает частотно-регулируемый привод

Когда полное напряжение подается на двигатель переменного тока, он сначала ускоряет нагрузку и снижает крутящий момент, сохраняя ток особенно высоким, пока двигатель не достигнет полной скорости. Частотно-регулируемый привод работает иначе; он устраняет чрезмерный ток, контролируемое повышение напряжения и частоты при запуске двигателя.Это позволяет двигателю переменного тока генерировать до 150% от номинального крутящего момента, который потенциально может быть создан с самого начала, вплоть до полной скорости, без потерь энергии. Частотно-регулируемый привод преобразует мощность через три различных этапа. Сначала мощность переменного тока преобразуется в мощность постоянного тока, а затем включаются и выключаются силовые транзисторы, вызывая форму волны напряжения на желаемой частоте. Затем этот сигнал регулирует выходное напряжение в соответствии с предпочтительным заданным значением.

Физические свойства

Как правило, система частотно-регулируемого привода включает двигатель переменного тока, контроллер и интерфейс оператора.Трехфазный асинхронный двигатель чаще всего применяется в частотно-регулируемом приводе, поскольку он обеспечивает универсальность и экономичность по сравнению с однофазным или синхронным двигателем. Хотя в некоторых случаях они могут быть полезными, в системе частотно-регулируемого привода часто используются двигатели, предназначенные для работы с фиксированной скоростью.

Интерфейсы оператора частотно-регулируемого привода позволяют пользователю регулировать рабочую скорость, а также запускать и останавливать двигатель. Интерфейс оператора может также позволить пользователю переключаться и реверсировать между автоматическим управлением и ручной регулировкой скорости.

Преимущества частотно-регулируемого привода

- Температуру технологического процесса можно контролировать без отдельного контроллера
- Низкие затраты на обслуживание
- Более длительный срок службы двигателя переменного тока и другого оборудования
- Более низкие эксплуатационные расходы
- Оборудование в системе, с которым невозможно справиться чрезмерный крутящий момент защищен

Типы частотно-регулируемых приводов

Существует три распространенных частотно-регулируемых привода (VFD), которые обладают как преимуществами, так и недостатками в зависимости от приложения, для которого они используются.Три распространенных конструкции ЧРП включают: инвертор источника тока (CSI), инвертор источника напряжения (VSI) и широтно-импульсную модуляцию (ШИМ). Однако существует четвертый тип частотно-регулируемого привода, называемый векторным приводом потока, который становится все популярнее среди конечных пользователей благодаря своей функции управления с обратной связью. Каждый частотно-регулируемый привод состоит из преобразователя, промежуточного звена постоянного тока и инвертора, но конструкция каждого из них зависит от привода. Хотя секции каждого частотно-регулируемого привода похожи, они требуют изменения схемы в том, как они подают частоту и напряжение на двигатель.

Инвертор источника тока (CSI)

Инвертор источника тока (CSI) - это тип преобразователя частоты (VFD), который преобразует входящее напряжение переменного тока и изменяет частоту и напряжение, подаваемое на асинхронный двигатель переменного тока. Общая конфигурация этого типа частотно-регулируемого привода аналогична конфигурации других частотно-регулируемых приводов в том, что он состоит из преобразователя, звена постоянного тока и инвертора. В преобразовательной части CSI используются кремниевые выпрямители (SCR), тиристоры с коммутацией затвора (GCT) или симметричные тиристоры с коммутацией затвора (SGCT) для преобразования входящего переменного напряжения в переменное постоянное напряжение.Для поддержания правильного соотношения напряжения и частоты (Вольт / Герц) напряжение должно регулироваться путем правильной последовательности SCR. В звене постоянного тока для этого типа частотно-регулируемого привода используется индуктор для регулирования пульсаций тока и для хранения энергии, используемой двигателем. Инвертор, который отвечает за преобразование постоянного напряжения обратно в синусоидальную форму волны переменного тока, состоит из SCRS, тиристоров отключения затвора (GTO) или симметричных тиристоров с коммутацией затвора (SGCT). Эти тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выхода с широтно-импульсной модуляцией (ШИМ), который регулирует частоту и напряжение двигателя.Частотно-регулируемые приводы CSI регулируют ток, для работы требуется большой внутренний индуктор и нагрузка двигателя. Важным примечанием к конструкциям ЧРП CSI является требование входных и выходных фильтров, которые необходимы из-за высоких гармоник на входе мощности и низкого коэффициента мощности. Чтобы обойти эту проблему, многие производители используют либо входные трансформаторы, либо реакторы и фильтры гармоник в точке общего соединения (электрическая система пользователя, подключенная к приводу), чтобы помочь уменьшить влияние гармоник на систему привода.Из обычных приводных систем с частотно-регулируемым приводом, частотно-регулируемые приводы CSI являются единственным типом приводов, которые имеют возможность рекуперации энергии. Возможность рекуперации энергии означает, что мощность, передаваемая от двигателя обратно к источнику питания, может быть поглощена.

Преимущества CSI

• Возможность рекуперации энергии
• Простая схема
• Надежность (операция ограничения тока)
• Чистая форма кривой тока

Недостатки CSI

• Зубцы двигателя, когда выходная мощность ШИМ ниже 6 Гц
• Используемые индукторы большие и дорогие
• Генерация больших гармоник мощности отправляется обратно в источник питания
• Зависит от нагрузки двигателя
• Низкий коэффициент входной мощности

Инвертор источника напряжения (VSI)

Секция преобразователя VSI аналогична секции преобразователя CSI в том, что входящее напряжение переменного тока преобразуется в напряжение постоянного тока.Отличие от секции преобразователя CSI и VSI заключается в том, что VSI использует выпрямитель на диодном мосту для преобразования переменного напряжения в постоянное. В звене постоянного тока VSI используются конденсаторы для сглаживания пульсаций постоянного напряжения, а также для хранения энергии для системы привода. Секция инвертора состоит из биполярных транзисторов с изолированным затвором (IGBT), тиристоров с изолированным затвором (IGCT) или транзисторов с инжекционным затвором (IEGT). Эти транзисторы или тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выходного сигнала широтно-импульсной модуляции (ШИМ), который регулирует частоту и напряжение двигателя.

Преимущества VSI

• Простая схема
• Может использоваться в приложениях, требующих нескольких двигателей
• Не зависит от нагрузки

Недостатки VSI

• Генерация больших гармоник мощности в источнике питания
• Зубчатая передача двигателя, когда выходная мощность ШИМ ниже 6 Гц
• Безрегенеративный режим
• Низкий коэффициент мощности

Широтно-импульсная модуляция (ШИМ)

Привод с частотно-регулируемым приводом с широтно-импульсной модуляцией (ШИМ) является одним из наиболее часто используемых контроллеров и доказал свою эффективность с двигателями мощностью от 1/2 до 500 л.с.Большинство частотно-регулируемых приводов с ШИМ рассчитаны на работу в трехфазном режиме 230 В или 460 В и обеспечивают выходные частоты в диапазоне 2–400 Гц. Как и VSI VFD, PWM VFD использует выпрямитель на диодном мосту для преобразования входящего переменного напряжения в постоянное. В звене постоянного тока используются конденсаторы большой емкости для устранения пульсаций, возникающих после выпрямителя, и создания стабильного напряжения на шине постоянного тока. Шестиступенчатый инверторный каскад этого драйвера использует IGBT высокой мощности, которые включаются и выключаются для регулирования частоты и напряжения двигателя. Эти транзисторы управляются микропроцессором или ИС двигателя, который контролирует различные аспекты привода, чтобы обеспечить правильную последовательность.В результате на двигатель выводится сигнал синусоидальной формы. Так как же включение и выключение транзистора помогает создать синусоидальный выходной сигнал? Изменяя ширину импульса напряжения, вы получаете среднюю мощность, которая представляет собой напряжение, подаваемое на двигатель. Частота, подаваемая на двигатель, определяется количеством переходов из положительного положения в отрицательное в секунду.

Преимущество ШИМ

• Отсутствие зубчатого зацепления двигателя
• КПД от 92% до 96%
• Превосходный коэффициент входной мощности благодаря фиксированному напряжению шины постоянного тока
• Низкая начальная стоимость
• Может использоваться в приложениях, требующих нескольких двигателей

Недостатки ШИМ

• Безрегенерационный режим
• Высокочастотное переключение может вызвать нагрев двигателя и пробой изоляции

Как выбрать двигатель переменного тока

Чтобы выбрать подходящий двигатель переменного тока для конкретного применения, необходимо определить основные характеристики.Рассчитайте требуемый момент нагрузки и рабочую скорость. Помните, что асинхронные и реверсивные двигатели нельзя регулировать; они требуют редуктора. Если это необходимо, выберите подходящее передаточное число. Затем определите частоту и напряжение питания двигателя.

Преимущества и недостатки

Преимущества двигателя переменного тока
- Низкая стоимость
- Длительный срок службы
- Высокая эффективность и надежность
- Простая конструкция
- Высокий пусковой крутящий момент (индукция)
- Отсутствие проскальзывания (синхронное)

Недостатки двигателя переменного тока
- Частота вызывает проскальзывания вращения (индукция)
- Необходим пусковой выключатель (индукция)

Поиск и устранение неисправностей двигателя переменного тока

ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: Техническая помощь в отношении продуктовой линейки двигателей переменного тока, а также всех продуктов, производимых или распространяемых Anaheim Automation, предоставляется бесплатно.Эта помощь предлагается, чтобы помочь клиенту в выборе продуктов Anaheim Automation для конкретного применения. В любом случае ответственность за определение пригодности индивидуального двигателя переменного тока для конкретной конструкции системы лежит исключительно на заказчике. Несмотря на то, что прилагаются все усилия, чтобы дать надежные рекомендации относительно линейки продуктов AC Motor, а также других продуктов для управления движением, а также для точного предоставления технических данных и иллюстраций, такие советы и документы предназначены только для справки и могут быть изменены без уведомления.

Для устранения неполадок в системе двигателя и контроллера переменного тока могут быть предприняты следующие шаги:

Шаг 1: Проверьте запах двигателя. При появлении запаха гари немедленно замените двигатель.

Шаг 2: Проверьте входное напряжение двигателя. Убедитесь, что провода не повреждены и подключен надлежащий источник питания.

Шаг 3. Прислушайтесь к громкой вибрации или скрипу. Такие шумы могут указывать на повреждение или износ подшипников. Если возможно, смажьте подшипники, в противном случае замените двигатель полностью.

Шаг 4: Проверить на перегрев. С помощью сжатого воздуха очистите двигатель от мусора, дайте ему остыть и перезапустите.

Шаг 5: Двигатели переменного тока, которые пытаются запустить, но выходят из строя, могут быть признаком плохого пускового конденсатора. Проверьте наличие каких-либо признаков утечки масла и замените конденсатор, если это так.

Шаг 6: Убедитесь, что приложение, в котором вращается двигатель, не заблокировано. Для этого отсоедините механизм и попробуйте запустить двигатель самостоятельно.

Сколько стоят изделия с двигателями переменного тока?

Двигатель переменного тока может быть разумным и экономичным решением для ваших требований. Конструкционные материалы и конструкция двигателя делают системы двигателей переменного тока доступным решением. Двигатель переменного тока работает с вращающимся магнитным полем и не использует щеток. Это позволяет снизить стоимость двигателя и исключает компонент, который может со временем изнашиваться. Для работы двигателей переменного тока не требуется драйвер.Это экономит начальные затраты на установку. Сегодняшние производственные процессы делают производство двигателей переменного тока проще и быстрее, чем когда-либо. Статор изготовлен из тонких пластин, которые можно прессовать или штамповать на станке с ЧПУ. Многие другие детали можно быстро изготовить и усовершенствовать, сэкономив время и деньги! Anaheim Automation предлагает на выбор полную линейку продуктов для двигателей переменного тока.

Физические свойства двигателя переменного тока


Обычно двигатель переменного тока состоит из двух основных компонентов: статора и ротора.Статор - это неподвижная часть двигателя, состоящая из нескольких тонких пластин, намотанных изолированным проводом, образующих сердечник.

Ротор соединен с выходным валом изнутри. Наиболее распространенным типом ротора, используемого в двигателях переменного тока, является ротор с короткозамкнутым ротором, названный в честь его сходства с колесами для упражнений на грызунах.

Статор устанавливается внутри корпуса двигателя, ротор установлен внутри, и между ними имеется зазор, разделяющий их от соприкосновения. Кожух представляет собой корпус двигателя, содержащий два подшипниковых узла.

Формулы для двигателя переменного тока

Синхронная скорость:

Частота:

Количество полюсов:

Мощность в лошадиных силах:

Двигатель

Глоссарий двигателей переменного тока

Двигатель переменного тока - Электродвигатель, приводимый в действие переменным током, а не постоянным.

Переменный ток - Электрический заряд, который часто меняет направление (противоположно постоянному току, с зарядом только в одном направлении).

Центробежный переключатель - Электрический переключатель, который регулирует скорость вращения вала, работая за счет центробежной силы, создаваемой самим валом.

Передаточное число - Передаточное число, при котором скорость двигателя уменьшается редуктором. Скорость на выходном валу равна 1 передаточному числу x скорость двигателя.

Инвертор - Устройство, преобразующее постоянный ток в переменный. Реверс выпрямителя.

Асинхронный двигатель - Может упоминаться как асинхронный двигатель; тип двигателя переменного тока, в котором электромагнитная индукция питает ротор. Для создания крутящего момента требуется скольжение.

Скорость холостого хода - Обычно ниже, чем синхронная скорость, это скорость, когда двигатель не несет нагрузки.

Номинальная скорость - Скорость двигателя при номинальной выходной мощности.Обычно самая востребованная скорость.

Выпрямитель - Устройство, преобразующее переменный ток в постоянный в двигателе. Они могут использоваться как компонент источника питания или могут обнаруживать радиосигналы. Обычно выпрямители могут состоять из твердотельных диодов, ртутных дуговых клапанов или других веществ. Реверс инвертора.

Выпрямление - Процесс преобразования переменного тока в постоянный с помощью выпрямителя в двигателе переменного тока.

Асинхронный двигатель с разделенной фазой - Двигатели, которые могут генерировать больший пусковой крутящий момент за счет использования центробежного переключателя в сочетании со специальной пусковой обмоткой.

Момент при остановке - Максимальный крутящий момент, при котором двигатель может работать, при определенных напряжении и частоте. Превышение этого количества приведет к остановке двигателя.

Пусковой крутящий момент - крутящий момент, который мгновенно создается при запуске двигателя. Двигатель не будет работать, если нагрузка трения превышает крутящий момент.

Статический момент трения - Когда двигатель останавливается, например, тормозом, это выходной крутящий момент, необходимый для удержания нагрузки при остановке двигателя.

Синхронный двигатель - В отличие от асинхронного двигателя, он может создавать крутящий момент с синхронной скоростью без скольжения.

Синхронная скорость - Обозначается скоростью в минуту, это внутренний фактор, определяемый количеством полюсов и частотой сети.

Привод с регулируемой скоростью - оборудование, используемое для управления частотой электроэнергии, подаваемой на двигатель переменного тока, с целью управления его скоростью вращения.

Блок-схема для систем, в которых используется двигатель переменного тока

Срок службы двигателя переменного тока

Двигатели переменного тока

Anaheim Automation обычно имеют срок службы около 10 000 часов работы, если двигатели работают в надлежащих условиях и в соответствии со спецификациями.

Требуемое обслуживание двигателя переменного тока

Профилактическое обслуживание - ключ к долговечной системе двигателей переменного тока.Следует проводить плановую проверку. Всегда проверяйте двигатель переменного тока на предмет загрязнения и коррозии. Грязь и мусор могут закупорить воздушные каналы и уменьшить поток воздуха, что в конечном итоге приведет к сокращению срока службы изоляции и возможному отказу двигателя. Если мусор не виден явно, убедитесь, что поток воздуха устойчивый и не слабый. Это также может указывать на засорение. Во влажной, влажной или влажной среде проверьте клеммы в распределительной коробке на предмет коррозии и при необходимости отремонтируйте.

Прислушайтесь к чрезмерному шуму или вибрации и почувствуйте чрезмерное тепло.Это может указывать на необходимость смазки подшипников. Примечание: Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к загрязнению и засорению потока воздуха маслом. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.

Примечание. Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к загрязнению и засорению потока воздуха маслом. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.

Электропроводка двигателя переменного тока

Следующая информация предназначена в качестве общего руководства по электромонтажу линейки двигателей переменного тока Anaheim Automation. Имейте в виду, что при прокладке силовой и сигнальной проводки на машине или системе излучаемый шум от близлежащих реле, трансформаторов и других электронных устройств может индуцироваться в двигателе переменного тока и сигналах энкодера, каналах ввода / вывода и других чувствительных низковольтных устройствах. сигналы. Это может вызвать сбои в системе.

ПРЕДУПРЕЖДЕНИЕ - В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть. Соблюдайте особую осторожность при обращении, подключении, тестировании и регулировке во время установки, настройки, настройки и эксплуатации. Не делайте чрезмерных корректировок или изменений в параметрах системы двигателя переменного тока, которые могут вызвать механическую вибрацию и привести к отказу и / или потерям. После того, как система двигателя переменного тока подключена, не запускайте ее, включив / выключив источник питания напрямую. Частое включение / выключение питания приведет к быстрому старению компонентов системы, что сократит срок службы системы двигателя переменного тока.

Строго соблюдайте следующие правила:

• Следуйте схеме подключения к каждому двигателю переменного тока и / или контроллеру.
• Прокладывайте силовые кабели высокого напряжения отдельно от силовых кабелей низкого напряжения.
• Отделите входную силовую проводку и силовые кабели двигателя переменного тока от проводки управления и кабелей обратной связи двигателя. Сохраняйте это разделение на всем протяжении провода.
• Используйте экранированный кабель для силовой проводки и обеспечьте заземленное зажимное соединение на 360 градусов к стене корпуса.Оставьте на вспомогательной панели место для изгибов проводов.
• Сделайте все кабельные трассы как можно короче.
• Обеспечьте достаточный воздушный поток
• Сохраняйте окружающую среду как можно более чистой

ПРИМЕЧАНИЕ: Кабели заводского изготовления рекомендуются для использования в наших системах двигателей переменного тока. Эти кабели приобретаются отдельно и предназначены для минимизации электромагнитных помех. Эти кабели рекомендуется использовать вместо кабелей, изготовленных заказчиком, чтобы оптимизировать работу системы и обеспечить дополнительную безопасность для системы электродвигателя переменного тока, а также для пользователя.

ПРЕДУПРЕЖДЕНИЕ - Чтобы избежать возможности поражения электрическим током, выполните все монтажные и электромонтажные работы двигателя переменного тока перед подачей питания. После подачи питания на соединительные клеммы может присутствовать напряжение.

Монтаж двигателя переменного тока

Следующая информация предназначена в качестве общего руководства по установке и монтажу системы двигателей переменного тока. ПРЕДУПРЕЖДЕНИЕ - В системе двигателя переменного тока могут присутствовать опасные напряжения, способные вызвать травму или смерть.Соблюдайте особую осторожность при обращении, тестировании и регулировке во время установки, настройки и эксплуатации. При установке и монтаже очень важно принять во внимание проводку двигателя переменного тока. Субпанели, устанавливаемые внутри корпуса для монтажа компонентов системы, должны иметь плоскую жесткую поверхность, защищенную от ударов, вибрации, влаги, масла, паров или пыли. Помните, что двигатель переменного тока во время работы выделяет тепло; поэтому при проектировании компоновки системы следует учитывать рассеивание тепла.Размер шкафа должен быть таким, чтобы не превышать максимально допустимую температуру окружающей среды. Рекомендуется устанавливать электродвигатель переменного тока в положение, обеспечивающее достаточный воздушный поток. Двигатель переменного тока должен быть установлен устойчиво и надежно закреплен.

ПРИМЕЧАНИЕ: Между электродвигателем переменного тока и любыми другими устройствами, установленными в системе / электрической панели или шкафу, должно быть не менее 10 мм.

Чтобы соответствовать требованиям UL и CE, система электродвигателя переменного тока должна быть заземлена в заземленном проводящем корпусе, обеспечивающем защиту, как определено в стандарте EN 60529 (IEC 529) до IP55, чтобы они были недоступны для оператора или неквалифицированного человека .Как и любую движущуюся часть в системе, двигатель переменного тока следует держать вне досягаемости оператора. Корпус NEMA 4X превосходит эти требования, обеспечивая защиту IP66. Чтобы улучшить соединение между шиной питания и дополнительной панелью, сконструируйте дополнительную панель из оцинкованной (не содержащей краски) стали. Кроме того, настоятельно рекомендуется защитить систему электродвигателя переменного тока от электрических помех. Шум от сигнальных проводов может вызвать механическую вибрацию и неисправности.

Аспекты окружающей среды для двигателя переменного тока

Следующие меры по охране окружающей среды и безопасности должны соблюдаться на всех этапах эксплуатации, обслуживания и ремонта системы двигателя переменного тока.Несоблюдение этих мер предосторожности нарушает стандарты безопасности при проектировании, производстве и предполагаемом использовании двигателя переменного тока. Обратите внимание, что даже правильно построенная система электродвигателя переменного тока, неправильно установленная и эксплуатируемая, может быть опасной. Пользователь должен соблюдать меры предосторожности в отношении нагрузки и условий эксплуатации. Клиент несет полную ответственность за правильный выбор, установку и работу двигателя переменного тока и / или регулятора скорости.

Атмосфера, в которой используется двигатель переменного тока, должна способствовать соблюдению общих правил работы с электрическим / электронным оборудованием.Не эксплуатируйте систему двигателя переменного тока в присутствии легковоспламеняющихся газов, пыли, масла, пара или влаги. При использовании вне помещений двигатель переменного тока должен быть защищен от атмосферных воздействий соответствующей крышкой, обеспечивая при этом достаточный поток воздуха и охлаждение. Влага может вызвать опасность поражения электрическим током и / или вызвать поломку системы. Следует уделять должное внимание недопущению попадания любых жидкостей и паров. Свяжитесь с заводом-изготовителем, если ваше приложение требует определенных IP-адресов. Разумно устанавливать двигатель переменного тока в среде, свободной от конденсации, электрических шумов, вибрации и ударов.

Кроме того, предпочтительно работать с системой электродвигателя переменного тока в нестатической защитной среде. Открытые цепи всегда должны быть надлежащим образом защищены и / или закрыты, чтобы предотвратить несанкционированный контакт человека с цепями под напряжением. Никакие работы не должны выполняться при включенном питании.

НЕ подключайте и не отключайте питание при включенном питании. После выключения питания подождите не менее 5 минут, прежде чем проводить инспекционные работы в системе двигателя переменного тока, потому что даже после отключения питания в конденсаторах внутренней цепи системы двигателя переменного тока остается некоторое количество электроэнергии.
Спланируйте установку двигателя переменного тока в конструкции системы, свободной от мусора, такого как металлический мусор от резки, сверления, нарезания резьбы и сварки, или любого другого постороннего материала, который может контактировать с схемами системы. Если не предотвратить попадание мусора в систему двигателя переменного тока, это может привести к повреждению и / или поражению электрическим током.

История двигателя переменного тока

Изобретение двигателя переменного тока
Асинхронные двигатели переменного тока используются в отрасли уже более 20 лет.Идея двигателя переменного тока возникла у Николы Теслы в 1880-х годах. Никола Тесла заявил, что двигателям не нужны щетки для переключения ротора. Он сказал, что они могут быть вызваны вращающимся магнитным полем. Никола Тесла обнаружил использование переменного тока, который индуцирует вращающиеся магнитные поля. Тесла подал патент США номер 416194 на работу над двигателем переменного тока. Этот тип двигателя сегодня называют асинхронным двигателем переменного тока.

Развитие двигателя переменного тока
Двигатель переменного тока сделал себе имя благодаря простой конструкции, простоте использования, прочной конструкции и рентабельности для множества различных применений.Достижения в области технологий позволили производителям развить идею Telsa и обеспечили большую гибкость в управлении скоростью асинхронного двигателя переменного тока. От простого фазового управления до более надежных систем с обратной связью, в которых используются векторные элементы управления полем; Двигатель переменного тока усовершенствовался за последние сто двадцать лет.

Принадлежности для двигателей переменного тока

Для двигателей переменного тока существует широкий выбор принадлежностей. Доступные аксессуары включают тормоз, сцепление, вентилятор, разъем и кабели. Дополнительные сведения и варианты см. На странице «Аксессуары» Anaheim Automation.

Тормоза двигателя переменного тока представляют собой систему 24 В постоянного тока. Эти тормоза идеально подходят для любых удерживающих устройств, которые вы можете использовать с двигателем переменного тока. Тормоза электродвигателя переменного тока имеют низковольтную конструкцию для применений, которые подвержены разряду батареи, потере энергии или длинной проводке.

Муфта двигателя переменного тока используется для управления крутящим моментом, прилагаемым к нагрузке. Муфту двигателя переменного тока также можно использовать для увеличения скорости нагрузки с высоким моментом инерции.Муфты идеально подходят для использования с электродвигателем переменного тока, когда вы хотите точно контролировать крутящий момент или медленно прикладывать мощность. Муфты двигателя переменного тока также помогают предотвратить сильные скачки тока.

Вентиляторы двигателей переменного тока используются для охлаждения двигателей. Обычно они не встречаются в небольших двигателях, потому что они не нужны, но чаще встречаются в более крупных асинхронных двигателях переменного тока из-за тепловыделения. Есть два типа вентиляторов, которые используются для двигателя переменного тока. Типы бывают внутренние и внешние вентиляторы. Вентиляторы электродвигателя переменного тока идеально подходят для использования, когда возникает проблема перегрева.

Кабели двигателя переменного тока могут быть изготовлены на заказ с поставляемым разъемом двигателя переменного тока в соответствии с заданными спецификациями. Кабели также можно приобрести в компании Anaheim Automation.

Если двигатели переменного тока не идеальны для вашего применения, вы можете рассмотреть бесщеточные двигатели постоянного тока, щеточные двигатели постоянного тока, сервоприводы или шаговые двигатели и их совместимые драйверы / контроллеры. Наряду с двигателями переменного тока Anaheim Automation предлагает коробки передач и регуляторы скорости. Дополнительные продукты Anaheim Automation предлагает: энкодеры, HMI, муфты, кабели и соединители, линейные направляющие и столы X-Y.

Настройка двигателя переменного тока

Anaheim Automation была основана в 1966 году как производитель систем управления перемещением «под ключ». Его акцент на исследованиях и разработках обеспечил постоянное внедрение передовых продуктов управления движением, таких как линейка продуктов AC Motor. Сегодня Anaheim Automation занимает высокое место среди ведущих производителей и дистрибьюторов продукции для управления движением, и это положение усиливается ее отличной репутацией в области качества продукции по конкурентоспособным ценам.Линия продуктов AC Motor не является исключением из целей компании.

Anaheim Automation предлагает широкий выбор стандартных двигателей переменного тока. Иногда OEM-заказчики со средним и большим количеством требований предпочитают иметь двигатель переменного тока, который настраивается или модифицируется в соответствии с их точными требованиями к конструкции. Иногда настройка настолько проста, как модификация вала, тормоз, масляное уплотнение для степени защиты IP65, установочные размеры, цвета проводов или этикетка. В других случаях заказчик может потребовать, чтобы двигатель переменного тока соответствовал идеальным характеристикам, таким как скорость, крутящий момент и / или напряжение.Для получения более подробной информации обсудите требования к вашему приложению с инженером по автоматизации Anaheim.

Электродвигатель переменного тока Anaheim Automation

Инженеры

ценят то, что линейка двигателей переменного тока Anaheim Automation может удовлетворить их стремление к творчеству, гибкости и эффективности системы. Покупатели ценят простоту «универсального магазина» и экономию затрат на индивидуальную конструкцию двигателя переменного тока, в то время как инженеры довольны тем, что Anaheim Automation активно участвует в решении их конкретных системных требований.

Стандартная линейка двигателей переменного тока Anaheim Automation представляет собой экономичное решение, поскольку они известны своей прочной конструкцией и отличными характеристиками. Значительный рост продаж компании явился результатом целенаправленного проектирования, дружелюбного обслуживания клиентов и профессиональной поддержки приложений, что часто превосходит ожидания клиентов в отношении выполнения их индивидуальных требований. В то время как значительная часть продаж двигателей переменного тока Anaheim Automation связана с особыми, индивидуальными требованиями или требованиями частной марки, компания гордится своей стандартной базой складских запасов, расположенной в Анахайме, Калифорния, США.Чтобы сделать индивидуальную настройку двигателя переменного тока доступной, требуется минимальное количество и / или плата за непериодическое проектирование (NRE). Свяжитесь с заводом-изготовителем для получения подробной информации, если вам потребуется специальный двигатель переменного тока в конструкции вашей системы управления движением.

Все продажи индивидуализированного или модифицированного двигателя переменного тока не подлежат отмене и возврату, и для каждого запроса клиент должен подписать соглашение NCNR. Все продажи, включая индивидуальный двигатель переменного тока, осуществляются в соответствии со стандартными положениями и условиями Anaheim Automation и заменяют любые другие явные или подразумеваемые условия, включая, помимо прочего, любые подразумеваемые гарантии.

Anaheim Automation заказывает линейку продуктов AC Motor разнообразно: компании, эксплуатирующие или разрабатывающие автоматизированное оборудование или процессы, которые включают в себя пищевую, косметическую или медицинскую упаковку, маркировку или требования для защиты от несанкционированного вскрытия, сборку, конвейер, погрузочно-разгрузочные работы, робототехнику, специальную съемку и проекционные эффекты, медицинская диагностика, устройства контроля и безопасности, управление потоком насоса, изготовление металла (станки с ЧПУ) и модернизация оборудования. Многие OEM-заказчики просят, чтобы мы использовали двигатели переменного тока «частной торговой марки», чтобы их клиенты оставались верными им при обслуживании, замене и ремонте.

Тест двигателя переменного тока

В: Какие три основных типа электродвигателей переменного тока предлагает Anaheim Automation?
A: Индукционные, синхронные и промышленные

Q: Каковы компоненты частотно-регулируемого привода?
A: Частотно-регулируемый привод включает двигатель переменного тока, контроллер и интерфейс оператора.

В: Какой двигатель обычно используется в частотно-регулируемом приводе?
A: Трехфазный асинхронный двигатель

В: Каковы основные компоненты двигателя переменного тока?
A: Стационарный статор, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутренний ротор, прикрепленный к выходному валу.

В: Почему необходимо подключать конденсатор к асинхронному двигателю переменного тока?
A: Любой двигатель ACP-M, считающийся однофазным асинхронным двигателем, является двигателем с конденсаторным приводом. Следовательно, для его работы необходимо создать вращающееся магнитное поле. Конденсаторы создают источник питания с фазовым сдвигом, который необходим для создания необходимого вращательного магнитного поля. С другой стороны, трехфазные двигатели всегда подают питание с разными фазами, поэтому им не нужны конденсаторы.

В: Что означает реверсивный двигатель, рассчитанный на 30 минут?
A: Двигатель рассчитан на оптимальную работу не более 30 минут. Если работать постоянно, мотор перегорит.

Часто задаваемые вопросы по двигателям переменного тока:

В: Почему следует выбрать трехфазный двигатель вместо однофазного?
A: Однофазные двигатели переменного тока мощностью более 10 л.с. (7,5 кВт) обычно не так распространены. Трехфазные двигатели менее вибрируют, что увеличивает срок их службы по сравнению с однофазными двигателями той же мощности, используемыми в тех же условиях.

В: В чем разница между частотно-регулируемым приводом и регулируемым приводом?
A: Приводы с переменной частотой (VFD) обычно относятся только к приводам переменного тока, в то время как приводы с регулируемой скоростью (VSD) могут относиться либо к приводу переменного тока, либо к приводу постоянного тока. VFD управляет скоростью двигателя переменного тока, изменяя частоту двигателя. VSD, с другой стороны, изменяют напряжение для управления двигателем постоянного тока.

В: Могу ли я изменить направление вращения асинхронного двигателя переменного тока, если я подключил его, как показано в каталоге, например, ACP-M-4IK25N-AU?
A: Да, можно.Однако перед переключением направления убедитесь, что двигатель полностью остановлен. Если требуется немедленное реверсирование, реверсивный двигатель лучше подходит для данной области применения; например ACP-M-4RK25N-AU.

Q: Можно ли изменить скорость асинхронных двигателей переменного тока и реверсивных двигателей?
A: Частота источника питания определяет скорость однофазных (переменного тока) асинхронных и реверсивных двигателей. Если ваше приложение требует изменения скорости, рекомендуется использовать двигатель регулировки скорости.

В: Будет ли временное хранение моего асинхронного двигателя переменного тока при температуре от 0 ° F до -20 ° F создавать какие-либо проблемы?
A: Резкие перепады температуры могут привести к конденсации влаги внутри двигателя. В этом случае компоненты могут заржаветь, что значительно сократит срок службы. Постарайтесь избежать образования конденсата.

В: Это плохо, если мой асинхронный двигатель переменного тока сильно нагревается?
A: При преобразовании электрической энергии во вращательное движение внутри двигателя выделяется тепло, что делает его горячим.Температура двигателя переменного тока равна повышению температуры, вызванному потерями в двигателе, плюс температура окружающей среды. Если температура окружающей среды составляет 85 ° F, а внутренние потери в двигателе составляют 90 ° F (32 ° C), поверхность двигателя будет 175 ° F (79 ° C). Это не типично для маленького мотора.

В: Почему некоторые редукторы электродвигателя переменного тока выводят выходной сигнал противоположно двигателю, а другие - в том же направлении?
A: Редукторы снижают скорость двигателя от 1/3 до 1/180 (для асинхронных двигателей переменного тока.) Это снижение скорости является результатом использования нескольких передач; количество передач в зависимости от величины снижения скорости. Однако вращение последней шестерни определяет направление выходного вала.

В: Подействует ли на асинхронный двигатель переменного тока сильные колебания напряжения питания?
A: Напряжение источника питания влияет на крутящий момент, создаваемый двигателем. Крутящий момент примерно в два раза больше напряжения источника питания. Таким образом, при использовании двигателей с большими колебаниями напряжения питания важно помнить, что создаваемый крутящий момент будет изменяться.

Индукция против. КПД двигателя с постоянным магнитом

Поскольку электрификация автомобилей продолжается ускоренными темпами, многие задаются вопросом, какой тип двигателя лучше всего подходит для современной электрической трансмиссии.

Может быть трехфазный асинхронный двигатель или двигатель с постоянными магнитами? Оба мотора в настоящее время используются в электромобилях. Оба предлагают высокую эффективность и хорошую производительность. Но что лучше?

Существует веский аргумент в пользу того, что двигатель с постоянными магнитами лучше , чем асинхронный двигатель.Неотъемлемые преимущества порошковой металлургии - возможность увеличения производительности двигателя и снижения общей стоимости - могут быть эффективным инструментом при производстве этих приводных систем.

Давайте проведем несколько сравнений эффективности асинхронных двигателей с двигателями с постоянными магнитами, чтобы увидеть их преимущества и потенциальные недостатки. Мелкие детали конструкции электродвигателя более сложны, чем описано ниже, но это отличное начало для тех, кто взвешивает свои варианты.

КПД двигателя с постоянным магнитом

Как следует из названия, электромотор с постоянными магнитами использует постоянные магниты на роторе (см. Рисунок ниже).Переменный ток, приложенный к статору, приводит к вращению ротора. Поскольку магниты постоянно намагничены, ротор может работать синхронно с коммутируемым переменным током. Устранено проскальзывание, необходимое в асинхронных двигателях, , что повышает тепловую эффективность.

Собственный КПД двигателя с постоянными магнитами выше, чем у асинхронного двигателя. Оба двигателя имеют трехфазную конструкцию благодаря полностью оптимизированной производительности. Однако асинхронные двигатели были разработаны для работы в основном на частоте 60 Гц. При увеличении частоты потери на вихревые токи в асинхронных двигателях будут намного больше, чем в двигателях с постоянными магнитами, использующих технологию порошкового металла.

Независимо от того, как вы изгибаете или формируете асинхронный двигатель, хорошо спроектированный синхронный двигатель с постоянными магнитами обеспечит увеличенный диапазон, лучшую производительность и так далее.

Использование материала двигателя с постоянным магнитом

В постоянном магните ротор теперь может быть цельной деталью, например, из магнитного материала порошковой металлургии методом прессования и спекания.Вы можете сконструировать ротор таким образом, чтобы магниты были приклеены к внешнему диаметру или заключены в ротор, как показано ниже:

( Сравнение асинхронного двигателя переменного тока и двигателя с постоянными магнитами)

Необязательно делать из листовой электротехнической стали! Ротор из порошкового металла может иметь прорези, которые вы видите на изображении выше, разработанные за счет чистой формы порошкового металла, что устраняет необходимость в дорогостоящей обработке. Используя спеченный магнитомягкий материал, силовой металлический ротор для двигателя с постоянными магнитами может достичь прочности, аналогичной конкурирующим процессам.

Однако индукционный ротор по-прежнему требует штамповки и ламинирования. В процессе штамповки образуется гораздо больше отходов, чем при порошковой металлургии.

Применение постоянных магнитов в двигателях

Постоянный двигатель мощностью 50 кВт (около 70 л.с.) обычно весит менее 30 фунтов. (Обратите внимание, что вам все равно понадобится инвертор постоянного тока в переменный, чтобы генерировать достаточное напряжение и частоту.)

В автомобильной промышленности используются двигатели с постоянными магнитами, включая Chevy Volt (производство прекращено), Chevy Bolt и Tesla Model 3.

  • Chevy Bolt - это конструкция мощностью 200 л.с. с магнитами внутри ротора. В нем используется односкоростной редуктор с соотношением 7,05 к 1 для привода колес. Общедоступных оценок веса нет.
  • В
  • Tesla Model 3 также используется двигатель с постоянными магнитами. Доступно очень мало деталей, но ходят слухи, что магниты расположены в виде массива Halback. Этот массив фокусирует магнитные линии потока для полной оптимизации производительности.

Скорость двигателя с постоянными магнитами такая же, как и у его индукционного аналога:

  • Нс = 120 * частота / количество полюсов

(Ns - синхронная скорость.Число полюсов - это общее число полюсов на фазу, включая северный и южный полюса.)

Помните, что ротор не будет проскальзывать относительно рабочей частоты статора.

Стоимость Vs. Производительность

Одно из основных соображений при использовании двигателей с постоянными магнитами - это стоимость магнитов. Если вы использовали высокоэнергетические магниты (такие как железо, неодим, бор), вы почувствовали боль в своем бюджете (или у вашего начальника). Потенциальные потери при штамповке ламинирующего материала только усугубляют проблему.

Возможности для порошковой металлургии в этих типах двигателей широкие. Роторы двигателя с постоянными магнитами могут быть изготовлены из спеченного порошкового металла, независимо от того, выбираете ли вы внутренний или внешний путь проектирования. Статор также может быть изготовлен из магнитомягких композитов. При ожидаемых высоких частотах переключения потери в SMC ниже, чем в слоистом 3% кремниевом железе, , что еще больше повышает эффективность этой конструкции. Проще говоря, магнитомягкие композиты созданы специально для высоких частот.

Металлический порошок может повысить эффективность двигателя с постоянными магнитами по сравнению с асинхронным двигателем. Возможности порошковой металлургии создавать трехмерные формы позволяют формировать статор так, чтобы весь провод был полностью покрыт магнитомягким композитом, чтобы исключить потери на конце витка. .

Это некоторые из многих преимуществ, которые предлагает порошковый металл - как спеченные магнитомягкие материалы, так и SMC.

(Кривая КПД двигателя с постоянным магнитом в зависимости отасинхронные двигатели. Эта диаграмма характеристик была разработана для частоты сети около 60 Гц. По мере увеличения частоты ожидайте, что производительность станет еще лучше. График любезно предоставлен Empowering Pumps & Equipment )

Вышеупомянутое обсуждение было сосредоточено на рассмотрении двигателей с постоянными магнитами, в которых используются конструкции статора, подобные тем, что используются в асинхронных двигателях переменного тока. Однако было сделано основных разработок в конструкции двигателей нового типа , в которых также используются постоянные магниты для повышения эффективности электродвигателя.

Linear Labs разработала новую схему двигателя, сочетающую высокую эффективность с прочной конструкцией. Это устраняет некоторые из дорогих редкоземельных магнитов, с которыми вы привыкли годами.

Мы думаем, что двигатели с постоянными магнитами - это волна будущего. Для полноты картины давайте теперь посмотрим на конструкцию асинхронного двигателя, с которой работают 90% инженеров.

КПД трехфазного асинхронного двигателя переменного тока

Никола Тесла изобрел асинхронный двигатель в 1883 году.Это принципиально та же базовая конструкция статора, что и у постоянного двигателя, но без постоянных магнитов.

Его основной принцип работы заключается в том, что магнитное поле, создаваемое в статоре, создает встречный ток в стержнях ротора. Индуцированный ток ротора затем создает магнитное поле в пластинах ротора. Это противоположное поле заставляет ротор вращаться - при переключении тока статора ротор всегда отстает и заставляет ротор вращаться.

Преимущества этого индуцированного магнитного поля заключаются в том, что не нужны ни щетки, ни обмотка ротора.Двигатели этого типа:

  • Надежный
  • Прочный
  • Простота обслуживания

Выше представлена ​​типичная конфигурация асинхронного двигателя. Обратите внимание, что ротор имеет пластинки в сердечнике и электропроводящий материал (медь или алюминий) в пазах ротора, так называемые стержни ротора.

Для большинства промышленных применений (более 1 л.с.) и для автомобильных трансмиссий трехфазный асинхронный двигатель является наиболее распространенным.В этой конструкции три фазы обернуты вокруг статора таким образом, чтобы обеспечить более плавную работу и высокий КПД. Трехфазные двигатели переменного тока самозапускаются при подаче напряжения на обмотки статора. Во многих случаях так называемые стержни ротора расположены под углом для увеличения крутящего момента.

КПД асинхронного двигателя переменного тока на практике

Трехфазное использование в промышленных приложениях относительно просто, поскольку входящее напряжение уже является трехфазным. Однако в автомобильных приложениях вам необходимо преобразовать мощность постоянного тока аккумулятора в трехфазный переменный ток.Это происходит через преобразователь постоянного тока в переменный.

В асинхронных двигателях переменного тока необходимо учитывать скорость ротора относительно входящей частоты переменного тока. Первоначально это определяется так называемой синхронной скоростью. Для асинхронного двигателя переменного тока синхронная скорость рассчитывается следующим образом:

  • Нс = 120 * частота / количество полюсов

(Помните, что Ns - это синхронная скорость. Число полюсов - это общее число полюсов на фазу, включая северный и южный полюса.)

Для двухполюсного асинхронного двигателя переменного тока, работающего на частоте 60 Гц, синхронная скорость двигателя будет 3600 об / мин. Однако, если бы ротор вращался со скоростью 3600 об / мин в этой конфигурации, у вас был бы нулевой крутящий момент от двигателя. В идеале должно быть некоторое проскальзывание ротора относительно частоты; обычно это около 5%. Таким образом, эти двигатели считаются асинхронными двигателями.

КПД трехфазных асинхронных двигателей может варьироваться от 85% до 96%. См. Таблицу ниже для зависимости крутящего момента отсоскальзывать.

(Типичный крутящий момент в зависимости от скольжения для асинхронных двигателей переменного тока - любезно предоставлено All About Circuits )

Асинхронные двигатели мощностью 50-100 л.с. для промышленного применения различаются по массе от 700 до почти 1000 фунтов. Слишком тяжелый для автомобильного применения, правда?

Утверждается, что некоторые модели асинхронных двигателей Tesla весят всего 70 фунтов. и может генерировать 360 л.с. при 18000 об / мин. Общий вес двигателя и инвертора составляет около 350 фунтов.- все еще намного легче, чем средний двигатель внутреннего сгорания.

Этот двигатель представляет собой трехфазный двигатель с восемью полюсами на фразу, что означает, что частота переменного тока, используемая для выработки этой мощности, составляет около 1200 Гц. На этих рабочих частотах вихретоковый нагрев материала ламинирования будет довольно высоким. Этот автомобильный двигатель Tesla требует значительного охлаждения, чтобы не допустить его перегрева. Также немного иронично, что GM представила свой автомобиль EV1 в середине 90-х с асинхронным двигателем, который был ограничен тем фактом, что он использовал свинцово-кислотные батареи вместо литий-ионных батарей.

Стоимость асинхронных двигателей

Ключевым преимуществом асинхронных двигателей переменного тока для электромобилей является стоимость. Они относительно дешевы в постройке.

В индукционных конструкциях

переменного тока используются стальные пластины как в статоре, так и в роторе; их можно штамповать почти одновременно из одного листа материала. Другими словами, процент брака намного ниже, чем у вашей средней работы по штамповке.

Однако уникальный дизайн автомобильного мотора Тесла немного дороже.Трудно найти точную цену в Интернете, но вариант с полным приводом для Tesla добавляет около 4000 долларов к общей стоимости автомобиля. Вы также должны учитывать повышенные требования к охлаждению на этих высоких частотах переменного тока.

Индукция против. Эффективность двигателя с постоянным магнитом: победитель ...

Несмотря на преимущества использования магнитомягких материалов в двигателе с постоянными магнитами - SMC не играют роли в индукционных конструкциях - выбор типа двигателя для вашей трансмиссии затруднен.У каждого есть свои преимущества и недостатки.

Несмотря на то, что асинхронный двигатель переменного тока был впервые разработан более 100 лет назад, он по-прежнему жизнеспособен благодаря повышению эффективности и производительности в 20-м и 21-м веках. Двигатель с постоянными магнитами - относительная новинка, но обещает более высокую производительность и, возможно, меньший вес.

Основным камнем преткновения для двигателей с постоянными магнитами является потенциально высокая стоимость магнитов. К счастью, на горизонте есть многообещающие разработки, которые могут устранить этот недостаток.

Мы пользуемся услугами уважаемого дизайнера двигателей, чтобы помочь клиентам в реализации подобных проектов. Если вам нужна помощь в разработке компонентов, чтобы в полной мере использовать весь потенциал порошковой металлургии для магнитных приложений переменного или постоянного тока, ознакомьтесь с нашим новым центром ресурсов или свяжитесь с нами!

Лаборатория автомобильной электроники Clemson: Асинхронные двигатели переменного тока

Асинхронные двигатели переменного тока

Базовое описание
Двигатели переменного тока

- это электрические машины, преобразующие электрическую энергию (поставляются в виде синусоидально изменяющегося во времени или «переменного» тока) до вращательной механической энергии посредством взаимодействие магнитных полей и проводников.В отличие от двигателей, которые работают напрямую от постоянного тока, Двигатели переменного тока обычно не требуют щеток или коммутаторов. Одним из типов двигателей переменного тока является асинхронный или асинхронный двигатель переменного тока.

Двигатели асинхронные или асинхронные состоят из статора с обмоткой, способной производить вращающийся магнитный поле и ротор с закороченной обмоткой проводника, в котором ток индуцируется вращающееся магнитное поле. Поля, создаваемые током, наведенным в ротор создает восстанавливающий крутящий момент, отвечающий за вращение ротора.Вращающееся магнитное поле, создаваемое статором, легко настраивается с помощью многофазного источника переменного тока.

Термин «асинхронный» относится к тому факту, что вращение ротора всегда медленнее, чем скорость вращения магнитного поля. Разница в скорости поля и ротора называется «скольжением», а крутящий момент двигателя пропорционально этому скольжению. Таким образом, частота вращения двигателей зависит как от частоты возбуждения, так и от нагрузки.

Синхронная скорость или теоретическая максимальная скорость асинхронный двигатель является функцией частоты питания (например, часто 60 Гц в США) и количество полюсов. Асинхронные двигатели часто так называемые двигатели с короткозамкнутым ротором из-за конструкции обмотки ротора.

Асинхронный двигатель запускается с максимальным скольжением и имеет склонность рисовать изначально очень высокий ток, особенно при запуске с высокой нагрузкой. Это приводит к необходимости иметь отдельный пусковой механизм.В случае однофазных двигателей переменного тока, для запуска двигателя сначала необходимо привести в движение ротор. Это достигается с помощью механического пусковое усилие или с помощью отдельной пусковой обмотки.

Хотя большинство электрических и гибридно-электрических автомобилей используют синхронные двигатели переменного тока для главного привода, Tesla Roadster, Tesla Model S, электрический привод Mercedes B-класса и некоторые другие используют асинхронный двигатель переменного тока.

Производителей
Baldor, Bircraft, Century, Circor, Emerson, Empire Magnetics, Fasco, Groschopp, Kinetek, Leeson, Met Motors, Motion Control Group, North American Electric, Pittman, Powertec, Remy, Siemens, Sterling Electric, Teco, Toshiba, WEG, Чжунда
Для получения дополнительной информации
[1] Асинхронный двигатель, Википедия.
[2] Двигатели переменного тока, CoolMagnetMan.com.
[3] Induction Motor Action, учебник на веб-сайте HyperPhysics Университета штата Джорджия.
[4] Сборка электродвигателя, YouTube, 15 января 2009 г.
[5] Трехфазный асинхронный двигатель переменного тока, Freescale.com.
[6] AC Motors, YouTube, 19 мая 2010 г.
[7] Squirrel Cage Motors, YouTube, 18 июля 2010 г.

Система запуска асинхронного двигателя - способы запуска двигателя

Новая гостевая статья А.N. abotu системы пуска двигателей. Если какие-либо замечания или вопросы приветствуются, напишите комментарий ниже.

Асинхронные двигатели находят широкое применение. Они используются в производственных процессах, коммерческих зданиях, зонах отдыха, дома и в других областях.

Однако, если двигатель включается непосредственно от сети, он потребляет очень высокий начальный ток. Ток при запуске обычно в пять-семь раз больше того, что двигатель обычно потребляет при полной нагрузке, но развивает крутящий момент только между 1.В 5 и 2,5 раза больше крутящего момента при полной нагрузке.

Большой пусковой ток приводит к огромным перепадам напряжения в линии питания, что может вызвать нестабильность в линии и повлиять на оборудование, подключенное к той же цепи.

Таким образом, прямой пуск двигателей не рекомендуется, а вместо этого рекомендуется использовать подходящую схему или метод пуска, который минимизирует начальный ток. Этого можно достичь, запустив двигатель при более низком напряжении, чем обычно, и затем увеличив напряжение, как только двигатель запустится и наберет соответствующую скорость.

Способы пуска двигателя

Использование устройства прямого пуска

Пускатель прямого включения (DOL) сочетает в себе запуск и защиту двигателя; он состоит из контактора и защитного устройства, такого как автоматический выключатель.

В цепи стартера есть контактор с катушкой. Этой катушкой можно управлять, нажимая кнопки запуска или остановки в зависимости от требуемой операции. Нажатие кнопки пуска активирует контакт, заставляя его замкнуть три фазы и подать питание на двигатель.

Устройство прямого пуска прямого включения | изображение: moeller.es

Нажатие кнопки останова обесточит контактор, отключив питание двигателя и заставив его остановиться. Однако он страдает от больших пусковых токов, возникающих при подаче на двигатель полного сетевого напряжения.

Пускатели прямого включения ограничены двигателями мощностью менее 10 кВт. Двигатели большего размера могут вызвать чрезмерное падение напряжения из-за большого пускового тока. Кроме того, DOL подвергает двигатель чрезмерному нагреву, что сокращает его срок службы.

Пуск автотрансформатора

Метод использует автотрансформатор и двухпозиционный переключатель, который приводится в действие вручную или автоматически с помощью таймера. Любая операция изменяет положение переключателя с исходного положения на рабочее.

Когда переключатель находится в исходном положении, часть сетевого напряжения снимается с автотрансформатора. Автотрансформатор подает на двигатель от 50 до 70 процентов нормального напряжения.

При пониженном пусковом напряжении двигатель потребляет меньше тока.Например, при 50% -ном ответвлении автотрансформатора двигатель потребляет половину своего номинального тока или около 25% от того, что двигатель потреблял бы с прямым пускателем.

Метод пускателя автотрансформатора громоздок и дорог и обычно используется для более крупных промышленных приложений.

Стартер звезда-треугольник

В двигателе используется как звезда, так и треугольник, управляемая переключателем. Двигатель запускается в пусковой конфигурации, после чего переключается на работу по схеме "треугольник".

Пускатель электродвигателя со звезды на треугольник | изображение: bhs4.com

Двигатель запускается при соединении обмоток ротора по схеме звезды. Двигатель потребляет меньший ток, чем при схеме «треугольник» - обычно в три раза меньше, чем при схеме «треугольник». Однако соединение звездой развивает только половину крутящего момента по сравнению с соединением треугольником.

При пуске со звезды на треугольник используется двухпозиционный автоматический или ручной переключатель и реле времени. Это позволяет запустить двигатель по схеме звезды, которая имеет низкий пусковой ток, а затем переключиться на конфигурацию треугольником после того, как двигатель достигнет необходимой скорости.

Метод более сложен, чем DOL, и может не обеспечивать достаточный крутящий момент для полной нагрузки при запуске; как таковой, он обычно используется для запуска двигателей с начальной небольшой нагрузкой.

Стартер сопротивления ротора

В методе используются внешние резисторы, изначально включенные последовательно с обмоткой ротора для каждой фазы. Резисторы, которые обычно представляют собой проволочные обмотки, снижают некоторое количество напряжения, ограничивая ток, протекающий в обмотку ротора. После запуска двигателя резисторы постепенно удаляются из цепи, и питание подключается непосредственно к электросети.

Пуск двигателя с электронным управлением

Плавный старт

Плавный пуск, метод использует активные переключающие устройства, такие как тиристоры, для управления способом подачи энергии на двигатель. В трехфазных двигателях метод применим как в линейном, так и в треугольном режимах конфигурации.

Этот метод обеспечивает средства управления напряжением двигателя и пусковым током, что позволяет плавно, без скачков, увеличивать крутящий момент двигателя. Это снижает провалы напряжения, нагрузку и износ механических частей.

Преобразователь частоты

Это метод с электронным управлением, обеспечивающий плавный запуск асинхронных двигателей. В нем используются электронные схемы инвертора для управления частотой и током питания двигателя, что предотвращает высокие пусковые токи. Плавный запуск предотвращает резкое повреждение механических частей системы. Это лучший способ, но и самый дорогой.

Пуск двигателя с частотным преобразователем | изображение: moeller.es

Стоимость приобретения и установки выше из-за дополнительных требований, таких как фильтры радиопомех, ЭМС, экранированные кабели двигателя, проблемы совместимости и т. Д.
Однако во время эксплуатации есть больше экономических преимуществ. Это включает в себя плавный пуск, энергоэффективность, снижение износа механических деталей, оптимизацию процесса и т. Д. Другие преимущества включают стабильность скорости при изменении нагрузки и общий более длительный срок службы двигателя.

Сравнение общих методов запуска двигателя

Сравнение некоторых распространенных методов запуска двигателей | изображение: moeller.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *