Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Закон Ома понятным языком | Инженерные знания

Рубрики: #электрофизика (inznan) , #основы физики (inznan) , #школьникам (inznan)

Один из фундаментальных законов, который всегда изучают в курсе физике – это закон Ома. Он относительно простой, но при этом весьма важен для корректного понимания. Давайте изучим его в режиме “для чайников”.

С пониманием как такового физического явления, обуславливающего появление закона Ома, обычно проблем не возникает. Но вот с вариантами формулировки и записи самого закона, а также аспектами, связанными с особенностями его применения в разных случаях, сложности частенько появляются.

В основе закона Ома лежит некая физическая штука, которая называется сопротивление.

Понятие сопротивление доходчиво

Электрическое сопротивление – это величина, которая определяет способность проводника пропускать электрический ток. Полезно также освежить знания про электрический ток (писали в этой статье).

Представить это проще всего, исходя из строения металлов.

По классической теории металл состоит из кристаллической решетки, а между структурными элементами этой решетки путешествуют свободные электроны.

Внешнее электрическое поле заставляет их перемещаться и образуется электрический ток, т.е. направленное упорядоченное движение частиц.

Решетка металла мешает им двигаться по своему объему. Электроны трутся об её узлы и не могут протиснуться. Вот это явление и образует сопротивление. Это “сила”, которая мешает перемещению.

Ситуация аналогично ситечку на раковине. Вода проходит, но медленнее, чем проходила бы без ситечка.

Аналогичная ситуация присутствует во всех материалах, правда род и тип частичек может меняться. Тип строения тоже разный. Но условно можно принять, что всегда структура мешает им двигаться что в дереве, что в металле.

В некоторых телах вообще таких частичек не будет, там сопротивление бесконечное (некоторые виды резин, например).

Обратите внимание, что мы не рассматриваем тут понятие электрического тока и напряжения, т.к. это отдельные темы и если есть непонимание, обязательно напишите об этом в комментариях. Правда про электрический ток есть наше видео. Эти вещи нужно четко понимать.

Ну и из сказанного очевидно, что сопротивление будет зависеть от геометрических параметров проводника (т.е. площадь сечения S, длина l) и типа проводника (который тут описывается понятием удельное сопротивление и является табличной величиной). Ещё оно зависит от температуры (чем выше тем больше для большинства тел), но это мы совсем от самого закона уходим… Для задачек на закон Ома знаний уже вполне достаточно.

Формулировка закона Ома

В результате множества экспериментов Ом вывел зависимость, которая определяет связь между силой тока в проводнике, напряжением и тем самым сопротивлением, которое мы описали выше.

Звучит закон так: Cила тока на участке электрической цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна его сопротивлению

Вроде как все слова тут понятные, если знать все определения. Сопротивление мы разобрали. Сила тока – это, грубо говоря, количество частичек, которое окажется в проводнике. Понятие сила тока подробно я разбирал в этой статье, обязательно прочитайте её.

Напряжение – это “поток”, который эти частицы несет. Вот вроде бы всё и увязали.

Если рассматривать цепь, то сопротивление по элементам распределяется согласно их техническим характеристикам и вычисляется согласно закону Ома. Т.е. мы не можем утверждать, что на каждом элементе есть одинаковое сопротивление.

Например, если в цепи с последовательным подключением две лампочки, т омы помним что сила тока во всей цепи при таком соединении одинаковая, а вот напряжение на элементах разное. Замеряем его на точках подключения лампочек, записываем и запихиваем в закон Ома. Вот всё и посчитали :)…

Закон Ома для участка цепи

Когда закон ома записан в такой форме, как мы привели выше, то он называется закон ома для участка цепи.

Почему для участка цепи? Для участка, потому что тут не учитывается сопротивление всей цепи. Можно измерить сопротивление на каждом участке исходя из приведенных характеристик.

Закон Ома для полной цепи

Полной цепью (в отличие от участка цепи, применительно к которому мы излагали всё выше) называется цепь с учетом источника тока.

Почему это важно?

Именно потому, что если мы представим себе электрическую цепь условно как систему труб для воды, то участок цепи это будет незамкнутый кусок трубы, а полная цепь – зацикленная система.

Из примера может показаться, что участок цепи есть незамкнутая в электрическом смысле цепь. Нет, пример приведен не для этого. И там, и там электрическая цепь замкнута.

Просто нам нужно обозначить, что без учета источника тока и его внутреннего сопротивления (r) цепь не полная, а расчёт не всегда способен учитывать все значимые характеристики.

Ну а внутреннее сопротивление, как вы наверное догадались – это то сопротивление, которым обладает источник тока. Да, току в цепи сложно проходить и через сам источник! Даже сам источник провоцирует энергетические потери. А вот считать его аналогично расчёту для участка цепи нельзя.

Получается, что в закон Ома добавится ещё и внутренне сопротивление. И всё! Ничего страшного.

Формулировка закона Ома для полной цепи немного изменится. Теперь у нас слово напряжение заменится словом ЭДС (электродвижущая сила), а слово сопротивление заменится суммой внешнего сопротивления цепи и внутреннего сопротивления источника тока. Ну и формула будет такая:

Добавилось понятие электродвижущая сила (ЭДС), обозначенная в формуле E прописное. Что это за зверь?

ЭДС – это, по сути дела, и есть напряжение.

Разница в том, что если мы опять сравним напряжение с напором воды в водопроводе, то напряжением будет являться разница напора между двумя произвольными точками в водопроводе, а ЭДС – это напор на насосе, который качает воду.

При использовании термина ЭДС мы вспоминаем, что у источника есть внутреннее сопротивление, как оно есть и у насоса, который препятствует движению воды через самого себя. Если же мы считали бы именно напряжение источника, то мы бы приняли, что система идеальная и источник движению тока сам не препятствует.

Закон Ома в дифференциальной и интегральной формах

При изучении закона Ома могут выплывать ещё и такие понятия, как закон Ома в дифференциальной и интегральной формах.

Всё это большие темы, поэтому мы рассмотрим их в отдельных статьях.

Тут отметим лишь то, что в дифференциальной форме закон Ома применяется для определения параметров для ничтожно малого участка цепи. Ведь превалирует слово дифференциал или производная.

В интегральной же форме мы рассматриваем цепь с учетом источника тока или без него. Аналогично тому, как мы писали выше. Помним, что интеграл по своей сути – есть сумма.

Если статья оказалась для вас полезной, то обязательно поддержите наш проект лайком и подпиской 😉!

Советую прочитать:

Закон Ома для участка цепи простым языком для чайников

Вся прикладная электротехника базируется на одном догмате — это закон Ома для участка цепи. Без понимания принципа этого закона невозможно приступать к практике, поскольку это приводит к многочисленным ошибкам. Имеет смысл освежить эти знания, в статье мы напомним трактовку закона, составленного Омом, для однородного и неоднородного участка и полной цепи.

Диаграмма, упрощающая запоминание

Классическая формулировка

Этот простой вариант трактовки, известный нам со школы.

Однородный открытый участок электроцепи

Формула в интегральной форме будет иметь следующий вид:

Формула в интегральной форме

То есть, поднимая напряжение, мы тем самым увеличиваем  ток. В то время, как увеличение такого параметра, как «R», ведет к снижению «I».  Естественно, что на рисунке сопротивление цепи показано одним элементом, хотя это может быть последовательное, параллельное (вплоть до произвольного)соединение нескольких проводников.

В дифференциальной форме закон мы приводить не будем, поскольку в таком виде он применяется, как правило, только в физике.

Принятые единицы измерения

Необходимо учитывать, что все расчеты должны проводиться в следующих единицах измерения:

  • напряжение – в вольтах;
  • ток в амперах
  • сопротивление в омах.

Если вам встречаются другие величины, то их необходимо будет перевести к общепринятым.

Формулировка для полной цепи

Трактовка для полной цепи будет несколько иной, чем для участка, поскольку в законе, составленном Омом, еще учитывает параметр «r», это сопротивление источника ЭДС. На рисунке ниже проиллюстрирована подобная схема.

Схема с подключенным с источником

Учитывая «r» ЭДС, формула предстанет в следующем виде:

Заметим, если «R» сделать равным 0, то появляется возможность рассчитать «I», возникающий во время короткого замыкания.

Напряжение будет  меньше ЭДС, определить его можно по формуле:

Собственно, падение напряжения характеризуется параметром «I*r». Это свойство характерно многим гальваническим источникам питания.

Неоднородный участок цепи постоянного тока

Под таким типом подразумевается участок, где помимо электрического заряда производится воздействие других сил. Изображение такого участка показано на рисунке ниже.

Схема неоднородного участка

Формула для такого участка (обобщенный закон) будет иметь следующий вид:

Формула для неоднородного участка цепи

Переменный ток

Если в схема, подключенная к переменному току снабжена емкостью и/или индуктивностью (катушкой), расчет производится с учетом величин их реактивных сопротивлений. Упрощенный вид закона будет выглядеть следующим образом:

Где «Z» представляет  собой импеданс, это комплексная величина, состоящая из активного (R) и пассивного (Х) сопротивлений.

Практическое использование

Видео: Закон Ома для участка цепи — практика расчета цепей.

Собственно, к любому участку цепи можно применить этот закон. Пример приведен на рисунке.

Применяем закон к любому участку цепи

Используя такой план, можно вычислить все необходимые характеристики для неразветвленного участка. Рассмотрим более детальные примеры.
Находим силу тока
Рассмотрим теперь более определенный пример, допустим, возникла необходимость узнать ток, протекающий через лампу накаливания. Условия:

  • Напряжение – 220 В;
  • R нити накала – 500 Ом.

Решение задачи будет выглядеть следующим образом: 220В/500Ом=0,44 А.

Рассмотрим еще одну задачу со следующими условиями:

В этом случае, в первую очередь, потребуется выполнить преобразование: 0,2 МОм = 200000 Ом,после чего можно приступать к решению: 400 В/200000 Ом=0,002 А (2 мА).

Вычисление напряжения
Для решения мы также воспользуемся законом, составленным Омом. Итак задача:

Преобразуем исходные данные:

  • 20 кОм = 20000 Ом;
  • 10 мА=0,01 А.

Решение: 20000 Ом х 0,01 А = 200 В.

Незабываем преобразовывать значения, поскольку довольно часто ток может быть указан в миллиамперах.

Сопротивление.

Несмотря на то, что общий вид способа для расчета параметра «R» напоминает нахождение значения «I», между этими вариантами существуют принципиальные различия. Если ток может меняться в зависимости от двух других параметров, то R (на практике) имеет постоянное значение. То есть по своей сути оно представляется в виде неизменной константы.

Если через два разных участка проходит одинаковый ток (I), в то время как приложенное напряжение (U) различается, то, опираясь на рассматриваемый нами закон, можно с уверенностью сказать, что там где низкое напряжение «R» будет наименьшим.

Рассмотрим случай когда разные токи и одинаковое напряжение на несвязанных между собой участках. Согласно закону, составленному Омом, большая сила тока будет характерна небольшому параметру «R».

Рассмотрим несколько примеров.

Допустим, имеется цепь, к которой подведено напряжение U=50 В, а потребляемый ток I=100 мА. Чтобы найти недостающий параметр, следует 50 В / 0,1 А (100 мА), в итоге решением будет – 500 Ом.

Вольтамперная характеристика позволяет наглядно продемонстрировать пропорциональную (линейную) зависимость закона. На рисунке ниже составлен график для участка с сопротивлением равным одному Ому (почти как математическое представление закона Ома).

Изображение вольт-амперной характеристики, где R=1 Ом

Изображение вольт-амперной характеристики

Вертикальная ось графика отображает ток I (A), горизонтальная – напряжение U(В). Сам график представлен в виде прямой линии, которая наглядно отображает зависимость от сопротивления, которое остается неизменным. Например, при 12 В и 12 А «R» будет равно одному Ому (12 В/12 А).

Обратите внимание, что на приведенной вольтамперной характеристике отображены только положительные значения. Это указывает, что цепь рассчитана на протекание тока в одном направлении. Там где допускается обратное направление, график будет продолжен на отрицательные значения.

Заметим, что оборудование, вольт-амперная характеристика которого отображена в виде прямой линии, именуется — линейным. Этот же термин используется для обозначения и других параметров.

Помимо линейного оборудования, есть различные приборы, параметр «R» которых может меняться в зависимости от силы тока или приложенного напряжения. В этом случая для расчета зависимости нельзя использовать закон Ома. Оборудование такого типа называется нелинейным, соответственно, его вольт-амперные характеристики не будут отображены в виде прямых линий.

Вывод

Как уже упоминалось в начале статьи, вся прикладная электротехника базируется на законе, составленном Омом. Незнание этого базового догмата может привести к неправильному расчету, который, в свою очередь, станет причиной аварии.

Подготовка электриков как специалистов начинается с изучения теоретических основ электротехники. И первое, что они должны запомнить – это закон составленный Омом, поскольку на его основе производятся практически все расчеты параметров электрических цепей различного назначения.

Понимание основного закона электротехники поможет лучше разбираться в работе электрооборудования и его основных компонентов. Это положительно отразится на техническом обслуживании в процессе эксплуатации.

Самостоятельная проверка, разработка, а также опытное изучение узлов оборудования – все это существенно упрощается, если использовать закон Ома для участка цепи. При этом не требуется проводить всех измерений, достаточно снять некоторые параметры и, проведя несложные расчеты, получить необходимые значения.

Закон ома что такое ток. Закон ома простым языком

Закон Ома для участка цепи, безусловно, можно описать известной из школьного курса физики формулой: I=U/R , но некоторые изменения и уточнения внести, думаю, стоит.

Возьмем замкнутую электрическую цепь (рисунок 1) и рассмотрим ее участок между точками 1-2. Для простоты я взял участок электрической цепи, не содержащий источников ЭДС (Е ).

Итак, закон Ома для рассматриваемого участка цепи имеет вид:

φ1-φ2=I*R , где

  • I – ток, протекающий по участку цепи.
  • R – сопротивление этого участка.
  • φ1-φ2 – разность потенциалов между точками 1-2.

Если учесть, что разность потенциалов это напряжение, то приходим к производной формулы закона Ома, которая приведена в начале страницы: U=I*R

Это формула закона Ома для пассивного участка цепи (не содержащего источников электроэнергии).

В неразветвленной электрической цепи (рис.2) сила тока во всех участках одинакова, а напряжение на любом участке определяется его сопротивлением:

  • U 1 =I*R 1
  • U 2 =I*R 2
  • Un=I*Rn
  • U=I*(R 1 +R 2 +…+Rn

Отсюда можно получить формулы, которые пригодятся при практических вычислениях. Например:

U=U 1 +U 2 +…+Un или U 1 /U 2 /…/Un=R 1 /R 2 /…/Rn

Расчет сложных (разветвленных) цепей осуществляется с помощью законов Кирхгофа .

ПРАВИЛО ЗНАКОВ ДЛЯ ЭДС

Перед тем как рассмотреть закон Ома для полной (замкнутой) цепи приведу правило знаков для ЭДС, которое гласит:

Если внутри источника ЭДС ток идет от катода (-) к аноду (+) (направление напряженности поля сторонних сил совпадает с направлением тока в цепи, то ЭДС такого источника считается положительной (рис.3.1). В противном случае – ЭДС считается отрицательной (рис.3.2).

Практическим применением этого правила является возможность приведения нескольких источников ЭДС в цепи к одному с величиной E=E 1 +E 2 +…+En , естественно, с учетом знаков, определяемых по вышеприведенному правилу. Например (рис.3.3) E=E 1 +E 2 -E 3 .

При отсутствии встречно включенного источника E3 (на практике так почти никогда не бывает) имеем широко распространенное последовательное включение элементов питания, при котором их напряжения суммируются.

ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

Закон Ома для полной цепи – его еще можно назвать закон ома для замкнутой цепи, имеет вид I=E/(R+r) .

Приведенная формула закона Ома содержит обозначение r , которое еще не упоминалось. Это внутреннее сопротивление источника ЭДС. Оно достаточно мало, в большинстве случаев при практических расчетах им можно пренебречь (при условии, что R>>r – сопротивление цепи много больше внутреннего сопротивления источника). Однако, когда они соизмеримы, пренебрегать величиной r нельзя.

Как вариант можно рассмотреть случай, при котором R=0 (короткое замыкание). Тогда приведенная формула закона Ома для полной цепи примет вид: I=E/r , то есть величина внутреннего сопротивления будет определять ток короткого замыкания. Такая ситуация вполне может быть реальной.

Закон Ома рассмотрен здесь достоточно бегло, но приведенных формул достаточно для проведения большинства расчетов, примеры которых, по мере размещения других материалов я буду приводить.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Закон Ома – физический закон, определяющий зависимость между электрическими величинами – напряжением, сопротивлением и током для проводников.
Впервые открыл и описал его в 1826 году немецкий физик Георг Ом, показавший (с помощью гальванометра) количественную связь между электродвижущей силой, электрическим током и свойствами проводника, как пропорциональную зависимость.
Впоследствии свойства проводника, способные противостоять электрическому току на основе этой зависимости, стали называть электрическим сопротивлением (Resistance), обозначать в расчётах и на схемах буквой R и измерять в Омах в честь первооткрывателя.
Сам источник электрической энергии также обладает внутренним сопротивлением, которое принято обозначать буквой r .

Закон Ома для участка цепи

Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.

Отсюда следуют ещё два полезных соотношения:

Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).

Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.

Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R .
Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.

Предлагается простой Онлайн-калькулятор для практических расчётов.

Закон Ома. Расчёт напряжения, сопротивления, тока, мощности.
После сброса ввести два любых известных параметра.

Закон Ома для замкнутой цепи

Если к источнику питания подключить внешнюю цепь сопротивлением R , в цепи пойдёт ток с учётом внутреннего сопротивления источника:

I – Сила тока в цепи.
– Электродвижущая сила (ЭДС) – величина напряжения источника питания не зависящая от внешней цепи (без нагрузки). Характеризуется потенциальной энергией источника.
r – Внутреннее сопротивление источника питания.

Для электродвижущей силы внешнеее сопротивление R и внутреннее r соединены последовательно, значит величина тока в цепи определится значением ЭДС и суммой сопротивлений: I = /(R+r) .

Напряжение на выводах внешней цепи определится исходя из силы тока и сопротивления R соотношением, которое уже рассматривалось выше: U = IR .
Напряжение U , при подключении нагрузки R , всегда будет меньше чем ЭДС на величину произведения I*r , которую называют падением напряжения на внутреннем сопротивлении источника питания.
С этим явлением мы сталкиваемся достаточно часто, когда видим в работе частично разряженные батарейки или аккумуляторы.
По мере разряда, увеличивается их внутреннее сопротивление, следовательно, увеличивается падение напряжение внутри источника, значит уменьшается внешнее напряжение U = – I*r .
Чем меньше ток и внутреннее сопротивление источника, тем ближе по значению его ЭДС и напряжение на его выводах U .
Если ток в цепи равен нулю, следовательно, = U . Цепь разомкнута, ЭДС источника равна напряжению на его выводах.

В случаях, когда внутренним сопротивлением источника можно пренебречь (r ≈ 0), напряжение на выводах источника будет равно ЭДС ( ≈ U ) независимо от сопротивления внешней цепи R .
Такой источник питания называют источником напряжения .

Закон Ома для переменного тока

При наличии индуктивности или ёмкости в цепи переменного тока необходимо учитывать их реактивное сопротивление.
В таком случае запись Закона Ома будет иметь вид:

Здесь Z – полное (комплексное) сопротивление цепи – импеданс . В него входит активная R и реактивная X составляющие.
Реактивное сопротивление зависит от номиналов реактивных элементов, от частоты и формы тока в цепи.
Более подробно ознакомится с комплексным сопротивлением можно на страничке импеданс .

С учётом сдвига фаз φ , созданного реактивными элементами, для синусоидального переменного тока обычно записывают Закон Ома в комплексной форме :

Комплексная амплитуда тока. = I amp e jφ
– комплексная амплитуда напряжения. = U amp e jφ
– комплексное сопротивление. Импеданс.
φ – угол сдвига фаз между током и напряжением.
e – константа, основание натурального логарифма.
j – мнимая единица.
I amp , U amp – амплитудные значения синусоидального тока и напряжения.

Нелинейные элементы и цепи

Закон Ома не является фундаментальным законом природы и может быть применим в ограниченных случаях, например, для большинства проводников.
Его невозможно использовать для расчёта напряжения и тока в полупроводниковых или электровакуумных приборах, где эта зависимость не является пропорциональной и её можно определять только с помощью вольтамперной характеристики (ВАХ). К данной категории элементов относятся все полупроводниковые приборы (диоды, транзисторы, стабилитроны, тиристоры, варикапы и т.д.) и электронные лампы.
Такие элементы и цепи, в которых они используются, называют нелинейными.

Для электрика и электронщика одним из основных законов является Закон Ома. Каждый день работа ставит перед специалистом новые задачи, и зачастую нужно подобрать замену сгоревшему резистору или группе элементов. Электрику часто приходится менять кабеля, чтобы выбрать правильный нужно «прикинуть» ток в нагрузке, так приходится использовать простейшие физические законы и соотношения в повседневной жизни. Значение Закона Ома в электротехники колоссально, к слову большинство дипломных работ электротехнических специальностей рассчитываются на 70-90% по одной формуле.

Историческая справка

Год открытия Закон Ома — 1826 немецким ученым Георгом Омом. Он эмпирически определил и описал закон о соотношении силы тока, напряжения и типа проводника. Позже выяснилось, что третья составляющая – это не что иное, как сопротивление. Впоследствии этот закон назвали в честь открывателя, но законом дело не ограничилось, его фамилией и назвали физическую величину, как дань уважения его работам.

Величина, в которой измеряют сопротивление, названа в честь Георга Ома. Например, резисторы имеют две основные характеристики: мощность в ваттах и сопротивление – единица измерения в Омах, килоомах, мегаомах и т.д.

Закон Ома для участка цепи

Для описания электрической цепи не содержащего ЭДС можно использовать закон Ома для участка цепи. Это наиболее простая форма записи. Он выглядит так:

Где I – это ток, измеряется в Амперах, U – напряжение в вольтах, R – сопротивление в Омах.

Такая формула нам говорит, что ток прямопропорционален напряжению и обратнопропорционален сопротивлению – это точная формулировка Закона Ома. Физический смысл этой формулы – это описать зависимость тока через участок цепи при известном его сопротивлении и напряжении.

Внимание! Эта формула справедлива для постоянного тока, для переменного тока она имеет небольшие отличия, к этому вернемся позже.

Кроме соотношения электрических величин данная форма нам говорит о том, что график зависимости тока от напряжения в сопротивлении линеен и выполняется уравнение функции:

f(x) = ky или f(u) = IR или f(u)=(1/R)*I

Закон Ома для участка цепи применяют для расчетов сопротивления резистора на участке схемы или для определения тока через него при известном напряжении и сопротивлении. Например, у нас есть резистор R сопротивлением в 6 Ом, к его выводам приложено напряжение 12 В. Необходимо узнать, какой ток будет протекать через него. Рассчитаем:

I=12 В/6 Ом=2 А

Идеальный проводник не имеет сопротивления, однако из-за структуры молекул вещества, из которого он состоит, любое проводящее тело обладает сопротивлением. Например, это стало причиной перехода с алюминиевых проводов на медные в домашних электросетях. Удельное сопротивление меди (Ом на 1 метр длины) меньше чем алюминия. Соответственно медные провода меньше греются, выдерживают большие токи, значит можно использовать провод меньшего сечения.

Еще один пример — спирали нагревательных приборов и резисторов обладают большим удельным сопротивлением, т.к. изготавливаются из разных высокоомных металлов, типа нихрома, кантала и пр. Когда носители заряда движутся через проводник, они сталкиваются с частицами в кристаллической решетке, вследствие этого выделяется энергия в виде тепла и проводник нагревается. Чем больше ток – тем больше столкновений – тем больше нагрев.

Чтобы снизить нагрев проводник нужно либо укоротить, либо увеличить его толщину (площадь поперечного сечения). Эту информацию можно записать в виде формулы:

R провод =ρ(L/S)

Где ρ – удельное сопротивление в Ом*мм 2 /м, L – длина в м, S – площадь поперечного сечения.

Закон Ома для параллельной и последовательной цепи

В зависимости от типа соединения наблюдается разный характер протекания тока и распределения напряжений. Для участка цепи последовательного соединения элементов напряжение, ток и сопротивление находятся по формуле:

Это значит, что в цепи из произвольного количества последовательно соединенных элементов протекает один и тот же ток. При этом напряжение, приложенное ко всем элементам (сумма падений напряжения), равно выходному напряжению источника питания. К каждому элементу в отдельности приложена своя величина напряжений и зависит от силы тока и сопротивления конкретного:

U эл =I*R элемента

Сопротивление участка цепи для параллельно соединённых элементов рассчитывается по формуле:

1/R=1/R1+1/R2

Для смешанного соединения нужно приводить цепь к эквивалентному виду. Например, если один резистор соединен с двумя параллельно соединенными резисторами – то сперва посчитайте сопротивление параллельно соединенных. Вы получите общее сопротивление двух резисторов и вам остаётся сложить его с третьим, который с ними соединен последовательно.

Закон Ома для полной цепи

Полная цепь предполагает наличие источника питания. Идеальный источник питания – это прибор, который имеет единственную характеристику:

  • напряжение, если это источник ЭДС;
  • силу тока, если это источник тока;

Такой источник питания способен выдать любую мощность при неизменных выходных параметрах. В реальном же источнике питания есть еще и такие параметры как мощность и внутреннее сопротивление. По сути, внутреннее сопротивление – это мнимый резистор, установленный последовательно с источником ЭДС.

Формула Закона Ома для полной цепи выглядит похоже, но добавляется внутренне сопротивление ИП. Для полной цепи записывается формулой:

I=ε/(R+r)

Где ε – ЭДС в Вольтах, R – сопротивление нагрузки, r – внутреннее сопротивление источника питания.

На практике внутреннее сопротивление является долями Ома, а для гальванических источников оно существенно возрастает. Вы это наблюдали, когда на двух батарейках (новой и севшей) одинаковое напряжение, но одна выдает нужный ток и работает исправно, а вторая не работает, т.к. проседает при малейшей нагрузке.

Закон Ома в дифференциальной и интегральной форме

Для однородного участка цепи приведенные выше формулы справедливы, для неоднородного проводника необходимо его разбить на максимально короткие отрезки, чтобы изменения его размеров были минимизированы в пределах этого отрезка. Это называется Закон Ома в дифференциальной форме.

Иначе говоря: плотность тока прямо пропорциональной напряжённости и удельной проводимости для бесконечно малого участка проводника.

В интегральной форме:

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки R a и реактивное сопротивление X (или R r). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

X L и X C – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Как запомнить закон Ома

Чтобы запомнить Закон Ома – можно заучить формулировку простыми словами типа:

Чем больше напряжение – тем больше ток, чем больше сопротивление – тем меньше ток.

Или воспользоваться мнемоническими картинками и правилами. Первая это представление закона Ома в виде пирамиды – кратко и понятно.

Мнемоническое правило – это упрощенный вид какого-либо понятия, для простого и легкого его понимания и изучения. Может быть либо в словесной форме, либо в графической. Чтобы правильно найти нужную формулу – закройте пальцем искомую величину и получите ответ в виде произведения или частного. Вот как это работает:

Вторая – это карикатурное представление. Здесь показано: чем больше старается Ом, тем труднее проходит Ампер, а чем больше Вольт – тем легче проходит Ампер.

Закон Ома – один из основополагающих в электротехнике, без его знания невозможна бОльшая часть расчетов. И в повседневной работе часто приходится переводить или по сопротивлению определять ток. Совершенно не обязательно понимать его вывод и происхождение всех величин – но конечные формулы обязательны к освоению. В заключении хочется отметить, что есть старая шуточная пословица у электриков: «Не знаешь Ома – сиди дома». И если в каждой шутке есть доля правды, то здесь эта доля правды – 100%. Изучайте теоретические основы, если хотите стать профессионалом на практике, а в этом вам помогут другие статьи из нашего сайта.

Нравится(0 ) Не нравится(0 )

В 1826 величайший немецкий физик Георг Симон Ом публикует свою работу «Определение закона, по которому металлы проводят контактное электричество», где дает формулировку знаменитому закону. Ученые того времени встретили враждебно публикации великого физика. И лишь после того, как другой ученый – Клод Пулье, пришел к тем же выводам опытным путем, закон Ома признали во всем мире.

физическая закономерность, которая определяет взаимосвязь между током , напряжением и сопротивлением проводника. Он имеет две основные формы.

Формулировка закона Ома для участка цепи сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению .

Это простое выражение помогает на практике решать широчайший круг вопросов. Для лучшего запоминания решим задачу.

Задача 1.1

Задача простая, заключается в нахождении сопротивления медной проволоки с последующим расчетом силы тока по формуле закона Ома для участка цепи. Приступим.


Формулировка закона Ома для полной цепи сила тока прямо пропорциональна сумме ЭДС цепи, и обратно пропорциональна сумме сопротивлений источника и цепи , где E – ЭДС, R- сопротивление цепи, r – внутреннее сопротивление источника.

Здесь могут возникнуть вопросы. Например, что такое ЭДС? Электродвижущая сила – это физическая величина, которая характеризует работу внешних сил в источнике ЭДС. К примеру, в обычной пальчиковой батарейке, ЭДС является химическая реакция, которая заставляет перемещаться заряды от одного полюса к другому. Само слово электродвижущая говорит о том, что эта сила двигает электричество, то есть заряд.

В каждом присутствует внутреннее сопротивление r, оно зависит от параметров самого источника. В цепи также существует сопротивление R, оно зависит от параметров самой цепи.

Формулу закона Ома для полной цепи можно представить в другом виде. А именно: ЭДС источника цепи равна сумме падений напряжения на источнике и на внешней цепи.

Для закрепления материала, решим две задачи на формулу закона Ома для полной цепи .

Задача 2.1

Найти силу тока в цепи, если известно что сопротивление цепи 11 Ом, а источник подключенный к ней имеет ЭДС 12 В и внутреннее сопротивление 1 Ом.


Теперь решим задачу посложнее.

Задача 2.2

Источник ЭДС подключен к резистору сопротивлением 10 Ом с помощью медного провода длиной 1 м и площадью поперечного сечения 1 мм 2 . Найти силу тока, зная что ЭДС источника равно 12 В, а внутреннее сопротивление 1,9825 Ом.

Приступим.


Причиной написания данной статьи явилась не сложность этих формул, а то, что в ходе проектирования и разработки каких-либо схем часто приходится перебирать ряд значений чтобы выйти на требуемые параметры или сбалансировать схему. Данная статья и калькулятор в ней позволит упростить этот подбор и ускорить процесс реализации задуманного. Также в конце статьи приведу несколько методик для запоминания основной формулы закона Ома. Эта информация будет полезна начинающим. Формула хоть и простая, но иногда есть замешательство, где и какой параметр должен стоять, особенно это бывает поначалу.

В радиоэлектронике и электротехнике закон Ома и формула расчёта мощности используются чаше чем какие-либо из всех остальных формул. Они определяют жесткую взаимосвязь между четырьмя самыми ходовыми электрическими величинами: током, напряжением, сопротивлением и мощностью.

Закон Ома. Эту взаимосвязь выявил и доказал Георг Симон Ом в 1826 году. Для участка цепи она звучит так: сила тока прямо пропорциональна напряжению, и обратно пропорциональна сопротивлению

Так записывается основная формула:

Путем преобразования основной формулы можно найти и другие две величины:

Мощность. Её определение звучит так: мощностью называется произведение мгновенных значений напряжения и силы тока на каком-либо участке электрической цепи.

Формула мгновенной электрической мощности:

Ниже приведён онлайн калькулятор для расчёта закона Ома и Мощности. Данный калькулятор позволяет определить взаимосвязь между четырьмя электрическими величинами: током, напряжением, сопротивлением и мощностью. Для этого достаточно ввести любые две величины. Стрелками «вверх-вниз» можно с шагом в единицу менять введённое значение. Размерность величин тоже можно выбрать. Также для удобства подбора параметров, калькулятор позволяет фиксировать до десяти ранее выполненных расчётов с теми размерностями с которыми выполнялись сами расчёты.

Когда мы учились в радиотехническом техникуме, то приходилось запоминать очень много всякой всячины. И чтобы проще было запомнить, для закона Ома есть три шпаргалки. Вот какими методиками мы пользовались.

Первая – мнемоническое правило. Если из формулы закона Ома выразить сопротивление, то R = рюмка.

Вторая – метод треугольника. Его ещё называют магический треугольник закона Ома.

Если оторвать величину, которую требуется найти, то в оставшейся части мы получим формулу для её нахождения.

Третья. Она больше является шпаргалкой, в которой объединены все основные формулы для четырёх электрических величин.

Пользоваться ею также просто, как и треугольником. Выбираем тот параметр, который хотим рассчитать, он находиться в малом кругу в центре и получаем по три формулы для его расчёта. Далее выбираем нужную.

Этот круг также, как и треугольник можно назвать магическим.

Чему равна сила тока в замкнутой цепи. Закон ома простым языком

Замкнутая цепь (рис. 2) состоит из двух частей – внутренней и внешней. Внутренняя часть цепи представляет собой источник тока, обладающий внутренним сопротивлением r ; внешняя – различные потребители, соединительные провода, приборы и т.д. Общее сопротивление внешней части обозначается R . Тогда полное сопротивление цепи равно r + R .

По закону Ома для внешнего участка цепи 1 → 2 имеем:

\(~\varphi_1 – \varphi_2 = IR .\)

Внутренний участок цепи 2 → 1 является неоднородным. Согласно закону Ома, \(~\varphi_2 – \varphi_1 + \varepsilon = Ir\). Сложив эти равенства, получим

\(~\varepsilon = IR + Ir . \qquad (1)\)

\(~I = \frac{\varepsilon}{R + r} . \qquad (2)\)

Последняя формула представляет собой закон Ома для замкнутой цепи постоянного тока. Сила тока в цепи прямо пропорциональна ЭДС источника и обратно пропорциональна полному сопротивлению цепи .

Так как для однородного участка цепи разность потенциалов есть напряжение, то \(~\varphi_1 – \varphi_2 = IR = U\) и формулу (1) можно записать:

\(~\varepsilon = U + Ir \Rightarrow U = \varepsilon – Ir .\)

Из этой формулы видно, что напряжение на внешнем участке уменьшается с увеличением силы тока в цепи при ε = const.

Подставим в последнюю формулу силу тока (2), получим

\(~U = \varepsilon \left(1 – \frac{r}{R + r} \right) .\)

Проанализируем это выражение для некоторых предельных режимов работы цепи.

а) При разомкнутой цепи (R → ∞) U = ε , т.е. напряжение на полюсах источника тока при разомкнутой цепи равно ЭДС источника тока.

На этом основана возможность приблизительного измерения ЭДС источника тока с помощью вольтметра, сопротивление которого много больше внутреннего сопротивления источника тока (\(~R_v \gg r\)). Для этого вольтметр подключают к клеммам источника тока.

б) Если к клеммам источника тока подключить проводник, сопротивление которого \(~R \ll r\), то R + r r , тогда \(~U = \varepsilon \left(1 – \frac{r}{r} \right) = 0\) , а сила тока \(~I = \frac{\varepsilon}{r}\) – достигает максимального значения.

Подключение к полюсам источника тока проводника с ничтожно малым сопротивлением называется коротким замыканием , а максимальную для данного источника силу тока называют током короткого замыкания:

\(~I_{kz} = \frac{\varepsilon}{r} .\)

У источников с малым значением r (например, у свинцовых аккумуляторов r = 0,1 – 0,01 Ом) сила тока короткого замыкания очень велика. Особенно опасно короткое замыкание в осветительных сетях, питаемых от подстанций (ε > 100 В), I kz может достигнуть тысячи ампер. Чтобы избежать пожаров, в такие цепи включают предохранители.

Запишем закон Ома для полной цепи в случае последовательного и параллельного соединения источников тока в батарею. При последовательном соединении источников “-” одного источника соединяется с “+” второго, “-” второго с “+” третьего и т.д. (рис. 3, а). Если ε 1 = ε 2 = ε 3 а r 1 = r 2 = r 3 то ε b = 3ε 1 , r b = 3r 1 . В этом случае закон Ома для полной цепи имеет вид\[~I = \frac{\varepsilon_b}{R + r_b} = \frac{3 \varepsilon_1}{R + 3r_1}\], или для n одинаковых источников \(~I = \frac{n \varepsilon_1}{R + nr_1}\).

Последовательное соединение применяют в том случае, когда внешнее сопротивление \(~R \gg nr_1\), тогда \(~I = \frac{n \varepsilon_1}{R}\) и батарея может дать силу тока, в n раз большую, чем сила тока от одного источника.

При параллельном соединении источников тока все “+” источников соединены вместе и “-” источников – также вместе (рис. 3, б). В этом случае

\(~\varepsilon_b = \varepsilon_1 ; \ r_b = \frac{r_1}{3}.\)

Откуда \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{3}}\) .

Для n одинаковых источников \(~I = \frac{\varepsilon_1}{R + \frac{r_1}{n}}\) .

Параллельное соединение источников тока применяют тогда, когда нужно получить источник тока с малым внутренним сопротивлением или когда для нормальной работы потребителя электроэнергии в цепи должен протекать ток. больший, чем допустимый ток одного источника.

Параллельное соединение выгодно, когда R невелико по сравнению с r .

Иногда применяют смешанное соединение источников.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. – Мн.: Адукацыя i выхаванне, 2004. – C. 262-264.

Закон Ома для замкнутой цепи показывает – значение тока в реальной цепи зависит не только от сопротивления нагрузки, но и от сопротивления источника.

Формулировка закона Ома для замкнутой цепи звучит следующим образом: величина тока в замкнутой цепи, состоящей из источника тока, обладающего внутренним и внешним нагрузочным сопротивлениями, равна отношению электродвижущей силы источника к сумме внутреннего и внешнего сопротивлений.

Впервые зависимость тока от сопротивлений была экспериментально установлена и описана Георгом Омом в 1826 году.

Формула закона Ома для замкнутой цепи записывается в следующем виде:

  • I [А] – сила тока в цепи,
  • ε [В] – ЭДС источника напряжения,
  • R [Ом] – сопротивление всех внешних элементов цепи,
  • r [Ом] – внутреннее сопротивление источника напряжения

Физический смысл закона

Потребители электрического тока вместе с источником тока образуют замкнутую электрическую цепь. Ток, проходящий через потребитель, проходит и через источник тока, а значит, току кроме сопротивления проводника оказывается сопротивление самого источника. Таким образом, общее сопротивление замкнутой цепи будет складываться из сопротивления потребителя и сопротивления источника.

Физический смысл зависимости тока от ЭДС источника и сопротивления цепи заключается в том, что чем больше ЭДС, тем больше энергия носителей зарядов, а значит больше скорость их упорядоченного движения. При увеличении сопротивления цепи энергия и скорость движения носителей зарядов, следовательно, и величина тока уменьшаются.

Зависимость можно показать на опыте. Рассмотрим цепь, состоящую из источника, реостата и амперметра. После включения в цепи идет ток, наблюдаемый по амперметру, двигая ползунок реостата, увидим, что при изменении внешнего сопротивления ток будет меняться.

Примеры задач на применение закона Ома для замкнутой цепи

К источнику ЭДС 10 В и внутренним сопротивлением 1 Ом подключен реостат, сопротивление которого 4 Ом. Найти силу тока в цепи и напряжение на зажимах источника.

При подключении к батарее гальванических элементов резистора сопротивлением 20 Ом сила тока в цепи была 1 А, а при подключении резистора сопротивлением 10 Ом сила тока стала 1,5 А. Найти ЭДС и внутреннее сопротивление батареи.

Рассмотрим простейшую замкнутую цепь, состоящую из источника (гальванического элемента, аккумулятора или генератора)

и резистора сопротивлением (рис. 161). Источник тока имеет и сопротивление Сопротивление источника часто называют внутренним сопротивлением в отличие от внешнего сопротивления цепи. В генераторе это сопротивление обмоток, а в гальваническом элементе – сопротивление раствора электролита и электродов

Закон Ома для замкнутой цепи связывает силу тока в цепи, ЭДС и полное сопротивление цепи. Эта связь может быть установлена теоретически, если использовать закон сохранения энергии и закон Джоуля – Ленца (9.17).

Пусть за время через поперечное сечение проводника пройдет заряд Тогда работу сторонних сил по перемещению заряда можно записать так: Согласно определению силы тока Поэтому

При совершении этой работы на внутреннем и внешнем участках цепи, сопротивления которых и выделяется некоторое количество теплоты. По закону Джоуля – Ленца оно равно:

Согласно закону сохранения энергии Приравнивая (9.20) и (9.21), получим:

Произведение силы тока на сопротивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи.

Обычно закон Ома для замкнутой цепи записывают в форме:

Сила тока в замкнутой цепи равна отношению ЭДС цепи к ее полному сопротивлению.

Сила тока зависит от трех величин: сопротивлений и внешнего и внутреннего участков цепи. Внутреннее сопротивление источника тока не оказывает заметного влияния на силу тока, если оно мало по сравнению с сопротивлением внешней части цепи При этом напряжение на зажимах источника приблизительно равно

Но при коротком замыкании сила тока в цепи определяется именно внутренним сопротивлением источника и может при электродвижущей силе в несколько вольт быть очень большой, если мало (например, у аккумулятора Ом). Провода могут расплавиться, а сам источник – выйти из строя.

Если цепь содержит несколько последовательно соединенных элементов с то полная ЭДС цепи равна алгебраической сумме ЭДС отдельных элементов. Для определения знака ЭДС любого источника нужно вначале условиться относительно выбора положительного направления обхода контура. На рисунке 162 положительным (произвольно) считает направление обхода против часовой стрелки.

Если при обходе цепи переходят от отрицательного полюса источника к положительному, то Сторонние силы внутри источника совершают при этом положительную работу. Если же при обходе цепи переходят от положительного полюса источника к отрицательному, ЭДС будет отрицательной. Сторонние силы внутри источника совершают отрицательную работу. Так, для цепи, изображенной на рисунке 162:

Если то согласно (9.23) сила тока т. е. направление тока совпадает с направлением обхода контура. При наоборот, направление тока противоположно направлению обхода контура. Полное сопротивление цепи равно сумме всех сопротивлений:

При параллельном соединении гальванических элементов с одинаковыми ЭДС (или других источников) ЭДС батареи равна ЭДС одного из элементов (рис. 163). Внутреннее же сопротивление батареи рассчитывают по обычному правилу параллельного соединения проводников. Для цепи, изображенной на рисунке 163, согласно закону Ома для замкнутой цепи сила тока определяется следующей формулой:

1. Почему электрическое поле заряженных частиц (кулоновское поле) не способно поддерживать постоянный электрический ток в цепи? 2. Что называют сторонними силами? 3. Что называют электродвижущей силой?

4. Сформулируйте закон Ома для замкнутой цепи. 5. От чего зависит знак ЭДС в законе Ома для замкнутой цепи?

Содержание:

Каждый специалист, ремонтирующий и обслуживающий электроустановки, должен хорошо знать и применять на практике закон Ома для замкнутой цепи. Это действительно так, поскольку закономерности, открытые немецким физиком Георгом Омом, лежат в основе всей электротехники. Данный закон стал весомым вкладом в дальнейшее развитие научных знаний в области электричества.

Физические свойства закона Ома

Прямая взаимосвязь между силой тока, напряжением, подведенным к сети, и была обнаружена Омом в 1826 году. В дальнейшем, понятие напряжения было заменено на более точный термин – электродвижущую силу (ЭДС). После теоретического обоснования этой зависимости был выведен закон для замкнутой цепи. Его важной особенностью считается обязательное отсутствие какого-либо внешнего возмущения. Поэтому стандартные формулировки потеряют свою актуальность, если, например, поместить проводник в переменное магнитное поле.

Для экспериментов по выводу закона использовалась простейшая схема, состоящая из источника питания, обладающего ЭДС и подключенных к нему двух выводов, соединенных с резистором. В проводнике начинают в определенном направлении перемещаться элементарные частицы, несущие заряд. Таким образом, представляется в виде отношения ЭДС к общему сопротивлению всей цепи: I = E/R.

В представленной формуле Е – является электродвижущей силой, измеряемой в вольтах, I – сила тока в амперах, а R выступает в роли электрического сопротивления резистора, измеряемого в омах. При этом, учитываются все составляющие сопротивления и при расчетах используется их суммарное значение. Они включают сопротивление самого резистора, проводника (r) и источника питания (r0). Окончательно формула будет выглядеть так: I = E/(R+r+r0). Если значение внутреннего сопротивления источника тока r0 превышает сумму R+r, то в этом случае отсутствует зависимость силы тока от характеристик подключенной нагрузки, а источник ЭДС исполняет роль источника тока. Когда r0 ниже суммы R+r, получается обратная пропорция тока с суммарным внешним сопротивлением, а напряжение поступает за счет источника питания.

Закон Ома для выполнения расчетов

Точные расчеты требуют учета всех потерь напряжения, в том числе и в местах соединений. Для определения электродвижущей силы на выводах источника тока замеряется разность потенциалов при разомкнутой цепи, когда нагрузка полностью отключена. В этом случае применяется не только закон Ома для замкнутой цепи, но и закон, действующий . Данный участок считается однородным, поскольку здесь принимается в расчет только разность потенциалов, без учета ЭДС. Это дает возможность рассчитать каждый элемент электрической цепи по формуле I=U/R, в которой U является разностью потенциалов или напряжением, измеряемым в вольтах.

Замеры выполняются с помощью вольтметра при подключении щупов к выводам нагрузки или сопротивления. Полученное значение напряжения будет всегда ниже электродвижущей силы. Это наиболее распространенная формула, позволяющая найти любую составляющую при наличии двух известных.

Закон Ома для замкнутой цепи имеет много общего с законом, выведенным для магнитной цепи. В этой системе проводник выполнен в виде замкнутого магнитопровода. В качестве источника выступает обмотка катушки по виткам которой протекает электрический ток. Появляющийся магнитный поток (Ф) замыкается на магнитопровод и начинает циркулировать по контуру. Он находится в непосредственной зависимости от магнитодвижущей силы и сопротивления материала, через который проходит. Данное явление выражено формулой Ф=F/Rm, в которой F представляет собой магнитодвижущую силу, а Rm служит сопротивлением, вызывающим затухание.

Как рассчитать цепи

В 1826 году немецкий ученый Георг Ом совершил открытие и описал
эмпирический закон о соотношении между собой таких показателей как сила тока, напряжение и особенности проводника в цепи. Впоследствии, по имени ученого он стал называться закон Ома.

В дальнейшем выяснилось, что эти особенности не что иное, как сопротивление проводника, возникающее в процессе его контакта с электричеством. Это внешнее сопротивление (R). Есть также внутреннее сопротивление (r), характерное для источника тока.

Закон Ома для участка цепи

Согласно обобщенному закону Ома для некоторого участка цепи, сила тока на участке цепи прямо пропорциональна напряжению на концах участка и обратно пропорциональна сопротивлению.

Где U – напряжение концов участка,I– сила тока, R– сопротивление проводника.

Беря во внимание вышеприведенную формулу, есть возможность найти неизвестные значенияUиR, сделав несложные математические операции.

Данные выше формулы справедливы лишь когда сеть испытывает на себе одно сопротивление.

Закон Ома для замкнутой цепи

Сила тока полной цепи равна ЭДС, деленной на сумму сопротивлений однородного и неоднородного участков цепи.

Замкнутая сеть имеет одновременно сопротивления внутреннего и внешнего характера. Поэтому формулы отношения будут уже другими.

Где E – электродвижущая сила (ЭДС), R- внешнее сопротивление источника, r-внутреннее сопротивление источника.

Закон Ома для неоднородного участка цепи

Замкнутая электрическая сеть содержит участки линейного и нелинейного характера. Участки, не имеющие источника тока и не зависящие от стороннего воздействия являются линейными, а участки, содержащие источник – нелинейными.

Закон Ома для участка сети однородного характера был изложен выше. Закон на нелинейном участке будет иметь следующий вид:

I = U/ R = f1 – f2 + E/ R

Где f1 – f2 – разница потенциалов на конечных точках рассматриваемого участка сети

R – общее сопротивление нелинейного участка цепи

ЭДС нелинейного участка цепи бывает больше нуля или меньше. Если направление движения тока, идущего из источника с движением тока в электрической сети, совпадают, будет преобладать движение зарядов положительного характера и ЭДС будет положительная. В случае же совпадения направлений, в сети будет увеличено движение отрицательных зарядов, создаваемых ЭДС.

Закон Ома для переменного тока

При имеющейся в сети емкости или инертности, необходимо учитывать при проводимых вычислениях, что они выдают свое сопротивление, от действия которого ток приобретает переменный характер.

Закон Ома для переменного тока выглядит так:

где Z – сопротивление по всей длине электрической сети. Его еще называют импеданс. Импеданс составляют сопротивления активного и реактивного характера.

Закон Ома не является основным научным законом, а лишь эмпирическим отношением, причем в некоторых условиях оно может не соблюдаться:

  • Когда сеть обладает высокой частотой, электромагнитное поле меняется с большой скоростью, и при расчетах необходимо учитывать инертность носителей заряда;
  • В условиях низкой температуры с веществами, которые обладают сверхпроводимостью;
  • Когда проводник сильно нагревается проходящим напряжением, отношение тока к напряжению становится переменным и может не соответствовать общему закону;
  • При нахождении под высоким напряжением проводника или диэлектрика;
  • В светодиодных лампах;
  • В полупроводниках и полупроводниковых приборах.

В свою очередь элементы и проводники, соблюдающие закон Ома, называются омическими.

Закон Ома может дать объяснение некоторым явлениям природы. Например, когда мы видим птиц, сидящих на высоковольтных проводах, у нас возникает вопрос – почему на них не действует электрический ток? Объясняется это довольно просто. Птицы, сидя на проводах, представляют собой своеобразные проводники. Большая часть напряжения приходится на промежутки между птицами, а та доля, что приходится на сами «проводники» не представляет для них опасности.

Но это правило работает лишь при единичном соприкосновении. Если птица заденет клювом или крылом провод или телеграфный столб, она неминуемо погибнет от огромного количества напряжения, которое несут в себе эти участки. Такие случаи происходят повсеместно. Поэтому в целях безопасности в некоторых населенных пунктах установлены специальные приспособления, защищающие птиц от опасного напряжения. На таких насестах птицы находятся в полной безопасности.

Закон Ома также широко применятся на практике. Электричество смертельно опасно для человека при одном лишь касании к оголенному проводу. Но в некоторых случаях сопротивление человеческого тела может быть разным.

Так, например, сухая и неповрежденная кожа обладает большим сопротивлением к воздействию электричества нежели рана или кожа, покрытая потом. В следствие переутомления, нервного напряжения и опьянения, даже при небольшом напряжении тока человек может получить сильный удар током.

В среднем, сопротивление тела человека – 700 Ом, значит, для человека является безопасным напряжение в 35 В. Работая с большим напряжением, специалисты используют .

Сила тока | Самое простое объяснение, формула, единица измерения

Сила тока с точки зрения гидравлики

Думаю, вы не раз слышали такое словосочетание, как “сила тока“. А для чего нужна сила? Ну как для чего? Чтобы совершать полезную или бесполезную работу. Главное, чтобы что-то делать.  Каждый из нас обладает какой-либо силой. У кого-то сила такая, что он может одним ударом разбить кирпич в пух и в прах, а другой не сможет поднять даже соломинку. Так вот, дорогие мои читатели, электрический ток тоже обладает силой.

Представьте себе шланг, с помощью которого вы поливаете свой огород

Давайте теперь проведем аналогию. Пусть шланг  – это провод, а вода в нем – электрический ток. Мы чуть-чуть приоткрыли краник и вода сразу же побежала по шлангу. Медленно, но все-таки побежала. Сила струи очень слабая.

А давайте теперь откроем краник на полную катушку. В результате струя хлынет с такой силой, что можно даже полить соседский огород.

В обоих случаях диаметр шланга одинаков.

А теперь представьте, что вы наполняете ведро. Напором воды из какого шланга вы его быстрее наполните? Разумеется из зеленого, где напор воды очень сильный. Но почему так происходит? Все дело в том, что объем воды за равный промежуток времени из желтого и зеленого шланга выйдет тоже разный. Или иными словами, из зеленого шланга количество молекул воды выбежит намного больше, чем из желтого за равный период времени.

Разберем еще один интересный пример. Давайте допустим, что у нас есть большая труба, и к ней заварены две другие, но одна в два раза меньше диаметром, чем другая.

Из какой трубы объем воды будет выходить больше за секунду времени? Разумеется с той, которая толще в диаметре, потому что площадь поперечного сечения S2 большой трубы больше, чем площадь поперечного сечения S1 малой трубы. Следовательно, сила потока через большую трубу будет больше, чем через малую, так как объем воды, который протекает через поперечное сечение трубы S2, будет  в два раза больше, чем через тонкую трубу.

Что такое сила тока?

Итак, теперь давайте все что мы тут пописали про водичку применим к электронике. Провод – это шланг. Тонкий провод – это тонкий в диаметре шланг, толстый провод – это толстый в диаметре шланг, можно сказать – труба. Молекулы воды – это электроны. Следовательно, толстый провод при одинаковом напряжении можно протащить больше электронов, чем тонкий. И вот здесь мы подходим вплотную к самой терминологии силы тока.

Сила тока – это количество электронов, прошедших через площадь поперечного сечения проводника за какое-либо определенное время.

Все это выглядит примерно вот так. Здесь я нарисовал круглый проводок, “разрезал” его и получил ту самую площадь поперечного сечения. Именно через нее и бегут электроны.

За период времени берут 1 секунду.

Формула силы тока

Формула для чайников будет выглядеть вот так:

 

где

I – собственно сила тока, Амперы

N – количество электронов

t – период времени, за которое эти электроны пробегут через поперечное сечение проводника, секунды

Более правильная (официальная) формула выглядит вот так:

где

Δq  – это заряд за какой-то определенный промежуток времени, Кулон

Δt – тот самый промежуток времени, секунды

I – сила тока, Амперы

В чем прикол этих двух формул? Дело все в том, что электрон обладает зарядом приблизительно 1,6 · 10-19 Кулон. Поэтому, чтобы сила тока была в проводе (проводнике) была 1 Ампер, нам надо, чтобы через поперечное сечение прошел заряд в 1 Кулон = 6,24151⋅1018 электронов. 1 Кулон = 1 Ампер · 1 секунду.

Итак, теперь можно официально сказать, что если через поперечное сечение проводника за 1 секунду пролетят 6,24151⋅1018 электронов, то сила тока в таком проводнике будет равна 1 Ампер! Все! Ничего не надо больше придумывать! Так и скажите своему преподавателю по физике).

Если преподу не понравится ваш ответ, то скажите типа что-то этого:

Сила тока  – это физическая величина, равная отношению количества заряда прошедшего через поверхность (читаем как через площадь поперечного сечения) за какое-то время. Измеряется как Кулон/секунда. Чтобы сэкономить время и по другим морально-эстетическим нормам,  Кулон/секунду договорились называть Ампером, в честь французского ученого-физика.

Сила тока и сопротивление

Давайте еще раз глянем на шланг с водой и зададим себе вопросы. От чего зависит поток воды? Первое, что приходит в голову – это давление. Почему молекулы воды движутся в рисунке ниже слева-направо? Потому, что давление слева, больше чем справа. Чем больше давление, тем быстрее побежит водичка по шлангу – это элементарно.

Теперь такой вопрос: как можно увеличить количество электронов через площадь поперечного сечения?

Первое, что приходит на ум – это увеличить давление. В этом случае скорость потока воды увеличится, но ее много не увеличишь, так как шланг порвется как грелка в пасти Тузика.

Второе – это поставить шланг бОльшим диаметром. В этом случае у нас количество молекул воды через поперечное сечение будет проходить больше, чем в тонком шланге:

Все те же самые умозаключения можно применить и к обыкновенному проводу. Чем он больше в диаметре, тем больше он сможет “протащить” через себя силу тока. Чем меньше в диаметре, то желательно меньше его нагружать, иначе его “порвет”, то есть он тупо сгорит. Именно этот принцип заложен в плавких предохранителях. Внутри такого предохранителя тонкий проводок. Его толщина зависит от того, на какую силу тока он рассчитан.

плавкий предохранитель

Как только сила тока через тонкий проводок  предохранителя превысит силу тока, на которую рассчитан предохранитель, то плавкий проводок перегорает и размыкает цепь. Через перегоревший предохранитель ток уже течь не может, так как проводок в предохранителе в обрыве.

сгоревший плавкий предохранитель

Поэтому, силовые кабели,  через которые “бегут” сотни и тысячи ампер, берут большого диаметра и стараются делать из меди, так как ее удельное сопротивление очень мало.

Сила тока в проводнике

Очень часто можно увидеть задачки по физике с вопросом: какая сила тока в проводнике? Проводник, он же провод, может иметь различные параметры: диаметр, он же площадь поперечного сечения; материал, из которого сделан провод; длина, которая играет также важную роль.

Да и вообще, сопротивление проводника рассчитывается по формуле:

формула сопротивления проводника

Таблица с удельным сопротивлением из разных материалов выглядит вот так.

таблица с удельным сопротивлением веществ

Для того, чтобы найти силу тока в проводнике, мы должны воспользоваться законом Ома для участка цепи. Выглядит он вот так:

закон Ома

 

Задача

У нас есть медный провод длиной в 1 метр и его площадь поперечного сечения составляет 1 мм2 . Какая сила тока будет течь в этом проводнике (проводе), если на его концы подать напряжение в 1 Вольт?

задача на силу тока в проводнике

Решение:

 

Как измерить силу тока?

Для того, чтобы измерить значение силы тока, мы должны использовать специальные приборы – амперметры. В настоящее время силу тока можно измерить с помощью цифрового мультиметра, который  может измерять и силу тока, и напряжение и сопротивление и еще много чего. Для того, чтобы измерить силу тока, мы должны вставить наш прибор в разрыв цепи вот таким образом.

Более подробно как это сделать, можете прочитать в этой статье.

Также советую посмотреть обучающее видео, где очень умный преподаватель объясняет простым языком, что такое “сила тока”.

Закон ома на переменном токе полное сопротивление. Закон ома простым языком

Добавить сайт в закладки

На рисунке показана схема знакомой вам простейшей электрической цепи. Эта замкнутая цепь состоит из трех элементов:

  • источника напряжения – батареи GB;
  • потребителя тока – нагрузки R, которой может быть, например, нить накала электрической лампы или резистор;
  • проводников, соединяющих источник напряжения с нагрузкой.

Между прочим, если эту цепь дополнить выключателем, получится полная схема карманного электрического фонаря. Нагрузка R, обладающая определенным сопротивлением, является участком цепи.

Значение тока на этом участке цепи зависит от действующего на нем напряжения и его сопротивления: чем больше напряжение и меньше сопротивление, тем большим ток будет идти по участку цепи.

Эта зависимость тока от напряжения и сопротивления выражается следующей формулой:

  • I – ток, выраженный в амперах, А;
  • U – напряжение в вольтах, В;
  • R – сопротивление в омах, Ом.

Читается это математическое выражение так: ток на участке цепи прямо пропорционален напряжению на нем и обратно пропорционален его сопротивлению. Это основной закон электротехники, именуемый законом Ома (по фамилии Г. Ома) для участка электрической цепи. Используя закон Ома, можно по двум известным электрическим величинам узнать неизвестную третью. Вот несколько примеров практического применения закона Ома:

  1. Первый пример. На участке цепи, обладающем сопротивлением 5 Ом, действует напряжение 25 В. Надо узнать значение тока на этом участке цепи. Решение: I = U/R = 25 / 5 = 5 А.
  2. Второй пример. На участке цепи действует напряжение 12 В, создавая в нем ток, равный 20 мА. Каково сопротивление этого участка цепи? Прежде всего ток 20 мА нужно выразить в амперах. Это будет 0,02 А. Тогда R = 12 / 0,02 = 600 Ом.
  3. Третий пример. Через участок цепи сопротивлением 10 кОм течет ток 20 мА. Каково напряжение, действующее на этом участке цепи? Здесь, как и в предыдущем примере, ток должен быть выражен в амперах (20 мА = 0,02 А), сопротивление в омах (10 кОм = 10000 Ом). Следовательно, U = IR = 0,02×10000 = 200 В.

На цоколе лампы накаливания плоского карманного фонаря выштамповано: 0,28 А и 3,5 В. О чем говорят эти сведения? О том, что лампочка будет нормально светиться при токе 0,28 А, который обусловливается напряжением 3,5 В. Пользуясь законом Ома, нетрудно подсчитать, что накаленная нить лампочки имеет сопротивление R = 3,5 / 0,28 = 12,5 Ом.

Это сопротивление именно накаленной нити лампочки, сопротивление остывшей нити значительно меньше. Закон Ома справедлив не только для участка, но и для всей электрической цепи. В этом случае в значение R подставляется суммарное сопротивление всех элементов цепи, в том числе и внутреннее сопротивление источника тока. Однако при простейших расчетах цепей обычно пренебрегают сопротивлением соединительных проводников и внутренним сопротивлением источника тока.

В связи с этим нужно привести еще один пример: напряжение электроосветительной сети 220 В. Какой ток потечет в цепи, если сопротивление нагрузки равно 1000 Ом? Решение: I = U/R = 220 / 1000 = 0,22 А. Примерно такой ток потребляет электрический паяльник.

Всеми этими формулами, вытекающими из закона Ома, можно пользоваться и для расчета цепей переменного тока, но при условии, если в цепях нет катушек индуктивности и конденсаторов.

Закон Ома и производные от него расчетные формулы достаточно легко запомнить, если пользоваться вот этой графической схемой, это так называемый треугольник закона Ома.

Пользоваться этим треугольником легко, достаточно четко запомнить, что горизонтальная линия в нем означает знак деления (по аналогии дробной черты), а вертикальная линия означает знак умножения.

Теперь следует рассмотреть такой вопрос: как влияет на ток резистор, включаемый в цепь последовательно с нагрузкой или параллельно ей? Лучше разобрать это на примере. Имеется лампочка от круглого электрического, фонаря, рассчитанная на напряжение 2,5 В и ток 0,075 А. Можно ли питать эту лампочку от батареи 3336Л, начальное напряжение которой 4,5 В?

Нетрудно подсчитать, что накаленная нить этой лампочки имеет сопротивление немногим больше 30 Ом. Если же питать ее от свежей батареи 3336Л, то через нить накала лампочки, по закону Ома, пойдет ток, почти вдвое превышающий тот ток, на который она рассчитана. Такой перегрузки нить не выдержит, она перекалится и разрушится. Но эту лампочку все же можно питать от батареи 336Л, если последовательно в цепь включить добавочный резистор сопротивлением 25 Ом.

В этом случае общее сопротивление внешней цепи будет равно примерно 55 Ом, то есть 30 Ом – сопротивление нити лампочки Н плюс 25 Ом – сопротивление добавочного резистора R. В цепи, следовательно, потечет ток, равный примерно 0,08 А, то есть почти такой же, на который рассчитана нить накала лампочки.

Эту лампочку можно питать от батареи и с более высоким напряжением и даже от электроосветительной сети, если подобрать резистор соответствующего сопротивления. В этом примере добавочный резистор ограничивает ток в цепи до нужного нам значения. Чем больше будет его сопротивление, тем меньше будет и ток в цепи. В данном случае в цепь было включено последовательно два сопротивления: сопротивление нити лампочки и сопротивление резистора. А при последовательном соединении сопротивлений ток одинаков во всех точках цепи.

Можно включать амперметр в любую точку, и всюду он будет показывать одно значение. Это явление можно сравнить с потоком воды в реке. Русло реки на различных участках может быть широким или узким, глубоким или мелким. Однако за определенный промежуток времени через поперечное сечение любого участка русла реки всегда проходит одинаковое количество воды.

Добавочный резистор, включаемый в цепь последовательно с нагрузкой, можно рассматривать как резистор, «гасящий» часть напряжения, действующего в цепи. Напряжение, которое гасится добавочным резистором или, как говорят, падает на нем, будет тем большим, чем больше сопротивление этого резистора. Зная ток и сопротивление добавочного резистора, падение напряжения на нем легко подсчитать все по той же знакомой вам формуле U = IR, здесь:

  • U – падение напряжения, В;
  • I – ток в цепи, A;
  • R – сопротивление добавочного резистора, Ом.

Применительно к примеру резистор R (см. рис.) погасил избыток напряжения: U = IR = 0,08×25 = 2 В. Остальное напряжение батареи, равное приблизительно 2,5 В, упало на нити лампочки. Необходимое сопротивление резистора можно найти по другой знакомой вам формуле R = U/I, где:

  • R – искомое сопротивление добавочного резистора, Ом;
  • U – напряжение, которое необходимо погасить, В;
  • I – ток в цепи, А.

Для рассматриваемого примера сопротивление добавочного резистора равно: R = U/I = 2/0,075, 27 Ом. Изменяя сопротивление, можно уменьшать или увеличивать напряжение, которое падает на добавочном резисторе, таким образом регулируя ток в цепи. Но добавочный резистор R в такой цепи может быть переменным, то есть резистором, сопротивление которого можно изменять (см. рис. ниже).

В этом случае с помощью движка резистора можно плавно изменять напряжение, подводимое к нагрузке Н, а значит, плавно регулировать ток, протекающий через эту нагрузку. Включенный таким образом переменный резистор называют реостатом. С помощью реостатов регулируют токи в цепях приемников, телевизоров и усилителей. Во многих кинотеатрах реостаты использовали для плавного гашения света в зрительном зале. Есть и другой способ подключения нагрузки к источнику тока с избыточным напряжением – тоже с помощью переменного резистора, но включенного потенциометром, то есть делителем напряжения, как показано на рисунке ниже.

Здесь R1 – резистор, включенный потенциометром, a R2 – нагрузка, которой может быть та же лампочка накаливания или какой-то другой прибор. На резисторе R1 происходит падение напряжения источника тока, которое частично или полностью может быть подано к нагрузке R2. Когда движок резистора находится в крайнем нижнем положении, к нагрузке напряжение вообще не подается (если это лампочка, она гореть не будет).

По мере перемещения движка резистора вверх мы будем подавать все большее напряжение к нагрузке R2 (если это лампочка, ее нить будет накаливаться). Когда же движок резистора R1 окажется в крайнем верхнем положении, к нагрузке R2 будет подано все напряжение источника тока (если R2 – лампочка карманного фонаря, а напряжение источника тока большое, нить лампочки перегорит). Можно опытным путем найти такое положение движка переменного резистора, при котором к нагрузке будет подано необходимое ей напряжение.

Переменные резисторы, включаемые потенциометрами, широко используют для регулирования громкости в приемниках и усилителях. Резистор может быть непосредственно подключен параллельно нагрузке. В таком случае ток на этом участке цепи разветвляется и идет двумя параллельными путями: через добавочный резистор и основную нагрузку. Наибольший ток будет в ветви с наименьшим сопротивлением.

Сумма же токов обеих ветвей будет равна току, расходуемому на питание внешней цепи. К параллельному соединению прибегают в тех cлучаях, когда надо ограничить ток не во всей цепи, как при последовательном включении добавочного резистора, а только на каком-то участке. Добавочные резисторы подключают, например, параллельно миллиамперметрам, чтобы ими можно было измерять большие токи. Такие резисторы называют шунтирующими или шунтами. Слово шунт означает ответвление.

Закон Ома был открыт немецким физиком Георгом Омом в 1826 году и с тех пор начал широко применяться в электротехнической области в теории и на практике. Он выражается известной формулой, с посредством которой можно выполнить расчеты практически любой электрической цепи. Тем не менее, закон Ома для переменного тока имеет свои особенности и отличия от подключений с постоянным током, определяемые наличием реактивных элементов. Чтобы понять суть его работы, нужно пройти по всей цепочке, от простого к сложному, начиная с отдельного участка электрической цепи.

Закон ома для участка цепи

Закон Ома считается рабочим для различных вариантов электрических цепей. Более всего он известен по формуле I = U/R, применяемой в отношении отдельного отрезка цепи постоянного или переменного тока.

В ней присутствуют такие определения, как сила тока (I), измеряемая в амперах, напряжение (U), измеряемое в вольтах и сопротивление (R), измеряемое в Омах.

Широко распространенное определение этой формулы выражается известным понятием: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению на конкретном отрезке цепи. Если увеличивается напряжение, то возрастает и сила тока, а рост сопротивления, наоборот, снижает ток. Сопротивление на этом отрезке может состоять не только из одного, но и из нескольких элементов, соединенных между собой .

Формулу закона Ома для постоянного тока можно легко запомнить с помощью специального треугольника, изображенного на общем рисунке. Он разделяется на три секции, в каждой из которых помещен отдельно взятый параметр. Такая подсказка дает возможность легко и быстро найти нужное значение. Искомый показатель закрывается пальцем, а действия с оставшимися выполняются в зависимости от их положения относительно друг друга.

Если они расположены на одном уровне, то их нужно перемножить, а если на разных – верхний параметр делится на нижний. Данный способ поможет избежать путаницы в расчетах начинающим электротехникам.

Закон ома для полной цепи

Между отрезком и целой цепью существуют определенные различия. В качестве участка или отрезка рассматривается часть общей схемы, расположенная в самом источнике тока или напряжения. Она состоит из одного или нескольких элементов, соединенных с источником тока разными способами.

Система полной цепи представляет собой общую схему, состоящую из нескольких цепочек, включающую в себя батареи, разные виды нагрузок и соединяющие их провода. Она также работает по закону Ома и широко используется в практической деятельности, в том числе и для переменного тока.

Принцип действия закона Ома в полной цепи постоянного тока можно наглядно увидеть при выполнении несложного опыта. Как показывает рисунок, для этого потребуется источник тока с напряжением U на его электродах, любое постоянное сопротивление R и соединительные провода. В качестве сопротивления можно взять обычную лампу накаливания. Через ее нить будет протекать ток, создаваемый электронами, перемещающимися внутри металлического проводника, в соответствии с формулой I = U/R.

Система общей цепи будет состоять из внешнего участка, включающего в себя сопротивление, соединительные проводки и контакты батареи, и внутреннего отрезка, расположенного между электродами источника тока. По внутреннему участку также будет протекать ток, образованный ионами с положительными и отрицательными зарядами. Катод и анод станут накапливать заряды с плюсом и минусом, после чего среди них возникнет .

Полноценное движение ионов будет затруднено внутренним сопротивлением батареи r, ограничивающим выход тока в наружную цепь, и понижающим его мощность до определенного предела. Следовательно, ток в общей цепи проходит в пределах внутреннего и внешнего контуров, поочередно преодолевая общее сопротивление отрезков (R+r). На размеры силы тока влияет такое понятие, как электродвижущая сила – ЭДС, прилагаемая к электродам, обозначенная символом Е.

Значение ЭДС возможно измерить на выводах батареи с использованием вольтметра при отключенном внешнем контуре. После подключения нагрузки на вольтметре появится наличие напряжения U. Таким образом, при отключенной нагрузке U = E, в при подключении внешнего контура U

ЭДС дает толчок движению зарядов в полной цепи и определяет силу тока I = E/(R+r). Данная формула отражает закон Ома для полной электрической цепи постоянного тока. В ней хорошо просматриваются признаки внутреннего и наружного контуров. В случае отключения нагрузки внутри батареи все равно будут двигаться заряженные частицы. Это явление называется током саморазряда, приводящее к ненужному расходу металлических частиц катода.

Под действием внутренней энергии источника питания сопротивление вызывает нагрев и его дальнейшее рассеивание снаружи элемента. Постепенно заряд батареи полностью исчезает без остатка.

Закон ома для цепи переменного тока

Для цепей переменного тока закон Ома будет выглядеть иначе. Если взять за основу формулу I = U/R, то кроме активного сопротивления R, в нее добавляются индуктивное XL и емкостное ХС сопротивления, относящиеся к реактивным. Подобные электрические схемы применяются значительно чаще, чем подключения с одним лишь активным сопротивлением и позволяют рассчитать любые варианты.

Сюда же включается параметр ω, представляющий собой циклическую частоту сети. Ее значение определяется формулой ω = 2πf, в которой f является частотой этой сети (Гц). При постоянном токе эта частота будет равной нулю, а емкость примет бесконечное значение. В данном случае электрическая цепь постоянного тока окажется разорванной, то есть реактивного сопротивления нет.

Цепь переменного тока ничем не отличается от постоянного, за исключением источника напряжения. Общая формула остается такой же, но при добавлении реактивных элементов ее содержание полностью изменится. Параметр f уже не будет нулевым, что указывает на присутствие реактивного сопротивления. Оно тоже оказывает влияние на ток, протекающий в контуре и вызывает резонанс. Для обозначения полного сопротивления контура используется символ Z.

Отмеченная величина не будет равной активному сопротивлению, то есть Z ≠ R. Закон Ома для переменного тока теперь будет выглядеть в виде формулы I = U/Z. Знание этих особенностей и правильное использование формул, помогут избежать неправильного решения электротехнических задач и предотвратить выход из строя отдельных элементов контура.

Переменный электрический ток. Закон Ома.

Переме́нный ток , AC (англ. alternating current – переменный ток) – электрический ток, который периодически изменяется по модулю и направлению.

Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.

В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.

Закон ома для переменного тока в общем случае имеет такой же вид, как и для постоянного. То есть при увеличении напряжения в цепи ток также в ней будет увеличиваться. Отличием же является то, что в цепи переменного тока сопротивление ему оказывают такие элементы как катушка индуктивности и емкость. Учитывая этот факт, запишем закон ома для переменного тока.

Формула 1 – закон ома для переменного тока

где z это полное сопротивление цепи.

Формула 2 – полное сопротивление цепи

В общем случае полное сопротивление цепи переменного тока будет состоять из активного емкостного и индуктивного сопротивления. Проще говоря, ток в цепи переменного тока, зависит не только от активного омического сопротивление, но и от величины емкости и индуктивности.

Рисунок 1 – цепь, содержащая омическое индуктивное и емкостное сопротивление

Если, например, в цепь постоянного тока включить конденсатор то тока в цепи не будет, так как конденсатор на постоянном токе является разрывом цепи. Если же в цепи постоянного тока появится индуктивность, то ток не изменится. Строго говоря, изменится, так как катушка будет обладать омическим сопротивлением. Но изменение будет ничтожным. Если же конденсатор и катушку включить в цепи переменного тока, то они будут оказывать сопротивление току пропорционально величине ёмкости и индуктивности соответственно. Кроме этого в цепи буде наблюдаться сдвиг фаз между напряжением и током. В общем случае ток в конденсаторе опережает напряжение на 90 градусов. В индуктивности же отстает на 90 градусов. Емкостное сопротивление зависит от величины емкости и частоты переменного тока. Эта зависимость обратно пропорциональна, то есть с увеличением частоты и ёмкости сопротивление будет уменьшаться.

Формула 3 – емкостное сопротивление

Индуктивное сопротивление прямо пропорционально частоте и индуктивности. Чем больше индуктивность и частота, тем больше сопротивление переменному току будет оказывать данная катушка.

Электрический ток, как и любой процесс, подчиняется законам физики. Знаменитый немецкий физик Георг Симон Ом, именем которого названа единица измерения сопротивления, в 1826 году эмпирически вывел формулы, связывающие между собой ток, напряжение и сопротивление. Поначалу закон вызвал недоверие и критику в научных кругах. Затем правильность его рассуждений была подтверждена французом Клодом Пулье и труды Ома получили заслуженное признание.

Закон Ома для электрической цепи (полной)

Частный случай – закон Ома для участка цепи :

Обозначение

Единица измерения

Физический смысл

I АмперСила тока в цепи
ԑ ВольтЭлектродвижущая сила (э.д.с.) источника питания
r ОмВнутреннее сопротивление источника питания
R ОмСопротивление нагрузки, подключенной и источнику
U ВольтПадение напряжения на сопротивлении нагрузки

Добавим к этим формулам еще и электрическую мощность, выделяемую при прохождении тока:

В результате получается ряд формул, которые выводятся математически. Они связывают между собой все перечисленные физические величины.

Электродвижущая сила и внутреннее сопротивление

Электродвижущая сила источника напряжения характеризует его способность обеспечивать постоянную разность потенциалов на выводах. Эта сила имеет неэлектрическую природу: химическую у батареек, механическую – у генераторов.

Какова роль внутреннего сопротивления источника питания и что это такое? Допустим, вы замкнули накоротко выводы автомобильного аккумулятора медным проводником небольшого сечения. В физическом смысле вы подключили к источнику постоянного тока сопротивление, близкое к нулю. Если воспользоваться формулой для участка цепи, то через аккумулятор и проволоку должен пойти ток бесконечно большой величины. На деле этого не происходит, но проволока сгорит.

Теперь замкнем этой же проволокой батарейку. Ток через нее пойдет меньший. Это объясняется большим, чем у аккумулятора, значением внутреннего сопротивления. При малом сопротивлении нагрузки формула закона для полной цепи превращается в

В итоге ток через замкнутую накоротко батарейку будет иметь конечное значение, а мощность приведет к нагреву батарейки. Если бы мы замкнули аккумулятор более толстым проводом, выдержавшим ток короткого замыкания, то он ощутимо нагрел бы источник изнутри.

Э.Д.С. источника можно с некоторой точностью измерить вольтметром с высоким входным сопротивлением. Внутреннее же сопротивление источника нельзя измерить напрямую, а только рассчитать.

Георг Симон Ом начал свои исследования вдохновляясь знаменитым трудом Жана Батиста Фурье «Аналитическая теория тепла». В этой работе Фурье представлял тепловой поток между двумя точками как разницу температур, а изменение теплового потока связывал с его прохождением через препятствие неправильной формы из теплоизолирующего материала. Аналогично этому Ом обуславливал возникновение электрического тока разностью потенциалов.

Исходя из этого Ом стал экспериментировать с разными материалами проводника. Для того, чтобы определить их проводимость он подключал их последовательно и подгонял их длину таким образом, чтобы сила тока была одинаковой во всех случаях.

Важно при таких измерениях было подбирать проводники одного и того же диаметра. Ом, замеряя проводимость серебра и золота, получил результаты, которые по современным данным не отличаются точностью. Так, серебряный проводник у Ома проводил меньше электрического тока, чем золотой. Сам Ом объяснял это тем, что его проводник из серебра был покрыт маслом и из-за этого, по всей видимости, опыт не дал точных результатов.

Однако не только с этим были проблемы у физиков, которые в то время занимались подобными экспериментами с электричеством. Большие трудности с добычей чистых материалов без примесей для опытов, затруднения с калибровкой диаметра проводника искажали результаты тестов. Еще большая загвоздка состояла в том, что сила тока постоянно менялась во время испытаний, поскольку источником тока служили переменные химические элементы. В таких условиях Ом вывел логарифмическую зависимость силы тока от сопротивления провода.

Немногим позже немецкий физик Поггендорф, специализировавшийся на электрохимии, предложил Ому заменить химические элементы на термопару из висмута и меди. Ом начал свои эксперименты заново. В этот раз он пользовался термоэлектрическим устройством, работающем на эффекте Зеебека в качестве батареи. К нему он последовательно подключал 8 проводников из меди одного и того же диаметра, но различной длины. Чтобы измерить силу тока Ом подвешивал с помощью металлической нити над проводниками магнитную стрелку. Ток, шедший параллельно этой стрелке, смещал ее в сторону. Когда это происходило физик закручивал нить до тех пор, пока стрелка не возвращалась в исходное положение. Исходя из угла, на который закручивалась нить можно было судить о значении силы тока.

В результате нового эксперимента Ом пришел к формуле:

Х = a / b + l

Здесь X – интенсивность магнитного поля провода, l – длина провода, a – постоянная величина напряжения источника, b – постоянная сопротивления остальных элементов цепи.

Если обратиться к современным терминам для описания данной формулы, то мы получим, что Х – сила тока, а – ЭДС источника, b + l – общее сопротивление цепи .

Закон Ома для участка цепи

Закон Ома для отдельного участка цепи гласит: сила тока на участке цепи увеличивается при возрастании напряжения и уменьшается при возрастании сопротивления этого участка.

I = U / R

Исходя из этой формулы, мы можем решить, что сопротивление проводника зависит от разности потенциалов. С точки зрения математики, это правильно, но ложно с точки зрения физики. Эта формула применима только для расчета сопротивления на отдельном участке цепи.

Таким образом формула для расчета сопротивления проводника примет вид:

R = p ⋅ l / s
Закон Ома для полной цепи

Отличие закона Ома для полной цепи от закона Ома для участка цепи заключается в том, что теперь мы должны учитывать два вида сопротивления. Это «R» сопротивление всех компонентов системы и «r» внутреннее сопротивление источника электродвижущей силы. Формула таким образом приобретает вид:

I = U / R + r
Закон Ома для переменного тока

Переменный ток отличается от постоянного тем, что он изменяется с определенными временными периодами. Конкретно он изменяет свое значение и направление. Чтобы применить закон Ома здесь нужно учитывать, что сопротивление в цепи с постоянным током может отличатся от сопротивления в цепи с током переменным. И отличается оно в том случае если в цепи применены компоненты с реактивным сопротивлением. Реактивное сопротивление может быть индуктивным (катушки, трансформаторы, дроссели) и емкостными (конденсатор).

Попробуем разобраться, в чем реальная разница между реактивным и активным сопротивлением в цепи с переменным током. Вы уже должны были понять, что значение напряжение и силы тока в такой цепи меняется со временем и имеют, грубо говоря, волновую форму.

Если мы схематически представим, как с течением времени меняются эти два значения, у нас получится синусоида. И напряжение, и сила тока от нуля поднимаются до максимального значения, затем, опускаясь, проходят через нулевое значение и достигают максимального отрицательного значения. После этого снова поднимаются через нуль до максимального значения и так далее. Когда говорится, что сила тока или напряжение имеет отрицательное значение, здесь имеется ввиду, что они движутся в обратном направлении.

Весь процесс происходит с определенной периодичностью. Та точка, где значение напряжения или силы тока из минимального значения поднимаясь к максимальному значению проходит через нуль называется фазой.

На самом деле, это только предисловие. Вернемся к реактивному и активному сопротивлению. Отличие в том, что в цепи с активным сопротивлением фаза тока совпадает с фазой напряжения. То есть, и значение силы тока, и значение напряжения достигают максимума в одном направлении одновременно. В таком случае наша формула для расчета напряжения, сопротивления или силы тока не меняется.

Если же цепь содержит реактивное сопротивление, фазы тока и напряжения сдвигаются друг от друга на ¼ периода. Это означает, что, когда сила тока достигнет максимального значения, напряжение будет равняться нулю и наоборот. Когда применяется индуктивное сопротивление, фаза напряжения «обгоняет» фазу тока. Когда применяется емкостное сопротивление, фаза тока «обгоняет» фазу напряжения.

Формула для расчета падения напряжения на индуктивном сопротивлении:

U = I ⋅ ωL

Где L – индуктивность реактивного сопротивления, а ω – угловая частота (производная по времени от фазы колебания).

Формула для расчета падения напряжения на емкостном сопротивлении:

U = I / ω ⋅ С

С – емкость реактивного сопротивления.

Эти две формулы – частные случаи закона Ома для переменных цепей.

Полный же будет выглядеть следующем образом:

I = U / Z

Здесь Z – полное сопротивление переменной цепи известное как импеданс.

Сфера применения

Закон Ома не является базовым законом в физике, это лишь удобная зависимость одних значений от других, которая подходит почти в любых ситуациях на практике. Поэтому проще будет перечислить ситуации, когда закон может не срабатывать:

  • Если есть инерция носителей заряда, например, в некоторых высокочастотных электрических полях;
  • В сверхпроводниках;
  • Если провод нагревается до такой степени, что вольтамперная характеристика перестает быть линейной. Например, в лампах накаливания;
  • В вакуумных и газовых радиолампах;
  • В диодах и транзисторах.

Закон Ома для электрической цепи

Электрический ток, как и любое другое физическое явление подчиняется определенным законам. Так, в 1826 году, Георг Ом вывел эмпирический закон, который способен объяснить зависимость силы тока, напряжения, а также особенностей проводника в электроцепи. В дальнейшем вносились определенные изменения, сам закон Ома для электрической цепи модифицировался, и на данный момент ученые его интерпретируют в четырех вариантах, которые мы и рассмотрим.

В ходе практических исследований, на их базе, ученый смог определить зависимость силы тока и напряжения от специфики проводника, по которому протекает ток. Если быть точнее, то каждый материал имеет определенное сопротивление и на определенном участке цепи, сила тока вычисляется отношением напряжения и сопротивления.

I = U/ R,

где I – сила тока, U – напряжение, R – сопротивление проводника.

Фактически, этот закон аналогичен прохождению воды по трубам: чем больше диаметр трубы и напор, тем больше ее выльется в конечной точке.

Закон Ома для замкнутой цепи

Подобная интерпретация подразумевает наличие источника питания, а также проводника, по которому протекает ток. В этом случае, помимо сопротивления на отдельно взятом участке следует учитывать и то, которое возникает в ИП. Учитывая эти факторы, можно сказать, что сила тока будет равна отношению электродвижущей силы к сумме сопротивлений.

I = E/ Rвн+r,

где Е – ЭДС, Rвн – внешнее сопротивление, а r соответственно внутреннее.

Закон Ома для замкнутой цепи можно объяснить доступным языком. Электродвижущая сила по определению должна полноценно обеспечивать постоянную разницу потенциалов, и эта сила может иметь неприродное происхождение: химическое, если в качестве источника используется батарейка или механическая, в случае подключения к электрической цепи генератора. При подключении медной проволоки с идентичным сечением к батарейке и аккумулятору. Эффект должен быть таким, что по этому проводнику, в котором сопротивление практически отсутствует, должен пойти ток с величиной, стремящейся к бесконечности. Однако этого не происходит и разница в показателях будет существенной, а во втором случае, проволока и вовсе может перегореть. Именно поэтому в расчет берется внутреннее сопротивление источника питания, чтобы описать подобное явление.

Закон ома для неоднородного участка цепи

Перед тем, как записать формулу для подобной интерпретации закона, следует разобраться в таких понятиях, как линейные и нелинейные участки цепи.

Если сопротивление никаким образом не зависит от тока и подаваемого напряжения, то с ростом второго параметра, первый будет прямо пропорционально возрастать и наоборот, то есть зависимость можно описать прямой линией. Подобная зависимость относится к линейным участкам цепи и сопротивление имеет аналогичное название.

Однако вышеизложенный вариант считается идеальным и его можно смоделировать лишь в идеальных условиях, что фактически невозможно, ведь, как минимум, окружающая среда вносит свои коррективы. В этом случае, рост напряжения не будет прямо пропорциональным силе тока и на графике зависимость будет изображаться в виде кривой.

На рисунке изображено два графика, первый из которых описывает линейную зависимость, а второй нелинейную.

Чтобы отчетливо понимать разницу между этими понятиями, рассмотрим принцип работы обычной электрической лампы накаливания. При прохождении тока по нити, температура в значительной степени повышается, что приводит к заметному росту сопротивления. Соответственно, при возрастании напряжения, сила тока будет увеличиваться медленнее, то есть не линейно.

Примечание: в некоторых ситуациях, некоторыми внешними факторами пренебрегают по причине того, что они очень незначительны и в числовом эквиваленте никоим образом не могут повлиять на общую картину. Это значит, что нелинейная зависимость на графике фактически совпадает с линейной.

Учитывая вышесказанное, можно установить следующую зависимость:

I = U/ R = (f1 – f2) + E/ R,

Где f1 и f2 – потенциалы (соответственно f1 – f2 называется разницей потенциалов), E – ЭДС неоднородного участка цепи, а R – суммарное сопротивление на этом же участке.

Нужно упомянуть и о том, что электродвижущая сила не всегда в этом случае будет иметь положительное значение. Если направление тока источника будет аналогичным с направлением в электрической сети, протонов будет больше, чем электронов (положительных и отрицательных частиц), то в этом случае величина E будет иметь значение со знаком «+», в иной ситуации, этот параметр будет со знаком «-».

Закон Ома для переменного тока

Если в электроцепи имеется емкость или инертность, то этот факт следует однозначно учитывать при расчётах силы тока. Они имеют собственные показатели сопротивления, что приводит к ситуации, которая будет иметь переменный характер. В случае Закона Ома для переменного тока формула записывается следующим образом:

I = U/ Z, где

I – сила тока, U – напряжение, а Z – суммарное значение сопротивления на всех участках электрической цепи (этот параметр именуется еще, как импеданс).

Как говорилось изначально, закон Ома считается эмпирическим. Это обозначает то, что он может не всегда работать и выполнять вычисления на его основе не представляется возможным. Подобная ситуация может сложиться в нескольких случаях:

  • в ситуации, когда электросеть имеет высокую частоту и электромагнитное поле может сильно изменяться за короткие промежутки времени;
  • при наличии проводников, которые обладают свойствами сверхпроводимости, расположенных в условиях низких температурных показателей;
  • при перегреве проводника под воздействием проходящего по нему тока, отношение напряжения и сопротивления может носить переменный, неоднородный характер;
  • если проводник (диэлектрик) находится под высоким напряжением;
  • светодиодных лампах;
  • в полупроводниках и аналогичных устройствах.

На основе этого закона, можно произвести вывод некоторых формул математическим путем. С их помощью можно производить разнообразные расчеты.

Поделиться ссылкой:

Похожее

Закон

Ома: что это такое и почему это важно?

Обновлено 28 декабря 2020 г.

Ли Джонсон

Электрические цепи повсеместно встречаются в нашей повседневной жизни. От сложных интегральных схем, управляющих устройством, которое вы читаете в этой статье, до проводки, которая позволяет вам включать и выключать лампочку в вашем доме, вся ваша жизнь была бы радикально другой, если бы вы не были окружены цепями повсюду. ты иди.

Но большинство людей на самом деле не изучают мельчайших деталей того, как работают схемы, и довольно простые уравнения, такие как закон Ома, которые объясняют взаимосвязь между ключевыми понятиями, такими как электрическое сопротивление, напряжение и электрический ток.Однако более глубокое погружение в физику электроники может дать вам гораздо более глубокое понимание основных правил, лежащих в основе большинства современных технологий.

Что такое закон Ома?

Закон Ома – одно из самых важных уравнений, когда дело доходит до понимания электрических цепей, но если вы собираетесь его понять, вам понадобится хорошее понимание основных понятий, которые он связывает: напряжение , ток и сопротивление . Закон Ома – это просто уравнение, которое описывает соотношение между этими тремя величинами для большинства проводников.

Напряжение – это наиболее часто используемый термин для обозначения разности электрических потенциалов между двумя точками, который обеспечивает «толчок», который позволяет электрическому заряду перемещаться по проводящей петле.

Электрический потенциал – это форма потенциальной энергии, подобная гравитационной потенциальной энергии, и определяется как электрическая потенциальная энергия на единицу заряда. Единицей измерения напряжения в системе СИ является вольт (В), а 1 В = 1 Дж / Кл, или один джоуль энергии на кулон заряда. Иногда его также называют электродвижущей силой , или ЭДС.

Электрический ток – это скорость протекания электрического заряда через заданную точку в цепи, которая имеет ампер (А) в системе СИ, где 1 А = 1 Кл / с (один кулон заряда в секунду). Он имеет форму постоянного (DC) и переменного (AC) тока, и хотя постоянный ток проще, цепи переменного тока используются для подачи энергии в большинство домашних хозяйств по всему миру, потому что его проще и безопаснее передавать на большие расстояния.

Последняя концепция, которую вам необходимо понять, прежде чем приступить к рассмотрению закона Ома, – это сопротивление, которое является мерой сопротивления току, протекающему в цепи.Единицей измерения сопротивления в системе СИ является ом (в котором используется греческая буква омега, Ом), где 1 Ом = 1 В / А.

Уравнение закона Ома

Немецкий физик Георг Ом описал взаимосвязь между напряжением, током и сопротивлением в своем одноименном уравнении. Формула закона Ома:

В = IR

, где В, – напряжение или разность потенциалов, I – величина тока, а сопротивление R – конечная величина.

Уравнение можно легко переформулировать, чтобы получить формулу для расчета тока на основе напряжения и сопротивления или сопротивления на основе тока и напряжения. Если вам неудобно переставлять уравнения, вы можете найти треугольник закона Ома (см. Раздел “Ресурсы”), но это довольно просто для любого, кто знаком с основными правилами алгебры.

Ключевыми моментами, которые показывает уравнение закона Ома, являются то, что напряжение прямо пропорционально электрическому току (поэтому, чем выше напряжение, тем выше ток), и этот ток обратно пропорционален сопротивлению (поэтому чем выше сопротивление, тем ниже электрический ток).

Вы можете использовать аналогию с потоком воды, чтобы запомнить ключевые моменты, которые основаны на трубе с одним концом на вершине холма и одним концом внизу. Напряжение похоже на высоту холма (более крутой и высокий холм означает большее напряжение), ток подобен потоку воды (вода течет быстрее по крутому склону), а сопротивление похоже на трение между сторонами трубы. и вода (более тонкая труба создает большее трение и снижает скорость потока воды, как более высокое сопротивление для электрического тока).

Почему важен закон Ома?

Закон Ома жизненно важен для описания электрических цепей, поскольку он связывает напряжение с током, а значение сопротивления регулирует взаимосвязь между ними. Из-за этого вы можете использовать закон Ома для управления величиной тока в цепи, добавляя резисторы, чтобы уменьшить ток, и снимая их, чтобы увеличить величину тока.

Его также можно расширить, чтобы описать электрическую мощность (скорость потока энергии в секунду), потому что мощность P = IV, и поэтому вы можете использовать ее, чтобы гарантировать, что ваша схема обеспечивает достаточно энергии, например, для 60-ваттного прибора.

Для студентов-физиков наиболее важным в законе Ома является то, что он позволяет анализировать принципиальные схемы, особенно когда вы объединяете его с законами Кирхгофа, которые следуют из него.

Закон Кирхгофа по напряжению гласит, что падение напряжения вокруг любого замкнутого контура в цепи всегда равно нулю, а закон тока утверждает, что величина тока, протекающего в переходе или узле в цепи, равна величине, вытекающей из Это. Вы можете использовать закон Ома с законом напряжения, в частности, для расчета падения напряжения на любом компоненте схемы, что является общей проблемой, возникающей в классах электроники.

Примеры закона Ома

Вы можете использовать закон Ома, чтобы найти любую неизвестную величину из трех, при условии, что вам известны две другие величины для рассматриваемой электрической цепи. Работа с некоторыми базовыми примерами показывает, как это делается.

Во-первых, представьте, что у вас есть 9-вольтовая батарея, подключенная к цепи с общим сопротивлением 18 Ом. Сколько тока течет при подключении цепи? Изменив закон Ома (или используя треугольник), вы можете найти:

\ begin {align} I & = \ frac {V} {R} \\ & = \ frac {9 \ text {V}} {18 \ текст {Ω}} \\ & = 0.5 \ text {A} \ end {align}

Итак, 0,5 ампер тока течет по цепи. А теперь представьте, что это идеальная величина тока для компонента, который вы хотите запитать, но у вас есть только батарея на 12 В. Какое сопротивление вы должны добавить, чтобы убедиться, что компонент получает оптимальную силу тока? Опять же, вы можете переставить закон Ома и решить его, чтобы найти ответ:

\ begin {align} R & = \ frac {V} {I} \\ & = \ frac {12 \ text {V}} {0.5 \ text {A}} \\ & = 24 \ text {Ω} \ end {align}

Итак, вам понадобится резистор 24 Ом для завершения вашей схемы.Наконец, каково падение напряжения на резисторе 5 Ом в цепи с током 2 А, протекающим через нее? На этот раз стандартная форма закона V = IR работает нормально:

\ begin {выровнено} V & = IR \\ & = 2 \ text {A} × 5 \ text {Ω} \\ & = 10 \ text {V} \ end {align}

Омические и неомические резисторы

Вы можете использовать закон Ома в огромном количестве ситуаций, но есть ограничения на его применимость – это не действительно фундаментальный закон физики. .Закон описывает линейную зависимость между напряжением и током, но это соотношение сохраняется только в том случае, если резистор или резистивный элемент схемы, с которым вы работаете, имеет постоянное сопротивление при различных значениях напряжения В и тока I .

Материалы, которые подчиняются этому правилу, называются омическими резисторами, и хотя большинство физических проблем связано с омическими резисторами, вы знакомы со многими неомическими резисторами из своей повседневной жизни.

Лампочка – прекрасный пример неомического резистора.Когда вы строите график зависимости В от I для омических резисторов, он показывает полностью прямолинейную зависимость, но если вы сделаете это для чего-то вроде лампочки, ситуация изменится. По мере того как нить накала в лампе нагревается, сопротивление лампы увеличивается на , что означает, что график становится кривой, а не прямой линией, и закон Ома не действует.

Что такое закон Ома? Объяснение и ограничения закона Ома

Когда разность электрических потенциалов (В) приложена к проводнику, как показано на рисунке ниже, через него протекает некоторый ток (I) .Протеканию тока противостоит сопротивление проводника и цепи. Связь между напряжением, током и сопротивлением объясняется законом Ома.

Законы

Ома гласят, что ток через любые две точки проводника прямо пропорционален разности потенциалов, приложенной к проводнику, при условии, что физические условия, то есть температура и т. Д., Не изменяются. Измеряется в ( Ом, ) Ом.

Математически это выражается как

Другими словами, закон Ома также можно сформулировать как;

Отношение разности потенциалов в конечной точке проводника к току, протекающему между ними, всегда постоянно, но физические условия проводника i.е. температура и т. д. остаются такими же.

Эта постоянная также называется сопротивлением (R) проводника (или цепи)

Его можно записать как

В цепи, когда ток течет через резистор, разность потенциалов на резисторе известна как падение напряжения на нем, то есть В = IR.

Ограничения закона Ома

  • Закон Ома не применяется в односторонних сетях.Односторонние сети позволяют току течь в одном направлении. Такие типы сетей состоят из таких элементов, как диод, транзистор и т. Д.
  • Это не применимо для нелинейной сети. В нелинейной сети параметр сети изменяется в зависимости от напряжения и тока. Их параметры, такие как сопротивление, индуктивность, емкость, частота и т. Д., Не остаются постоянными с течением времени. Так что закон Ома неприменим к нелинейной сети.

Закон Ома используется для определения сопротивления цепи, а также для определения напряжения и тока цепи.

Блок напряжения, тока и сопротивления

На мгновение подумайте, как выглядит сопротивление с точки зрения электронов. Представьте, что вы электрон, который толкается от атома к атому под давлением всех ваших собратьев-электронов. Подумайте о своем электронном «я», движущемся через смесь связующего клея к углеродным частицам, где вы можете либо столкнуться с атомом и получить тепло в виде атомных колебаний, либо, в других случаях, вам позволят пройти через резистор, чтобы продолжить свой путь по цепи.

Было бы разумно предположить, что если бы на вас давило определенное давление друзей-электронов, скажем, на 9 вольт (V или E), и определенная сила тока (I) проходит через резистор данного сопротивления. , что ваше движение в качестве электрона будет основано на отношениях всех ваших напористых друзей-электронов.

Георг Ом (1789-1854) определил важную взаимосвязь между напряжением, током и сопротивлением, теперь называемую законом Ома, который гласит: разность потенциалов в один вольт заставит ток в один ампер пройти через сопротивление в один Ом .

Математически закон Ома можно записать как: I = E / R , , где I относится к току, E – приложенному напряжению, а R – сопротивлению в Ом. Его также можно записать как E = I ´ R или R = E / I .

Приведенная ниже диаграмма позволяет легко запомнить этот важный закон. Коснувшись значения, которое вы пытаетесь решить, вы увидите решение. Таким образом, положив палец на букву E, вы решаете для I и R или E = I x R, или решение для I будет I = E, деленное на R.

Закон Ома

Чтобы понять закон Ома и взаимосвязь между напряжением, сопротивлением и током, аналогия с водой – один из способов подумать об этой взаимосвязи. (прямо внизу).

Визуализация электронного потока с помощью резистора по аналогии с краном.Больше сопротивления означает меньший поток электронов.

При закрытии крана расход жидкости уменьшается. Это аналогично большому сопротивлению, ограничивающему ширину электронной трубки, поэтому за определенный период проходит меньше электронов. Следовательно, высокое сопротивление уменьшает поток электронов, но аналогия с водой также позволяет идентифицировать идею электронного давления или количества электронов, поскольку это связано с возможным потоком.

С помощью закона Ома теперь вы можете рассчитать резистор какого размера вам понадобится для защиты чувствительной электронной части, которая не способна выдерживать большое количество электронов за определенный период времени. Помните, как мы определили плавкий предохранитель как тонкую проволоку, которая сгорит и расплавится, если за определенный период времени пройдет слишком много электронов? Что ж, резисторы могут предотвратить возгорание чувствительных частей, поглощая и отдавая в виде тепла часть этой энергии электронов.

Согласно закону Ома, если вам даны любые два значения в цепи, вы всегда можете найти третье значение, используя простую алгебру.Часто, когда вы покупаете детали, в листе данных на обратной стороне упаковки говорится, что электронное устройство будет работать с определенным напряжением, например, 5 вольт постоянного тока. На упаковке также будет указано, что электронная часть может выдерживать только определенное количество силы тока или миллиампера.

Теперь, используя закон Ома, вы можете рассчитать, что резистор определенного размера позволит источнику с напряжением 5 В передавать определенную силу тока за одну секунду. К счастью, закон Ома работает для переменного, постоянного тока и радиочастот (RF).

При работе с электроникой важно, чтобы у нас был язык для передачи электронных разработок. Волнение от возможности читать карты станет очевидным, когда вы изучите электронику, поскольку карты возможных схем находятся в свободном доступе. Схема – это карта, которая рассказывает нам, как строить схемы. Они состоят из символов, обозначающих различные электронные компоненты.

Когда я впервые начал изучать электронику, это было пугающе, пока я не понял, что художники и инженеры мыслят визуально и могут видеть вещи в трех измерениях, однако инженеры также создали чудесный символический язык для описания схем и их соединений, и этот язык также делает много смысла художникам.

Например, (изображение ниже) справа показан символ резистора и трехмерная модель резистора. Кривая линия говорит о том, что по мере того, как электроны попадают в резистор, их количество уменьшается или замедляется, как на извилистой дороге, которая может замедлить вашу машину. Вы также можете представить себе символы резистора, кривую линию, как тепловую волну, которая является нагреванием резистора со всеми квантовыми колебаниями электронов, ударяющих по ядрам атомов углерода внутри резистора.

Резистор 470 Ом: часть справа и схематический рисунок слева.

После этого абзаца приведен пример схемы, в которой есть резистор, лампа и батарея в замкнутой цепи. Мы будем использовать эту принципиальную схему и некоторые изменяющиеся значения для выполнения некоторых расчетов по закону Ома.

Закон Ома

| УЧИТЬСЯ.PARALLAX.COM

На напряжение на В A3 влияют два свойства: ток и сопротивление, а закон Ома объясняет, как это работает. Закон Ома гласит, что напряжение (V) на резисторе равно току (I), проходящему через него, умноженному на его сопротивление (R). Итак, если вам известны два из этих значений, вы можете использовать уравнение закона Ома для вычисления третьего:

В некоторых учебниках вместо этого вы увидите E = I × R. E обозначает электрический потенциал, что по-другому означает «вольт».”

Напряжение (В) измеряется в вольтах, которые обозначаются прописными буквами V. Ток (I) измеряется в амперах или амперах, которые обозначаются сокращенно A. Сопротивление (R) измеряется в омах. сокращенно греческой буквой омега (Ω). Уровни тока, которые вы, вероятно, увидите через эту схему, выражены в миллиамперах (мА). Строчная буква m означает, что это измерение тысячных долей ампера. случай k в кОм означает, что измерение производится в тысячах Ом.

Давайте воспользуемся законом Ома, чтобы рассчитать V A3 в фототранзисторе, пропуская два разных количества тока через цепь:

  • 1,75 мА, что может произойти в результате довольно яркого света
  • 0,25 мА, что произойдет при менее ярком свете

Примеры ниже показывают условия и способы их устранения. Выполняя эти вычисления, помните, что милли (м) – это тысяч , а килограмм (k) – это тысяч тысяч, когда вы подставляете числа в закон Ома.

Пример 1: I = 1,75 мА и R = 2 кОм

Пример 2: 1 = 0,25 мА и R = 2 кОм

Ваша очередь – Закон Ома и регулировка резистора

Скажем так окружающий свет в вашей комнате вдвое ярче, чем свет, который дает V A3 = 3,5 В для яркого света и 0,5 В для тени. Другая ситуация, которая может вызвать более высокий ток, – это если окружающий свет является более сильным источником инфракрасного излучения. В любом случае фототранзистор может пропускать через цепь вдвое больший ток, что может привести к трудностям измерения.

Вопрос: Что вы могли бы сделать, чтобы снизить ответное напряжение схемы до 3,5 В для яркого света и 0,5 В для тусклого света?

Ответ: Уменьшите номинал резистора вдвое; сделайте 1 кОм вместо 2 кОм.

  • Попробуйте повторить вычисления по закону Ома с R = 1 кОм, ярким током I = 3,5 мА и тусклым током I = 0,5 мА. Вернет ли он V A3 обратно к 3,5 В для яркого света и 0,5 В для тусклого света с удвоенным током? (Должен; если не для вас, проверьте свои расчеты.)

Закон Ома

Мы рассмотрим фундаментальную связь в электронике и физике.

Закон Ома был открыт Георгом Омом в 1837 году, и это основное уравнение, которое управляет многими схемами. Три основных ингредиента – это ток через простую цепь, приложенное напряжение (обычно от батареи) и сопротивление устройства, которое использует ток для выполнения некоторой работы, обычно тепла или света. На этом этапе вы узнаете о
  • математической формулировке закона Ома и основном обратном соотношении, которое он кодирует
  • , как аналогия с водопроводной трубой может помочь в понимании значения закона Ома.

Закон Ома

Закон Ома гласит, что если \ (\ normalsize {V} \) – это напряжение (измеренное в вольтах) на резисторе \ (\ normalsize {R} \) (измеренном в омах), который потребляет ток \ (\ normalsize {I} \) (измеряется в амперах), затем \ [\ Large {V = IR}. \] Резистор – это объект, который использует электрическую энергию и преобразует ее во что-то еще, например, тепло или свет. Примером может служить тостер. Электроэнергия, протекающая через тостер, питается от перепада напряжения, подаваемого через электрическую розетку.Чем больше напряжение, тем больше тока \ (\ normalsize {I} \) проходит через тостер. Итак, для фиксированного резистора \ (\ normalsize {R} \) закон Ома устанавливает линейную пропорциональность между напряжением и током. Нити для тостеров Ник Карсон, en.wikipedia CC BY 3.0, через Wikimedia Commons Однако мы можем взглянуть на закон и по-другому. Если мы рассматриваем напряжение \ (\ normalsize {V} \) как фиксированное, то сопротивление и ток обратно пропорциональны, поскольку их произведение постоянно и равно фиксированному напряжению.Если мы увеличиваем сопротивление, то ток уменьшается, а если мы уменьшаем сопротивление, то ток увеличивается. Это ситуация с цепью, управляемой батареей, или с электричеством в нашем доме, где подаваемое напряжение является постоянным ( \ (\ normalsize {110-120} \) вольт в большинстве стран Америки, \ (\ normalsize {220-230} \) вольт в Европе, Австралии и большинстве стран Азии). Однако, строго говоря, в этом случае напряжение меняется по направлению. В предельном случае, когда сопротивление становится равным нулю, например, если вы заменяете тостер на провод, то течет бесконечно большой ток.Затем происходит короткое замыкание , часто с катастрофическими последствиями, особенно если у вас нет предохранителя, который бы разомкнул цепь в такой аварийной ситуации.

Некоторые примеры

Если мы подключим лампу к цепи, питаемой батареей на 6 В, и потребляем ток 3 А, тогда сопротивление \ (\ normalsize R \) будет равно \ [\ Large R = \ frac {V } {I} = \ frac 63 = 2 \; \ text {ohms}. \] Теперь, если мы подключим ту же лампу к 10-вольтовой батарее, то ток \ (\ normalsize I \) будет \ [\ Large I = \ frac {V} {R} = \ frac {10} 2 = 5 \; \ text {amps}.\] Если мы хотим сделать свет ярче, нам нужно увеличить ток, скажем, до 8 ампер, тогда нам нужно увеличить напряжение до \ [\ Large V = IR = 8 \ times2 = 16 \; \ text {volts} . \]

Q1 (E): электрическое устройство подключено к напряжению 120 вольт. Найдите ток, если сопротивление 480 Ом.

Q2 (E): Предположим, что у нас есть батарея с некоторым постоянным напряжением, освещающая небольшую лампу, и амперметр показывает 40 мА, где мА означает миллиампер, что составляет одну тысячную амперметра.Если ток упал до 20 мА, что случилось с сопротивлением?

Как резистор сопротивляется?

Резистор – это любое устройство, замедляющее прохождение тока в цепи. Электричество, по сути, перемещает электроны, и, как и вода, если поток прерывается, ограничивается или сопротивляется , проходит меньше. Некоторые материалы имеют низкое сопротивление, например медная проволока, что позволяет электронам проходить через них без особых проблем. Другие материалы, такие как дерево, обладают высоким сопротивлением, почти мгновенно останавливая электрический ток.На практике у нас есть такие вещи, как лампы и тостеры, которые генерируют свет или тепло от электронов, замедляя их, но все же пропуская.

Ом также обнаружил другой закон, который описывает, какое сопротивление имеет данный материал, например кусок проволочной трубки:

\ [\ Large R = \ frac {\ rho L} {A} \]

где \ ( \ normalsize L \) – длина резистора, \ (\ normalsize \ rho \) – величина, которая зависит от материала, а \ (\ normalsize A \) – площадь поперечного сечения резистора.Итак, \ (\ normalsize R \) прямо пропорционально длине \ (\ normalsize L \): удвоить длину проволочной трубки, и ее сопротивление удвоится. Но \ (\ normalsize R \) также обратно пропорционален площади поперечного сечения \ (\ normalsize A \): удвоить площадь и половину сопротивления.

3 кв. (E): трубчатый резистор имеет форму проволоки. Если мы утроим его длину и уменьшим вдвое диаметр, что произойдет с его сопротивлением?

Гидравлическая аналогия

Для понимания закона Ома иногда бывает полезна гидравлическая аналогия для начинающих.Представьте себе воду, текущую по горизонтальной трубе. Давление воды \ (\ normalsize P \) аналогично напряжению \ (\ normalsize V \), потому что это разница давлений между двумя точками вдоль трубы, которая заставляет воду течь. Фактический расход воды \ (\ normalsize F \) тогда является аналогом текущего \ (\ normalsize I \).

А что с аналогом резистора? Это можно представить как нечто, препятствующее потоку воды, например, ограничители или отверстия в трубах. Если вода проталкивается через очень тонкую трубку, то чем длиннее трубка и меньше ее площадь поперечного сечения, тем большее сопротивление \ (\ normalsize R \) она будет оказывать на расход воды \ (\ normalsize F \) .И чем больше сопротивление, тем меньше расход.

Соответствующее уравнение для нашего гидравлического аналога в соответствующих единицах:

\ [\ Large P = FR. \]

Итак, если мы сохраним фиксированное давление, то расход и ограничение будут обратно пропорциональны: как размер ограничение \ (\ normalsize R \) уменьшается, расход \ (\ normalsize F \) должен увеличиваться.

На рисунке ниже мы ожидаем, что более тонкая трубка будет действовать как сопротивление потоку в большой трубке.

Ответы

A1. По закону Ома ток можно найти по

\ [\ Large {I = \ frac {V} {R} = \ frac {120} {480} = 0,25 \; \ text {amps}}. \]

A2. Когда напряжение постоянно, соотношение между током и сопротивлением обратное. Следовательно, если ток уменьшается вдвое, сопротивление увеличивается вдвое.

A3. Утроение длины резистора увеличивает его сопротивление в 3 раза, а уменьшение его диаметра вдвое увеличивает площадь поперечного сечения на 1/4.В целом сопротивление изменяется в \ (\ frac {3} {1/4} = 12 \) раз.

Как применять закон Ома – Jade Learning

Как применять закон Ома

Автор: Вес Губиц | 07 августа 2019 г.

Электроэнергия работает в предсказуемых пределах. Мы пришли к выводу, что эти границы являются законом Ома. Закон Ома был разработан как средство объяснения того, как электричество работает в замкнутой цепи. Формула закона Ома помогает установить взаимосвязь между различными свойствами в электрической цепи.Мы можем использовать закон Ома, чтобы объяснить, что произошло, а также что произойдет, когда на электрическую цепь накладываются определенные условия.

Основные характеристики электрической схемы: Напряжение, ток и сопротивление . Они специфичны, определены и не меняются – при условии, что все свойства остаются постоянными. Однако измените значение только одного из этих свойств, и все свойства изменят значение соответствующим образом.

Закон Ома – это самая основная из электрических формул, он был разработан путем простого наблюдения за свойствами электричества в электрической цепи.Электричество ведет себя иначе из-за ограничений, налагаемых формулой закона Ома; формула просто представляет наши наблюдения за поведением, уже происходящим в электрической цепи.

Хотя закон Ома – всего лишь вводная ступенька на лестнице электротехники, для понимания того, как закон Ома как формула применяется к простой цепи, необходимо базовое понимание электрической цепи. Простая схема состоит из источника питания, нагрузки, проводов, устройства максимального тока и устройства управления.Ток будет течь в этой простой цепи, если имеется достаточное напряжение, чтобы преодолеть любое сопротивление цепи.
Напряжение считается давлением в электрической цепи; это уместно называется электродвижущей силой. Это давление или «сила» вызывается разными электрическими полюсами, которые хотят уравновесить себя. Толчок и притяжение, наложенные на электроны в проводнике, подключенном к этим разным полюсам, заставят электроны двигаться, если для них существует полный путь.Единственное, что может остановить движение электронов, – это приложенное сопротивление сверх того напряжения, которое заставляет их двигаться, или разрыв цепи, который нарушает поток этих электронов. Требуется один вольт (В) этой электродвижущей силы, чтобы протолкнуть один ампер (А) тока через один ом (Ом) сопротивления – это закон Ома. Напряжение (E или V) равно току (I), умноженному на сопротивление (R). Или, другими словами, E (или V) = IR.

Обозначения

  • Вольт (E или V) = электродвижущая сила, опять же, это давление, которое заставляет электроны перемещаться по проводнику (и через нагрузку) в замкнутой цепи.
  • Ток (I) = интенсивность, представляет ток, протекающий в цепи. Помните, что «интенсивность» тока в цепи измеряется в амперах.
  • Сопротивление (R) = Ом, сопротивление току. Сопротивление может быть преднамеренным или случайным, но в любом случае оно является противодействием свободному току в цепи и отображается на вашем электрическом счетчике в виде Ом. Нулевое сопротивление или близкое к нему означает буквально отсутствие сопротивления току. Медь имеет очень низкое значение сопротивления на фут и является высококачественным материалом для создания эффективных проводников.

Давайте посмотрим на символы закона Ома внутри треугольника закона Ома.

Помните, что вольт (E или V) равняется току (I), умноженному на сопротивление (R)

Использование треугольника закона Ома в качестве наглядного пособия при запоминании трех уравнений закона Ома – не редкость.

Чтобы найти пропущенное значение в реальном уравнении закона Ома, просто закройте букву, представляющую пропущенное значение в треугольнике, и используйте оставшиеся два значения для вычисления этого пропущенного значения.

Например: если вы знаете, что лампа на 120 В (Е или В) измеряет при использовании ток 0,625 А (I), какое сопротивление оказывает лампа?

120 В (E), деленное на 0,625 А (I), равняется 192 Ом (R) сопротивления.

Что делать, если вы знаете измеряемые амперы (I) протекающего тока и сопротивление (R) нити лампы? Можете ли вы затем рассчитать напряжение, подаваемое на эту лампу? Посмотрите на треугольник закона Ома ниже, чтобы определить свой ответ.

Ток (I), умноженный на сопротивление (R), равен напряжению, приложенному к лампе.

Треугольник закона Ома Правило
Помните, глядя на треугольник закона Ома, если числа стоят рядом, вы умножаете, если числа расположены одно над другим, вы делите.

Заключение
Закон Ома и многие другие электрические формулы предоставляют нам средства, с помощью которых мы можем понять самые основные принципы протекания электричества и тока. Эти многочисленные формулы позволяют нам заглянуть в прошлое, а также в будущее электрических приложений.Можно сказать, что эти формулы дают нам своего рода поводок, если не контролировать это явление, то, возможно, хотя бы держаться!

Узнайте больше о Георге Оме и законе Ома

Георг Симон Ом родился в 1787 году в Эрлангене, Германия. Ом происходил из протестантской семьи. Его отец, Иоганн Вольфганг Ом, был слесарем, а мать, Мария Элизабет Бек, была дочерью портного. Если бы братья и сестры Ома выжили, он был бы членом большой семьи, но, как это было принято в то время, несколько детей умерли молодыми.Только двое из братьев и сестер Георга выжили: его брат Мартин, который впоследствии стал известным математиком, и его сестра Элизабет Барбара.

Хотя его родители не имели формального образования, отец Ома был замечательным человеком, получившим самообразование и способным дать своим сыновьям прекрасное образование с помощью своего собственного учения.

Образование и ранняя работа

В 1805 году Ом поступил в Эрлангенский университет, получил докторскую степень и сразу же стал преподавателем математики.Спустя три семестра Ом оставил университетскую должность. Он не понимал, как ему достичь лучшего статуса в Эрлангене, поскольку перспективы там были невысокими, в то время как он, по сути, жил в бедности, читая лекции. Правительство Баварии предложило ему должность учителя математики и физики в некачественной школе в Бамберге, и он занял эту должность в январе 1813 года.

Ом написал книгу по элементарной геометрии, когда преподавал математику в нескольких школах. Ом начал экспериментальную работу в школьной лаборатории физики после того, как в 1820 году узнал об открытии электромагнетизма.

В двух важных статьях 1826 года Ом дал математическое описание проводимости в схемах, смоделированных на основе исследования теплопроводности Фурье. Эти статьи продолжают вывод Ома результатов из экспериментальных данных, и, особенно во втором случае, он смог предложить законы, которые во многом помогли объяснить результаты других, работающих над гальваническим электричеством.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *