Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов. Создаем робота-андроида своими руками [litres]

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Зарядные устройства для NiCd аккумуляторов достаточно дешевы. Обычно изготовление внешнего зарядного устройства под популярные размеры аккумуляторов, таких как ААА, АА, C и D, не отнимет много сил и времени. Умение сконструировать подобное устройство окажется полезным и тем, кто захочет встроить ЗУ в робота. В отличие от большинства дешевых ЗУ, которые продолжают заряжать аккумулятор током порядка C/10 даже после его полной зарядки, наше устройство уменьшает зарядный ток до порядка С/30 после того, как батареи оказались полностью заряженными. Такая процедура рекомендована для NiCd аккумуляторов и поможет обеспечить их длительную работоспособность.

Следующая информация позволит вам самостоятельно изготовить ЗУ для стандартного NiCd аккумулятора.

Зарядное устройство представляет собой отдельный блок, схема его подключения приведена на рис.  3.7 в иллюстративных целях. Такую схему легко разместить в корпусе робота, при этом потребуется разъем для соединения с ЗУ. Кроме того, необходим двухполюсный двухпозиционный переключатель, помещенный между разъемом и остальной схемой. Этот переключатель соединяет источник питания (аккумулятор) либо с остальной схемой робота, либо с ЗУ. Обесточивание робота необходимо потому, что в противном случае ток заряда аккумулятора уменьшится (см. рис. 3.7).

Рис. 3.7. Двухпозиционный переключатель, управляющий зарядом АКБ

Питание зарядного устройства можно осуществлять, используя либо обычный трансформатор, либо портативный блок питания, совмещенный со штекерной вилкой (типа используемых для питания плееров). Я предпочитаю последний, поскольку он дает на выходе постоянный ток. Если вы используете трансформатор, то вам дополнительно потребуются сетевой предохранитель, диодный мост, сглаживающий конденсатор и соединительные провода.

В любом случае вы должны подобрать характеристики трансформатора или выпрямителя под тип заряжаемой батареи.

Подбор выпрямителя по выходному напряжению и току снизит рассеиваемую мощность на регуляторе LM317; например, не стоит использовать трансформатор на 12 В для зарядки 6-вольтовых батарей.

На рис. 3.8 показана схема блока питания ЗУ. Выходное напряжение может равняться 6, 12, 18, 24 или 36 В в зависимости от типа используемого трансформатора, диодного моста и конденсатора.

Рис. 3.8. Сетевой трансформатор и выпрямительный блок

Схема зарядного устройства приведена на рис. 3.9. Она включает в себя регулятор напряжения LM317 и ограничивающий ток резистор. Величина сопротивления ограничительного резистора зависит от силы тока, необходимого для зарядки аккумуляторной батареи.

Рис. 3.9. Схема зарядного устройства

Ограничительный резистор

Большинство производителей NiCd аккумуляторов рекомендуют заряжать их током, равным 1/10 от их емкости, что обозначается C/10. Таким образом, батарея размера АА емкостью 0,85 Ач необходимо заряжать током C/10 или 85 мА в течение 14 часов.

После полной зарядки батареи производители рекомендуют снизить ток до уровня порядка C/30 (1/30 емкости батареи) для поддержания батареи в полностью заряженном состоянии без риска перезаряда или иных повреждений.

В нашем случае рассчитаем характеристики ЗУ для зарядки аккумулятора, состоящего из 4 последовательно соединенных элементов С-типа. Емкость каждого элемента составляет 2000 мАч. Таким образом, ток C/10 составит 200 мА. Стандартное напряжение каждого элемента составляет приблизительно 1,3 В, следовательно, напряжение батареи 4 х 1,3 = 5,2 В. Следовательно, можно использовать 6-вольтовый трансформатор, поддерживающий ток не менее 200 мА.

Для расчета сопротивления ограничивающего ток резистора используется формула:

R=1,25/Icc

Где Icc необходимый ток. Подставляя в формулу 200 мА (0,2 А) получаем:

1,25/0,2=6,25 Ом

Таким образом, сопротивление ограничительного резистора должно быть порядка 6,25 Ом. На схеме (рис. 3. 9) этот резистор обозначен R2. Заметим, что на схеме резистор R2 имеет номинал 5 Ом. Это ближайший стандартный номинал резистора по отношению к рассчитанному.

C/30 резистор

Чтобы уменьшить силу тока до значения C/30, мы последовательно включаем еще один резистор, номинал которого составляет 2R или около 12,5 Ом. На схеме этот резистор обозначен как R3. Также подбирается резистор ближайшего стандартного номинала. В нашем случае его значение равно 10 Ом.

Принцип работы ЗУ

В ЗУ в качестве источника постоянного тока используется регулятор напряжения LM317. Ограничительный резистор для значения тока C/10 обозначен на схеме R2 (см. рис. 3.9). Значение R2 равно 5 Ом в сравнении с расчетным значением 6,25 Ом. Использование стандартного резистора близкого номинала не нарушит правильную работу ЗУ. Резистор для значения тока C/30 обозначен как R3. Стандартный номинал этого резистора также близок к расчетному и не нарушает нормальной работы ЗУ.

Позже вы увидите, что ЗУ способно осуществлять и «быструю» зарядку аккумуляторов, поскольку имеет устройство контроля выходного потенциала.

V1 представляет собой переменный резистор номиналом 5 кОм. Он предназначен для отпирания тиристора после полной зарядки NiCd батареи. Тиристор в свою очередь переключает двухпозиционное реле, имеющее две группы контактов.

При подаче напряжения на схему ток протекает через регулятор LM317, заряжая батарею током порядка C/10. Резистор R3 при этом закорочен одной из групп контактов реле. Ток также протекает через резистор R1, ограничивающий ток светодиодов D1 и D2. После включения питания загорается красный светодиод D1, который сигнализирует о том, что происходит зарядка.

В процессе зарядки напряжение на потенциометре V1 возрастает. После 14 часов напряжение оказывается достаточным для отпирания тиристора. Через открытый тиристор напряжение поступает на обмотку двухпозиционного реле. Реле включается, красный светодиод гаснет и зажигается зеленый светодиод. Зеленый светодиод показывает, что батарея полностью заряжена. Другая группа контактов реле размыкает закороченный резистор R3. Включение резистора R3 уменьшает зарядный ток до порядка C/30. Диод D3 блокирует протекание тока из аккумулятора в схему ЗУ.

Определение напряжения срабатывания V1

Для нормальной работы схемы необходимо, чтобы тиристор отпирался только после полной зарядки NiCd батареи. Наиболее просто это сделать следующим образом: вставить полностью разряженную батарею в ЗУ, заряжать ее в течение 14 часов, а потом подрегулировать V1. После завершения процесса зарядки медленно поворачивать движок потенциометра V1 до срабатывания реле. При этом должен зажечься светодиод зеленого цвета.

Особенности конструкции

При самостоятельном конструировании ЗУ обратите внимание на следующее. Наиболее критичным является подбор ограничительных резисторов для значений тока C/10 и C/30. Для расчета их номиналов воспользуйтесь приведенными формулами. Рассеиваемая мощность этих резисторов порядка 2 Вт.

Если зарядный ток достаточно велик (более 250 мА), то для отвода тепла снабдите схему LM317 радиатором. Если ЗУ включить до соединения с батареей, то моментально сработает реле, включится зеленый светодиод и зарядный ток окажется равным C/30.

Если ЗУ будет использоваться при более высоких значениях напряжений – пропорционально увеличьте сопротивление R1, ограничивающее ток, протекающий через светодиоды. Например, для напряжения 12 В сопротивление R1 будет равно 680 Ом, для напряжения 24 В – 1,2 кОм соответственно.

При больших значениях напряжения может потребоваться резистор, ограничивающий ток обмотки реле. Полезно измерить реальные значения тока C/10 и C/30, протекающего через заряжаемую батарею, что позволит судить о правильности работы устройства.

Последовательное и параллельное соединение

Способ соединения элементов в батарею определяет необходимые характеристики трансформатора по напряжению и току. Если батарея состоит из 8 элементов типа С, соединенных параллельно, то необходимо умножить необходимый для каждого элемента ток на 8. Если емкость отдельного элемента составляет 1200 мАч, то зарядный ток C/10 будет равен 120 мА. Для 8 параллельных элементов ток составит около 1 А (8х 120 мА=960 мА=0,96 А). Необходимое напряжение составит 1,5 В. Соответственно, необходим трансформатор, выдающий напряжение 1,5 В при токе 1 А. Если эти элементы соединены последовательно, то необходимое напряжение составит 12 В при токе 120 мА.

Быстрое ЗУ

Многие современные NiCd аккумуляторные батареи можно заряжать быстрее при условии, что после их полной зарядки ЗУ переключится в режим C/30. Типичным является удвоение зарядного тока при сокращении времени зарядки в два раза. Таким образом, можно заряжать батарею током C/5 в течение 7 часов.

Хотя я не пробовал использовать данную схему ЗУ для быстрой зарядки, но не вижу оснований, почему она не должна работать.

Если вы хотите это сделать, необходимо сперва подстроить потенциометр под значение тока C/10, а потом уменьшить номинал резистора R2 в два раза.

Список деталей

• U1 регулятор напряжения LM317

• L1 двухпозиционное реле с двумя группами контактов

• D1 красный светодиод

• D2 зеленый светодиод

• D2 диод 1N4004

• Q1 тиристор

• V1 подстроечный резистор 5 кОм

• R1 резистор 330 Ом 0,25 Вт

• R2 резистор 5 Ом 2 Вт

• R3 резистор 10 Ом 2 Вт

• R4 резистор 220 Ом 0,25 Вт

• Понижающий трансформатор

Данный текст является ознакомительным фрагментом.

Типы аккумуляторов и методы их заряда Никель-кадмиевые аккумуляторы

Типы аккумуляторов и методы их заряда Никель-кадмиевые аккумуляторы Технология изготовления щелочных никелевых аккумуляторов была предложена в 1899, когда Waldmar Jungner изобрел первый никель-кадмиевый аккумулятор (NiCd).

Используемые в них материалы были в то время дороги, и их

Методы заряда Ni-Cd и Ni-MH аккумуляторов

Методы заряда Ni-Cd и Ni-MH аккумуляторов Существует много различных методов заряда NiCd или NiMH аккумуляторов. Но все их можно разделить на 4 основные группы:• – стандартный заряд – заряд постоянным током, равным 1/10 от величины номинальной емкости аккумулятора, в течение

Заряд литий-ионных (Li-ion) аккумуляторов

Заряд литий-ионных (Li-ion) аккумуляторов Зарядное устройство для Li-ion аккумуляторов подобно зарядному устройству для свинцово-кислотных аккумуляторов (SLA) в части ограничения напряжения на аккумуляторе. Основные различия между ними заключаются в том, что у зарядного

Хранение аккумуляторов

Хранение аккумуляторов Аккумуляторы относятся к категории “скоропортящихся продуктов”, начинающих терять свое качество сразу же после изготовления. Хотя степень деградации для некоторых типов аккумуляторов достаточно низка, все же не рекомендуется хранить их в

О восстановлении аккумуляторов

О восстановлении аккумуляторов Процент восстановленных аккумуляторов при использовании контролируемых циклов разряда / заряда зависит от типа электрохимической системы, количества уже отработанных циклов, метода обслуживания и возраста аккумулятора.Ni-Cd. Наилучшие

Изготовление инструмента

Изготовление инструмента Для закрепления навыков слесарной и кузнечной обработки можно изготовить ряд слесарных и кузнечных инструментов, которые будут необходимы учащимся для их дальнейшей работы.Слесарное зубило куется вручную из прутковой стали У7 или У8. Заготовку

4.3. Изготовление орудий

4. 3. Изготовление орудий Однако оставим игры и перейдем к серьезным поступкам взрослых людей.Говоря о происхождении человека, в качестве первого его отличия от животного указывают на использование и изготовление орудий. Решающим здесь является, конечно, изготовление

Изготовление изделий

Изготовление изделий Наибольшей популярностью среди точеных изделий пользуются предметы домашнего обихода: тарелки, плошки, стаканы, кувшины.Для изготовления точеных тарелок чаще всего используют старые сосновые доски, древесина которых уже от времени приобрела

Изготовление первого демонстрационного устройства

Изготовление первого демонстрационного устройства Первое демонстрационное устройство, которое мы собираемся сделать, очень просто по конструкции и может быть использовано для измерения степени сокращения воздушной мышцы (см. рис. 16.10). Основание представляет собой

Изготовление второго демонстрационного устройства

Изготовление второго демонстрационного устройства Вторая модель представляет собой рычаг (см. рис. 16.13 и 16.14). Я изготовил модель рычага из дерева и пластика. Воздушная мышца и резиновая лента прикреплены к рычагу с помощью винтов. В точке опоры рычаг закреплен на

Установка тепловых аккумуляторов

Установка тепловых аккумуляторов В установке ТА на любую автомашину можно выделить следующие группы операций:• определение места расположения ТА;• монтаж гидравлической схемы;• подключение блока управления;• прокачка системы охлаждения;• проверка и

4.2. Подбор баков-аккумуляторов

4.2. Подбор баков-аккумуляторов Есть житейское правило: «Чем больше объем бака, тем лучше». В то же время существуют методики точного подбора и расчета объема баков на основе европейских норм UNI 9182.Метод используется для расчета объема гидроаккумулятора на основании

5.2.1. Изготовление матрицы

5.2.1. Изготовление матрицы Матрицу отливают из бронзы и цинка в литейной форме, изготовленной по твердой модели, вырезанной из дерева (березы, бука, осины) или гипса.Модель из гипса выполняют в следующей последовательности (см. рис. 5.10).Из жидкого гипса, имеющего

5.2.3. Изготовление пуансона

5.2.3. Изготовление пуансона Получение оттиска на тонком листовом металле возможно только при наличии пуансона, представляющего собой контррельеф (обратный рельеф), все выступающие части которого точно соответствуют углублениям в матрице, и наоборот. Пуансон

Схема зарядного устройства для никель-кадмиевых (Ni-Cd) аккумуляторов

Самодельное зарядное устройство для никель-кадмиевых (Ni-Cd) аккумуляторов, принципиальная схема. Чтобы аккумулятор служил долго нужно обеспечить его оптимальный режим, как зарядки, так и разрядки.

Никель-кадмиевым аккумуляторам присущ так называемый «эффект памяти». Заключающийся в том, что если зарядить неполностью разряженный аккумулятор, то при дальнейшей разрядке он отдаст только часть энергии, начиная с того уровня, с которого началась зарядка.

Поэтому, перед началом зарядки аккумулятор желательно разрядить до напряжения менее 1V. И только после этого начинать зарядку.

Принципиальная схема

На рисунке показана схема зарядного устройства, – приставки к лабораторному источнику питания, которая выполняет измерение напряжения на аккумуляторе, разряд аккумулятора до 1V перед началом заряда и заряд его до 1,4V.

Само зарядное устройство состоит из стабилизатора тока на А1. Величину тока зарядки можно установить на уровне 60мА, 80мА или 120 мА переключателем S2.

Включение и выключение зарядного устройства производится с помощью транзисторов VT3 и VТ4. Чтобы началась зарядка на базу VT3 нужно подать логической ноль. А для прекращения зарядки – единицу (через резистор R14).

Цепь разрядки выполнена на транзисторном ключе на VТ5 и VТ6, включенных по схеме составного транзистора. Разрядной нагрузкой является резистор R16.

Измеряет напряжение на аккумуляторе (G1) измеритель на поликомпараторной микросхеме А1. Светодиоды HL1-HL6 индицируют напряжение на аккумуляторе, а каскады на VТ1 и VТ2 формируют логические уровни для подачи информации о напряжении на аккумуляторе на простую логическую схему управления на двух RS-триггерах выполненных на элементах микросхемы К561ЛЕ5. Теперь рассмотрим работу схемы в целом. При подключении аккумулятора микросхема

А1 измеряет напряжение на нем. Результат измерения можно видеть на табло из шести светодиодов. Измерение производится без нагрузки. Чтобы узнать напряжение под нагрузкой нужно нажать кнопку «Пуск» S1.

При этом RS триггер D1.3-D1.4 устанавливается в состояние с логической единицей на выходе D1. 4. Транзисторный ключ VT5-VT6 открывается и нагружает аккумулятор резистором R16.

Если при этом напряжение на аккумуляторе падает до 1V и ниже открывается один из диодов VD1-VD3, что приводит к открыванию транзистора VТ2.

На его эмиттер появляется напряжение логической единицы, которое, спустя некоторое время (R8-C2) переключает RS-триггер D1.3-D1.4 в противоположное состояние.

Рис. 1. Принципиальная схема зарядного устройства для никель-кадмиевых (Ni-Cd) аккумуляторов.

Нагрузка (R16) от аккумулятора отключается. В то же время, единица, возникшая на выходе D1.3 устанавливает триггер D1.1-D1.2 в состояние с логическим нулем на выходе D1.2. Это приводит к включению зарядного устройства на А2 (открывается VТ4). Начинается зарядка аккумулятора.

Если напряжение на нагруженном аккумуляторе больше 1V он будет удерживаться под нагрузкой до тех пор, пока напряжение на нем не станет равным 1V или ниже. И только после этого начнется зарядка.

Зарядка будет продолжаться до тех пор, пока напряжение на аккумуляторе не достигнет 1,4V. После этого откроется транзистор VТ1 и на его коллекторе установится напряжения уровня логической единицы. RS-триггер D1.1-D1.2 переключится в состояние с единицей на выходе D1.2, и зарядка аккумулятора прекратится.

Недостаток данной схемы в том, что в одно и то же время можно заряжать только один аккумулятор. Невозможно заряжать аккумуляторные батареи.

Даже, если сделать на входе микросхемы А1 переключаемый делитель, работать зарядное устройство с батареей хорошо не сможет, так как невозможно по общему напряжению батареи определить насколько разряжен тот или другой аккумулятор, входящий в неё. Поэтому, если нужно заряжать несколько аккумуляторов одновременно, нужно сделать соответствующее число таких схем.

Детали и налаживание

Микросхему К561ЛЕ5 можно заменить отечественным аналогом К176ЛЕ5 или любым зарубежным аналогом.

Микросхему LM3914 можно заменить каким-то аналогом, но при условии линейной индикации (не логарифмической) методом бегущей точки. Либо собрать компараторную схему на операционных усилителях.

Налаживание заключается в установке тока зарядки подбором сопротивлений R10-R12 и в калибровке измерителя напряжения путем подстройки резистора R2.

Еще один момент, – когда светодиод HL6 не горит, напряжение на R4 должно быть равно нулю. Если это не так, – нужно включить в эмиттерную цепь VТ1 диод типа КД522, в прямом направлении.

Это же касается и транзистора VТ2 (напряжение на его коллекторе должно быть равно нулю, когда не горят светодиоды HL1, HL2, HL3).

Замков В. С. РК-08-08.

Никель-кадмиевая NiCd-цепь зарядного устройства

Киран Салим

5428 просмотров

В этом уроке мы создадим «Схему зарядного устройства NiCd аккумулятора».

Чтобы зарядить батареи, нам нужно подать напряжение на клеммы, и батарея начнет заряжаться. Протокол зарядки зависит от размера и типа заряжаемой батареи. Некоторые типы батарей имеют высокую устойчивость к перезарядке и могут быть перезаряжены путем подключения к источнику постоянного напряжения или источника постоянного тока, в зависимости от типа батареи. Если важна безопасная зарядка, быстрая зарядка и/или максимальное время автономной работы, тогда все становится сложнее.

Вот три наиболее распространенных аккумулятора в электронных устройствах NiMH, NiCd и Li-ion. В этих батареях показатель C является важным фактором при определении параметров зарядки. «C» относится к емкости батареи при разрядке в течение одного часа. Емкость этих батарей определяется относительно минимально допустимого напряжения, называемого напряжением отсечки. Именно это напряжение обычно определяет «разряженное» состояние батареи. В этот момент еще остается заряд, но его вытягивание может привести к повреждению аккумулятора.

Если вам нужны аккумуляторы для вашего проекта, которые можно легко и быстро заряжать. Затем подумайте о приобретении Ni-Cd аккумулятора. Кроме того, аккумуляторы Ni-Cd более устойчивы и работают в суровых условиях. Кроме того, батарея более долговечна, чем литиевые батареи или свинцово-кислотные батареи. И устройство имеет высокую энергию, как щелочные батареи. NiCd аккумуляторы обеспечивают лучшую производительность при компактных размерах. Простая схема зарядного устройства для никель-кадмиевых аккумуляторов, состоящая из нескольких легкодоступных компонентов. Эта схема будет обеспечивать ограниченный ток и напряжение целевой батареи.

Buy From Amazon

Hardware Components

The following components are required to make NiCd Battery Charger Circuit

33
Sr. No Components Value Qty
1 Step Down Трансформатор 0–12 В перем. тока 1
2 Модуль мостового выпрямителя 1N4007 4
LM337 2
4 Resistors 1KΩ, 120Ω, 510Ω, 10Ω/1W 1
5 LED 1
6 Конденсатор 47 мкФ/16 В 1

LM337 Распиновка

Подробное описание распиновки, размеров и технических характеристик загрузите в техническом описании LM337

0019

Пояснение к работе

Здесь мы создаем схему зарядного устройства NiCd аккумуляторов, у нас есть секция питания, состоящая из понижающего трансформатора переменного тока 0–12 В, этот трансформатор используется для преобразования источника переменного тока 230 В в источник переменного тока 12 В, двухполупериодный мостовой выпрямитель, содержащий D1-D4, который преобразует питание переменного тока в питание постоянного тока, а сглаживающий конденсатор C1, C1 выполняет процесс фильтрации. Регулировка тока достигается действием резистора R1 и светодиода. Источник выпрямленного постоянного тока и светодиод 1 Указывает на наличие источника постоянного тока. Подайте положительное питание на регулятор IC1, он обеспечивает стабилизацию тока. Здесь клемма Adj IC1 подключена к выходной клемме, за которой следует резистор R2.

Сейчас IC2 Обеспечивает регулируемое выходное напряжение на клемме Out, выходное напряжение зависит от номинала резисторов R3 и R4. Вы можете изменить значения этих резисторов в зависимости от ваших требований, а для точного расчета значения резистора используйте таблицу данных IC LM317.

Применение

  • Широко используется в портативных и компактных электронных устройствах.
  • Может использоваться для зарядки отдельного аккумулятора или блока аккумуляторов.

Похожие сообщения:

Виновен по обвинению | NiCd Battery Tutorial

Если это не ваша первая остановка на пути информации о NiCd, я уверен, что информация, которую вы читали, слышали или находили в Интернете, просто ошеломляет. В этом уроке мы постараемся сделать его простым, точным и по существу. Если у вас есть вопросы, на которые вы не ответили, сообщите нам об этом, и мы надеемся, что сможем помочь.

Что такое никель-кадмиевые батареи

«NiCd» — это химическая аббревиатура состава никель-кадмиевых батарей, которые представляют собой тип вторичных (перезаряжаемых) батарей. Никель-кадмиевые аккумуляторы содержат химические вещества никель (Ni) и кадмий (Cd) в различных формах и составах. Обычно положительный электрод изготовлен из гидроксида никеля (Ni (OH) 2), а отрицательный электрод состоит из гидроксида кадмия (Cd (OH) 2), а сам электролит представляет собой гидроксид калия (KOH). В чем уникальность никель-кадмиевых аккумуляторов Никель-кадмиевые аккумуляторы отличаются от типичных щелочных или свинцово-кислотных аккумуляторов по нескольким ключевым параметрам. Одно из основных ключевых отличий заключается в напряжении элемента. Типичная щелочная или свинцово-кислотная батарея имеет напряжение ячейки примерно 1,5 В, которое затем неуклонно падает по мере разрядки. Никель-кадмиевые аккумуляторы уникальны тем, что они будут поддерживать постоянное напряжение 1,2 В на элемент до тех пор, пока оно почти полностью не разрядится. Это приводит к тому, что никель-кадмиевые батареи могут обеспечивать полную выходную мощность до конца цикла разрядки. Таким образом, хотя они имеют более низкое напряжение на ячейку, они обеспечивают более мощную подачу на протяжении всего приложения. Некоторые производители компенсируют разницу в напряжении, добавляя в аккумуляторную батарею дополнительную ячейку. Это позволяет получить такое же напряжение, как и у батарей традиционного типа, сохраняя при этом постоянное напряжение, столь уникальное для никель-кадмиевых аккумуляторов. Еще одна причина, по которой никель-кадмиевые батареи могут обеспечивать такую ​​высокую выходную мощность, заключается в том, что они имеют очень низкое внутреннее сопротивление. Поскольку их внутреннее сопротивление очень низкое, они способны очень быстро разряжать большое количество энергии, а также очень быстро принимать большое количество энергии. Такое низкое внутреннее сопротивление также поддерживает низкую внутреннюю температуру, что позволяет быстро заряжать и разряжать аккумулятор. Эта особенность в сочетании с постоянным напряжением элементов позволяет им выдавать большую силу тока при неизменно более высоком напряжении, чем у сопоставимых щелочных батарей.

Применение в электроинструментах

Одним из наиболее практичных применений никель-кадмиевых аккумуляторов являются беспроводные электроинструменты. Электроинструментам требуется большое количество энергии на протяжении всего времени использования, и они не работают так же хорошо при падении напряжения, как обычная батарея. Благодаря технологии NiCad электроинструменты могут работать на полную мощность в течение всего времени использования, а не только в первые несколько минут работы. С литий-ионным, щелочным или даже свинцово-кислотным аккумулятором электроинструмент будет работать очень хорошо с самого начала, с неуклонным снижением мощности, пока он не перестанет работать. NiCad, с другой стороны, заставит электроинструмент оставаться на полной мощности до самого конца заряда. Кроме того, NiCad можно безопасно заряжать всего за 1-2 часа! Мы рекомендуем аккумуляторы PremiumGold NiCad для замены электроинструментов.

Зарядка никель-кадмиевых аккумуляторов

Еще одна уникальная особенность никель-кадмиевых аккумуляторов заключается в способе их зарядки. В отличие от свинцово-кислотных аккумуляторов, которые могут выдерживать большие колебания силы тока и напряжения во время зарядки, для никель-кадмиевых аккумуляторов требуется постоянная сила тока и лишь очень небольшие колебания напряжения. Скорость заряда для NiCad находится между 1,2 В и 1,45 В на элемент. При зарядке никель-кадмиевых аккумуляторов обычно используется скорость заряда c/10 (10 % емкости), за исключением скоростных зарядных устройств, которые заряжаются со скоростью c/1 (100 % емкости) или c/2 (50 % емкости). . NiCad-аккумуляторы способны получать гораздо более высокую скорость заряда до 115% от их общей емкости с минимальным сокращением срока службы, что делает NiCad-аккумуляторы идеальной батареей для электроинструментов. Если вы заметили, что аккумулятор нагревается во время зарядки, охладите его, а затем завершите зарядку. Химическая реакция в NiCad во время зарядки заключается в поглощении тепла, а не в его выделении, поэтому во время зарядки возможно более высокое поглощение энергии, что позволяет сократить время перезарядки.

Хранение никель-кадмиевых аккумуляторов

При хранении никель-кадмиевых аккумуляторов выбирайте сухое прохладное место. Диапазон температур для хранения аккумуляторов составляет от −20 °C до 45 °C. При подготовке к хранению никель-кадмиевых аккумуляторов убедитесь, что они достаточно глубоко разряжены. Диапазон в рекомендациях составляет от 40% до 0% заряда при переходе в хранилище. НИКОГДА не закорачивайте NiCad для слива, так как это вызывает чрезмерный нагрев и может привести к выделению газообразного водорода… АКА-бум! Скорость саморазряда для NiCad составляет около 10% при 20 °C и увеличивается до 20% при более высоких температурах. Не рекомендуется хранить NiCad аккумуляторы в течение длительного времени без периодического использования батарей. При длительном хранении кадмий в NiCad может образовывать дендриты (тонкие проводящие кристаллы), которые могут перекрывать зазор между контактами и замыкать элемент. Как только это произойдет, на самом деле ничего нельзя сделать, чтобы исправить это в долгосрочной перспективе. Лучший способ предотвратить это — частое использование.

Эффект памяти

Одна из самых обсуждаемых тем о NiCad — есть ли у них «память». Идея зарядной памяти возникла, когда они начали использовать никель-кадмиевые батареи в спутниках, где они обычно заряжались в течение двенадцати часов из двадцати четырех в течение нескольких лет. 1 По прошествии нескольких лет было замечено, что емкость аккумуляторов, по-видимому, сильно снизилась, и, хотя они все еще работоспособны, они разряжаются только до такой степени, что обычно включается зарядное устройство, а затем падают, как если бы они были полностью разряжены. выписан. Для обычного потребителя это не имеет большого значения, однако мы рекомендуем полностью разрядить NiCad, который вы используете, перед перезарядкой. Иногда полностью разряжая (но НИКОГДА не замыкая) никель-кадмиевую батарею, можно предотвратить включение этой загадочной батареи «памяти». Эффект с симптомами, похожими на эффект памяти, называется снижением напряжения или эффектом ленивой батареи. Это вызвано частым перезарядом NiCad. Вы можете сказать, что это происходит, когда батарея кажется полностью заряженной, но быстро разряжается после короткого периода использования. Это не эффект «памяти», который присущ только никель-кадмиевым батареям, а то, что может случиться с любой батареей и почти всегда происходит от перезарядки. Иногда это можно исправить, пропустив аккумулятор через несколько циклов очень глубокой разрядки, но это может сократить общий срок службы аккумулятора. Никель-кадмиевые аккумуляторы — это единственный химический аккумулятор, который полностью разряжается перед зарядкой.

Надлежащая утилизация

Никель-кадмиевые батареи содержат кадмий, высокотоксичный «тяжелый» металл. Никогда не сжигайте NiCad, никогда не выбрасывайте их в мусорное ведро и не вскрывайте. Всегда утилизируйте NiCad в официальном месте утилизации NiCad. Пока никель-кадмиевые аккумуляторы герметичны, никогда не происходит короткого замыкания или сильного перезаряда, никель-кадмиевые аккумуляторы совершенно безопасны в использовании и не выделяют токсичных материалов. Если с никель-кадмиевой батареей правильно обращаться, она должна выдержать отметку в 1000 циклов. Быстрая зарядка NiCad может немного сократить срок их службы, а также увеличить время неправильного хранения.

Резюме

Хотя никель-кадмиевые аккумуляторы ограничены в применении, они являются исключительным выбором для всех ваших требований к беспроводным электроинструментам. По мере развития технологий появляются и другие химические батареи, однако лучшая отдача от вложенных средств в качестве замены батарей для электроинструментов по-прежнему заключается в использовании этого испытанного и испытанного типа батареи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *