Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

 

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» – комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

 

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века.

При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» – ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN.

Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений. В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг. При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.

Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное – жизнь человека.

 


Смотрите также:


Смотрите также:

Система заземления TN-S. Схема подключения, описание системы TN-S

Самой эффективной системой защитного заземления, обеспечивающей максимальную защиту людей от поражения электрическим током, является система заземления TN-S.

Раньше в жилых зданиях использовалось заземление морально устаревшего типа TN-С и ГОСТ Р50571 рекомендует заменить его новой, более современной системой защиты. В этой статье рассказывается про особенности системы TN-S, схемах подключения к ней электроприборов, а также о достоинствах и недостатках этого вида защиты.

Описание системы заземления TN-S

Этот вид защитного заземления первоначально был внедрён в 30-х годах ХХ века в европейских странах, где уже более 50 лет является основным. Перед российскими электрокомпаниями сейчас ставится задача перевести на эту схему защиты всех потребителей.

Система заземления TN-S проектируется и устанавливается во всех новых кабельных и воздушных линиях, а так же при замене существующих сетей.

Для этого вместо четырёхжильного провода (A,B,C,PEN) на всём протяжении от трансформаторной подстанции до ввода в здание прокладывается пятижильный кабель (A,B,C,N,PE). В квартиру в этом случае ввод осуществляется трёхжильным проводом (L,N,PE).

Описание системы заземления TN-S имеется в ПУЭ п.1.7.132. В данной схеме нулевой защитный (N) и нулевой рабочий (PE) проводники не связаны между собой на всем протяжении. К потребителю от источника питания приходит три фазы, ноль и заземление, либо фаза, ноль, заземление (при однофазном питании).

Вместо заземления этого типа при реконструкции имеющихся сетей допускается монтаж более простой и дешёвой схемы TN-C-S.

Дело в том, что перевод существующих линий на схему TN-S обходится достаточно дорого. При этом требуется полная замена вводных кабелей с 4 жильных на 5 жильные или реконструкция всех столбов и прокладка дополнительного провода воздушной линии.

Информация! Любая система заземления, применяемая в жилом фонде, предусматривает подвод заземляющего проводника РЕ к квартире и разводку его по всем комнатам и розеткам.

Схема электроснабжения системы TN-S

Система заземления TN-S имеет ряд особенностей, отличающих её от защиты других типов:

  • Нейтральный провод N отделён от заземляющего РЕ на всей длине. Этим она отличается от системы TN-C-S, в которой проводники объединены в линии от подстанции до вводного щита в доме. Единственное место их соединения – заземлённая средняя точка вторичных обмоток питающего трансформатора.
  • Заземляющий провод во вводном щите допускается не заземлять. Вместо этого выполняется система уравнения потенциалов (СУП). Основным заземлителем является глухозаземлённая нейтраль трансформатора, в отличие от заземления TN-C-S, при котором в каждом здании необходимо иметь свой контур заземления, с которым соединяется место разделения PEN-проводника.
  • При обрыве нейтрального провода в любой точке напряжение на корпусе электроприборов отсутствует. Благодаря этому система TN-S является лучшей защищитой потребителей от поражения электрическим током.

Подробно схема заземления TN-S и требования к ней описаны в ПУЭ п. 1.7.3 и показана там же, на рис. 1.7.2.

Название системы TN-S указывает на её основные конструктивные особенности:

  1. 1. T (terre – земля) – цепи электропитания заземлены;
  2. 2. N (neuter – нейтраль) – система соединена с нейтралью источника питания;
  3. 3. S (separated – раздельный) – нейтральный проводник N разделён с заземляющим РЕ.

В этой схеме защиты исключено попадание питающего напряжения на корпус оборудования. При отгорании нулевой клеммы в щите, обрыве нейтрали или отключении двухполюсного автоматического выключателя в однофазной сети провод РЕ остаётся соединённым с заземлением.

Отсутствие соединения с заземлением после вводного автомата позволяет использовать УЗО или дифференциальный автомат. Работа этих устройств основана на первом правиле Кирхгофа, согласно которому ток в нейтрали в трёхфазной сети равен алгебраической сумме токов всех фаз. В однофазной сети ток в нейтральном проводе равен току в фазном.

При нарушении изоляции или прикосновении человека к токоведущим частям это равенство нарушается и появляется ток утечки, что приводит к срабатыванию защиты. Его величина зависит от места установки и составляет 30-100мА.

Принцип работы системы заземления TN-S

Электрическая схема питания электроприборов, подключённых к системе TN-S, а аналогична обычной схеме электроснабжения, которая использовалась со времён Теслы и Эдисона. Отличие заключается в наличии дополнительного провода, соединяющего корпус оборудования со средней точкой вторичной обмотки трансформатора. Разделение нейтрали N и заземления РЕ позволяет исключить попадание высокого напряжения на непредназначенные для этого части электроприборов.

В системе заземления TN-S нейтраль трансформатора соединяется с заземляющими устройствами напрямую, без автоматов или рубильников. Такая нейтраль называется “глухозаземлённой”.

Согласно ГОСТ Р 50571.1-2009 п.312.2.1.1, заземлять проводник РЕ в дальнейшем нет необходимости. Однако при монтаже этой схемы следует учесть требования ПУЭ п.7.1.87, согласно которым в водном щитке этот провод присоединяется к системе уравнения потенциалов СУП.

Для этого соединяются следующие элементы:

  1. провод РЕ, приходящий из трансформаторной подстанции;
  2. стальные трубы коммуникаций, в том числе те, в которых проложены кабеля;
  3. металлические элементы конструкции и инженерных сооружений.
  4. корпус вводного электрощита и этажных щитков.

При пробое изоляции на корпус через заземление начинает идти ток, что вызывает отключение автоматического выключателя. Если же он недостаточен для срабатывания защиты то, благодаря заземлению, напряжение на корпусе будет отсутствовать. Это позволит избежать электротравмы, а появляющийся при этом ток утечки вызовет срабатывание УЗО.

Соединение большинства бытовых электроприборов с заземлением происходит в розетках с заземляющим контактом, во время монтажа к которому присоединяется провод РЕ.

Важно! В системах защитного заземления TN-S и TN-C-S розетки подключаются трёхжильным кабелем. К заземляющему контакту присоединяется провод с жёлтой или жёлто-зелёной изоляцией.

Достоинства системы TN-S по сравнению с другими системами

На сегодняшний день система защитного заземления TN-S обеспечивает максимально возможную защиту людей от поражения электрическим током. Её надёжность можно ещё больше повысить, если дополнительно установить систему уравнивания потенциалов и подключить УЗО или дифавтомат.

Дополнительное достоинство этого вида защиты в отсутствии необходимости устанавливать контур заземления в каждом доме. Такие заземления, согласно ПТЭЭП п.2.7.9., требуют ежегодной проверки своего состояния. Естественно, в большинстве случаев она проводится формально или не производится совсем, что не делает проживание в доме более безопасным.

Ещё одно преимущество заключается в том, что вся электронная аппаратура, находящаяся в металлическом заземлённом корпусе, оказывается защищённой от высокочастотных помех. Такие помехи создают электробритвы, пылесосы, электросварка и другая аппаратура. Поэтому эту систему предпочитают работники, имеющие дело с компьютерными сетями, телевидением, звукозаписывающей и радиолокационной аппаратурой.

Единственный, но существенный, недостаток этой системы заключается в её более высокой цене, поэтому допускается использовать вместо схемы TN-S уже установленное заземление типа TN-C-S.

Заключение

Подводя итог статье можно увидеть, что система TN-S является лучшей из существующих видов заземления и должна применяться во всех новых электросетях. При невозможности заменить на эту схему существующие линии электропередач следует использовать схему TN-C-S.

Похожие материалы на сайте:

Понравилась статья – поделись с друзьями!

 

Система TN-S – самая безопасная система заземления

Система TN-S – самая безопасная система заземления

В этой статье мы расскажем вам, почему система TN-S считается самой безопасной.

По сравнению с такими системами заземления как TN-C и TN-C-S, система заземления TN-S отличается особой надежностью и безопасностью. Данная система появилась и начала набирать популярность еще в 40-е годы, получив первое широкое распространение на территории Европы, где по сей день продолжает оставаться заслуженно востребованной.

В России система заземления TN-S также все чаще используется, и год за годом все сильнее конкурирует с остальными, менее надежными, системами заземления, поскольку считается на сегодняшний день наиболее безопасной и качественной из всех известных подходов к устройству заземления в потребительских электросетях, особенно в жилых домах.

Несмотря на то, что стоимость монтажа системы TN-S дороже остальных (просто в силу необходимости прокладывать более дорогостоящие многожильные кабеля), тем не менее именно ее выбирают исходя из требования обеспечить наибольшую безопасность для людей, о чем будет подробно разъяснено далее.

Суть в том, что однофазные и трехфазные электрические сети на самом деле всегда нуждаются в трехжильных и пятижильных питающих кабелях, поскольку в идеале в однофазной сети от источника к потребителю необходимо проложить три проводника (фазный, нейтральный N и защитный проводник PE), а для трехфазной сети это будет уже пять проводников (три фазных — A, B, C, нейтральный N и защитный проводник PE).

Так вот, в системе TN-S главный заземлитель расположен на трансформаторной подстанции, а отделенные друг от друга в кабеле проводники N и PE тянутся от него, от самой подстанции, – к потребителю, и дополнительного заземления на стороне потребителя монтировать уже не нужно.

Таким образом, с системой заземления TN-S оборудование у потребителя всегда будет максимально защищено, а самого человека от поражения электрическим током защитят дифавтоматы и устройства защитного отключения, для монтажа и подключения которых оказываются доступны сразу все необходимые проводники в одном кабеле. Причем регулярно контролировать состояние контура заземления у себя дома обывателю уже не придется. Кстати, высокочастотные помехи от работающих пылесосов и дрелей будут не страшны силовым линиям в такой системой заземления.

Напомним, что та же устаревшая система заземления TN-C имеет совмещенные проводники PE и N в одном проводнике – PEN, что ставит людей под угрозу поражения электрическим током. Так или иначе, в целях обеспечения безопасности систему заземления TN-C все равно приходится дорабатывать, хотя изначально к системе TN-C прибегают из соображений экономии.

В итоге система заземления TN-C принципиально уступает по качеству и надежности системе TN-S. Не даром ПУЭ (пункт 1.7.132) склоняет потребителей к необходимости категорически отказаться от использования системы заземления TN-C в пользу более безопасной и надежной TN-S (или в крайнем случае TN-C-S).

Система заземления TN-C-S немного лучше чем TN-C, поскольку в ней присутствует разделение нулевого, заземленного на подстанции, проводника PEN – на нулевой и защитный (N и PE) проводники, однако точка данного разделения обычно находится на вводно-распределительном устройстве самого здания.

Таким образом, очевидный и ключевой недостаток системы TN-C-S заключается в том, что в случае обрыва PEN проводника при нарушении изоляции может случиться пробой на корпус электрического прибора, что опять же поставит человека под угрозу поражения электрическим током. Вот почему наиболее безопасной считается система заземления TN-S, где защитный проводник надежно заземлен и идет сразу в кабеле вместе со всеми остальными проводниками.

Ранее ЭлектроВести писали, что Киевский городской совет поддержал выделение в бюджете средств в сумме 40 млн гривен на систему мониторинга качества атмосферного воздуха в столице. Система будет включать 27 стационарных постов и мобильную лабораторию.

По материалам: electrik.info.

TN-C, TN-C-S, TN-S, TT, IT

По мере того, как растут экономические показатели и совершенствуются различные технические решения, порой приходится отказываться от привычных технологий и разрабатывать что-то более современное, безопасное и надежное. К таким решениям относятся различные системы заземления, широко применяемые в быту и на производстве. В этой статье рассмотрим пять таких систем, которые до сих пор можно встретить на различных объектах. На технические и эксплуатационные вопросы по системам заземления отвечает ТКП 339-2011.

Пожалуй, еще во времена Эдисона и Доливо-Добровольского, подаривших миру коммерчески выгодные решения для постоянного и переменного тока, инженеры, врачи и обычные горожане начали задумываться о безопасности электрических сетей. Поэтому всего лишь спустя четверть века, а именно в 1913 году, миру была предложена первая система заземления. Изначально на принимаемые технические решения для защиты электрооборудования от коротких замыканий и защиты человека от поражения током сильно влияла доступность металла для проводников. С течением времени появились и стали применяться системы заземления, обеспечивающие надежную работу электроприемников и безопасность для человека.

Существует три основных вида систем заземления, некоторые из которых подразделяются на свои подсистемы. Эти системы – TN, TT, IT. Начнем с первой.

Первой рассмотрим TN – систему заземления с глухозаземленной нейтралью источника N, в которой открытые для доступа токопроводящие элементы электрических установок присоединяются к нейтрали с помощью нулевых защитных проводников, обозначаемых PE. Существует три варианта исполнения такой системы:

TN-C, или TN-Combined (комбинированная). При таком исполнении по всей длине линии роль защитного и рабочего нуля играет один проводник, то есть на всем протяжении от подстанции до электроприемников протянут четырехжильный кабель: три фазы и совмещенный проводник PEN. При такой системе открытые токопроводящие части электроустановок (например, корпус двигателя, выключателя или трансформатора) подключаются (зануляются) к нейтрали подстанции или генератора. Именно эта система была первой в истории. Если происходит замыкание фазы на корпус такого оборудования, то КЗ отключается предохранителями или выключателями, питающими данное оборудование. До отключения КЗ корпус будет находиться под напряжением, что означает опасность получить удар током.

Преимущество у данной системы одно – экономия материала. Недостатков масса, перечислим их:

– вынос потенциала на корпуса другого оборудования при КЗ;

– возрастание напряжения в 1,73 раза для однофазных приемников при обрыве нуля;

– при существовании в токе гармоник, кратных трем (обычное дело в современном мире, наполненном цифровой электроникой), ток в нулевом проводнике принимает опасно высокие значения;

– высокая опасность пожара, так как происходящие однофазные КЗ порождают высокие токи;

– непригодность для установки устройств защитного отключения (УЗО) или автоматов дифференциального тока (АВДТ).

Вследствие этого было создано решение, призванное избавить заводы и людей от таких неприятных последствий. Этим решением было создание системы TN-C-S (Combined, Separated – комбинированная и разделенная). Здесь проводник PEN начинается на подстанции, но в некоторой точке (например, до вводного автомата) он разделяется на PE (защитный) и N (рабочий). Такую систему применяют при модернизации электросетей, сконструированных по системе TN-C. Такая система лишена недостатков TN-C, касающихся электробезопасности.

TN-S – в этом случае нулевой и защитный проводники разделены на всей длине линии. Такая система используется при проектировании современных сетей до 1 кВ. Как и в случае предыдущего решения, становится возможным использование УЗО и дифавтоматов. Теперь замыкание фазы на корпус не представляет угрозы здоровью.

Вторым типом систем заземления является система TT. Здесь нейтраль источника также заземлена, но электропроводные корпуса оборудования присоединяются к своему, независимому от источника, заземлению. Такая система создается, когда, например, домик в деревне подключили к модульному заземлению. Из-за меньшего сопротивления заземления, к которому могут подключаться металлические корпуса, токи однофазных КЗ здесь гораздо выше, чем в системах TN, и для обеспечения безопасности людей обязательно требуется установка УЗО. На промышленных предприятиях такая система обычно применения не имеет, хотя из-за отсутствия возможности передачи потенциала по проводнику PE (ввиду его отсутствия) эта система создает наименьшее количество помех и наибольшую безопасность.

Третьей рассмотрим систему IT, где нейтраль источника не заземлена или заземлена, но через большое сопротивление (сотни или тысячи Ом). Токопроводящие части установок, к которым имеется беспрепятственный доступ, присоединены к своему, отдельному заземляющему устройству, а защиту от прикосновения обеспечивает УЗО. Однофазные замыкания на землю вызывают повышение напряжения в 1,73 раза и небольшое возрастание токов, поэтому такую систему используют там, где прерывание питания на отключение КЗ недопустимы. Однако при эксплуатации таких сетей требуется уметь точно и быстро находить место повреждения, так как в рассматриваемых сетях без резистивного заземления при КЗ возможны перенапряжения.

В этой статье неоднократно упоминалась защита от КЗ и утечек, или дифференциальных токов. Как убедиться, что на вашем предприятии в случае короткого замыкания или обрыва провода не пострадает ни оборудование, ни персонал? Все очень просто: обращайтесь в ТМРсила-М за проведением электрофизических измерений!

 

Система заземления tn и ее подвиды, схема заземления tn c s, tt, система зануления tn s

Люди каждый день в быту пользуются различными электрическими приборами, начиная от кофеварки и фена, заканчивая холодильником и стиральной машиной. Они живут в многоэтажных домах, ездят на работу в метро и даже не подозревают, сколько усилий сделано разработчиками этих приборов и устройств, чтобы они могли без страха за свою жизнь пользоваться этими дарами цивилизации. Сейчас любое устройство, здание, сооружение проверяется на электробезопасность. При проектировании любых электроустановок независимо от их назначения, главным условием является их безопасная и нормальная работа, что обеспечивается безупречным проектом и безошибочным устройством заземления. Существуют системы заземления tn, tt и другие. Основным документом, определяющим работу разработчиков систем заземления, являются Правила устройства электроустановок.

Категории

Наша земля является колоссальным поглотителем электроэнергии любого происхождения, и это ее качество используется человеком для обеспечения безопасности при использовании электрических приборов.

Все заземлители делятся на две категории: естественные и искусственные. К первым относятся все металлические изделия, находящиеся в соприкосновении с землей. Это арматура в железобетонных конструкциях, в буронабивных сваях, канализационные, водопроводные трубы и прочие электропроводные предметы.

Но проводимость земли в разных местах сильно различается, зависит от типа почвы, места расположения, поэтому нормировать ее проводимость в местах растекания электрических зарядов от этих предметов не представляется возможным. Кроме этого, использование арматуры, труб, металлических ферм приводит к ускоренной коррозии и ухудшению их прочностных характеристик. В связи с этим, запрещается использовать естественное заземление при эксплуатации электроприборов и оборудования.

Государственными и международными стандартами разрешено применение только искусственного заземления. В этом случае оборудование через специальную шину присоединяется к заземлителю с допустимой нормированной проводимостью.

Виды искусственного заземления

Если рассматривать по функциональности, то существует защитное и рабочее заземления. Первое обеспечивает безопасность людей при использовании электроприборов, а второе – нормальную работу электроустановок. По типу заземления нулевого провода делятся на системы с изолированной (IT) и глухозаземленной (TN) нейтралью. На рисунке показаны все типы заземления.

В системе IT нулевой провод генератора электроэнергии не имеет гальванической связи с заземлением, а токопроводящие части намеренно заземляются. Допускается между заземлителем и нейтралью установка дугообразующего устройства или приборов с большим внутренним сопротивлением.

Система заземления TN самая распространенная. В ней нулевой провод генератора электроэнергии глухо заземлен, а токопроводящие части с помощью специальных шин присоединяются к нему.

Она подразделяется еще на четыре подвида:

  • систему заземления TN-С, в ней рабочий и защитный нулевые провода представляют собой один проводник от источника до потребителя энергии;
  • систему TN-S, в ней рабочий и защитный нулевые провода представляют собой два проводника от источника до потребителя энергии;
  • систему заземления TN C S, в ней рабочий и защитный нулевые проводники представляют собой один проводник, начиная от генератора электроэнергии, затем на каком-то участке разделяются на два;
  • систему ТТ, в ней нулевой провод генератора электроэнергии глухо заземлен, а открытые токопроводящие части потребителя электроэнергии заземлены через собственное заземление, которое никак не связано с нулевым проводом генератора электроэнергии.

Первый символ аббревиатуры сообщает, в каком состоянии относительно земляного слоя находится нулевой провод производителя электроэнергии (генератора, трансформатора).

Т – заземленный нулевой проводник.

I — изолированный нулевой проводник.

Второй символ информирует о состоянии токопроводящих частей относительно заземления.

Т — токопроводящие части заземлены, состояние нулевого провода генератора электроэнергии значения не имеет;

N — токопроводящие части присоединены к глухозаземленному нулевому проводнику источника электропитания.

Символ после N показывают, как соотносятся рабочий и защитный нулевые проводники.

S (separated)— разделены рабочий (N) и защитный (PE) нулевые проводники.
С (combined)— объединены в (PEN) проводе N и PE проводники.

Системы с глухозаземлённым нулевым проводом

Система зануления TN C впервые была применена компанией AEG в начале ХХ века. Классическим ее видом является обычная схема электроснабжения с тремя фазными и одним нулевым проводом. Он одновременно является функциональным (N) и защитным (PE) «нолем», наглухо заземленным. С ним соединяют все корпуса и доступные токопроводящие части устройств. Самая большая проблема у системы возникает при обрыве нулевого провода, на токоведущих частях корпусов устройств появляется линейное напряжение в 1,73 раза больше фазного. При нормальной работе, попадание фазного провода на корпус приведет к короткому замыканию, но, благодаря специальным устройствам, произойдет мгновенное отключение, что оградит людей от удара током. В странах СНГ схема заземления TN C используется в наружном освещении и в зданиях, построенных до девяностых годов ХХ века.

Система TN-S

Самая надежная и безопасная система заземления TN-S была создана перед Второй мировой войной. Главная ее особенность заключается в раздельном использовании рабочего и защитного нулевого проводников, начиная от генератора электроэнергии. При трехфазном электроснабжении используются пять проводов, однофазном — три. Электробезопасность обеспечивается за счет практического дублирования защитного проводника. Независимо от места обрыва N проводника, система оставалась относительно безопасной. Позже, благодаря этому способу заземления были разработаны дифференциальные автоматы.

ГОСТ Р50571 и новая редакция ПУЭ предписывает при электроснабжении новых объектов, при капитальном ремонте зданий использовать систему зануления TN-S. Но ее распространению мешает высокая стоимость и то, что вся российская энергетика работает по четырехпроводной системе электроснабжения.

Система TN-C-S

Компромиссной стала система заземления TN-C-S, которая использовала преимущества TN-S, но по стоимости стала значительно дешевле. Все дело в том, что с трансформатора подача электроэнергии происходит с применением объединенного нуля «PEN», наглухо заземленного. При входе на объект PEN провод разделяется на защитный и рабочий нуль, но расщепление возможно и раньше ввода в сооружение. При обрыве провода PEN на участке генерирующая станция — здание, на корпусах электроустановок, появится опасное напряжение. Поэтому в системе заземления TN C S нормами предусмотрены особые меры защиты проводника PEN.

Система TT

Самый экономичный способ доставки электроэнергии на селе по воздушным линиям. Использование системы TN-S, как наиболее безопасной, обходится дорого, у систем заземления TN-C и TN-C-S сложно обеспечить надежную защиту нулевого проводника PEN. Поэтому часто используется система TT, с заземленным нулевым проводом у источника электропитания. При трехфазном электроснабжении система работает по четырехпроводной схеме с одним нулевым проводником.

Около приемника электроэнергии делается местное заземление, к которому присоединяют токоведущие части и корпуса устройств. В случае обрыва нулевого провода, а вне города это нередкое явление, на корпусе устройства не возникает опасного напряжения благодаря местному заземлению. В городской черте система заземления TT используется при электроснабжении временных сооружений, при этом обязательно должны быть установлены устройства защитного отключения и проведена грозозащита.

Система IT

Это система, в которой имеется полностью изолированный от земли нулевой провод или соединенный с ней через высокоомное сопротивление, а также наличие у потребителя электроэнергии собственного защитного заземления. Все токопроводящие части оборудования при этом надежно заземляются. Система IT применяется в электроустановках зданий с повышенными требованиями безопасности, например, в больницах для медицинского оборудования, в шахтах, карьерах. Мобильные электростанции тоже используют изолированную нейтраль, что позволяет использовать подключенные к ним электроприборы без заземления. Раньше система IT широко использовалась и в энергоснабжении деревянных домов. В Советском Союзе сети напряжения 127/220 В долгое время использовались с изолированным нулевым проводом, это было связано с отсутствием заземления в домах. С началом панельного строительства от нее отказались.

Сами заземляющие устройства прежде выглядели как набор трехметровых стальных стержней вкопанных в землю на расстоянии нескольких метров, вершины которых соединялись стальной полосой. Получившийся огромный контактный элемент проверялся на сопротивление, если превышал нормированную величину, то вкапывались дополнительные стержни, пока не получали необходимый результат. Недостатком его были большие занимаемые площади и недостаточная стойкость к коррозии. Современные заземляющие устройства лишены этих недостатков. Они строятся на основе омедненных стальных стержней, которые могут соединяться между собой при помощи латунных муфт и забиваться на глубину до 50 м. По верху соединяются медной полосой. За счет такой конструкции могут устанавливаться на любых грунтах, не требуют земляных работ и занимают мало площади.

Вот такими заземляющими устройствами и системами заземления обеспечивается электробезопасность людей.

Почему система tn-s считается самой безопасной

Заземление – это важный технологический процесс, который защищает человека от случайного поражения электрическим разрядом во время работы бытовой техники или электрических приборов.

Для замены проводки, ее ремонта или модернизации предварительно нужно ознакомиться с системой заземления, которая применена в конкретном строительном сооружении.

От этого по окончании работ будет зависеть безопасность домочадцев, а также эксплуатация оборудования.

Классификация систем заземления

Заземление в частном доме

Существует несколько видов систем заземления, которые были разработаны Международной электротехнической комиссией и приняты Госстандартом РФ. Все они перечислены и подробно описаны в “Правилах устройства электроустановок” (ПУЭ).

  • Система TN и три подвида;
  • Система ТТ;
  • Система IТ.

Их основное отличие заключается в используемом источнике электроэнергии, а также способы заземления электрических приборов. Классификации систем заземления обозначаются буквами по определенному принципу.

По первой букве удается определить, каким образом заземлен источник питания:

  • Т – непосредственное соединение нулевого рабочего проводника источника электроэнергии (нейтрали) с землей.
  • I – с землей в данном случае соединена нейтраль источника электроэнергии исключительно через сопротивление.

Вторая буква в аббревиатуре указывает на заземление в проводящих отрытых частях здания:

  • Т – свидетельствует о раздельном (местном) заземлении источника питания и электрических приборов.
  • N – источник электроэнергии заземлен, но потребители заземлены только через PEN-проводник.

Буква N определяет функциональный способ, суть реализации которого заключается в устройстве нулевого защитного и нулевого рабочего проводников:

  • С – функции обоих проводников действуют благодаря общему проводнику под названием – PEN.
  • S – свидетельствует о том, что рабочий нулевой проводник (N) и защитный (PE) раздельные.


Системы заземления также делятся на рабочие и защитные. Первое предназначено для безопасной и производительной работы всех электрических приборов, суть последнего – обеспечить полную безопасность в процессе эксплуатации этих приборов.

Значения напряжения и тока могут достигать критических отметок лишь по двум причинам – неправильное использование оборудования и удар молнии.

Естественные и искусственные виды заземления

Естественное заземление – конструкции непосредственно соприкасающиеся с землей

В качестве естественной защиты используются:

  • Свинцовые оболочки кабелей, проложенные в траншеях под землей; рельсовые пути неэлектрифицированных подъездных путей, железных дорог и т.д.
  • Железобетонные и металлические конструкции любых строительных сооружений, которые непосредственно соприкасаются с землей.
  • Проведенные под землей водопроводные и канализационные магистрали. Нельзя использовать металлические трубы, по которым проходят взрывоопасные и горючие вещества.

Как правило, для искусственных заземлителей используют горизонтальные и вертикальные электроды. Роль вертикальных может играть прутик или стальная труба, длиной не менее 3 метров. Суть реализации состоит в том, чтобы верхние концы погрузить в землю и соединить полоской из стали, используя сварочный аппарат. Такая технология образует контур заземления.

Для безопасного использования электрических приборов должны быть использованы естественные заземлители. Их применение позволяет сэкономить семейный бюджет и время, поскольку нет необходимости сооружать искусственные заземлители. Если естественный вид удовлетворяет все требования ПУЭ по сопротивлению растекания, искусственное можно не сооружать.

Сравнение искусственного и естественного контура

Трубопроводы, находящиеся в земле, выполняют роль естественного заземлителя

Естественный контур – это две и более металлические конструкции, которые контактируют с почвой для безопасного использования бытовой техники. Естественное заземление также делится на следующие разновидности:

  • Трубопроводы, предназначенные для различных целей, находящиеся в земле.
  • Арматура строительных сооружений, которая погружается в слои грунта.

Данные типы защитного контура обязательно должны быть связаны с объектом минимум двумя элементами. Как правило, их устанавливают в разных частях конструкции.

В качестве естественной защиты запрещается использовать:

  • отопительные системы и канализационные магистрали;
  • трубы, поверхность которых покрыта антикоррозийным составом;
    Искусственный заземлитель
  • металлоконструкции, предназначенные для транспортировки горючих и токсичных веществ.

Искусственный контур – это специальные конструкции, изготовленные из металла. Для работы их погружают в слои грунта. Наиболее распространенные примеры искусственных защитных контуров:

  • Металлические полотна, заложенные в землю. Им могут быть свойственны разные формы и размеры.
  • Стержни, уголки, трубы и стальные балки, помещенные в землю.

Каждый элемент искусственного контура в обязательном порядке должен иметь коррозиестойкие электрические проводники, изготовленные из цинка или меди.

Типы искусственного заземления

Основной регламентирующий документ в России, который позволяет использовать разные системы заземления – ПУЭ пункт 1,7. Он был разработан с учетом способов устройства заземляющих систем, их классификации и принципов. Документ утвержден специальным протоколом Международной электротехнической комиссии.

Сокращенные названия существующих систем являются сочетаниями первых букв французских слов.

  • Т – заземление.
  • N – подсоединение к нейтрали.
  • I – изолирование.
  • С – соединение рабочего и защитного нулевых проводников в один провод.
  • S – раздельное использование защитного и рабочего нулевых проводников.

Чтобы понять, в чем заключаются отличия и способы реализации, нужно ознакомиться с каждой разновидностью более детально.

Устройство заземления TN

Самый распространенный вид заземляющих систем. Суть его заключается в соединении нулей с землей вдоль всей длины. Этот тип имеет еще одно альтернативное название – снабжение глухозаземленной нейтрали.

Для реализации способа требуется технологично вбить в вертикальном положении группу штырей в землю, чтобы глубина залегания была не менее 2,5 метров. Все штыри должны быть соединены друг с другом при помощи кабеля и полоски в единый контур жилого дома.

Система TN-C

Достаточно устаревшая система, которая все еще используется в старых жилых фондах. Суть защиты заключается в том, что ноль N играет также роль защитного провода РЕ, две функции совмещены в одном проводнике. Преимущество этого способа заключается в простоте реализации и бюджетном изготовлении, предназначен для электрических приборов мощностью не более 1000 В.

На сегодняшний день этот тип несет потенциальную опасность, поскольку не имеет ни единого отдельного проводника. Если при аварийной или нештатной ситуации обрывается нулевой провод, весь электрический потенциал концентрируется на приборах, а это уже несет опасность для здоровья и жизни человека, есть вероятность образования пожара.

Система TN-S

В проектируемых новых зданиях используется новая заземляющая система. Суть ее реализации заключается в присутствии отдельного провода фазы, нейтрали и защитного проводника. Проводники РЕ и N – отдельные составляющие системы электроснабжения.

Из принятых и утвержденных способов заземления электрической сети система TN-S считается самой безопасной и надежной. Из недостатков следует выделить дороговизну.

Система заземления TN-C-S

Система заземления TN-C-S

Данная заземляющая система вобрала в себя лучшие качества своих предшественников и частично исключила их недостатки. Способ относительно прост в реализации, еще одно достоинство вида – можно реализовать во время реконструкции и модернизации устаревших зданий. Смысл состоит с организации системы TN-C, здесь разделяют нейтральный провод на два проводника N и PE, далее начинает реализовываться способ TN-S.

Однако по-прежнему не решена проблема защитного контура системы ТN-С. Если шина обрывается, весь электрический потенциал концентрируется на бытовых приборах. Бороться с этим недостатком можно с помощью вспомогательных конструкций, например, реле напряжения, которое способно автоматически проводить аварийное отключение приборов от сети.

Функциональное заземление типа ТТ

Функциональное заземление используется в тех условиях, когда организовать заземляющий контур типа ТN попросту невозможно. Суть реализации заключается в двух разделенных заземляющих устройствах. Чаще всего применяют при прокладке воздушных линий электропередач. Также его используют при аварийном состоянии нулевых проводников.

Особенность защиты человека от поражения током заключается в обязательной установке и использовании прибора защитного отключения с дифференциальным током не более 30 мА.

Заземляющая схема IT

Система используется исключительно на горных выработках, например, шахтах или карьерах. Особенности использования электрического оборудования на подобных предприятиях таковы, что обеспечить качественный защитный контур там попросту невозможно.

Заземляется только нейтраль трансформатора с помощью контрольно-измерительных приборов, которые выполняют функции защиты от утечки электроэнергии. Если приборы улавливают избыточное энергопотребление, происходит аварийное отключение приборов.

Основное назначение заземления – сделать использование электрических приборов безопасным, а также продлить их эксплуатационный срок. Не стоит пренебрегать проектированием и сооружением заземления, это неоправданный риск.

Системы заземления

На сегодняшний день в России, согласно пунктам 1.7.3-1.7.7 главы 7 ПУЭ (Правила устройства электроустановок) приняты три системы  заземления: TN, TT и IT. Система TN в свою очередь подразделяется на три разновидности: TN-C, TN-C-S и TN-S.

Для начала расшифрую эти обозначения.

Первая буква в обозначении системы обозначает характер заземления источника питания:

  • T (лат. Terra) — соединение нейтрали источника питания с землей.
  • I (англ. isolation) — все токоведущие части изолированы от земли.

Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:

  • T — связь открытых проводящих частей электроустановки с землей независимо от характера соединения с ней источника питания.
  • N (Neutral) — связь открытых проводящих частей электроустановки с точкой заземления источника питания.

Буква, следующая через дефис после N определяет способ устройства нулевого защитного и нулевого рабочего проводников:

  • C (англ. Combined) — функции защитного PE и рабочего N проводников совмещены в одном PEN проводнике;
  • S (англ. Separated) — функции защитного PE и рабочего N проводников обеспечиваются раздельными проводниками.

А теперь рассмотрим подробнее каждую из систем.

TN-C

Это самая старая и пожалуй самая распространенная система в нашей стране благодаря своей дешевизне и простоте монтажа. Хотя на данный момент при реконструкции и введении в эксплуатацию вновь возводимых объектов эта система запрещена к применению, в старом жилом фонде TN-C все еще встречается повсеместно.

Технически система заземления TN-C выполнена следующим образом: на ТП (Трансформаторной подстанции) выполняется контур заземления или другими словами заземляющее устройство.

От него к потребителю приходит один провод, который совмещает в себе функции и нулевого рабочего и нулевого защитного проводника.

В данной системе используется так называемое зануление — все нетоковедущие части соединены перемычками с нулевым проводом.

Главный недостаток TN-C — при обрыве или отгорании ноля возникает опасность поражения электрическим током, так как потенциал может оказаться на корпусе электроприбора. Как вариант можно использовать УЗО, но оно не сможет в полной мере выполнять свои функции.

В системе TN-C запрещено выполнять

систему уравнивания потенциалов

TN-S

Данная система является на данный момент самой совершенной и безопасной. Единственный недостаток присущий этой системе — при монтаже она выходит дороже и TN-C и TN-C-S. Зато и плюс этой системы очевиден — высокий уровень электробезопасности.

Суть системы TN-S сводится к тому, что защитный и рабочий проводники разделяются прямо в ТП и идут отдельными проводами. То есть к дому в случае трехфазного питания подходят уже пять проводов, а в случае однофазного — три провода. При этом на вводе в здание делается повторное заземление.

TN-S рекомендована к применению на всех ответственных объектах, а также строящихся и капитально ремонтируемых зданиях. Но повсеместному распространению TN-S мешает, как я уже сказал выше, высокий уровень затрат при монтаже.

TN-C-S

Система TN-C-S является неким гибридом двух предыдущих систем. Ее применение обусловлено в первую очередь дороговизной TN-S и очевидными недостатками TN-C.

В данной системе как и при TN-C от ТП до ввода в здание идет один совмещенный PEN проводник. В ВРУ он разделяется на два проводника — нулевой рабочий и нулевой защитный и дальше они уже отходят к потребителям отдельными провода. На вводе здания также выполняется повторное заземление.

Данная система нашла широкое применение благодаря относительной легкости внедрения при реконструкции и высокому уровню электробезопасности.

TT

Система ТТ нашла свое применение в основном в сельской местности и при строительстве временных сооружений. Применяется в случае, если условия электробезопасности в системе TN не могут быть полностью обеспечены.

В системе TT все открытые проводящие части электроустановки присоединены к заземляющему устройству, электрически независимому от глухозаземленной нейтрали источника питания. Другими словами нулевой проводник от ТП никак не связан с заземляющим проводником на всем протяжении линии. Само заземление делается на стороне потребителя, к нему подключаются все PE проводники.

Таким образом все токопроводящие части приборов, соединенные с PE проводником, оказываются полностью изолированы от элекрической сети.

Следует помнить, что система TT требует обязательного

применения УЗО

IT

И наконец система IT — она используется только в электроустановках зданий специального назначения, к которым предъявляются повышенные требования безопасности и надежности, например в медицинских учреждениях. В жилых зданиях не применяется.

IT представляет из себя систему, в которой нейтраль источника питания изолирована от земли, или заземлена через приборы или устройства, имеющие большое сопротивление. При этом все открытые проводящие части электроустановки заземлены. Ток утечки на корпус в такой системе будет низким и не повлияет на работу оборудования.

Для тех, кто хочет более подробно ознакомиться с системами заземления предлагаю скачать брошюру из технической коллекции Schneider Electric «Системы заземления в электроустановках низкого напряжения».

Системы заземления

При проведении в квартире капитального ремонта или строительстве загородного дома касательно вопроса электричества, как правило, большое внимание уделяют расположению выключателей, розеток и организации освещения, но практически никогда не задумываются о необходимости квалифицированного проектирования и монтажа системы заземления. А ведь основное предназначение заземления – это защита человека от поражения электротоком, опасность которого возникает при нарушении изоляции или пробое фазного проводника на корпус электрооборудования.

Заземление для большинства неискушенных в электротехнике людей ассоциируется с закопанным в землю штырем, соединенным проводом с установленным на крыше молниеотводом или с имеющей металлические «хвостики» так называемой евророзеткой.

Некоторые считающие себя продвинутыми в этом вопросе обыватели организовывают домашнее заземление, путем присоединения к водопроводным трубам, которые, по их мнению, всегда уходят в землю, забывая при этом, что соседи снизу могут установить непроводящие пластиковые трубы.

В случае если электроприбор будет иметь утечку или пробой на корпус, за счет выноса потенциала подобное заземление таит угрозу поражения электротоком во всех помещениях, через которые проходит труба водопровода. Например, пробой на корпус возник в установленной в ванной и заземленной таким образом стиральной машине. В результате на водопроводном кране в соседней квартире по отношению к входящей в землю канализационной трубе появится разность потенциалов. Теперь если принимающий ванную дотронется до крана, то учитывая низкое сопротивление мокрой кожи, ток через его тело может достигнуть опасной для жизни величины. Хотя подобные некомпетентные советы по самостоятельной, а при несчастном случае и уголовно наказуемой, организации заземления в квартире можно встретить даже на сайтах компаний, имеющих лицензию на проведение электромонтажных работ. Поэтому следует помнить, что неправильно смонтированное заземление в некоторых случаях представляет большую опасность, чем его отсутствие.

Термин «заземление» употребляется для обозначения операции по преднамеренному присоединению к заземляющему устройству какой-либо точки электросети, электроприбора или оборудования.

Заземляющее устройство включает заземлитель (конструкцию из проводящего электроток материала, которая находится в электрическом контакте с землей) и заземляющий проводник (проводящий электрический ток материал, соединяющий заземляемое оборудование с заземлителем).

Конструкция заземлителя может быть как довольно простой в виде забитого в землю металлического стержня, так и сложной конфигурацией элементов определенной формы.

Квалифицировано спроектированное и качественно смонтированное заземляющее устройство имеет определенное требованием ПУЭ электрическое сопротивление, величина которого изменяется незначительно при изменении влажности или промерзании грунта.

Используемый для устройства системы заземления материал должен обладать высокими антикоррозийными свойствами. По своему функциональному назначению системы заземления подразделяются на два типа – защитное заземление и рабочее заземление. Первое предназначено для обеспечения безопасной эксплуатации электроустановок и приборов, второе – для обеспечения работы электроустановок.

В системах электроснабжения современных жилых и общественных зданий могут использоваться системы заземления четырех типов: TN-C, TN-S, TN-C-S, ТТ. За этими аббревиатурами скрыта исчерпывающая информация о характере заземления источника питания, открытых проводящих частей электроустановки и устройстве нулевых рабочего и защитного проводников.

В крупных населенных пунктах источником электроснабжения зданий служат городские трансформаторные подстанции (ТП), в которых используется система заземления TN.

То есть осуществляется непосредственное присоединение нейтрали (общей точки обмоток трансформаторов) источника питания к установленной тут же системе заземления, то есть нейтраль источника глухозаземлённая (первая буква Т (Тerra — земля) в аббревиатуре), а заземление открытых проводящих частей электроустановок и электроприборов потребителей осуществляется при помощи нулевого защитного проводника, соединенного с той же системой заземления (вторая буква N (Neutre — нулевой) в аббревиатуре). То есть от ТП к зданию идут предназначенные для питания устройств фазные проводники (L), нулевой рабочий проводник (N) и нулевой защитный проводник (PE — Protective Earthing).

В современной электронной технике используются импульсные блоки питания, имеющие на входе симметричный фильтр импульсных помех с присоединенной к корпусу средней точки, что приводит к выносу напряжения в 110 В на корпус.

При использовании системы заземления TN-C устройств защитного отключения (УЗО) является неработоспособным, поэтому нет защиты людей от поражения электрическим током.

Учет указанных выше недостатков привел к тому, что в действующей с 2006 года на территории Украины новой редакции ПУЭ принята система заземления TN-C-S (Separe — разделять), а применение TN-C запрещено.

Система TN-C-S является модернизацией описанной выше схемы, в которой РЕN во вводно-распределительном устройстве разделяется на нулевой защитный РЕ и нулевой рабочий N проводники.

В этом случае идущая к розеткам проводка выполняется тремя или пятью проводами (при трехфазной схеме).

Подобное заземление в развитых странах начало активно внедрятся с 1960-х годов и сегодня широко используется в Великобритании, Польше, Венгрии, Чехии, Словакии, Западной Австрии, Швейцарии, Германии, в странах Северной Европы (в частности, в Швейцарии и Финляндии) и США.

Для повышения безопасности защитный РЕ провод повторно заземляется на вводе в здание и объединяется неразрывными проводниками со всеми металлическими конструкциями: трубами, арматурой бетонных плит и т.п.

В отличие от системы TN-C безопасность теперь может обеспечиваться не только защитой от сверхтоков (автоматическими выключателями), но и применением УЗО, быстродействие которых гарантирует высокий уровень защиты человека при каких либо утечках тока (например, при пробое изоляции).

Недостатком подобной схемы заземления, как и в предыдущем варианте, является обрыв на участке объединенного РЕN проводника (так называемое отгорание нуля), при котором на подключенных к защитному РЕ проводу устройствах появляется фазовый потенциал.

Самой безопасной из TN систем заземления является широко распространенная в Великобритании схема TN-S, при которой нулевой защитный РЕ и нулевой рабочий N проводники разъединены по всей длине начиная от ТП.

Использование в такой системе УЗО позволяет гарантировать для находящихся в помещении людей высокую безопасность при всех авариях на электролинии.

Недостатком такой системы является необходимость модернизации электросетей на всей их протяженности, что требует значительных капиталовложений.

Учитывая сложность организации заземления (зануления) в городской квартире, все работы по модернизации электропроводки и переводе электроснабжения на европейские стандарты должны выполняться только квалифицированными специалистами.

Имеющие большой опыт работы сотрудники ПП «Енерго-поліс» качественно и в сжатые сроки выполняют соответственно действующим нормам ПУЭ расчет и монтаж системы заземления квартиры или офиса с использованием высококачественных и долговечных материалов.

При проектировании системы заземления загородного дома, идущий от ТП объединенный РЕN проводник разделяют на нулевой защитный РЕ и нулевой рабочий N для организации схемы TN-C-S на вводе в здание или на ближайшей опоре с обязательным повторным заземлением. Помимо этого ДБН В.2.

5-27-2006 допускают использование в индивидуальных частных домах системы заземления ТТ с обязательной установкой УЗО. При такой схеме РЕN проводник не разделяется и используется только в качестве рабочего нуля, а для заземления используется заземляющее устройство, независимое от заземлителя нейтрали ТП.

Подобная организация электроснабжения является на сегодняшний день одной из наиболее безопасных и широко распространена в странах южной Европы – Италии, Испании, Португалии, Греции, а также в Японии.

Заземляющее устройство загородного дома может быть выполнено с использованием различных материалов и иметь разные конфигурации заземлителя: контур вокруг здания, вбитые в землю штыри или их комбинация.

Специалисты  осуществляют проектирование и монтаж заземляющих устройств любой сложности с использованием комплектующих фирмы OBO Bettermann.

При проектирование заземляющих устройств учитывается совмещение защитного заземления линии электроснабжения с системой заземления внешней молниезащиты, системой уравнивания потенциалов и установкой устройства защиты от импульсных перенапряжений.

http://electro-servis.kiev.ua/zazem/zazem.htm

Территория электротехнической информации WEBSOR

Главное меню:

  • Основы
  • Электромашины
  • Оборудование
  • Нормы
  • Подстанция
    • Комплектные трансформаторные подстанции
    • Оборудование подстанций
    • Вакуумные выключатели
      • ВВ/TEL
      • ВР
      • ВРО
      • ВР1
      • ВР1 для КСО
      • ВРС
      • 3АН5
      • ВГГ-10
    • Камеры КСО
    • Ограничители перенапряжений 6(10) кВ
    • Масляный выключатель
      • ВПМ-10
      • Техническое описание ВПМ
      • ВМП-10
      • ВМГ-133
    • Выключатель нагрузки автогазовый ВНА
      • Описание выключателя
      • Изображение выключателя
    • Ремонт электрооборудования
    • Повышение надежности МВ, приводов МВ
    • Установки компенсации реактивной мощности
      • Общие сведения об УКРМ
      • УКРМ 0,4 кВ
      • УКРМ 6(10) кВ
    • Выбор места расположения питающих подстанций
  • Электроснабжение
  • Освещение
  • Воздушная линия

Нормы

СИСТЕМЫ ЗАЗЕМЛЕНИЯ

Для подключения оборудования в жилых зданиях существует несколько различных схем электроснабжения. Различаются они по способу заземления электрооборудования и источника электроэнергии (в качестве которого часто используется понижающий трансформатор). В настоящее время применяются три основные системы заземления: TN, ТТ и IT

. В том случае, если тип используемой системы неизвестен, следует обратиться для его уточнения к технической документации на присоединительный ввод.Тип системы заземления обозначают двумя буквами. Первая буква в обозначении определяет характер заземления источника питания:Т — непосредственное соединение нейтрали (нулевого рабочего проводника) источника питания с землей;I — нейтраль источника электропитания соединена с землей через сопротивление.Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:Т — раздельное (местное) заземление источника электропитания и электрооборудования;N — источник электропитания заземлен, а заземление потребителей производится только через PEN-проводник.Следующие за N буквы определяют характер этой связи — функциональный способ устройства нулевого защитного и нулевого рабочего проводников:S — функции нулевого защитного (РЕ) и нулевого рабочего (N) проводников обеспечиваются раздельными проводниками;С — функции нулевого защитного и нулевого рабочего проводников обеспечиваются одним общим проводником (PEN).

Применение УЗО в электроустановках различных систем заземления

В системе ТТ все открытые проводящее части электроустановки присоединены к заземлению, электрически независимому от заземлителя нейтрали источника питания. ГОСТ Р 50669-94 предписывает применение системы ТТ как основной в случае подключения указанных электроустановок к вводно-распределительным устройствам соседнего (капитального) здания.В ГОСТ Р 50571.3-94 п. 413.1.

4 указано, что в системе ТТ устройства защиты от сверхтока могут использоваться для защиты от косвенного прикосновения только в электроустановках, имеющих заземляющие устройства с очень малым сопротивлением.

При этом гарантированное отключение питания электроустановки должно производиться при появлении на открытых проводящих частях электроустановки напряжения не более 50 В.

В реальных условиях осуществить автоматическое отключение питания электроустановки системы ТТ с помощью автоматических выключателей по ряду причин (необходимости обеспечения большой кратности тока короткого замыкания, низкого сопротивления заземляющего устройства и др. ) весьма проблематично.

Эффективное решение проблемы автоматического отключения питания дает применение чувствительных ВД. В п. 1.7.59 ПУЭ (7-е изд.) содержится требование обязательного применения ВД для обеспечения условий электробезопасности в системе ТТ. При этом уставка (номинальный отключающий дифференциальный ток) должна быть меньше значения тока замыкания на заземленные открытые проводящие части при напряжении на них 50 В относительно зоны нулевого потенциала.

В электроустановках индивидуальных жилых домов, коттеджей, дачных (садовых) домов и других частных сооружений, где не всегда имеется возможность выполнить заземлитель с требуемыми нормами, необходимо применять систему ТТ с обязательной установкой ВД. В этом случае требования к значению сопротивления заземлителя значительно снижаются.

Допустимые значения сопротивления заземления

Чувствительность ВД, мАСопротивление, Ом
предельное безопасное напряжение 25 Впредельное безопасное напряжение 50 В
10 30 100 300 500 650 1000 3000

Система заземления типа TN-S

На сегодняшний день система TN-S считается самой надежной и безопасной. Именно поэтому в ПУЭ при реконструкции старых и постройки новых зданий рекомендуется монтировать именно систему заземления TN-S. В этой статье я расскажу, что представляет из себя TN-S, а также расскажу о положительных и отрицательных сторонах этой системы.

В европейских странах данная система пришла на смену более простой и дешевой системы заземления TN-C еще в начале 40-х годов прошлого века, но в силу экономической составляющей она не прижилась в СССР и крайне медленно внедряется сегодня в России.

Особенность данной системы

Главной отличительной чертой передачи энергии при такой системе является то, что в трехфазных сетях у вас будут пять проводов, фазы: А, В, С рабочий ноль PN и заземление PE.

Схема заземления типа TN-S выглядит следующим образом

Получается, что все воздушные линии электропередач обязаны иметь целых пять проводов, вместо четырех при системе TN-C.

При этом пятый провод PE выполняет чисто защитные функции. Так же при такой системе заземления у конечного потребителя проводка должна быть выполнена трехжильным проводом: фаза, рабочий ноль, защитное заземление.

Явные плюсы системы TN-S

К положительным аспектам использования системы заземления TN-S относится то, что здесь гарантируется повышенная степень электробезопасности за счет полноценного применения такого защитного устройство как УЗО.

Причем оно будет срабатывать не только при прикосновении человека к корпусу электроустановки, оказавшимся под напряжением, но и отключит поврежденный участок сразу при возникновении пробоя изоляции без участия человека.

Кроме этого в такой системе нет жесткого требования в дополнительном заземляющем контуре, за которым требуется вести постоянный технический контроль.

Так же отпадает необходимость выполнения отдельных заземлений металлических корпусов электроприборов.

В такой системе отсутствуют так называемые высокочастотные наведенные помехи, что положительно отражается на работоспособности чувствительных электроприборов.

Минусы системы TN-S

Минус у такой системы один и связан он в первую очередь с финансами. Для того, чтобы полностью перевести энергосистему на такую систему, придется выполнить реконструкцию абсолютно всех существующих ЛЭП. Именно поэтому в России гораздо перспективней выглядит использование системы TN-C–S, про которую подробно написано на моем канале.

Как перейти на такую систему

Конечно, многие захотят максимально обезопасить свое жилье и реализовать такую систему заземления.

Ждать пока будет принята и реализована федеральная программа по реконструкции сетей можно очень долго, поэтому у владельцев частных домовладений есть выход в виде реализации системы заземления TN-C-S.

Ведь эта система как раз сочетает в себе TN-C и TN-S и полностью отвечает всем современным требованиям ПУЭ.

Это все, что я хотел вам сказать об очень надежной, но дорогостоящей системе заземления TN-S.

Спасибо за ваше драгоценное внимание.

Системы заземления tn

Заземление — это специальное электросоединение корпуса установки и заземляющего устройства, которое обеспечивает безопасный контакт человека с этой установкой. Если заземление выполнено качественно и по всем стандартам, поражение человека электрическим током при прикосновении к частям установки под напряжением исключено.

Именно такое, качественное заземление предлагает вам компания «ЛАСПИ-2». Вы легко можете связаться с нами и заказать нужную услугу, позвонив номеру +7 (499) 347-31-09 или +7 (903) 106-29-25.

Система заземления и ее принцип действия

Чем же объясняется действие защитного заземления? В этой системе берут участие три составляющих: заземлитель, почва (земля) и нулевые проводники заземления.

Когда изоляция повреждена, электрический ток проходит этим элементам, направляясь к нейтрали трансформатора и, благодаря низкому сопротивлению заземлителя, снижает уровень напряжения.

Таким образом, каждый из трех ключевых составляющих выполняет свою функцию. В результате, на человека попадает минимальное количество негативного воздействия тока.

Система заземления TN — в ее основе лежит глухозаземленная нейтраль источника с подсоединенными к ней проводящими частями электроустановки. Более простыми словами это означает, что нейтраль, которая находится на трансформаторной подстанции подключена напрямую к заземляющему контуру. TN система имеет несколько разновидностей, каждая из которых несет на себе конкретные задачи.

Виды TN заземления

TN система имеет несколько разновидностей, каждая из которых несет на себе конкретные задачи:

  • система заземления tn c. Ее проводники работают совмещенно на всем протяжении системы. Другими словами такой тип называют защитным занулением;
  • tn s система заземления. Защитный и рабочий нулевые проводники здесь, наоборот, разделены. Поэтому эта система считается самой действенной и безопасной для человека, однако и по стоимости она превышает другие;
  • система заземления tn c s — это что-то среднее между первым и вторым вариантами. В ней проводники соединены в одном месте, а далее расходятся по всему зданию. Этим местом совмещения может оказаться главный щит помещения. С точки зрения взаимовыгодного соотношения цены и качества этот вариант наиболее приемлем.

Несмотря на то, какая из перечисленных систем вас интересует, профессионалы компании «ЛАСПИ-2» оборудуют любую выбранную вами систему в максимально короткие временные рамки за минимальную цену. Гарантия надежности и безопасности выполненных работ — это обязательная составляющая всех наших услуг.

Какие задачи решает предварительное составление плана электрики?

Системы заземления TN-S, TN-C, TNC-S, TT, IT

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление.

Основные требования к системам заземления содержатся в пункте 1. 7 Правил устройства электроустановок (ПУЭ).

В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия.

Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель.

Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство.

Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.

7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).

Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» — комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S.

Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора.

При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.

2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией.

Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода.

При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» — ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений.

В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг.

При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.

Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT.

Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.

При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное — жизнь человека.

Смотрите также:

  • Вебинары с ведущими экспертами отрасли
  • Все для расчетов заземления и молниезащиты
  • Полезные материалы: статьи, рекомендации, примеры

что такое заземление,правильное заземление, устройство заземления,нормы заземления,теория заземления,заземление оборудования,устройство защитного заземления,системы заземления

В России основным документом, регламентирующим требования к заземлению и его устройству, являются ПРАВИЛА УСТРОЙСТВА ЭЛЕКТРОУСТАНОВОК (ПУЭ). В настоящий момент актуальны ПРАВИЛА УСТРОЙСТВА ЭЛКТРОУСТАНОВОК издание седьмое. Утверждены Приказом Минэнерго России от 08.07.2002 №204.

Пункт 1.7.28 ПУЭ Издание, 7 гласит:

Заземление – преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.


Заземляющее устройство (заземление) может быть как одним вертикальным электродом (например из модульного заземления) погруженным в землю на определенную глубину ( в зависимости от требуемого значения сопротивления), так и представлять из себя совокупность вертикальных и горизонтальных заземлителей: 

 

Из представленной картинки  видно, что заземляющее устройство (ЗУ) состоит из заземлителя и заземляющего проводника.

Заземлитель – проводящая часть или совокупность  соединенных между собой проводящих частей, находящихся в электрическом контакте с землёй. Или простыми словами – часть заземляющего устройства находящихся в земле – это могут быть стальные уголки, модульное заземление в виде стальных штырей с медным покрытием, трубы отопления, обсадные трубы скважин.

 

Допустимые материалы и формы заземлителей и заземляющих проводников согласно ПУЭ 7:


Заземлитель может быть простым металлическим стержнем (стальными или с медным покрытием) и/или совокупностью вбитых стальных уголков в форме определенной геометрической фигуры (треугольник, квадрат, линия и т.д.)

Заземлители делятся на искусственные и естественные.

·         Искусственные заземлители – это заземлители выполняемые специально в целях заземления людьми.

·         Естественные заземлители – это металлические объекты, находящиеся в контакте с землей, которые могут быть использованы в целях заземления: водопроводные трубы, обсадные трубы скважин и т. д. Использование естественных заземлителе также регламентируются Правилами Эксплуатации электроустановок (ПУЭ изд. 7).

Заземляющий проводник – проводник, соединяющий заземляемую часть с заземлителем. Это могут быть стальные пластины, оцинкованные стальные пластины, медные кабеля сечением в соответствии с нормативными документами.

Ниже представлены пункты ПУЭ издание 7 нормирующие величину площади сечения защитных проводников в зависимости от площади сечения фазных проводников и некоторые особенности:


Качество заземления определяется значением сопротивления растеканию электрического тока. Чем сопротивление заземляющего устройства ниже, тем качество лучше. Сопротивление ЗУ можно снизить, увеличивая глубину и/или количество электродов в заземляющем устройстве, тем самым увеличивая площадь растекания тока, а так же можно снизить сопротивление ЗУ повышением концентрации солей в грунте. Требуемое значение сопротивления в конкретном случае нормируется требованиями ПУЭ либо производителями оборудования, которое требует заземления в процессе эксплуатации.

Пункты ПУЭ издание 7 нормирующие сопротивление заземляющих устройств:


 

РАЗНОВИДНОСТИ СИСТЕМ ЗАЗЕМЛЕНИЯ

 

ГОСТ Р 50571.2-94 «Электроустановки зданий. Часть 3. Основные характеристики» регламентирует следующие системы заземления: TNC, TNS, TNCS, TT, IT.

 

В данном материале мы рассмотрим TN и TT системы, как наиболее часто встречающиеся на практике в нашей стране. Система IT, в которой нейтраль источника питания изолирована от земли или заземлена  через приборы или устройства, имеющие большое сопротивление, применяется, как правило, в электроустановках зданий и сооружений специального назначения.

·         система TN – система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухо заземлённой нейтари источника посредством нулевых защитных проводников. Т.е. все разновидности систем заземления с маркировкой TN подразумевают то, что на подстанции нейтраль соединена с заземляющим устройством, тем самым в нейтрали (отходящей от источника) соединены функции нулевого рабочего и нулевого защитного проводника (обозначается как PEN).

Далее систему TN можно разделить по признаку того как нулевой рабочий проводник (N) и нулевой защитный проводник (PE) доставляется потребителю на подсистемы – TN-C, TN-S, TN-C-S;

·         система TNC – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) совмещены в одном проводнике на всем её протяжении. Простым языком это означает, что потребителю в случае 3-х фазного подключения приходит 4-х жильный кабель (3 фазы и ноль) и 2-х жильный кабель в случае однофазного подключения (1 фаза и ноль). Основной  и опасный недостаток системы в том, что при обрыве нуля возможно появление линейного напряжения на корпусах электроустановок. До сих пор может встречаться в нашей стране;

 

·         система TNS (пришла на смену системе TN-C в 1930 гг.) – система TN, в которой нулевой защитный (РЕ) и нулевой рабочий (N) проводники разделены на всем ее протяжении. Простым языком это означает, что к потребителю от подстанции в случае трехфазного подключения приходит 5-ти жильный кабель (3 фазы, ноль и «земля»), в случае однофазного подключения 3-х жильный кабель ( фаза, ноль, «земля») – нулевой рабочий проводник (N) и нулевой защитный проводник (PE) разделялись на подстанции, а заземление на подстанции представляет сложную конструкцию из металлической арматуры. При такой системе обрыв рабочего ноля не приводит к появлению линейного напряжения на корпусах электроустановок;


·         система TNCS (можно назвать ее частным случаем системы TN-S) – трансформаторная подстанция имеет непосредственную связь  токопроводящих частей с землёй и наглухо заземленную нейтраль , на линии (участок от подстанции до потребителя) же в какой-то части нулевой рабочий (N) и защитный (PE) проводники объединены в проводнике PEN, а начиная с какой-то точки происходит их разделение на N (нулевой рабочий проводник) и РЕ (защитный проводник). Например: на участке  от подстанции до ввода в здание потребителя  применяется совмещенный нулевой рабочий (N) и защитный (PE) обозначаемый PEN, т.е применяется система TN-C, а при вводе в здание производится разделение PEN на рабочий нулевой проводник (N) и защитный (PE) далее по зданию до распределительного щита идут уже жила- фаза, жила – «чистый» ноль и жила -«чистая» земля, т.е. система TN-S. Вероятно из-за такой трансформации получилось TN-C-S. Есть случаи, когда разделение происходит в вводно распределительном устройстве (ВРУ) внутри здания.


В случае организации TN-C-S для частного дома необходимо производить разделение PEN на N и PE в щите учета (перед вводом в дом, как правило, эти щиты  расположены на столбах, если идет воздушная линия или стоят на земле около участка, в случае, если идет линия в земле) до счетчика и вводного автомата, при чем разделение PEN должно происходить без разрыва этого проводника с использованием прокалывающего зажима, либо использовать Н-образную шину разделения PEN на N и PE c надежными болтовыми соединениями проводников ( в этом случае будет разрыв PEN, но при таком соединении разрыв допустим)

 

 
Н-образная шина разделения проводника PEN

 
Схема разделения проводника PEN с помощью Н-образной шины
 перед вводом в дом


ПЭЭП!!!!

В соответствии с ПУЭ 7, система TN-C-S является основной и рекомендуемой системой. При организации системы TN-C-S, ПУЭ требуют соблюдения ряда мер по недопущению разрушения PEN, а также повторных заземлений PEN  воздушной линии по столбам через определенное расстояние (от 40 до 200 метров в зависимости от количества грозовых часов в году на определённой местности).

Достоинства: возможность обнаружения КЗ фазы на корпус оборудования простыми автоматами и практически пожаробезопасная .

Недостатки: при повреждении ноля на линии до разделения возникает ситуация, когда под фазным напряжением оказываются заземленные корпуса оборудования, что представляет опасность для человека и никакая автоматика не сможет разорвать цепь, так как PE после разделения идет в обход всех автоматических выключателей.  Внутри помещения это решается системой уравнивания потенциалов (СУП) – все металлические части объекта соединяются с главной шиной заземления (ГЗШ), на которую также заведен проводник от местного заземляющего устройства. В результате если произойдет обрыв ноля на линии и в доме все заземленные корпуса оборудования будут под фазным напряжение, то под таким же напряжением окажутся и все металлические части дома, следовательно разности потенциалов между ними не будет и при одновременном касании человека металлических частей дома и заземленных корпусов оборудования, приборов находящимся под напряжением(из-за аварии на линии)  поражения электрическим током не будет.
В случае когда нет возможности соблюсти условия организации системы TN-C-S обозначенные выше, ПУЭ рекомендуют систему заземления TT.

 

·         Система ТТ – система с трансформаторной подстанцией, которая имеет непосредственную связь токоведущих частей с землей. Все открытые проводящие части электроустановки потребителя имеют непосредственную связь с землей через заземлитель, независимый от заземлителя нейтрали трансформаторной подстанции. Т.е. к потребителю приходит, например, система TN-C (нулевой рабочий (N) и нулевой защитный (РЕ) совмещены), а электроустановка потребителя имеет свое независимое (не имеющее связи с PEN) заземление.


Достоинства:  разрушение нуля никак не влияет на

PE, т.е. при разрушении нуля на линии линейного напряжения не будет на заземленных корпусах оборудования;
Недостатки: основным недостатком системы ТТ является невозможность для обычного автомата отследить КЗ фазы на корпус оборудования.

ПУЭ рекомендуют систему заземления ТТ только как «дополнительную», только при условии того, что нет возможности соблюсти условия организации системы TN-C-S.
Тем не менее в сельской местности довольно часто встречаются системы заземления ТТ из-за низкого качества большинства воздушных линий. Если в частный дом с столба приходят пара неизолированных проводов  – это именно такой случай и сделать правильную, удовлетворяющую всем требованиям ПУЭ TN-C-S никак не удастся.

 

ВАЖНОЕ ТРЕБОВАНИЕ К ОРГАНИЗАЦИИ СИСТЕМЫ TT – ОБЯЗАТЕЛЬНОЕ ПРИМЕНЕНИЕ УЗО. Как правило устанавливают вводное УЗО с током утечки 300-100 мА, для отслеживания КЗ между фазой и PE (это необходимо для предотвращения пожара в щите, а в последствие в доме), а за ним для каждой конкретной цепи в доме с утечкой 30-10мА(для защиты людей от поражения электрическим током.

Типы систем заземления в соответствии со стандартом IEEE

Заземление (заземление) – это система электрических цепей, соединенных с землей, которая функционирует, когда ток утечки может разрядить электричество в землю.

Согласно Стандарту 142 ™ 2007 Института инженеров по электротехнике и радиоэлектронике (IEEE), цель системы заземления:

  1. Ограничить величину напряжения на землю в допустимых пределах
  2. Обеспечьте путь для прохождения тока, который может обеспечить обнаружение возникновения нежелательной взаимосвязи между системным проводом и землей.Это обнаружение приведет к срабатыванию автоматического оборудования, которое определяет подачу напряжения от проводника.

В соответствии со стандартами IEEE система заземления делится на:

  1. TN-S (Terre Neutral – отдельный)
  2. TN-C-S (Terre Neutral – комбинированный – отдельный)
  3. TT (Дабл Терре)
  4. TN-C (Neutral Terre – комбинированный)
  5. IT (Изолированная земля)

Терре происходит от французского языка и означает земля.

Первая буква обозначает соединение между землей и источником питания, а вторая буква показывает соединение между землей и электронным оборудованием, на которое подается электричество. Значение каждой буквы следующее:

  • T (Terra) = прямое соединение с землей.
  • I (Изоляция) = Нет соединения с землей (даже при высоком импедансе)
  • N (нейтраль) = подключение напрямую к нейтральному кабелю питания (если этот кабель также заземлен в источнике питания)
  1. TN-S (Terre Neutral – отдельный)

В системе TN-S нейтральная часть источника электроэнергии соединена с землей в одной точке, так что нейтральная часть установки потребителя напрямую подключена к нейтральному источнику электроэнергии.Этот тип подходит для установок, близких к источникам электроэнергии, например, для крупных потребителей, у которых есть один или несколько трансформаторов высокого / низкого напряжения для собственных нужд, и если установка / оборудование находится рядом с источником энергии (трансформаторы).

  1. TN-C-S (Terre Neutral – комбинированный – раздельный)

Система TN-C-S имеет нейтральный канал от основного распределительного оборудования (источника питания), подключенный к земле и заземленный на определенном расстоянии вдоль нейтральных каналов, ведущих к потребителям, обычно называемый защитным множественным заземлением (PME).В этой системе нейтральный проводник может функционировать для восстановления тока замыкания на землю, который может возникнуть на стороне потребителя (установки), обратно к источнику питания. В этой системе установка оборудования у потребителя только соединяет землю с клеммой (каналом), обеспечиваемой источником питания.

  1. TT (Дабл Терре)

В системе ТТ нейтральная часть источника электроэнергии не связана напрямую с заземлением нейтрали на стороне потребителя (установка оборудования).В системах ТТ потребители должны обеспечивать собственное подключение к земле, а именно путем установки заземляющего электрода, подходящего для данной установки.

  1. TN-C (Neutral Terre – комбинированный)

В системе TN-C нейтральный канал главного распределительного оборудования (источника питания) подключается непосредственно к нейтральному каналу потребителя и корпусу установленного оборудования.

В этой системе нейтральный провод используется в качестве защитного проводника, а комбинация нейтральной и заземляющей боковых рам оборудования известна как проводник PEN (защитное заземление и нейтраль).

Эта система не предназначена для проводов диаметром менее 10 мм. 2 или переносного оборудования. Это связано с тем, что при возникновении неисправности по PEN-проводнику одновременно проходит ток небаланса фаз и гармонический ток третьего уровня и его кратные.

Чтобы уменьшить воздействие на оборудование и живые существа вокруг оборудования, при применении системы TN-C провод PEN должен быть подключен к нескольким электродным стержням для заземления на установке.

  1. IT (Изолированная земля)

Из первой буквы (I) видно, что в этом типе IT-системы нейтраль изолирована (не соединена) с землей. Точка PE не подключена к нейтральному каналу, а напрямую подключена к заземлению.

В своем применении нейтральная точка системы IT на самом деле не изолирована от земли, но все же связана с импедансом Zs, который имеет очень высокое значение от 1000 до 3000 Ом.Это служит для ограничения уровня перегрузки по напряжению при наличии помех в системе.

TT IT TN-S TN-C TN-C-S
Полное сопротивление контура замыкания на землю Высокая Самый высокий Низкий Низкий Низкий
Предпочтительно УЗО Есть НЕТ Дополнительно Дополнительно
Требуется заземляющий электрод на объекте Есть Есть Дополнительно
PE проводник стоимость Низкий Низкий Самый высокий Минимум Высокая
Риск выхода из нейтрального положения Высокая Самый высокий Высокая
Безопасность Сейф Менее безопасный Самый безопасный Наименее безопасный Сейф
Электромагнитные помехи Минимум Минимум Низкий Высокая Низкий
Риски безопасности Высокое сопротивление контура (ступенчатое напряжение) Двойная неисправность, перенапряжение Нейтраль оборвана Нейтраль оборвана Нейтраль оборвана
Преимущества Безопасность и надежность Непрерывность работы, стоимость Самый безопасный Стоимость Безопасность и стоимость

Не стесняйтесь обращаться к нам по адресу marketing @ phoenixcontact. com.sg, чтобы узнать больше!

Какие бывают системы питания переменного тока (заземление TN, TT и IT) и какую из них выбрать? – E-Mobility Simplified

Какие они? Чем они отличаются друг от друга? Почему у нас не может быть единой стандартной схемы заземления? Какие причины заставляют монтажников и производителей электрооборудования выбирать эти разные схемы?
Эта статья может дать быстрое (и, надеюсь, упрощенное) объяснение всего вышеперечисленного.

Электромонтажники во всем мире могут называть распределительные системы по-разному: например, трехфазная трехпроводная система, трехфазная четырехпроводная система, однофазная одна проводная, однофазная = двухпроводная система и т. Д.

Но чтобы привести единообразное определение, Международная электротехническая комиссия (МЭК) в соответствии со стандартом МЭК 60364-3 классифицировала системы распределения питания переменного тока в соответствии с различными методами заземления как: системы TN, TT и IT; и система TN дополнительно разделяется на TN-C, TN-S, TN-C-S.

Характеристики различных систем питания / заземления

Заземление TN-C:
Система электропитания в режиме TN-C использует рабочую нейтральную линию в качестве линии защиты от перехода через нуль, которую можно назвать защитной нейтральной линией и обозначить как PEN.
Заземление TN-C-S:
Для временного источника питания системы TN-CS, если передняя часть питается по методу TN-C, а строительный кодекс указывает, что на строительной площадке должна использоваться система питания TN-S, общая распределительная коробка может быть разделен в задней части системы.
TN-S заземление
Система электропитания в режиме TN-S – это система электропитания, которая строго отделяет рабочую нейтраль N от выделенной защитной линии PE. Она называется системой питания TN-S.
Система питания ТТ
Метод TT относится к защитной системе, которая напрямую заземляет металлический корпус электрического устройства, которая называется системой защитного заземления, также называемой системой TT. Первый символ T указывает, что нейтральная точка энергосистемы напрямую заземлена; второй символ T указывает на то, что проводящая часть нагрузочного устройства, не контактирующая с токоведущим телом, напрямую связана с землей, независимо от того, как заземлена система.Все заземление нагрузки в системе ТТ называется защитным заземлением.

Характеристики данной системы питания следующие.

1) Когда металлический корпус электрического оборудования заряжен (фазовая линия касается корпуса или изоляция оборудования повреждена и протекает), защита от заземления может значительно снизить риск поражения электрическим током. Однако низковольтные автоматические выключатели (автоматические выключатели) не обязательно срабатывают, в результате чего напряжение утечки на землю устройства утечки превышает безопасное напряжение, которое является опасным.

2) При относительно небольшом токе утечки даже предохранитель может не перегореть. Следовательно, для защиты также требуется устройство защиты от утечки. Поэтому популяризировать систему TT сложно.

3) Заземляющее устройство системы TT потребляет много стали, и его трудно утилизировать, время и материалы.

В настоящее время некоторые строительные единицы используют систему ТТ. Когда строительная единица заимствует источник питания для временного использования электроэнергии, используется специальная линия защиты, чтобы уменьшить количество стали, используемой для заземляющего устройства.

Система питания TN
В системе TN, то есть трехфазной пятипроводной системе, линия N и линия PE прокладываются отдельно и изолированы друг от друга, а линия PE подключается к корпусу электрического устройства вместо N-линия.

Следовательно, самое важное, о чем мы заботимся, – это потенциал провода PE, а не потенциал провода N, поэтому повторное заземление в системе TN-S не является повторным заземлением провода N. Если линия PE и линия N заземлены вместе, поскольку линия PE и линия N соединены в повторяющейся точке заземления, линия между повторяющейся точкой заземления и рабочей точкой заземления распределительного трансформатора не имеет разницы между линией PE и линия N.

Исходная строка – это строка N. Предполагаемый ток нейтрали делится между линией N и линией PE, а часть тока шунтируется через повторяющуюся точку заземления. Поскольку можно считать, что на передней стороне повторяющейся точки заземления нет линии PE, только линия PEN, состоящая из исходной линии PE и линии N, включенных параллельно, преимущества исходной системы TN-S будут потеряны, поэтому линия PE и линия N не могут быть общим заземлением.

По вышеуказанным причинам в соответствующих правилах четко указано, что нейтральная линия (т.е.N line) не следует повторно заземлять, за исключением нейтральной точки источника питания.

IT-система
Система питания в режиме IT «I» указывает на то, что сторона источника питания не имеет рабочего заземления или заземлена с высоким сопротивлением. Вторая буква T означает, что электрическое оборудование на стороне нагрузки заземлено.

Система питания в режиме IT отличается высокой надежностью и хорошей безопасностью, когда расстояние до источника питания невелико. Обычно он используется в местах, где отключение электроэнергии запрещено, или в местах, где требуется строгое постоянное электроснабжение, например, в сталеплавильном производстве, в операционных в крупных больницах и в подземных шахтах.

Условия электроснабжения в подземных шахтах относительно плохие, а кабели подвержены воздействию влаги. При использовании системы с питанием от IT, даже если нейтральная точка источника питания не заземлена, после утечки в устройстве относительный ток утечки на землю по-прежнему невелик и не повредит баланс напряжения источника питания. Следовательно, это более безопасно, чем система заземления нейтрали источника питания. Однако, если источник питания используется на большом расстоянии, распределенную емкость линии электропитания относительно земли нельзя игнорировать.

Когда короткое замыкание или утечка нагрузки приводят к тому, что корпус устройства становится под напряжением, ток утечки образует путь через землю, и устройство защиты не обязательно срабатывает. Это опасно. Это безопаснее, только если расстояние от источника питания не слишком велико. На стройплощадке такой вид электроснабжения встречается редко.

Причины использования разных систем заземления

Почему у нас разные системы заземления, такие как TN, TN-C, TN-S, TT и IT? Почему у нас не может быть единой стандартной схемы заземления? Какие причины заставляют монтажников и производителей электрооборудования выбирать эти разные схемы?

Выбор схемы заземления не такой прямой; Все дело в экономии денег и обеспечении достаточной защиты от поражения электрическим током.

Например,

➤ TT- в основном предназначен для бытовых источников питания. Владелец должен установить защиту от заземления путем собственного подключения к земле. Преимущество – снижение шума высокой или низкой частоты, отсутствие риска отказа и пригодность для помещений, где все цепи питания переменного тока защищены устройством защитного отключения (УЗО).

➤ IT-Эта система похожа на систему TT, но отличается от источника заземления. Система распределителя имеет только соединение с высоким сопротивлением.Этот тип не идеален для электропитания потребителей и используется для распределителей энергии, таких как подстанция или зона генераторов.

➤ Система TN-S Клемма заземления потребителя обычно подключается к металлической части распределительного кабеля. Он используется для подземного электроснабжения помещения или завода от распределительной подстанции до подстанции потребителя.

➤ Система TN-C-S. В этой системе нейтральный провод питания распределительной магистрали соединен с землей в источнике в качестве защитного многократного заземления.

➤ TN-C-Эта система представляет собой комбинированный провод PEN, выполняющий функции как PE (защитный провод), так и N (нейтральный) провод.

Выше отражены только общие сценарии; но нужно всегда придерживаться местных правил, если таковые имеются. Как уже упоминалось, стандартного решения не существует, необходимы разные типы заземления для удовлетворения конкретных потребителей, таких как бытовые, промышленные, HT / LT и т.

Д.

Введение в заземление и соединение

Заземление и соединение – это два очень разных, но часто путающих метода предотвращения поражения электрическим током.

Принцип заземления состоит в том, чтобы ограничить продолжительность напряжения прикосновения, если вы вступите в контакт с оголенной проводящей частью. Земля создает безопасный путь для прохождения тока вместо поражения электрическим током.

Целью соединения является снижение риска поражения электрическим током, если вы прикасаетесь к отдельным металлическим частям при неисправности в электрической установке. В этом случае защитные заземляющие провода уменьшают величину напряжения прикосновения.

Заземление и соединение являются важными требованиями любой электрической установки и соответствуют требованиям безопасности BS7671.

Что такое система заземления?

В простейшем случае система заземления – это устройство, с помощью которого электрическая установка соединяется со средством заземления. Обычно это делается в целях безопасности, но иногда и для функциональных целей, например, в случае телеграфных линий, которые используют землю в качестве проводника, чтобы сэкономить на стоимости обратного провода в длинной цепи.Если в электрической установке возникнет неисправность, человек может получить удар электрическим током, прикоснувшись к находящейся под напряжением металлической части, потому что электричество использует тело как путь к земле. Заземление обеспечивает альтернативный путь прохождения тока короткого замыкания на землю.

В Великобритании существуют три основные системы заземления, используемые для неспециализированных установок и определенные в Правилах проводки IET, две – это системы TN (где оператор распределительной сети (DNO) отвечает за заземление), а другая – система TT ( который не имеет собственного заземления):

Обозначения: T = Земля (земля), N = нейтраль, C = комбинированный, S = отдельный

Системы

TN-S имеют одно соединение нейтрали с землей, расположенное как можно ближе к трансформатору питания, и отдельные кабели питания повсюду. В источниках низкого напряжения трансформатор можно даже подключить к оболочке питающего кабеля, что даст отдельный путь обратно к трансформатору подстанции. Максимальное сопротивление внешней цепи замыкания на землю DNO в этих конфигурациях обычно составляет 0,8 Ом.

Это наиболее распространенная конфигурация, используемая в Великобритании. Он также известен как защитное многократное заземление (PME) и обеспечивает подачу низкого напряжения с надежным и безопасным заземлением. Эта система позволяет нескольким пользователям использовать один кабель питания.Возникающее в результате увеличение тока вызывает повышение напряжения в защитной заземленной нейтрали (PEN), которая требует многократного подключения к земле на всем протяжении маршрута питания. Нейтраль заземляется рядом с источником питания, на входе в установку и в необходимых точках распределительной системы. Поскольку DNO использует комбинированный нейтральный и обратный тракт PEN, максимальное сопротивление внешней цепи замыкания на землю составляет 0,35 Ом.

Несмотря на свою популярность, схема TN-C-S может оказаться опасной, если PEN-проводник станет разомкнутой цепью в источнике питания, потому что ток не будет немедленно возвращаться на уровень подстанции.Из-за этого есть определенные объекты, где его нельзя использовать, в том числе заправочные станции, строительные площадки, автостоянки и некоторые хозяйственные постройки.

Конфигурация аналогична системе TN-S, но не дает потребителям индивидуального заземления. Вместо этого потребители должны поставлять свою землю, например, закапывая стержни или плиты под землю, чтобы обеспечить путь с низким сопротивлением. Часто системы TT используются там, где устройства TN-C-S не могут быть использованы (например, в приведенном выше примере заправочной станции) или в сельской местности, где питание осуществляется на воздушных столбах.Меры защиты от ударов, такие как УЗО, часто используются для обеспечения автоматического отключения питания там, где существуют различные типы грунта, которые могут вызвать значения полного сопротивления контура внешнего замыкания на землю.

Что такое склеивание?

Электрическое соединение – это практика соединения всех открытых металлических предметов, не предназначенных для проведения электричества в определенной области, с использованием защитного соединительного проводника, цель которого – защитить людей, которые могут коснуться двух отдельных металлических частей, от поражения электрическим током в случае электрического повреждения.Это снижает напряжение, которое могло быть там.

Как упоминалось ранее, знание того, когда объект следует заземлить, а когда – соединить, может сбивать с толку.

В качестве примера возьмем металлический кабельный лоток, который часто используется в электрических установках. Если:

  • Лоток является открытой проводящей частью (т. Е. К нему можно дотронуться, и он обычно не находится под напряжением), его НЕОБХОДИМО заземлить.
  • Лоток является внешней проводящей частью (т. Е. Значение омического сопротивления между предполагаемой внешней частью и землей меньше 22 кОм), ее БУДЕТ подключать.
  • Лоток не является открытой или посторонней проводящей частью, поэтому его НЕ нужно заземлять или склеивать.

Узнайте больше о том, как определить посторонние проводящие детали здесь.

типов систем заземления, используемых в электроустановках ~ Изучение электротехники

Пользовательский поиск

В международном стандарте IEC60364, часть 4, и в ссылке 10 используется набор диаграмм для объяснения пяти основных методов заземления и обеспечения нейтрали электроустановки там, где это необходимо.Эти пять методов обозначаются сокращенно: TNC , TNS , TNCS , TT и IT .

Первая буква обозначает источник питания от обмотки, соединенной звездой. T означает, что точка звезды источника надежно соединена с землей, которая обычно находится в непосредственной близости от обмотки.
I обозначают, что точка звезды и обмотка изолированы от земли. Точка звезды обычно подключается к индуктивному сопротивлению или сопротивлению. Емкостный импеданс никогда не используется.

Вторая буква обозначает потребителя. Потребляющее оборудование требует заземления
. Существует два основных метода заземления корпуса электрооборудования. Эти методы обозначаются буквами T и N . Буква N подразделяется на другие буквы, S и C , что дает NS и NC и NCS.

T означает, что потребитель надежно заземлен независимо от метода заземления источника.

N означает, что провод с низким импедансом отводится от заземляющего соединения в источнике и направляется непосредственно к потребителю для конкретной цели заземления потребляющего оборудования.

S означает, что нейтральный проводник, проложенный от источника, отделен от проводника защитного заземления, который также проложен от источника. Это означает, что для трехфазного потребителя необходимо проложить пять проводов.

C означает, что нейтральный проводник и провод защитного заземления являются одним и тем же проводником. Это означает, что для трехфазного потребителя необходимо проложить четыре проводника.

Различные типы заземления показаны на следующих схемах:

(a) Система заземления TNC

(b) Система заземления TNS

(c) Система заземления TNCS

(d) Система заземления TT ​​

(e) Система заземления IT

Что такое система заземления

В терминологии электротехники земля или система заземления – это точка отсчета в электрической цепи, по которой рассчитываются напряжения.Система заземления или нашим друзьям через пруд; Система заземления также имеет функцию обеспечения общего обратного пути для электрического тока через физическое соединение с геологией. В электрической установке система заземления или электрод системы заземления соединяет определенные части этой установки с проводящей поверхностью Земли для обеспечения безопасности и функциональных целей.

Обязательные знаки – Подключите клемму заземления к земле

Назначение системы заземления или системы заземления

Электрические цепи подключаются к земле, заземлению по ряду причин. (См. В чем разница между заземлением и соединением)

Заземление, система заземления обеспечивает:

  • Индивидуальная защита – живые существа в непосредственной близости от подстанций путем недопущения воздействия небезопасных потенциалов в установившемся режиме или в условиях неисправности. (см. ступенчатый потенциал и потенциальные риски прикосновения)
  • Операционная защита электрической системы
  • Заземление с градацией потенциала (напряжения)
  • Защита от электромагнитных импульсов
  • Молниезащита
  • Достаточно низкое сопротивление для обеспечения удовлетворительной работы защиты в условиях неисправности.(см. ток утечки)
  • Защита по напряжению в разумных пределах в условиях неисправности (таких как молния, коммутационные скачки или непреднамеренный контакт с системами с более высоким напряжением) и обеспечение того, чтобы не превышались напряжения пробоя изоляции, т. е. координация изоляции.
  • Ступенчатая изоляция в силовых трансформаторах.
  • Напряжение, ограничиваемое землей на проводящих материалах, в которых находятся электрические проводники или оборудование.

Менее известные причины заземления включают:

  • Для стабилизации фазных напряжений на линиях электропередач в установившихся условиях, т.е.е. рассеивая электростатические заряды.
  • Средство контроля изоляции системы подачи электроэнергии.
  • Устранение постоянных дуговых замыканий на землю.
  • Обеспечивает обнаружение замыкания между обмотками высокого и низкого напряжения трансформатора с помощью первичной защиты.
  • Обеспечивает альтернативный путь для индуцированного тока и тем самым минимизирует электрический «шум» в кабелях.
  • Обеспечивает эквипотенциальную платформу, на которой может работать электронное оборудование.

Геология системы заземления

Вообще говоря, система заземления должна обеспечивать низкоомное соединение с геологическими условиями. Так что он может рассеивать или собирать ток на землю или от земли. Что, в свою очередь, означает, что повышение напряжения не достигает уровня, который может причинить вред.

Функция заземления

В установках заземление также необходимо для обеспечения правильной работы оборудования.- Например, электронные устройства, для которых может потребоваться заземленный экран. Важно рассматривать систему заземления в рамках всей установки как одну целостную систему. Почему? Электроны не умеют читать!

Нет. Серьезно, проектирование системы заземления, как правило, обеспечивает две функции безопасности.

Первый для предотвращения поражения электрическим током из-за разного потенциала открытых металлических конструкций. – Эта мера защиты от ударов достигается склеиванием. Подключение к земле с помощью заземляющего электрода также ограничивает накопление статического электричества.Идеально подходит для работы с легковоспламеняющимися продуктами или устройствами, чувствительными к статическому электричеству.

Вторая функция системы заземления – гарантировать, что в случае замыкания на землю. Любой возникающий ток короткого замыкания может контролируемым образом вернуться к источнику. Я имею в виду управление обратным путем, избегая повреждения оборудования или травм людей.

Система заземления с достаточно низким импедансом гарантирует, что часть возвратного тока замыкания на землю может протекать для правильного срабатывания защитных устройств.Включение автоматических выключателей или предохранителей для успешного прерывания тока.

ЗАЗЕМЛЕНИЕ С УТВЕРЖДЕНИЕМ

Рискну заявить очевидное. Подача электроэнергии потребителю, который не имеет заземления в соответствии с утвержденным или принятым стандартом, несет в себе несоразмерный риск. Бизнес-риск и человеческий риск. Не только для людей внутри объекта, но и для более широкой области, которая может затронуть невиновных третьих лиц поблизости.

Неправильно спроектированная или установленная система заземления, которая не может контролировать энергию короткого замыкания в пределах известных допустимых пределов (определяемых тем, что может выдержать средний человеческий организм), подвергает жизнь очень реальному риску травмы / смерти, а также может вызвать повреждение оборудования.

Ваша система заземления всегда должна быть:

  • Разработано проверенным компетентным проектировщиком, т.е. кем-то, имеющим квалификацию
  • Разработано и установлено в соответствии с принятой практикой, такой как IEC 50522, BS 7430, IEEE Std.80 и т. Д. (Требования законодательства) (см. Стандарты заземления)
  • Установлено проверенный компетентный установщик
  • Проверено и подтверждено после установки, т. е. подтверждено как безопасное, пригодное для использования
  • Проверяется или тестируется на протяжении всего срока службы, чтобы убедиться, что он по-прежнему хорошо выполняет свою работу по защите людей

Методы заземления

Незаземленная или изолированная система

Этот метод не имеет намеренного формального подключения к земле.Могут быть некоторые соединения с высоким импедансом для контрольно-измерительных приборов; например, катушка измерительного прибора.

В нормальных условиях емкость между каждой фазой и землей практически одинакова. Результатом является стабилизация системы относительно земли. В трехфазной системе напряжение каждой фазы относительно земли равно напряжению звезды системы. Следовательно, нейтральная точка (если таковая имеется) находится на уровне потенциала земли или около него.

Заземленные системы

Заземленная система имеет по крайней мере один провод или точку (обычно нейтраль или нейтраль), намеренно подключенные к земле.В трехфазных системах обычно выполняется соединение с землей в точке звезды или нейтрали трансформатора.

Применяется заземление таким образом, если есть необходимость подключить нагрузку между фазой и нейтралью к системе, то есть для предотвращения значительных колебаний напряжения нейтрали с нагрузкой. Заземление снижает колебания напряжения и дисбалансы, которые в противном случае могут возникнуть. Еще одно преимущество состоит в том, что реле остаточного действия используются для обнаружения неисправностей до того, как они станут межфазными. Таким образом уменьшаются токи короткого замыкания и повреждения других частей электрической сети.

Существует два основных типа заземленных систем:

  1. Система с заземленной импедансом;
  2. и система с низкоомным (прочным) заземлением.

Система импедансного заземления

Резисторы и реакторы, вставленные в соединение между нейтралью и землей. Обычно для ограничения тока короткого замыкания до приемлемого уровня.

На практике, чтобы избежать чрезмерных переходных перенапряжений из-за резонанса с шунтирующей емкостью системы, индуктивное заземление должно обеспечивать протекание не менее 60% емкости трехфазного короткого замыкания при замыканиях на землю.Эта форма заземления имеет меньшее рассеивание энергии, чем резистивное заземление.

Катушки Петерсена

Дугогасящие катушки (ASC), также известные как катушки Петерсена или нейтрализаторы замыкания на землю, могут использоваться в качестве заземляющего соединения. Это настроенные реакторы, которые нейтрализуют емкостной ток исправных фаз, так что любой ток повреждения имеет низкую величину.

Благодаря самоочищающемуся характеру этого заземления оно полезно в определенных обстоятельствах в воздушных сетях среднего напряжения, например, в тех, которые подвержены большому количеству переходных КЗ и имеют много точек заземления.

Автоматические выключатели с повторным включением в основном были заменены автоматическими выключателями ASC в системах высокого и среднего напряжения. Тем не менее, в основном из-за улучшений в имеющемся оборудовании и усовершенствовании системы защиты, интерес к ASC растет. Их идеальное применение – в системах воздушных линий электропередач с большим количеством заземленных точек (например, трансформаторов) и множеством подключенных потребителей. Однофазной линии или кабеля не может быть слишком много, так как это снижает производительность схемы.

Заземление через сопротивление используется чаще, поскольку оно позволяет ограничить ток короткого замыкания и ослабить переходные перенапряжения. В распределительных системах, особенно на 11 кВ, обычно используются жидкие резисторы заземления (LER) на 750, 1000 или 1500 А или более распространенные резисторы из нержавеющей стали, установленные в различных комбинациях для ограничения тока замыкания на землю.

Система с низкоомным (прочным) заземлением

Система заземления с низким сопротивлением является наиболее распространенной схемой, особенно при низком напряжении.Здесь соединение нейтрали / земли выполняется через надежное соединение без намеренного добавления импеданса. Недостатком такой схемы является то, что ток замыкания на землю обычно высок, но системные напряжения остаются подавленными или низкими в условиях короткого замыкания.

Низковольтные системы заземления

Разобравшись с заземлением, имеющимся в энергосистеме выше, давайте кратко рассмотрим систему заземления низкого напряжения.

Стандартные определения соединений:

T: Terre, прямое соединение с землей.

N: нейтральный.

C: комбинированный.

S: раздельный.

Основные типы:

TN-S

TN-S Входящий источник питания имеет единственную точку соединения между нейтралью питания и землей на трансформаторе питания. Питающие кабели имеют отдельные нулевой и заземляющий защитный провод (S.N.E.). Обычно нейтральный проводник представляет собой четвертую «жилу», а заземляющий провод образует защитную оболочку или провод заземления.Заказчик может подключить клемму заземления к оболочке служебного кабеля или отдельный провод заземления.

TN-S был в значительной степени стандартным устройством в Великобритании до введения систем защитного многократного заземления (PME или TN-C-S).

TN-C-S

TN-C – S Заземление нейтрали питания в нескольких точках. Питающие кабели имеют комбинированную нейтральную и заземляющую металлическую внешнюю оболочку с покрытием из ПВХ (кабели CNE). Комбинированная оболочка заземления нейтрали представляет собой провод PEN (защитное заземление).

Электропитание в помещении потребителя обычно будет TN-S, т.е. нейтраль и земля будут разделены, подключены только в позиции обслуживания. При прочесывании нейтрали и земли в помещении система TN-C.

PNB

PNB Защитное соединение нейтрали – это разновидность системы TN-C -S, в которой клиенту предоставляется клемма заземления, которая подключается к нейтрали питания, но нейтраль соединяется с землей только в одной точке.Обычно в точке поставки клиента или рядом с ней. Эта схема зарезервирована для использования, когда у одного потребителя есть собственный трансформатор.

Остальные две системы:

TT

TT Это система, в которой источник питания заземлен только в одной точке, но оболочки кабеля и открытые металлические конструкции установки заказчика подключены к земле через отдельный электрод, который не зависит от электрода питания.

IT

IT Это система, не имеющая прямого соединения между токоведущими частями и землей, но с заземленными открытыми проводящими частями установки.Иногда обеспечивается соединение с землей с высоким импедансом для упрощения схемы защиты, необходимой для обнаружения первого замыкания на землю.

Заземляющие устройства в Великобритании и многих других странах должны соответствовать BS 7671. Этот стандарт основан на последнем 18-м издании Правил для электромонтажных работ Института инженеров-электриков. Правила безопасности, качества и непрерывности электроснабжения не применяются, поэтому заземление не является обязательным требованием, и разрешены незаземленные системы (такие как IT, указанные выше).

Ключевой момент

Основной принцип состоит в том, чтобы, во-первых, принять все разумные меры предосторожности, чтобы избежать прямого контакта с токоведущими частями, а во-вторых, принять меры для защиты от косвенного контакта. Последнее включает в себя эффективное заземление и соединение, а также систему защиты, которая устраняет неисправность. Этот принцип более известен как защитное соединение.

В некоторых местах требуется специальное заземление, например,

  • Шахты,
  • Карьеры,
  • Автозаправочные станции,
  • Молниезащита
  • и Лифтовые установки.

Greymatter’s имеет опыт работы с широким спектром услуг по системам электрического заземления. Воспользуйтесь окном чата ниже или свяжитесь с нами здесь.

Курс заземления – Бесплатная пробная версия

Хотите узнать больше о проектировании системы электрического заземления – Greymatters Academy – это наш учебный сайт по заземлению, посмотрите или получите доступ к бесплатной пробной версии здесь.

Устройства заземления

Информация в этом документе основана на части UK DIY FAQ, написанной Эндрю Габриэлем.

Европейские соглашения об именах

Системы электроснабжения классифицируются во многих европейских странах. (Финляндия, Великобритания и т. Д.) В зависимости от того, как реализовано заземление. Распространенными являются TN-S, TN-C-S и TT.

Обратите внимание, что в этих описаниях термин «система» включает в себя и установка, и «токоведущие части» включают нейтральный проводник.

Описание писем

Первое письмо:
 T Токоведущие части системы имеют одно или несколько прямых
      подключение к земле.I Токоведущие части системы не заземлены,
      или подключаются только через высокий импеданс.
 
Второе письмо:
 T Все открытые проводящие части соединены через вашу землю
      провода к местному заземлению.
  N Все открытые проводящие части соединены через вашу землю
      проводники к земле предоставляются поставщиком.
 
Осталось букв (ов):
 C Комбинированные функции нейтрали и защитного заземления (один провод).S Раздельные функции нейтрали и защитного заземления (отдельные провода).
 

Допустимые типы систем в регистрах IEE 16-го издания:

 TN-C Никаких отдельных заземляющих проводов нигде нет - используется нейтраль
          в качестве заземления при поставке и установке (такого не видел).
  TN-S, вероятно, наиболее распространенный, с поставщиком, предоставляющим отдельный
          заземляющий провод обратно на подстанцию.
  TN-C-S [Многократное защитное заземление] Источник питания объединяет нейтраль
          и земля, но в установке они разделены.TT Отсутствие заземления поставщиком; установка требует собственного
          заземляющий стержень (общий с воздушными линиями электроснабжения).
  ИТ-снабжение, например, переносной генератор без заземления,
          установка поставляет собственный заземляющий стержень.
 

Способы заземления

Внутри или рядом с вашим потребительским блоком (блок предохранителей) будет ваш главный зажим заземления, где все заземляющие проводники от ваши последние подсхемы и сервисное соединение соединяются. Затем он подключается через «заземляющий провод» к настоящая земля как-то.Следующие правила заземления используются в Великобритании:

 TN-S Заземляющий провод подключается к отдельной
        земля предоставляется поставщиком электроэнергии. Этот
        чаще всего выполняется с помощью заземляющего зажима
        подключается к оболочке питающего кабеля.

TN-C-S Заземляющий провод подключается к проводу поставщика.
        нейтральный. Это отображается как заземляющий провод.
        переходя на соединительный блок с нейтралью
        проводник хвостовиков счетчика поставщика.Часто ты
        увидит ярлык с предупреждением о "Защитный множественный
        Установка заземления - не мешать заземлению
        Связи », но это не всегда.

TT Заземляющий провод идет к (одному или нескольким) заземляющим контактам.
        стержни, один из которых, возможно, через старый, работающий от напряжения
        ELCB (которые больше не используются в новых расходных материалах).
 
Возможно, существуют и другие устройства для этих систем. Кроме того, система могла быть преобразована, например старая система TT мог быть преобразован в TN-S или TN-C-S, но старая Земля шток не отключался.

▷ Типы заземления (согласно стандартам IEC)

Введение

В предыдущей статье мы изучили основы заземления, а также базовый тип заземления, при котором нейтраль заземляется на источнике, а, возможно, заземление выполняется даже на стороне потребителя.

Помимо этого, международный стандарт IEC 60364 официально определяет различные типы устройств заземления. Разберем их здесь подробнее.

Стандарт IEC по заземлению

Стандарт IEC 60364 определяет двухбуквенные коды для обозначения типа заземления.Он также определяет три семейства схем заземления.

  • Двухбуквенный код основан на заземлении стороны источника – устройства.
  • Первая буква указывает, как выполняется заземление на стороне источника (генератор / трансформатор).
  • Вторая буква указывает, как выполняется заземление на стороне устройства (место потребления электроэнергии в помещении заказчика).

Используемые буквы следующие:

T – (французское слово «Terre» означает Земля) – означает прямое соединение точки с землей.

I – Это означает, что либо точка не подключена к земле, либо она подключена через высокий импеданс

N – Это означает, что имеется прямое соединение с нейтралью в источнике установки, которая, в свою очередь, связана с землей

Исходя из комбинации этих трех букв, МЭК предлагает три семейства схем заземления, как показано ниже:

  • Сеть TN
  • TT Сеть
  • ИТ-сеть
Сеть TN

В системе заземления типа TN одна из точек на стороне источника (генератор или трансформатор) подключена к земле.Эта точка обычно является звездой в трехфазной системе. Корпус подключенного электрического устройства заземлен через эту точку заземления на стороне источника. См. Рис. ниже которого изображено это:


На диаграмме выше:

PE – аббревиатура от «Protective Earth» – это проводник, который соединяет открытые металлические части электроустановки потребителя с землей.

N – Также называется нейтральным. Это проводник, который соединяет точку звезды в трехфазной системе с землей.

Существует три подтипа сетей TN, как показано ниже:

TN-S : Здесь отдельные проводники для защитного заземления (PE) и нейтрали проходят от электроустановки Потребителя до источника. Они соединяются между собой только у источника питания.


TN-C : Здесь есть комбинированный провод, называемый PEN (защитная заземление-нейтраль), который соединен с землей в источнике.


TN-C-S : В этом типе заземления часть системы использует комбинированный PEN-проводник для заземления, тогда как для остальной части системы используется отдельный провод для PE и N.

Обычно комбинированный PEN-проводник используется около источника системы.



Сеть TT

В системе заземления типа TT потребитель использует собственное местное заземление в помещении, которое не зависит от любого заземления на стороне источника.

Этот тип заземления предпочтителен в телекоммуникационных приложениях, поскольку в этой системе отсутствуют высокочастотные или низкочастотные помехи, которые проходят через нейтральный провод, подключенный к оборудованию.



ИТ-сеть

В системе заземления типа IT соединение с землей либо отсутствует, либо выполняется через заземляющее соединение с высоким импедансом.



Стандарты заземления, специфичные для страны

UK – Использует защитное многократное заземление (PME), которое является формой заземления типа TN-C-S

Австралия / Новая Зеландия – Также используется заземление типа TN-C-S, известное как система с несколькими нейтралью на землю (MEN)

США / Канада – использует TN-C для питания от трансформатора, но использует TN-C-S в структуре на территории клиента

Франция / Япония / Дания – использует заземление типа TT, и заказчик должен самостоятельно организовать свое собственное заземление.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *