Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Для чего нужен конденсатор и как он работает

Конденсатор (от латинского слова «condensare» — «уплотнять», «сгущать») — это двухполюсное устройство с определённой величиной или переменным значением ёмкости и малой проводимостью, которое способно сосредотачивать, накапливать и отдавать другим элементам электрической цепи заряд электрического тока.

Конденсатор или как его еще называют сокращенно просто «кондер» — это элемент электрической цепи, состоящий в самом простом варианте из двух электродов в форме пластин (или обкладок), которые накапливают противоположные разряды и поэтому они разделены между собой диэлектриком малой толщины по сравнению с размерами самих электропроводящих обкладок.На практике же, все выпускаемые конденсаторы представляют собой многослойные рулоны лент электродов в форме цилиндра или параллелепипеда, разделенных между собой слоями диэлектрика.

Принцип работы конденсатора

По принципу работы он схож с батарейкой только на первый взгляд, но все же он сильно отличается от него по принципу и скорости заряда-разряда, максимальной емкости.

Заряд конденсатора. В момент подключения к источнику питания оказывается больше всего места на электродах, поэтому и ток будет зарядки максимальным, но по мере накопления заряда, ток будет уменьшаться и пропадет полностью после полного заряда. При зарядке на одной пластине будут собираться отрицательно заряженные частицы- электроны, а на другой – ионы, положительно заряженные частицы. Диэлектрик выступает препятствием для их перескакивания на противоположную сторону конденсатора.При зарядке растет и напряжение с нуля перед началом зарядки и достигает в самом конце максимума, равного напряжению источника питания.

Разрядка конденсатора. Если после окончания зарядки отключить источник питания и подключить нагрузку R, то он сам превратится в источник тока. При подключении нагрузки образовывается цепь между пластинами. Отрицательно заряженные электроны двинуться через нагрузку к положительно заряженных ионам на другой пластине по закону притяжения между разноименными зарядами. В момент подключения нагрузки

, начальный ток по закону Ома будет равняться величине напряжения на электродах (равного в конце зарядке конденсатора напряжению источника питания), разделенному на сопротивление нагрузки.
После того как пошел ток, конденсатор начинает постепенно  терять заряд или разряжаться. Одновременно с этим начнет снижаться величина напряжения, соответственно по закону Ома и ток. В то же время чем выше уровень разряда обкладок, тем ниже будет скорость падения напряжения и силы тока. Процесс завершится после того, как напряжение на электродах конденсатора станет равно нулю.

Время зарядки конденсатора на прямую зависит от величины его емкости. Чем большей она величины, тем дольше будет проходить по цепи большее количество заряда.

Время разрядки зависит от величины подключенной нагрузки. Чем больше подключено сопротивление R, тем меньше будет ток разрядки.

Для чего нужен конденсатор

Конденсаторы широко используются во всех электронных и радиотехнических схемах. Они вместе с транзисторами и резисторами являются основой радиотехники.

Применение конденсаторов в электротехнических устройствах и бытовой технике:

  • Важным свойством конденсатора в цепи переменного тока является его способность выступать в роли емкостного сопротивления (индуктивное у катушки). Если подключить последовательно конденсатор и лампочку к батарейке, то она не будет светиться. Но если подключить к источнику переменного тока, то она загорится. И светиться будет тем ярче, чем выше емкость конденсатора. Благодаря этому свойству они широко применяются в качестве фильтра, который способен довольно успешно подавлять  ВЧ и НЧ помехи, пульсации напряжения и скачки переменного тока.
  • Благодаря способности конденсаторов долгое время накапливать заряд и затем быстро разряжаться в цепи с малым сопротивлением для создания импульса, делает их незаменимыми при производстве фотовспышек, ускорителей электромагнитного типа, лазеров и т. п.
  • Способность конденсатора накапливать и сохранять электрический заряд на продолжительное время, сделало возможным использование его в элементах для сохранения информации. А так же в качестве источника питания для маломощных устройств. Например, пробника электрика, который достаточно вставить в розетку на пару секунд пока не зарядится в нем встроенный конденсатор и затем можно целый день прозванивать цепи с его помощью.
    Но к сожалению
    , конденсатор значительно уступает в способности накапливать электроэнергию аккумуляторной батареи из-за токов утечки (саморазряда) и неспособности накопить электроэнергию большой величины.
  • Конденсаторы используются при подключении электродвигателя 380 на 220 Вольт. Он подключается к третьему выводу, и благодаря тому что он сдвигает фазу на 90 градусов на третьем выводе- становится возможным использования трехфазного мотора в однофазной сети 220 Вольт.
  • В промышленности конденсаторные установки применяются для компенсации реактивной энергии.

В следующей статье мы рассмотрим подробно основные характеристики и типы конденсаторов.

§52. Конденсаторы, их назначение и устройство

Заряд и разряд конденсатора.

Конденсатор представляет собой устройство, способное накапливать электрические заряды. Простейшим конденсатором являются две металлические пластины (электроды), разделенные каким-либо диэлектриком. Конденсатор 2 можно зарядить, если соединить его электроды с источником 1 электрической энергии постоянного тока (рис. 181, а).

Рис. 181. Заряд и разряд конденсатора

При заряде конденсатора свободные электроны, имеющиеся на одном из его электродов, устремляются к положительному полюсу источника, вследствие чего этот электрод становится положительно заряженным. Электроны с отрицательного полюса источника устремляются ко второму электроду и создают на нем избыток электронов, поэтому он становится отрицательно заряженным.

В результате протекания зарядного тока i3 на обоих электродах конденсатора образуются равные, но противоположные по знаку заряды и между ними возникает электрическое поле, создающее между электродами конденсатора определенную разность потенциалов. Когда эта разность потенциалов станет равной напряжению источника тока, движение электронов в цепи конденсатора, т. е. прохождение по ней тока i3 прекращается. Этот момент соответствует окончанию процесса заряда конденсатора.

При отключении от источника (рис. 181,б) конденсатор способен длительное время сохранять накопленные электрические заряды. Заряженный конденсатор является источником электрической энергии, имеющим некоторую э. д. с. ес. Если соединить электроды заряженного конденсатора каким-либо проводником (рис. 181, в), то конденсатор начнет разряжаться.

При этом по цепи пойдет ток iр разряда конденсатора. Начнет уменьшаться и разность потенциалов между электродами, т. е. конденсатор будет отдавать накопленную электрическую энергию во внешнюю цепь.

В тот момент, когда количество свободных электронов на каждом электроде конденсатора станет одинаковым, электрическое поле между электродами исчезнет и ток станет равным нулю. Это означает, что произошел полный разряд конденсатора, т. е. он отдал накопленную им электрическую энергию.

Емкость конденсатора.

Свойство конденсатора накапливать и удерживать электрические заряды характеризуется его емкостью. Чем больше емкость конденсатора, тем больше накопленный им заряд, так же как с увеличением вместимости сосуда или газового баллона увеличивается объем жидкости или газа в нем.

Емкость С конденсатора определяется как отношение заряда q, накопленного в конденсаторе, к разности потенциалов между его электродами (приложенному напряжению)U:

C = q / U (69)

Емкость конденсатора измеряется в фарадах (Ф). Емкостью в 1 Ф обладает конденсатор, у которого при сообщении заряда в 1 Кл разность потенциалов возрастает на 1 В. В практике преимущественно пользуются более мелкими единицами: микрофарадой (1 мкФ=10-6 Ф), пикофарадой (1 пФ = 10-12 мкФ).

Емкость конденсатора зависит от формы и размеров его электродов, их взаимного расположения и свойств диэлектрика, разделяющего электроды. Различают плоские конденсаторы, электродами которых служат плоские параллельные пластины (рис. 182, а), и цилиндрические (рис. 182,б).

Рис. 182. Плоский (а) и цилиндрический (б) конденсаторы

Свойствами конденсатора обладают не только специально изготовленные на заводе устройства, но и любые два проводника, разделенные диэлектриком. Емкость их оказывает существенное влияние на работу электротехнических установок при переменном токе.

Например, конденсаторами с определенной емкостью являются два электрических провода, провод и земля (рис. 183, а), жилы электрического кабеля, жилы и металлическая оболочка кабеля (рис. 183,6).

Рис. 183. Емкости, образованные проводами воздушной линии (а) и жилами кабеля (б)

Устройство конденсаторов и их применение в технике.

В зависимости от применяемого диэлектрика конденсаторы бывают бумажными, слюдяными, воздушными (рис. 184).

Рис. 184. Общие виды применяемых конденсаторов: 1 — слюдяные; 2 — бумажные; 3 — электролитический; 4 — керамический

Используя в качестве диэлектрика вместо воздуха слюду, бумагу, керамику и другие материалы с высокой диэлектрической проницаемостью, удается при тех же размерах конденсатора увеличить в несколько раз его емкость. Для того чтобы увеличить площади электродов конденсатора, его делают обычно многослойным.

В электротехнических установках переменного тока обычно применяют силовые конденсаторы. В них электродами служат длинные полосы из алюминиевой, свинцовой или медной фольги, разделенные несколькими слоями специальной (конденсаторной) бумаги, пропитанной нефтяными маслами или синтетическими пропитывающими жидкостями.

Ленты фольги 2 и бумаги 1 сматывают в рулоны (рис. 185), сушат, пропитывают парафином и помещают в виде одной или нескольких секций в металлический или картонный корпус. Необходимое рабочее напряжение конденсатора обеспечивается последовательным, параллельным или последовательно-параллельным соединениями отдельных секций.

Рис. 185. Устройство бумажного (а) и электролитического (б) конденсаторов

Всякий конденсатор характеризуется не только значением емкости, но и значением напряжения, которое выдерживает его диэлектрик. При слишком больших напряжениях электроны диэлектрика отрываются от атомов, диэлектрик начинает проводить ток и металлические электроды конденсатора замыкаются накоротко (конденсатор пробивается).

Напряжение, при котором это происходит, называют пробивным. Напряжение, при котором конденсатор может надежно работать неограниченно долгое время, называют рабочим. Оно в несколько раз меньше пробивного.

Конденсаторы широко применяют в системах энергоснабжения промышленных предприятий и электрифицированных железных дорог для улучшения использования электрической энергии при переменном токе.

На э. п. с. и тепловозах конденсаторы используют для сглаживания пульсирующего тока, получаемого от выпрямителей и импульсных прерывателей, борьбы с искрением контактов электрических аппаратов и с радиопомехами, в системах управления полупроводниковыми преобразователями, а также для создания симметричного трехфазного напряжения, требуемого для питания электродвигателей вспомогательных машин.

В радиотехнике конденсаторы служат для создания высокочастотных электромагнитных колебаний, разделения электрических цепей постоянного и переменного тока и др.

В цепях постоянного тока часто устанавливают электролитические конденсаторы. Их изготовляют из двух скатанных в рулон тонких алюминиевых лент 3 и 5 (рис. 185,б), между которыми проложена бумага 4, пропитанная специальным электролитом (раствор борной кислоты с аммиаком в глицерине).

Алюминиевую ленту 3 покрывают тонкой пленкой окиси алюминия; эта пленка образует диэлектрик, обладающий высокой диэлектрической проницаемостью. Электродами конденсатора служат лента 3, покрытая окисной пленкой, и электролит; вторая лента 5 предназначена лишь для создания электрического контакта с электролитом. Конденсатор помещают в цилиндрический алюминиевый корпус.

При включении электролитического конденсатора в цепь постоянного тока необходимо строго соблюдать полярность его полюсов; электрод, покрытый окисной пленкой, должен быть соединен с положительным полюсом источника тока. При неправильном включении диэлектрик пробивается.

По этой причине электролитические конденсаторы нельзя включать в цепи переменного тока. Их нельзя также использовать в устройствах, работающих при высоких напряжениях, так как окисная пленка имеет сравнительно небольшую электрическую прочность.

В радиотехнических устройствах применяют также конденсаторы переменной емкости (рис. 186).

Рис. 186. Устройство конденсатора переменной емкости

Такой конденсатор состоит из двух групп пластин: неподвижных 2 и подвижных 3, разделенных воздушными промежутками. Подвижные пластины могут перемещаться относительно неподвижных; при повороте оси 1 конденсатора изменяется площадь взаимного перекрытия пластин, а следовательно, и емкость конденсатора.

Способы соединения конденсаторов.

Конденсаторы можно соединять последовательно и параллельно. При последовательном соединении нескольких (например, трех), конденсаторов (рис. 187, а) эквивалентная емкость

1 /Cэк = 1 /C1 + 1 /C2 + 1 /C3

эквивалентное емкостное сопротивление

XCэк= XC1 + XC2 + XC3

результирующее емкостное сопротивление

Cэк = C1 + C2 + C3

При параллельном соединении конденсаторов (рис. 187,б) их результирующая емкость

1 /XCэк = 1 /XC1 + 1 /XC2 + 1 /XC3

Рис. 187. Последовательное (а) и параллельное (б) соединения конденсаторов

Включение и отключение цепей постоянного тока с конденсатором.

При подключении цепи R-C к источнику постоянного тока и при разряде конденсатора на резистор также возникает переходный процесс с апериодическим изменением тока i и напряжения uc.

При подключении к источнику постоянного тока цепи R-C выключателем В1 (рис. 188,а) происходит заряд конденсатора. В начальный момент зарядный ток Iнач=U /R. Но по мере накопления зарядов на электродах конденсатора напряжение его и с будет возрастать, а ток уменьшаться (рис. 188,б).

Рис. 188. Схема подключения цепи R-C к источнику постоянного тока (а) и кпивые тока и напряжения при переходном процессе (б) кривые

Если сопротивление R мало, то в начальный момент подключения конденсатора возникает большой екачок тока, значительно превышающий номинальный ток данной цепи. При разряде конденсатора на резистор R (размыкается выключатель В1 на рис. 189, а) напряжение на конденсаторе uс и ток i постепенно уменьшаются до нуля (рис. 189,б).

Рис. 189. Схема разряда емкости С на резистор R (а) и кривые тока и напряжения при переходном процессе (б)

Скорость изменения тока i и напряжения ис при переходном процессе отделяется постоянной времени

T = RC

Чем больше R и С, тем медленнее происходит заряд конденсатора.

Процессы заряда и разряда конденсатора широко используют в электронике и автоматике. С помощью их получают периодаческие несинусоидальные колебания, называемые релаксационными, и, в частности, пилообразное напряжение, необходимое для работы систем управления тиристорами, осциллографов и других устройств.

Для получения пилообразного напряжения (рис. 190) периодически подключают конденсатор к источнику питания, а затем к разрядному резистору.

Рис. 190. Кривая пилообразного напряжения

Периоды Т1 и T2, соответствующие заряду и разряду конденсатора, определяются постоянными времени цепей заряда Т3 и разряда Тр, т. е. сопротивлениями резисторов, включенных в эти цепи.

Принцип работы и назначение конденсатора в электрической цепи

Данный элемент применяется практически в любых электронных приборах, поэтому, чтобы понять, в чем назначение конденсаторов, необходимо разобраться в их устройстве и принципах функционирования. Конденсатором называется одна из составных частей электрической цепи, у которой имеются две проводящие обкладки (одна обладает положительным зарядом, а другая – отрицательным). Чтобы исключить саморазрядку устройства, между обкладками помещают специальное вещество – диэлектрик, который препятствует перетоку заряда.

Конденсатор

Классификация устройств

Прежде, чем ответить на вопрос, для чего нужен конденсатор, следует разобраться, какие они бывают. Конденсаторы разделяются по следующим признакам:

  • Предназначение и выполняемые функции;
  • Рабочие условия;
  • Тип вещества, разделяющего обкладки.

Конденсаторы активно используются в цепях, где необходима их способность копить и хранить электрический заряд (требуется наличие емкостного устройства). Для этого внутри него установлены две обкладки с разными знаками заряда. Между ними расположено вещество, препятствующее их соприкосновению и разрядке. В большинстве случаев в качестве диэлектрика используется тантал или алюминий, но могут применяться и керамические материалы, слюда или полистирол.

Основным достоинством алюминиевых устройств является их более низкая, по сравнению с танталовыми, стоимость, а также более широкая сфера применения. Вместе с тем, танталовые аналоги более эффективны в использовании и обладают более высокими техническими характеристиками, поэтому при выборе следует учитывать не только фактор цены.

Виды конденсаторов

Дополнительная информация. Конденсаторы из тантала отличаются повышенной надежностью, у них широкий рабочий диапазон температур, что позволяет эксплуатировать их практически в любых условиях. Наиболее широкое применение они нашли в электронике и сопутствующих отраслях промышленности, поскольку обладают большой емкостью и компактными габаритами. К недостаткам устройств данного типа специалисты относят их более высокую цену и чувствительность к колебаниям тока и напряжения.

Силовые элементы применяются чаще всего в цепях с высоким напряжением. Специальная конструкция позволяет обеспечивать большую емкость, а значит, они могут использоваться для стабилизации обеспечения электричеством по линиям электропередач (компенсируют потери энергии). Кроме того, они активно используются для повышения мощности промышленных электроустановок. Диэлектрик в таком устройстве – это пропитанная изоляционным маслом металлизированная пропиленовая пленка.

Самыми широко используемыми являются керамические. Их емкость может варьироваться в значительных пределах – от 1 пикофарада до 0,1 микрофарада. Для предотвращения саморазряда применяется керамика, а в качестве преимущества специалисты отмечают доступную цену, широкие функциональные возможности, высокий уровень надежности и низкий –потерь.

Несмотря на свою дороговизну, на практике применяются серебряно-слюдяные конденсаторы. Они работают крайне стабильно, поддерживают высокую емкость, их корпус полностью герметичен. Но широкому распространению мешает высокая цена.

Применяются и бумажные или металлобумажные элементы. Их обкладка изготовлена из алюминиевой фольги, а в качестве диэлектрика используется бумага, пропитанная специальным составом.

Типы конденсаторов

Принцип функционирования

Основная причина, по которой описываемый элемент включается в электрическую схему, состоит в том, чтобы копить заряд в периоды повышенного напряжения и обеспечивать питание цепи в периоды низкого.

Принцип работы конденсатора заключается в следующем. Когда электрический прибор подключен к сети питания, конденсатор заряжается. На одной его пластине накапливаются электроны (частицы с отрицательным зарядом), а на другой – ионы, которые заряжены положительно. Соприкосновению их мешает диэлектрик. Такое устройство конденсатора позволяет накопить заряд. Ведь, как только прибор подключается к источнику тока, напряжение в цепи равно нулю. Затем, по мере наполнения зарядами, напряжение становится равным тому, которое подается от источника.

После того, как прибор отключается от розетки или батареи, происходит разряд конденсатора. Нагрузка в электрической цепи сохраняется, для этого прибору нужны напряжение и ток, который передает устройство. Необходимость питания прибора заставляет электроны в конденсаторе двигаться к ионам, образуется ток, который передается к другим элементам.

Устройство конденсатора

Возможное применение устройств

Конденсаторы служат решению самых разнообразных задач. В частности, они активно используются при хранении аналоговых и цифровых данных, часто устанавливаются в телемеханических устройствах для регулирования сигналов в соответствующем оборудовании, что сохраняет его от различных повреждений и проблем.

Широко распространено применение конденсаторов в источниках бесперебойного питания, что позволяет сглаживать напряжение при подключении к приборам различного оборудования (компьютеры, оргтехника и так далее).

Обратите внимание! По такому же принципу устроен источник бесперебойного питания. Во время подключения к электрической цепи он накапливает заряд, который потом можно использовать в течение короткого времени, что делает возможным выключение техники без каких-либо сбоев, а это особенно актуально в современных условиях, когда информация имеет крайне большое значение.

Описываемые элементы нашли свое применение в различных преобразователях напряжения. В частности, их можно использовать для увеличения напряжения в сети, величина которого будет превышать входное значение.

Важно! Эксплуатация конденсатора в качестве временного источника питания имеет некоторые ограничения. Это объясняется наличием у диэлектрика хоть небольшой, но проводимости. Поэтому устройство со временем постепенно разряжается, следовательно, при необходимости иметь стабильный источник тока лучше воспользоваться аккумуляторной батареей.

Применение конденсаторов

Наличие возможности накопить заряд, а потом быстро его направить в сеть позволяет сделать устройство незаменимым элементом при изготовлении лазеров, вспышек для фотоаппаратов и других подобных приборов.

Таким образом, без использования описываемого устройства практически невозможно представить современную электронную и электротехническую промышленность. Благодаря пониманию того, как работает конденсатор, его активно применяют при производстве различных устройств, как промышленного, так и бытового назначения. Он помогает обеспечить безопасность электрической цепи и увеличивает срок службы различных приборов.

Видео

Оцените статью:

Конденсатор в цепи переменного тока

Мы знаем, что конденсатор не пропускает через себя постоянного тока. Поэтому в электрической цепи, в которой последовательно с источником тока включен конденсатор, постоянный ток протекать не может.

Совершенно иначе ведет себя конденсатор в цепи переменного тока (Рис 1,а).

Рисунок 1. Сравнение конденсатора в цепи переменного тока с пружиной, на которую воздействует внешняя сила.

 

В течение первой четверти периода, когда переменная ЭДС нарастает, конденсатор заряжается, и поэтому по цепи проходит зарядный электрический ток i, сила которого будет наибольшей вначале, когда конденсатор не заряжен. По мере приближения заряда к концу сила зарядного тока будет уменьшаться. Заряд конденсатора заканчивается и зарядный ток прекращается в тот момент, когда переменная ЭДС пе-рестает нарастать, достигнув своего амплитудного значения. Этот момент соответствует концу первой четверти периода.

После этого переменная ЭДС начинает убывать, одновременно с чем конденсатор начинает разряжаться. Следовательно, в течение второй четверти периода по цепи будет протекать разрядный ток. Так как убывание ЭДС происходит вначале медленно, а затем все быстрее и быстрее, то и сила разрядного тока, имея в начале второй четверти периода небольшую величину, будет постепенно возрастать.

Итак, к концу второй четверти периода конденсатор разрядится, ЭДС будет равна нулю, а ток в цепи достигнет наибольшего, амплитудного, значения.

С началом третьей четверти периода ЭДС, переменив свое направление, начнет опять возрастать, а конденсатор — снова заряжаться. Заряд конденсатора будет происходить теперь в обратном направлении, соответственно изменившемуся направлению ЭДС. Поэтому направление зарядного тока в течение третьей четверти периода будет совпадать с направлением разрядного тока во второй четверти, т. е. при переходе от второй четверти периода к третьей ток в цепи не изменит своего направления.

Вначале, пока конденсатор не заряжен, сила зарядного тока имеет наибольшее значение. По мере увеличения заряда конденсатора сила зарядного тока будет убывать. Заряд конденсатора закончится и зарядный ток прекратится в конце третьей четверти периода, когда ЭДС достигнет своего амплитудного значения и нарастание ее прекратится.

Итак, к концу третьей четверти периода конденсатор окажется опять заряженным, но уже в обратном направлении, т. е. на той пластине, где был прежде плюс, будет минус, а где был минус, будет плюс. При этом ЭДС достигнет амплитудного значения (противоположного направления), а ток в цепи будет равен нулю.

В течение последней четверти периода ЭДС начинает опять убывать, а конденсатор разряжаться; при этом в цепи появляется постепенно увеличивающийся разрядный ток. Направление этого тока совпадает с направлением тока в первой четверти периода и противоположно направлению тока во второй и третьей четвертях.

Из всего изложенного выше следует, что по цепи с конденсатором проходит переменный ток и что сила этого тока зависит от величины емкости конденсатора и от частоты тока. Кроме того, из рис. 1,а, который мы построили на основании наших рассуждений, видно, что в чисто емкостной цепи фаза переменного тока опережает фазу напряжения на 90°.

Отметим, что в цепи с индуктивностью ток отставал от напряжения, а в цепи с емкостью ток опережает напряжение. И в том и в другом случае между фазами тока и напряжения имеется сдвиг, но знаки этих сдвигов противоположны

 

Емкостное сопротивление конденсатора

Мы уже заметили, что ток в цепи с конденсатором может протекать лишь при изменении приложенного к ней напряжения, причем сила тока, протекающего по цепи при заряде и разряде конденсатора, будет тем больше, чем больше емкость конденсатора и чем быстрее происходят изменения ЭДС

Конденсатор, включенный в цепь переменного тока, влияет на силу протекающего по цепи тока, т. е. ведет себя как сопротивление. Величина емкостного сопротивления тем меньше, чем больше емкость и чем выше частота переменного тока. И наоборот, сопротивление конденсатора переменному току увеличивается с уменьшением его емкости и понижением частоты.

Рисунок 2. Зависимость емкостного сопротивления конденсатра от частоты.

Для постоянного тока, т. е. когда частота его равна нулю, сопротивление емкости бесконечно велико; поэтому постоянный ток по цепи с емкостью проходить не может.

Величина емкостного сопротивления определяется по следующей формуле:

где Хс — емкостное сопротивление конденсатора в ом;

f—частота переменного тока в гц;

ω — угловая частота переменного тока;

С — емкость конденсатора в ф.

При включении конденсатора в цепь переменного тока, в последнем, как и в индуктивности, не затрачивается мощность, так как фазы тока и напряжения сдвинуты друг относительно друга на 90°. Энергия в течение одной четверти периода— при заряде конденсатора — запасается в электрическом поле конденсатора, а в течение другой четверти периода — при разряде конденсатора — отдается обратно в цепь. Поэтому емкостное сопротивление, как и индуктивное, является реактивным или безваттным.

Нужно, однако, отметить, что практически в каждом конденсаторе при прохождении через него переменного тока затрачивается большая или меньшая активная мощность, обусловленная происходящими изменениями состояния диэлектрика конденсатора. Кроме того, абсолютно совершенной изоляции между пластинами конденсатора никогда не бывает; утечка в изоляции между пластинами приводит к тому, что параллельно конденсатору как бы оказывается включенным некоторое активное сопротивление, по которому течет ток и в котором, следовательно, затрачивается некоторая мощность. И в первом и во втором случае мощность затрачивается совершенно бесполезно на нагревание диэлектрика, поэтому се называют мощностью потерь.

Потери, обусловленные изменениями состояния диэлектрика, называются диэлектрическими, а потери, обусловленные несовершенством изоляции между пластинами, — потерями утечки.

Ранее мы сравнивали электрическую емкость с вместимостью герметически (наглухо) закрытого сосуда или с площадью дна открытого сосуда, имеющего вертикальные стенки.

Конденсатор в цепи переменного тока целесообразно сравнивать с гиб-костью пружины. При этом во избежание возможных недоразумений условимся под гибкостью понимать не упругость («твердость») пружины, а величину, ей обратную, т. е. «мягкость» или «податливость» пружины.

Представим себе, что мы периодически сжимаем и растягиваем спиральную пружину, прикрепленную одним концом наглухо к стене. Время, в течение которого мы будем производить полный цикл сжатия и растяжения пружины, будет соответствовать периоду переменного тока.

Таким образом, мы в течение первой четверти периода будем сжимать пружину, в течение второй четверти периода отпускать ее, в течение третьей четверти периода растягивать и в течение четвертой четверти снова отпускать.

Кроме того, условимся, что наши усилия в течение периода будут неравномерными, а именно: они будут нарастать от нуля до максимума в течение первой и третьей четвертей периода и уменьшаться от максимума до нуля в течение второй и четвертой четвертей.

Сжимая и растягивая пружину таким образом, мы заметим, что в начале первой четверти периода незакрепленный конец пружины будет двигаться довольно быстро при сравнительно малых усилиях с нашей стороны.

В конце первой четверти периода (когда пружина сожмется), наоборот, несмотря на возросшие усилия, незакрепленный конец пружины будет двигаться очень медленно.

В продолжение второй четверти периода, когда мы будем постепенно ослаблять давление на пружину, ее незакрепленный конец будет двигаться по направлению от стены к нам, хотя наши задерживающие усилия направлены по направлению к стене. При этом наши усилия в начале второй четверти периода будут наибольшими, а скорость движения незакрепленного конца пружины наименьшей. В конце же второй четверти периода, когда наши усилия будут наименьшими, скорость движения пружины будет наибольшей и т. д.

Продолжив аналогичные рассуждения для второй половины периода (для третьей и четвертой четвертей) и построив графики (рис. 1,б) изменения наших усилий и скорости движения незакрепленного конца пружины, мы убедимся, что эти графики в точности соответствуют графикам ЭДС и тока в емкостной цепи (рис 1,а), причем график усилий будет соответствовать графику ЭДС , а график скорости — графику силы тока.

 

Рисунок 3. а)Процессы в цепи переменного тока с конденсатором и б)сравнение конденсатора с пружиной.

Нетрудно, заметить, что пружина, так же как и конденсатор, в течение одной четверти периода накапливает энергию, а в течение другой четверти периода отдает ее обратно.

Вполне очевидно также, что чем меньше гибкость пружины,- т е. чем она более упруга, тем большее противодействие она будет оказывать нашим усилиям. Точно так же и в электрической цепи: чем меньше емкость, тем больше будет сопротивление цепи при данной частоте.

И наконец, чем медленнее мы будем сжимать и растягивать пружину, тем меньше будет скорость движения ее незакрепленного конца. Аналогично этому, чем меньше частота, тем меньше сила тока при данной ЭДС.

При постоянном давлении пружина только сожмется и на этом прекратит свое движение, так же как при постоянной ЭДС конденсатор только зарядится и на этом прекратится дальнейшее движение электронов в цепи.

А теперь как ведет себя конденсатор в цепи переменного тока вы можете посмотреть в следующем видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!


Похожие материалы:

Добавить комментарий

Конденсаторы для «чайников» / Хабр

Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.

Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.


Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические

Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические

Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика

История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Об обнаруженных вами неточностях и ошибках прошу писать через личные сообщения сайта. Спасибо.

Что такое конденсатор | Принцип работы, виды, типы

Что такое конденсатор

Конденсатор или как в народе говорят – “кондер”, образуются от латинского “condensatus”, что означает как “уплотненный, сгущенный”. Он представляет из себя пассивный радиоэлемент, который обладает таким свойством, как сохранение электрического заряда на своих обкладках, если, конечно, перед этим его зарядить каким-нибудь источником питания.

Грубо говоря, конденсатор можно рассматривать как батарейку или аккумулятор электрической энергии. Но вся разница в том, что аккумулятор или батарейка имеют в своем составе источник ЭДС, тогда как конденсатор лишен этого внутреннего источника.

Из чего состоит конденсатор


Любой конденсатор состоит из двух или более металлических обкладок, которые не соприкасаются друг с другом. Для более полного понимания, как все это устроено в конденсаторе, давайте представим себе блин.

намажем его сгущенкой

 и сверху положим точно такой же блин

Должно выполняться условие: эти два блина не должны прикасаться  друг  с другом. То есть верхний блин должен лежать на сгущенке и не прикасаться с нижним блином. Тут, думаю, все понятно. Перед вами типичный “блинный конденсатор” :-). Вот таким образом устроены все конденсаторы, только вместо блинов используются тонкие металлические пластины, а вместо сгущенки различный диэлектрик. В качестве диэлектрика может быть воздух, бумага, электролит, слюда, керамика, и так далее. К каждой металлической пластине подсоединены проводки – это выводы конденсатора.

Схематически все это выглядит примерно вот так.

Как вы могли заметить, из-за диэлектрика конденсатор не может проводить ток. Но это относиться только к постоянному току. Переменный ток конденсатор пропускает через себя без проблем с небольшим сопротивлением, номинал которого зависит от частоты тока и емкости самого конденсатора.

Емкость конденсатора

Электрические заряды

Как вы знаете, существует два типа зарядов: положительный заряд и отрицательный заряд. Ну и все как обычно, одноименные заряды отталкивается, а разноименные  – притягиваются. Физика седьмой класс).

Давайте еще раз рассмотрим простую модель конденсатора.

Если мы соединим наш конденсатор с каким-нибудь источником питания постоянного тока, то мы его зарядим. В этот момент положительные заряды, которые идут от плюса источника питания, осядут на одной пластине, а отрицательные заряды с минуса источника питания – на другой.

Самое интересное то, что количество положительных зарядов будет равняться количеству отрицательных зарядов.

Даже если мы отсоединим источник питания постоянного тока, то у нас конденсатор так и останется заряженным.

Почему так происходит?

Во-первых, заряду некуда течь. Хотя с течением времени он все равно будет разряжаться. Это  зависит от материала диэлектрика.

Во-вторых, происходит взаимодействие зарядов. Положительные заряды притягиваются к отрицательным, но они не могут соединиться с друг другом, так как им мешает диэлектрик, который, как вы знаете, не пропускает электрический ток. В это время между обкладками конденсатора возникает электрическое поле, которое как раз и запасает энергию конденсатора.

Когда конденсатор заряжается, электрическое поле между обкладками становится сильнее. Соответственно, когда конденсатор разряжается, электрическое поле слабеет. Но как много заряда мы можем “впихнуть” в конденсатор? Вот здесь и применяется такое понятие, как емкость конденсатора.

Что такое емкость

Емкость конденсатора – это его способность накапливать заряд на своих пластинах в виде электрического поля.

Но ведь емкость может быть не только у конденсатора. Например, емкость бутылки 1 литр, или емкость бензобака – 100 литров и так далее. Мы ведь не можем впихнуть в бутылку емкость в 1 литр больше, чем рассчитана эта бутылка, так ведь? Иначе остатки жидкости просто не влезут в бутылку и будут выливаться из нее. Точно такие же дела и обстоят с конденсатором. Мы не сможем впихнуть в него заряда больше, если он не рассчитан на это. Поэтому, емкость конденсатора выражается формулой:

где

С – это емкость, Фарад

Q – количество заряда на одной из обкладок конденсатора, Кулоны

U – напряжение между пластинами, Вольты

Получается, 1 Фарад – это когда на обкладках конденсатора хранится заряд в 1 Кулон и напряжение между пластинами 1 Вольт. Емкость может принимать только положительные значения.

Значение в 1 Фарад – это слишком много. На практике в основном пользуются значениями микрофарады, нанофарады и пикофарады. Хочу вам напомнить, что приставка “микро” – это 10-6 , “нано” – это 10-9 , пико – это 10-12 .

Плоский конденсатор и его емкость

Плоским конденсатором называют конденсатор, который состоит из двух одинаковых пластин, которые параллельны друг другу. Пластины могут быть разной формы. На практике чаще всего можно встретить квадратные, прямоугольные и круглые пластины. Давайте рассмотрим простой плоский квадратный конденсатор.

плоский конденсатор

где

d – расстояние между пластинами конденсатора, м

S – площадь самой наименьшей пластины, м2

ε – диэлектрическая проницаемость диэлектрика между обкладками конденсатора

Готовая формула для плоского конденсатора будет выглядеть так:

где

С – емкость конденсатора, ф

ε – диэлектрическая проницаемость диэлектрика

ε0 – диэлектрическая постоянная, ф/м

S – площадь самой наименьшей пластины, м2

d – расстояние между пластинами, м

Да, знаю, у вас сразу возникает вопрос: “А что такое диэлектрическая постоянная?” Диэлектрическая постоянная – это постоянная величина, которая нужная для вычислений в некоторых формулах электромагнетизма. Ее значение равняется 8, 854 × 10-12 ф/м.

Диэлектрическая проницаемость – эта величина зависит от типа диэлектрика, который находится между обкладками конденсатора. Например, для воздуха и вакуума это значение равняется 1, для некоторых других веществ можете посмотреть в таблице.

Какой можно сделать вывод из этой формулы? Хотите сделать конденсатор с огромной емкостью, делайте площадь пластин как можно больше, расстояние между пластинами как можно меньше и заправляйте вместо диэлектрика дистиллированную воду.

В настоящее время конденсаторы делают из нескольких пластин в виде слоеного торта. Это примерно выглядит вот так.

многослойный конденсатор

В этом случае формула такого конденсатора примет вид:

формула многослойного конденсатора

где n – это количество пластин

Максимальное рабочее напряжение на конденсаторе

Все конденсаторы имеют какое-то предельное напряжение, которое можно на них подавать. Дело все в том, что может произойти пробой диэлектрика, и конденсатор выйдет из строя. Чаще всего это напряжение пишут на самом корпусе конденсатора. Например, на электролитическом конденсаторе.

максимальное рабочее напряжение конденсатора

В технической документации этот параметр чаще всего обозначается, как WV, что с английского Working Voltage (рабочее напряжение), или DC WV – Direct Current Working Voltage – постоянное рабочее напряжение конденсатора.

Здесь есть один нюанс, о котором часто забывают. Дело в том, что на конденсаторе написано именно на какое постоянное напряжение он рассчитан, а не переменное. Если такой конденсатор, как на рисунке выше, с максимальным рабочим напряжением в 50 Вольт вставите в цепь переменного тока с источником питания, который выдает 50 Вольт переменного тока, то ваш конденсатор взорвется. Так как 50 Вольт переменного тока – это действующее напряжение. Его максимальное значение будет 50 × √2 = 70,7 Вольт, что намного больше, чем 50 Вольт.

Ток утечки конденсатора

Дело все в том, что какой бы ни был диэлектрик, конденсатор все равно рано или поздно разрядится, так как через диэлектрик, как ни странно, все равно течет ток. Величина этого тока у разных конденсаторов тоже разная. Электролитические конденсаторы обладают самым большим током утечки.

Также ток утечки зависит от напряжения между обкладками конденсатора. Здесь уже работает закон Ома: I=U/Rдиэлектрика . Поэтому, никогда не стоит подавать напряжение больше, чем максимально рабочее напряжение, прописанное в даташите или на самом конденсаторе.

Неполярные конденсаторы


К неполярным конденсаторам относят конденсаторы, для которых неважна полярность. Такие конденсаторы обладают симметричностью. Обозначение неполярных конденсаторов на электросхемах выглядит вот так.

обозначение конденсатора на схеме

Конденсаторы переменной емкости

Эти виды конденсаторов имеют воздушный диэлектрик и могут менять свою емкость под действием внешней силы, например, такой как рука человека. Ниже на фото советские типы таких переменных конденсаторов.

переменные конденсаторы

Современные выглядят чуточку красивее

подстроечные конденсаторы

Переменный конденсатор от подстроечного отличается лишь тем, что переменный конденсатор крутят чаще, чем подстроечный. Подстроечный крутят раз в жизни)

На схемах обозначаются так.

переменный конденсатор обозначение на схеме

Слева -переменный, справа – подстроечный.

Пленочные конденсаторы

Пленочные конденсаторы являются самыми распространенными в большом семействе конденсаторов. Они названы так потому, что вместо диэлектрика здесь используется тонкая пленка, которая может состоять из полиэстера, полипропилена, поликарбоната, тефлона и много еще из чего. Такие конденсаторы идут от номинала 5 пФ и до 100 мкФ. Они могут быть сделаны по принципу бетерброда

А также по принципу рулета

Давайте рассмотрим К73-9 советский пленочный конденсатор.

к73-9 советский конденсатор

Что же у него внутри? Смотрим.

Как и ожидалось, рулончик из фольги с диэлектриком-пленкой

что внутри конденсатора

Керамические конденсаторы

Керамические конденсаторы – это конденсаторы, которые изготавливают из керамики или фарфора, которые покрывают серебром. Берут диск квадратной или круглой формы, напыляют с с двух сторон серебро, выводят выводы и вуаля! Конденсатор готов! То есть и есть самый простой плоский конденсатор, о котором мы говорили выше в этой статье.

Хотите получишь емкость больше? Не вопрос! Складываем диски в бутерброд и увеличиваем емкость

Выглядеть керамические конденсаторы могут вот так:

керамические конденсаторыкерамические каплевидные конденсаторы

SMD конденсаторы

SMD конденсаторы – это керамические конденсаторы, которые построены по принципу бутерброда.

строение SMD конденсатора

Они используются в микроэлектронике, так как обладают крошечными размерами и удобны в плане промышленного производства с помощью роботов, которые автоматически расставляют SMD компоненты на плату.Такой тип конденсаторов вы без труда можете найти на платах своих мобильных телефонов, на материнских платах компьютеров, а также в современных гаджетах.

Полярные конденсаторы

Для полярных конденсаторов очень важно не путать выводы местами при монтаже. Плюсовая ножка должны подключаться к плюсу на схеме, а минусовая – к минусу. Обозначается полярные конденсаторы также, как и их собратья. Единственное отличие – это указание полярности такого конденсатора. Выглядеть на схемах они могут вот так.

обозначение полярных конденсаторов на схеме

Электролитические конденсаторы

Электролитические конденсаторы используется в электронике и электротехнике, где требуются большие значения емкости. Также повелось название “электролиты”.

электролитические конденсаторы

Строение электролитических конденсаторов очень похоже на пленочные конденсаторы, которые также собраны по принципу рулета, но с одной только разницей. Вместо диэлектрика здесь используется оксид алюминия.

строение электролитического конденсатора

Давайте разберем один из таких электролитических конденсаторов во благо науки.

Снимаем его корпус и видим тот самый рулетик

Разматываем “рулетик” и видим, что между двумя обкладками металлической фольги у нас находится бумага, пропитанная каким-то раствором.

что внутри электролитического конденсатора

Некоторые ошибочно полагают, что бумага – это и есть тот самый диэлектрик, хотя это в корне неверно. Как она может быть диэлектриком, если она смочена в растворе, который проводит электрический ток?

На самом же деле диэлектриком в данном случае является тончайший слой оксида алюминия, который производится электрохимическим способом еще на производстве. Все это выглядит приблизительно вот так:

схема строения электролитического конденсатора

Слой оксида алюминия настолько тонкий, что можно изготавливать конденсаторы бешеной емкости с малыми габаритами. Вы ведь не забыли формулу емкости для плоского конденсатора?

где d – это и есть тот самый слой оксида алюминия. Чем он тоньше, тем больше емкость.

На полярных конденсаторах часто можно увидеть вот такой значок-стрелку, которая указывает на минусовый вывод конденсатора.

обозначение минусового вывода электролитического конденсатора

То есть  в электрических схемах с постоянным током вы должны обязательно соблюдать правило: плюс на плюс, а минус на минус. Если перепутаете, то конденсатор может бахнуть.

Танталовые конденсаторы

Танталовые конденсаторы доступны как в мокром так и в сухом исполнении. Хотя, в сухом исполнении они намного более распространены. Здесь в качестве диэлектрика используется оксид тантала. Оксид тантала обладает более лучшими свойствами, по сравнению с оксидом алюминия. Если самый большой минус электролитических конденсаторов – это их большой ток утечки, то танталовые конденсаторы лишены такого недостатка. Минус танталовых конденсаторов в том, что они рассчитаны на более низкое напряжение, чем их собраться – электролиты. Танталовые конденсаторы также полярные, как и электролитические конденсаторы.

Выглядеть танталовые конденсаторы могут вот так

 

танталовые конденсаторы

ну или так

танталовые конденсаторы капли

 

 

 

[quads id=1]

Ионисторы

Есть также  особый класс конденсаторов – ионисторы. Иногда их еще называют суперконденсаторами или золотыми конденсаторами. Нет, не потому, что  там есть золото. Сам принцип работы ионистора ценее, чем золото.  Для того, чтобы получить максимальную емкость мы должны намазать “сгущенку”(диэлектрик)  тонким-тонким слоем или увеличить площадь блинов (металлических пластин). Так как без конца увеличивать слой блинов очень затратно, разработчики решили уменьшить слой диэлектрика. Так как диэлектрический слой между обкладками ионистора , то есть “слой сгущенки”, составляет 5-10 нанометров, следовательно емкость ионистора достигает впечатляющих значений! Вы только представьте, какой заряд может накопить такой суперконденсатор!

Емкость таких конденсаторов может достигать до десятка фарад. Поверьте, это очень много. Ионисторы выглядят, как обычные таблетки, а  также могут выглядеть как цилиндрические конденсаторы. Для того, чтобы различить их от конденсаторов, достаточно взглянуть на емкость, которая на них указана. Если там единицы Фарад, то это однозначно ионистор!

ионистор

большой ионистор

В настоящее время ионисторы стали очень широко применяться в электронике и электротехнике. Они заменяют маленькие батарейки с малым напряжением, потому что ионистор конструктивно пока что не могут сделать на напряжение более нескольких Вольт. Но можно соединить их последовательно и набрать нужное напряжение. Но удовольствие это не дешевое :-).

Они также очень быстро заряжаются, так как их сопротивление ограничено только их выводами.  А исходя из закона Ома, чем меньше сопротивление проводника, тем большая сила тока течет по нему и следовательно тем быстрее заряжается ионистор. Заряжать и разряжать ионисторы можно почти бесконечно.

Конденсатор в цепи постоянного тока

Итак, берем блок питания постоянного напряжения и выставляем на его крокодилах напряжение 12 Вольт. Лампочку берем тоже на 12 Вольт. Теперь в разрыв цепи вставляем конденсатор.

Нет, лампочка не горит.

А  вот если исключить конденсатор из цепи и подключить напрямую к лампочке, то лампа горит.

Отсюда напрашивается вывод: постоянный ток через конденсатор не течет! То есть в цепи постоянного тока идеальный конденсатор оказывает бесконечно большое сопротивление.

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доыли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Для того, чтобы узнать, как ведет себя конденсатор в цепи переменного тока, нам надо собрать простейшую схему, которая представляет из себя делитель напряжения. Смысл опыта такой: с помощью генератора частоты мы будем менять только частоту, а амплитуду оставим неизменной. По сути красная точка нам будет показывать сигнал с генератора частоты, а желтая – сигнал на резисторе. Снимая сигнал с резистора, мы можем косвенно узнать, как ведет себя конденсатор исходя из законов делителя напряжения.

С помощью осциллографа мы будем снимать сигнал с красной и желтой точек относительно земли.

Думаю, этот генератор частоты вполне пойдет.

Для начала возьмем конденсатор на 1мкФ и резистор на 100 ом.

 

Далее за дело берется цифровой осциллограф OWON SDS 6062. Что такое осциллограф и с чем его едят, читаем здесь.  Будем использовать сразу два канала, то есть на одном экране будут высвечиваться сразу два сигнала. Здесь на экране уже видны наводки от сети 220 Вольт. Не стоит на это обращать внимание.

Красная осциллограмму снимаем с красной точки в цепи, а желтую – с желтой точки в цепи.

Зависимость сопротивления от частоты и сдвиг фаз

Поехали. Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать переменный ток с частотой в 100 Герц?

[quads id=1]

На дисплее осциллографа были выведены такие параметры, как частота сигнала и его амплитуда (эти параметры помечены белой стрелочкой).

F – это частота

Ma – амплитуда

Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме, с генератора выходит синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта, а на резисторе напряжение всего каких-то 136 мВ.

Как вы могли заметить, амплитуда желтого сигнала стала меньше. Это говорит нам о том, что конденсатор стал пропускать переменный ток, но его сопротивление до сих пор очень большое.

Но здесь можно заметить еще одну особенность: осциллограмма напряжения на резисторе сигнала сдвинулась влево, то есть она опережает сигнал с генератора частоты, или научным языком, появляется сдвиг фаз. Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени :-), что конечно же, невозможно.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин. В данном случае – напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота. Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз:

Давайте увеличим частоту  на генераторе до 500 Гц

На резисторе уже получили 560 мВ. Сдвиг фаз уменьшается. Получается, что мы чуть-чуть увеличили частоту, и сопротивление конденсатора стало меньше.

Увеличиваем частоту до 1 КГц

На резисторе у нас напряжение 1 Вольт. Напряжение не резисторе растет с увеличением частоты. Это говорит о том, что сопротивление конденсатора стало еще меньше.

Ставим частоту 5 КГц

Амплитуда 1,84 Вольта и сдвиг фаз явно становится меньше

Увеличиваем до 10 КГц

Амплитуда уже почти  такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 КГц.

Сдвига фаз почти нет. Напряжение не резисторе почти сравнялось с напряжением генератора частоты. Это говорит о том, что конденсатор почти не оказывает сопротивление на высоких частотах.

Получился парадокс. Постоянный ток конденсатор не пропускает, а вот токи высокой частоты – без проблем!

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2.

Если построить обрезок графика, то получится типа что-то этого:

Зависимость сопротивления от номинала конденсатора

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по  этим же частотам.

Смотрим и анализируем значения:

Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Гц  и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт (в реальности еще меньше из за помех). На частоте 500 Герц –  560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление становится больше.

Формула сопротивления конденсатора

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, ХС  – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14 

F – частота, измеряется в Герцах

С – емкость,  измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в  ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Последовательное и параллельное соединение конденсаторов

При последовательном соединении  конденсаторов

последовательное соединение конденсаторов

 

Их общая емкость будет вычисляться по формуле

последовательное сопротивление конденсаторов формула

 

 а при параллельном соединении

параллельное соединение конденсаторов

 

их общая емкость будет вычисляться по формуле

формула параллельного соединения конденсаторов

 

Также в интернете нашел очень интересное видео по теме конденсаторов

 

Похожие статьи по теме “конденсатор”

ESR конденсатора

Как проверить конденсатор мультиметром

RC цепь

Что такое конденсатор и для чего он нужен?

Конденсатор (с латинского «condensare» — «уплотнять», «сгущать», в простонародье «кондер») — один из самых распространенных элементов в радиоэлектронике, после резистора. Состоит из двух обкладок разделенных диэлектриком малой толщины, по сравнению с толщиной этих обкладок. Но на практике эти обкладки свернуты в многослойный рогалик, ой рулон в форме цилиндра или параллелепипеда разделенных все тем же диэлектриком.

Принцип работы конденсатора

Заряд. При подключении к источнику питания на обкладках скапливаются заряды. При зарядке на одной пластине скапливаются положительно заряженные частицы (ионы), а на другой отрицательно заряженные частицы (электроны). Диэлектрик служит препятствием, чтобы частицы не перескакивали на другую обкладку. При зарядке вместе с емкостью растет и напряжение на выводах и достигает максимума, равного напряжению источника питания.

Разряд. Если после зарядки конденсатора отключить питание и подключить нагрузку, конденсатор уже будет играть роль источника тока.  Электроны начнут двигаться в через нагрузку, которая при подключении образовывает замкнутую цепь, к ионам (по закону притяжения между разноименными разрядами).

Основными параметрами конденсатора являются:
  1. Номинальная емкость — это его основная характеристика, подразумевает объем электрических зарядов. Измеряется емкость в Фарадах (сокращенно Ф), на практике часто встречаются мкФ (1мкФ = 0,000001 Ф), нФ (1нФ = 0,000000001 Ф), пФ (1пФ = 0,000000000001 Ф), так как емкость в 1Ф очень велика. Но  есть такой компонент который может иметь емкость даже больше 1 Фарады его называют ионистр (о нем и о других я расскажу позже).
  2. Номинальное напряжение — это максимальное напряжение, при котором конденсатор может надежно и долго работать, измеряется конечно же в вольтах (сокращенно В). При превышении напряжения конденсатор выйдет из строя. В случаях когда необходимо поменять конденсатор, а с нужной емкостью имеется, но он рассчитан на большее напряжение по сравнению с вышедшем из строя его можно спокойно ставить (например «сгорел» конденсатор 450мкФ 10В, его можно заменить на 450мкФ 25В). Главное чтобы он по габаритам поместился в вашу плату.
  3. Допуск отклонения —  допустимое отклонение величины его реальной ёмкости от указанной на корпусе. Обозначается в процентах. Допуск у конденсаторов может достигать 20 – 30%. В устройствах, где требуется особая точность, применяются конденсаторы с малым допуском (1% и менее).
  4. Температурный коэффициент емкости — встречается на электролитических конденсаторах. Емкость алюминиевого электролитического конденсатора зависит от температуры. С понижением температуры (особенно ниже 0°C) повышается вязкость электролита и его ESR (удельное электрическое сопротивление), что ведет к уменьшению емкости конденсатора.
Для чего же нужны конденсаторы и с чем их «едят».
  • В цепи переменного тока конденсатор нужен в роли емкостного сопротивления. Если в цепи с постоянным током конденсатор подключить последовательно лампочке, она светится не будет, а в цепи с переменном током она загорится. И будет святится даже ярче и чем выше емкость конденсатора тем ярче будет свет. За счет этого свойства конденсаторы часто используются в качестве фильтрации пульсирующего тока (его основная задача во многих схемах), он хорошо подавляет ВЧ и НЧ помехи, скачки переменного тока и пульсации напряжения.
  • За счет своей главной особенности накапливать электрический заряд и затем быстро его отдавать создавая импульс, делает их незаменимыми при изготовлении фотовспышек, магнитных ускорителей, стартеров и т.п.
  • Конденсаторы также используются для запуска трехфазных двигателей на однофазном питании, подключая к третьему выводу он сдвигает фазу на 90 градусов.
  • Благодаря способности накапливать и отдавать заряд, конденсаторы используют в схемах в которых нужно сохранить информацию на длительное время. Но к сожалению, он значительно уступает в способности накапливать энергию аккумуляторным батареям питания, из-за саморазряда и не способности накопить электроэнергию большей величины.

Как вам статья?

Мне нравитсяНе нравится

( Пока оценок нет )

Понравилась статья? Поделиться с друзьями:

Какова роль конденсатора в цепях переменного и постоянного тока? Электрические технологии

Какова роль конденсатора в цепях переменного и постоянного тока?

Роль конденсатора в цепях переменного тока:

В цепи переменного тока конденсатор меняет свои заряды на противоположные по мере того, как ток меняется, и создает запаздывающее напряжение (другими словами, конденсатор обеспечивает опережающий ток в цепях и сетях переменного тока)

Роль конденсатора в цепях постоянного тока:

В цепи постоянного тока конденсатор, заряженный приложенным напряжением, действует как размыкающий переключатель.

Роль конденсатора в системах переменного и постоянного тока

Давайте объясним подробно, но сначала мы вернемся к основам конденсатора, чтобы обсудить этот вопрос.

Что такое конденсатор?

Конденсатор представляет собой электрическое устройство с двумя выводами, используемое для хранения электрической энергии в виде электрического поля между двумя пластинами. Он также известен как конденсатор, и единица измерения его емкости в системе СИ - Фарад «Ф», где Фарад - большая единица емкости, поэтому в настоящее время используются микрофарады (мкФ) или нанофарады (нФ).

Конденсатор похож на батарею, поскольку оба накапливают электрическую энергию. Конденсатор - гораздо более простое устройство, которое не может производить новые электроны, но накапливает их. Внутри конденсатора клеммы соединены с двумя металлическими пластинами, разделенными диэлектрическим материалом (например, вощеной бумагой, слюдой и керамикой), которые разделяют пластины и позволяют им удерживать противоположные электрические заряды, поддерживая электрическое поле.

Конденсаторы

могут пригодиться для накопления заряда и быстрого разряда в нагрузку.Проще говоря, конденсатор также работает как небольшая перезаряжаемая батарея. Символ электрического эквивалента различных типов конденсатора приведен ниже:

Теперь мы знаем концепцию зарядки конденсатора и его структуру, но знаете ли вы, что такое емкость? емкость - это способность конденсатора накапливать в нем заряд. Есть несколько факторов, которые влияют на емкость.

  • Площадь пластины
  • Зазор между пластинами
  • Проницаемость изоляционного материала

Соответствующий пост: Конденсатор и типы конденсаторов | Фиксированный, переменный, полярный и неполярный

Конденсатор имеет широкий спектр применений в электронике , таких как накопление энергии, регулирование мощности, коррекция коэффициента мощности, генераторы и фильтрация.

В этом руководстве мы объясним вам, как можно использовать конденсатор в электронной схеме. Существует три способа подключения конденсатора к электронной схеме:

  • Последовательный конденсатор
  • Параллельный конденсатор
  • Конденсатор в цепях переменного тока
  • Конденсатор в цепях постоянного тока

Связанный пост: Конденсаторы MCQ с пояснительными ответами

Как работает конденсатор?
Работа и конструкция конденсатора

Всякий раз, когда на его клеммы подается напряжение (также известный как зарядка конденсатора), начинает течь ток и продолжается до тех пор, пока напряжение не появится как на отрицательном, так и на положительном (анодном и положительном) контактах. Катод) пластины становятся равными напряжению источника (Applied Voltage).Эти две пластины разделены диэлектрическим материалом (таким как слюда, бумага, стекло и т. Д., Которые являются изоляторами), который используется для увеличения емкости конденсатора.

Когда мы подключаем заряженный конденсатор к небольшой нагрузке, он начинает подавать напряжение (накопленную энергию) на эту нагрузку до тех пор, пока конденсатор полностью не разрядится.

Конденсаторы бывают разных форм, и их значение измеряется в фарадах (Ф). Конденсаторы используются как в системах переменного, так и постоянного тока (мы обсудим это ниже).

Емкость (C):

Емкость - это количество электрического заряда, перемещаемого в конденсаторе (конденсаторе), когда к его клемме подключен источник питания на один вольт.

Математически,

Уравнение емкости:

C = Q / V

Где,

  • C = емкость в фарадах (F)
  • Q = электрический заряд в кулонах V = напряжение в вольтах

Мы не будем вдаваться в подробности, потому что наша основная цель этого обсуждения - объяснить роль и применение / использование конденсаторов в системах переменного и постоянного тока.Чтобы понять эту базовую концепцию, мы должны понимать основные типы конденсаторов, относящиеся к нашей теме (поскольку существует много типов конденсаторов, и мы обсудим типы конденсаторов позже в другом посте, потому что это не связано с вопросом).

Связанные сообщения:

Серийные конденсаторы

Как последовательно соединить конденсаторы?

Последовательно ни один конденсатор не подключен напрямую к источнику. Чтобы соединить их последовательно, вам необходимо соединить их встык, как показано на рисунке ниже:

При последовательном соединении конденсаторов общая емкость уменьшается.Следовательно, соединение выполняется последовательно, поэтому ток через конденсаторы будет одинаковым. Кроме того, заряд, накопленный пластиной конденсатора, будет таким же, потому что он исходит от соседней пластины конденсатора.

Следовательно,

I T = I 1 + I 2 + I 3 +… + I n

и

Q Q T 33 + Q 2 + Q 3 +… + Q n

Теперь, чтобы найти значение емкости вышеуказанной схемы, мы применим закон Кирхгофа по напряжению (KVL), тогда у нас будет

V T = V C1 + V C2 + V C3

Как мы знаем, Q = CV

И V = Q / C

Итак,

(Q / C T ) = (Q / C 1 ) + (Q / C 2 ) + (Q / C 3 )

Следовательно,

1 / C T = (1 / C 1 ) + (1 / C 2 ) + (1 / C 3 )

Для n th no.конденсатора, соединенного последовательно,

Для двух последовательно соединенных конденсаторов формула будет

C T = (C1 x C2) / (C1 + C2)

Теперь вы можете найти емкость приведенная выше схема, используя формулу,

Здесь C1 = 10 мкФ и C2 = 4,7 мкФ

Итак, C T = (10 x 4,7) / (10 + 4,7)

C T = 47 / 14,7

C T = 3,19 мкФ

Параллельно конденсаторов

Как подключить конденсаторы параллельно?

Параллельно каждый конденсатор напрямую подключен к источнику, как вы можете видеть на изображении ниже,

При параллельном подключении конденсаторов общая емкость равна сумме всех емкостей конденсатора.Поскольку верхняя и нижняя пластины всех конденсаторов соединены вместе, из-за этого площадь пластины также увеличивается.

Общий ток в параллельной цепи будет равен току на каждом конденсаторе.

Применяя закон Кирхгофа,

I T = I 1 + I 2 + I 3

Теперь ток через конденсатор выражается как,

I = C (dV / dt)

Итак,

Решив приведенное выше уравнение

C T = C 1 + C 2 + C 3

And, для n th no.конденсатора, соединенного последовательно,

C T = C 1 + C 2 + C 3 +… + C n

Теперь вы можете определить емкость цепи, используя приведенную выше формулу,

Здесь C 1 = 10 мкФ и C 2 = 1 мкФ

Итак, C T = 10 мкФ + 1 мкФ

C T = 11 мкФ

Связанные сообщения:

Полярный и неполярный конденсатор
Неполярный конденсатор: (используется в системах переменного и постоянного тока)

Неполярные конденсаторы могут использоваться как в системах переменного, так и постоянного тока.Их можно подключать к источнику питания в любом направлении, и на их емкость не влияет изменение полярности.

Полярный конденсатор: (используется только в цепях и системах постоянного тока)

Конденсаторы этого типа чувствительны к их полярности и могут использоваться только в системах и сетях постоянного тока. Конденсаторы Polar не работают в системе переменного тока из-за смены полярности после каждого полупериода в сети переменного тока.

Типы конденсаторов: полярные и неполярные конденсаторы с символами

Роль конденсаторов в цепях переменного тока

Конденсатор имеет множество применений в системах переменного тока, и ниже мы обсудим несколько вариантов использования конденсаторов в сетях переменного тока.

Бестрансформаторный источник питания:

Конденсаторы используются в бестрансформаторных источниках питания. В таких схемах конденсатор включен последовательно с нагрузкой, потому что мы знаем, что конденсатор и катушка индуктивности в чистом виде не потребляют мощность. Они просто берут мощность в одном цикле и возвращают ее в другом цикле к нагрузке. В этом случае он используется для снижения напряжения с меньшими потерями мощности.

Асинхронные двигатели с расщепленной фазой:

Конденсаторы также используются в асинхронных двигателях для разделения однофазного источника питания на двухфазный источник питания для создания вращающегося магнитного поля в роторе, чтобы поймать это поле.Этот тип конденсатора в основном используется в бытовых водяных насосах, вентиляторах, кондиционерах и многих устройствах, которым для работы требуется как минимум две фазы.

Коррекция и улучшение коэффициента мощности:

Есть много преимуществ улучшения коэффициента мощности. В трехфазных энергосистемах конденсаторная батарея используется для подачи реактивной мощности на нагрузку и, следовательно, для повышения коэффициента мощности системы. Конденсаторная батарея устанавливается после точного расчета. По сути, он обеспечивает реактивную мощность, которая ранее передавалась из энергосистемы, следовательно, снижает потери и повышает эффективность системы.

Конденсаторы в цепи переменного тока

Как подключить конденсатор в цепи переменного тока?

В цепи постоянного тока конденсатор заряжается медленно, пока зарядное напряжение конденсатора не сравняется с напряжением питания. Кроме того, в этом состоянии конденсатор не позволяет току проходить через него после полной зарядки.

И, когда вы подключаете конденсатор к источнику переменного тока, он непрерывно заряжается и разряжается из-за постоянного изменения уровней напряжения.Емкость в цепях переменного тока зависит от частоты подаваемого входного напряжения. Кроме того, если вы видите векторную диаграмму идеальной цепи конденсатора переменного тока, вы можете заметить, что ток опережает напряжение на 90 °.

В цепи конденсатора переменного тока ток прямо пропорционален скорости изменения подаваемого входного напряжения, которая может быть выражена как:

I = dQ / dt

I = C (dV / dt)

Теперь мы рассчитаем емкостное реактивное сопротивление в цепи переменного тока .

Как мы знаем, I = dQ / dt и Q = CV

И входное напряжение переменного тока в приведенной выше схеме будет выражено как,

V = V m Sin wt

Итак, I м = d (CV м Sin wt ) / dt

I м = C * V м Cos wt * w (после дифференцирования)

I м = wC V m Sin (wt + π / 2)

At, w = 0, Sin (wt + π / 2) = 1

Следовательно,

I m = wCV m

V m / I м = 1 / wC (где w = 2π f и V м / I м = X C )

Емкостное реактивное сопротивление (X C ) =

Теперь, для расчета емкостного реактивного сопротивления вышеуказанной схемы

X C = 1 / [2π (50 Гц) (10 -6 F)]

XC = 3183.09 Ом

Связанный пост: В чем разница между батареей и конденсатором?

Роль конденсаторов в цепях постоянного тока
Кондиционирование питания:

В системах постоянного тока конденсатор используется в качестве фильтра (в основном). Его наиболее распространенное использование - преобразование источника питания переменного тока в постоянный при выпрямлении (например, в мостовом выпрямителе). Когда мощность переменного тока преобразуется в колеблющуюся (с пульсациями, то есть не в устойчивое состояние с помощью схем выпрямителя) мощность постоянного тока (пульсирующая мощность постоянного тока), чтобы сгладить и отфильтровать эти пульсации и колебания, используется полярный конденсатор постоянного тока.Его значение рассчитывается точно и зависит от напряжения в системе и потребляемого тока нагрузки.

Конденсатор развязки:

Конденсатор развязки используется, где мы должны развязать две электронные схемы. Другими словами, шум, создаваемый одной схемой, заземляется разделительным конденсатором и не влияет на работу другой схемы.

Конденсатор связи:

Как мы знаем, Конденсатор блокирует постоянный ток и позволяет переменному току проходить через него (мы обсудим это в следующем сеансе, как это происходит).Таким образом, он используется для разделения сигналов переменного и постоянного тока (также используется в схемах фильтров для той же цели). Его значение рассчитывается таким образом, чтобы его реактивное сопротивление было минимизировано на основе частоты, которую мы хотим передать через него. Конденсатор связи также используется в фильтрах (схемах устранения пульсаций, таких как RC-фильтры) для разделения сигналов переменного и постоянного тока и удаления пульсаций из пульсирующего напряжения питания постоянного тока для преобразования его в чистое переменное напряжение после выпрямления.

Вы также можете прочитать:

Что такое конденсатор и как он работает?

В этом руководстве мы узнаем, что такое конденсатор, как он работает, и рассмотрим некоторые основные примеры применения.Вы можете посмотреть следующее видео или прочитать письменное руководство ниже.

РЕКОМЕНДУЕТСЯ Обзор

Практически нет схемы без конденсатора, и вместе с резисторами и индукторами они являются основными пассивными компонентами, которые мы используем в электронике.

Что такое конденсатор?

Конденсатор - это устройство, способное накапливать энергию в виде электрического заряда. По сравнению с батареей того же размера, конденсатор может хранить гораздо меньшее количество энергии, примерно в 10 000 раз меньше, но достаточно полезен для многих схем.

Конструкция конденсатора

Конденсатор состоит из двух металлических пластин, разделенных изоляционным материалом, называемым диэлектриком. Пластины являются проводящими, и они обычно изготавливаются из алюминия, тантала или других металлов, в то время как диэлектрик может быть сделан из любого изоляционного материала, такого как бумага, стекло, керамика или что-либо, что препятствует прохождению тока.

Емкость конденсатора, измеряемая в фарадах, прямо пропорциональна площади поверхности двух пластин, а также диэлектрической проницаемости ε диэлектрика, в то время как чем меньше расстояние между пластинами, тем больше емкость.При этом давайте посмотрим, как работает конденсатор.

Как работает конденсатор

Во-первых, мы можем отметить, что металл обычно имеет равное количество положительно и отрицательно заряженных частиц, что означает, что он электрически нейтрален.

Если мы подключим источник питания или батарею к металлическим пластинам конденсатора, ток будет пытаться течь, или электроны от пластины, подключенной к положительному выводу батареи, начнут двигаться к пластине, подключенной к отрицательному выводу. батареи.Однако из-за диэлектрика между пластинами электроны не смогут проходить через конденсатор, поэтому они начнут накапливаться на пластине.

После того, как определенное количество электронных компонентов накопится на пластине, у батареи будет недостаточно энергии, чтобы подтолкнуть любую новую электронику к пластине из-за отталкивания той электроники, которая уже там.

На этом этапе конденсатор фактически полностью заряжен. Первая пластина выработала чистый отрицательный заряд, а вторая пластина выработала равный результирующий положительный заряд, создавая электрическое поле с силой притяжения между ними, которая удерживает заряд конденсатора.

Принцип работы диэлектрика конденсатора

Давайте посмотрим, как диэлектрик может увеличить емкость конденсатора. Диэлектрик содержит полярные молекулы, что означает, что они могут изменять свою ориентацию в зависимости от зарядов на двух пластинах. Таким образом, молекулы выравниваются с электрическим полем таким образом, что позволяет большему количеству электронов притягиваться к отрицательной пластине, отталкивая больше электронов из положительной пластины.

Итак, после полной зарядки, если мы удалим аккумулятор, он будет удерживать электрический заряд в течение длительного времени, действуя как накопитель энергии.

Теперь, если мы укоротим два конца конденсатора через нагрузку, ток начнет течь через нагрузку. Накопленные электроны с первой пластины начнут двигаться ко второй пластине, пока обе пластины снова не станут электрически нейтральными.

Итак, это основной принцип работы конденсатора, а теперь давайте взглянем на некоторые примеры применения.

Приложения

Разделительные (байпасные) конденсаторы

Конденсаторы развязки или конденсаторы байпаса являются типичным примером.Они часто используются вместе с интегральными схемами и размещаются между источником питания и землей ИС.

Их задача - фильтровать любой шум в источнике питания, например, пульсации напряжения, которые возникают, когда в источнике питания на очень короткий период времени падает напряжение или когда часть цепи переключается, вызывая колебания в источнике питания. В момент падения напряжения конденсатор временно действует как источник питания, минуя основной источник питания.

Преобразователь переменного тока в постоянный

Другой типичный пример применения - конденсаторы, используемые в адаптерах постоянного тока. Для преобразования переменного напряжения в постоянное обычно используется диодный выпрямитель, но без помощи конденсаторов он не сможет справиться с этой задачей.

Выходной сигнал выпрямителя представляет собой форму волны. Таким образом, в то время как на выходе выпрямителя увеличивается заряд конденсатора, а на выходе выпрямителя уменьшается, конденсатор разряжается и, таким образом, сглаживает выход постоянного тока.

Связано: что такое триггер Шмитта и как он работает

Фильтрация сигналов

Фильтрация сигналов - еще один пример применения конденсаторов. Из-за своего особого времени отклика они могут блокировать низкочастотные сигналы, позволяя проходить более высоким частотам.

Используется в радиоприемниках для настройки нежелательных частот и в схемах кроссовера внутри громкоговорителей для разделения низких частот для вуфера и высоких частот для твитера.

Конденсаторы как накопители энергии

Еще одно довольно очевидное применение конденсаторов - для хранения и подачи энергии. Хотя они могут накапливать значительно меньше энергии по сравнению с батареями того же размера, их срок службы намного выше, и они способны передавать энергию намного быстрее, что делает их более подходящими для приложений, где требуется большой всплеск мощности.

Вот и все для этого урока, не стесняйтесь задавать любой вопрос в разделе комментариев ниже.

Объяснение

конденсаторов - Инженерное мышление

Объяснение конденсаторов

. Узнайте, как работают конденсаторы, где мы их используем и почему они важны.

Прокрутите вниз, чтобы просмотреть руководство YouTube.

Помните, что электричество опасно и может привести к летальному исходу. Вы должны быть квалифицированными и компетентными для выполнения электромонтажных работ. Не прикасайтесь к клеммам конденсатора, так как это может вызвать поражение электрическим током.

Что такое конденсатор?

Конденсатор и батарея

Конденсатор накапливает электрический заряд.Это немного похоже на батарею, за исключением того, что она по-другому накапливает энергию. Он не может хранить столько энергии, хотя может заряжаться и высвобождать свою энергию намного быстрее. Это очень полезно, поэтому конденсаторы можно встретить практически на каждой печатной плате.

Как работает конденсатор?

Я хочу, чтобы вы сначала представили водопроводную трубу, по которой течет вода. Вода будет продолжать течь, пока мы не закроем вентиль. Тогда вода не сможет течь.

Если после клапана мы позволим воде течь в резервуар, тогда резервуар будет хранить часть воды, но мы продолжаем получать воду, вытекающую из трубы.Когда мы закроем клапан, вода перестанет поступать в резервуар, но мы все равно будем получать постоянный приток воды, пока резервуар не опустеет. После того, как резервуар снова наполнится, мы можем открывать и закрывать клапан, и пока мы не опорожняем резервуар полностью, мы получаем непрерывную подачу воды из конца трубы. Таким образом, мы можем использовать резервуар для воды для хранения воды и сглаживания перебоев в подаче.

В электрических цепях конденсатор действует как резервуар для воды и накапливает энергию. Он может освободить его, чтобы сгладить перебои в подаче электроэнергии.

Если мы очень быстро выключим простую схему без конденсатора, то свет будет мигать. Но если мы подключим конденсатор в цепь, то свет будет гореть во время прерываний, по крайней мере, на короткое время, потому что теперь конденсатор разряжается и питает цепь.

Внутри основного конденсатора у нас есть две проводящие металлические пластины, которые обычно изготавливаются из алюминия или алюминия, как его называют американцы. Они будут разделены диэлектрическим изоляционным материалом, например керамикой.Диэлектрик означает, что материал поляризуется при контакте с электрическим полем. Мы скоро увидим, что это значит.

Внутри конденсатора

Одна сторона конденсатора подключена к положительной стороне схемы, а другая сторона подключена к отрицательной. На стороне конденсатора вы можете увидеть полоску и символ, указывающие, какая сторона отрицательного полюса, кроме того, отрицательная сторона будет короче.

Если подключить конденсатор к аккумулятору. Напряжение подтолкнет электроны от отрицательного вывода к конденсатору.Электроны накапливаются на одной пластине конденсатора, в то время как другая пластина, в свою очередь, высвобождает некоторые электроны. Электроны не могут проходить через конденсатор из-за изоляционного материала. В конце концов, конденсатор имеет такое же напряжение, что и батарея, и электроны больше не будут течь.

Теперь на одной стороне скопилось скопление электронов, это означает, что мы накопили энергию и можем высвободить ее, когда это необходимо. Поскольку на одной стороне больше электронов по сравнению с другой, и электроны заряжены отрицательно, это означает, что у нас есть одна сторона, которая является отрицательной, а другая - положительной, поэтому между ними есть разница в потенциале или разница напряжений.Мы можем измерить это с помощью мультиметра.

Что такое напряжение?

Напряжение похоже на давление: когда мы измеряем напряжение, мы измеряем разность или разность потенциалов между двумя точками. Если вы представите трубу с водой под давлением, мы сможем увидеть давление с помощью манометра. Манометр также сравнивает две разные точки: давление внутри трубы по сравнению с атмосферным давлением снаружи трубы. Когда резервуар пуст, манометр показывает ноль, потому что давление внутри резервуара равно давлению снаружи резервуара, поэтому манометру не с чем сравнивать.Оба давления одинаковы. То же самое и с напряжением, мы сравниваем разницу между двумя точками. Если мы измеряем через батарею 1,5 В, то мы читаем разницу в 1,5 В между каждым концом, но если мы измеряем один и тот же конец, мы читаем ноль, потому что разницы нет, это то же самое.

Хотите изучить основы электричества? НАЖМИТЕ ЗДЕСЬ

Возвращаясь к конденсатору, мы измеряем и считываем разницу напряжений между ними из-за скопления электронов. Мы все еще получаем это показание, даже когда отсоединяем аккумулятор.

Если вы помните, с магнитами противоположности притягиваются и притягиваются друг к другу. То же самое происходит с накоплением отрицательно заряженных электронов, они притягиваются к положительно заряженным частицам атомов на противоположной пластине, но никогда не могут добраться до них из-за изоляционного материала. Это притяжение между двумя сторонами представляет собой электрическое поле, которое удерживает электроны на месте, пока не появится другой путь.

Объяснение основ работы с конденсаторами

Если мы затем поместим в цепь небольшую лампу, то теперь существует путь, по которому электроны могут течь и достигать противоположной стороны.Таким образом, электроны будут проходить через лампу, питая ее, и электроны достигнут другой стороны конденсатора. Это будет длиться недолго, пока количество электронов не выровняется с каждой стороны. Тогда напряжение равно нулю, поэтому нет толкающей силы и нет потока электронов.
Как только мы снова подключим аккумулятор, конденсатор начнет заряжаться. Это позволяет нам прервать подачу питания, и конденсатор будет обеспечивать питание во время этих прерываний.

Примеры

Мы везде используем конденсаторы.Они выглядят немного иначе, но их легко заметить. На печатных платах они, как правило, выглядят примерно так, и мы можем видеть их представленными на инженерных чертежах вот так. Мы также можем получить конденсаторы большего размера, которые используются, например, в асинхронных двигателях, потолочных вентиляторах или установках кондиционирования воздуха, и мы можем даже получить такие огромные конденсаторы, которые используются для коррекции низкого коэффициента мощности в больших зданиях.

Пример обозначения конденсатора

На стороне конденсатора мы найдем два значения.Это будут емкость и напряжение. Мы измеряем емкость конденсатора в единицах фарад, которые мы показываем с заглавной буквы F, хотя мы обычно измеряем конденсатор в микрофарадах, поэтому у нас есть микро-символ непосредственно перед этим, который выглядит примерно как буква U с хвостом.

Пример емкости

Другое значение - это наше напряжение, которое мы измеряем в вольтах с заглавной буквой V, на конденсаторе значение напряжения - это максимальное напряжение, которое может выдержать конденсатор.

Этот конденсатор рассчитан на определенное напряжение, и если я превышу это значение, он взорвется.

Пример напряжения конденсатора

Большинство конденсаторов имеют положительную и отрицательную клеммы. Нам нужно убедиться, что конденсатор правильно включен в схему.

Пример конденсаторной платы

Почему мы их используем

Одно из наиболее распространенных применений конденсаторов в больших зданиях - коррекция коэффициента мощности. Когда в цепь помещается слишком много индуктивных нагрузок, формы сигналов тока и напряжения не будут синхронизироваться друг с другом, и ток будет отставать от напряжения.Затем мы используем батареи конденсаторов, чтобы противодействовать этому и вернуть их в соответствие.

Еще одно распространенное применение - сглаживание пиков при преобразовании переменного тока в постоянный.
Когда мы используем полный мостовой выпрямитель, синусоидальная волна переменного тока переворачивается, чтобы заставить отрицательный цикл течь в положительном направлении, это заставит схему думать, что она получает постоянный ток.

через GIPHY

Но, одна из проблем этого метода - промежутки между пиками. Поэтому мы используем конденсатор, чтобы выделять энергию в цепь во время этих прерываний, и это сгладит подачу питания, чтобы она больше походила на постоянный ток.

Как измерить емкость мультиметром

Мы можем измерить емкость и накопленное напряжение с помощью мультиметра. Не все мультиметры имеют функцию измерения емкости.

Вы должны быть очень осторожны с конденсаторами, поскольку они накапливают энергию и могут удерживать высокие значения напряжения в течение длительного времени, даже когда они отключены от цепи. Чтобы проверить напряжение, мы переключаемся на постоянное напряжение на нашем измерителе, а затем подключаем красный провод к положительной стороне конденсатора, а черный провод к отрицательной стороне.Если мы получаем показание в несколько вольт или более, мы должны разрядить его, безопасно подключив клеммы к резистору, и продолжить считывание напряжения. Мы хотим убедиться, что он упал до диапазона милливольт, прежде чем обращаться с ним, иначе мы можем получить шок.

Чтобы измерить емкость, мы просто переключаем измеритель на функцию конденсатора. Подключаем красный провод к положительной стороне, а черный провод к отрицательной стороне. После небольшой задержки счетчик покажет нам показания.Вероятно, мы получим значение, близкое к заявленному, но не точное.

Например, этот показатель рассчитан на 1000 микрофарад, но мы читаем около 946.

Пример показания 1000 микрофарад на конденсаторе

Этот конденсатор рассчитан на 33 микрофарад, но мы измеряем около 36.

Пример конденсатора

Как работает конденсатор?

Вы часто задаетесь вопросом, «как работает конденсатор»?

По крайней мере, я спрашивал себя об этом много раз, когда был моложе.

Мне никогда не нравились «физические объяснения».

В нем говорится что-то вроде «конденсатор работает, накапливая энергию электростатически в электрическом поле» .

Не знаю, как вы, но это предложение не сделало меня мудрее, когда я только начинал заниматься электроникой.

Мне нравится отвечать на вопрос «как работает конденсатор?» говоря, что конденсатор работает как крошечная перезаряжаемая батарея с очень очень низкой емкостью.

Время, необходимое для разряда конденсатора, обычно составляет доли секунды. Настало время подзарядить его.

БЕСПЛАТНЫЙ бонус: Загрузите базовые электронные компоненты [PDF] - мини-книгу с примерами, которая научит вас, как работают основные компоненты электроники.

Что такое конденсатор?

Значит, конденсатор может накапливать заряд. И он может освободить заряд при необходимости. Но как это сделать? Как конденсатор работает на более глубоком уровне?

Конденсатор состоит из двух металлических пластин.С диэлектрическим материалом между пластинами.

Когда вы прикладываете напряжение к двум пластинам, создается электрическое поле. Положительный заряд будет накапливаться на одной пластине, а отрицательный - на другой.

И это то, что имеют в виду физики, когда говорят, что «конденсатор работает, накапливая энергию электростатически в электрическом поле».

Существует много разных типов конденсаторов.

Для чего нужен конденсатор?

Для фильтрации обычно используется конденсатор

А.Но что такое фильтрация?

Батарея аналог

Рассмотрим пример с аккумулятором.

Многие будильники получают питание от розетки на стене в доме. Иногда отключается электричество. У большинства будильников есть резервная батарея, которая берет на себя и питает будильник до тех пор, пока питание не вернется, чтобы время не сбрасывалось.

Ну, в электронных схемах точно так же можно использовать конденсаторы.

Конденсаторы развязки

Например, если у вас есть схема с микроконтроллером, на котором выполняется какая-то программа.Если напряжение на микроконтроллере падает всего на долю секунды, микроконтроллер перезапускается. А ты этого не хочешь.

При использовании конденсатора конденсатор может подавать питание на микроконтроллер за доли секунды, когда напряжение падает, так что микроконтроллер не перезапускается. Таким образом, он отфильтрует «шум» в линии электропередачи.

Этот тип фильтрации называется «развязкой». И конденсатор, используемый для этой цели, называется «развязывающим конденсатором».Его также называют «байпасным конденсатором».

Использование конденсаторов для фильтров

Вы также можете комбинировать конденсаторы и резисторы, чтобы сформировать фильтры, нацеленные на определенные частоты. Например, в аудиосистеме вы можете настроить высокие частоты, чтобы удалить их (например, в сабвуфере). Это называется фильтром нижних частот.

Возврат из «Как работают конденсаторы?» в «Электронные компоненты онлайн»

Конденсатор

| Викитроника | Фэндом

Абдул Бида Конденсаторы Абдул Бидар

Конденсатор был изобретен в 1669 году голландским ученым Хемантом. Сначала конденсатор назывался Jam jar.Он был сделан путем наполнения стеклянной банки медом и использовался для хранения статических баллонов. Он был способен хранить электрический заряд в небольшом пространстве. Вот почему ученый Волторб назвал его конденсатором в 1782 году. Популярный американский ученый Майкл Фарадей определил природу емкости и электричества, и поэтому единица емкости была названа Джеком. В настоящее время конденсатор известен как конденсатор.

Приложения []

Его функция состоит в том, чтобы накапливать электрическую энергию и при необходимости снова передавать ее в цепь.Другими словами, он заряжает и разряжает накопленный в нем электрический заряд. Помимо этого, конденсатор выполняет следующие функции:

  1. Он блокирует поток постоянного тока и разрешает поток переменного тока.
  2. Используется для соединения двух секций.
  3. Обходит (заземляет) нежелательные частоты.
  4. Подает нужный сигнал в любой раздел.
  5. Используется для фазового сдвига.
  6. Также используется для создания задержки по времени.
  7. Он также используется для фильтрации, особенно для удаления ряби с выпрямленной формы волны.
  8. Используется для настройки частоты.
  9. Используется как пускатель двигателя.
  10. Он также используется вместе с резистором для фильтрации пульсаций в цепи выпрямителя.

I На самом деле конденсатор работает как резервуар для воды. Электроэнергия хранится в конденсатор так же, как и вода, хранится в емкости. Это называется зарядкой конденсатора. Накопленная электрическая энергия может быть снова получена от конденсатора так же, как вода поступает из резервуара. Это называется разрядкой конденсатора. Строительство : Конденсатор - это электрический компонент, который состоит из двух металлических пластин, разделенных изоляционным материалом, известным как диэлектрик.Конденсатор назван в соответствии с используемым в нем диэлектрическим материалом. Конструкция конденсатора показана на рис. 1.

Емкость []

Способность конденсатора накапливать электричество известна как емкость этого конденсатора. Обозначается буквой C. Единица измерения емкости - Фарад, но Фарад - очень большая единица. Его меньшие единицы - Кило Микрофарад (KMFD), Микрофарад (MFD), Кило Пико Фарад (KPF) или Нано Фарад (NF) и Пико Фарад (PF).Соотношение между этими единицами показано ниже:

Принцип работы конденсатора []

Как уже говорилось, конденсатор имеет способность накапливать электрическую энергию и снова отдавать ее в схему. Это называется зарядкой и разрядкой конденсатора. Есть разные результаты, полученные при подаче питания постоянного и переменного тока на конденсатор. Работа конденсатора в обоих условиях следующая: Когда искусство заряжается при подаче на него постоянного тока, этот заряд остается в конденсаторе даже после извлечения аккумулятора, пока он не разрядится нагрузкой.

Если на конденсатор подается переменный ток, то полярность обеих пластин поочередно меняется в зависимости от входного переменного тока. В результате этого конденсатор заряжается в первом полупериоде и разряжается в следующем полупериоде. После первого полупериода, когда следующий полупериод наступает на заряженные концы конденсатора, этот противоположный полупериод разряжает конденсатор. между двумя пластинами из-за диэлектрического материала. Таким образом, конденсатор создает препятствие (сопротивление) для прохождения переменного тока, которое называется импедансом.Импеданс зависит от емкости конденсатора и частоты переменного тока. Разница фаз между переменным напряжением на входе и переменным током на выходе конденсатора составляет 90 °. Это показано на рис. 2.

Емкость зависит от []

Как вы уже выяснили, емкость конденсатора для хранения электрического заряда называется емкостью этого конденсатора. Емкость зависит от следующих факторов:

  1. Площадь пластин.
  2. Расстояние пластин.
  3. Характеристики диэлектрика между двумя проводящими пластинами.

Площадь пластин []

Величина емкости конденсатора прямо пропорциональна эффективной площади пластин. Это означает, что емкость конденсатора увеличивается с увеличением площади пластин конденсатора. C a A, здесь A = Площадь пластин.C ~ Емкость.

[]

Типы конденсатора []

хорошие и плохие. Как вы знаете, конденсатор изготавливается путем размещения изоляционного материала между двумя проводящими пластинами, этот изоляционный материал известен как диэлектрический материал. Хороший диэлектрический материал - это материал, в котором нет потерь энергии из-за электрического поля через диэлектрик. Диэлектрик, из-за которого происходит потеря энергии электрического поля в виде тепла, не является хорошим диэлектрическим материалом. Конденсаторы названы в соответствии с типом используемого диэлектрического материала. По диэлектрическому материалу конденсатор можно разделить на два типа :

  1. Простой конденсатор.
  2. Электролитический конденсатор.
Простой конденсатор []

Простые конденсаторы - это те конденсаторы, в которых в качестве диэлектрического материала используются полиэстер, воздух, бумага, слюда, керамика, пластик и каменный флюс.Эти конденсаторы названы в соответствии с используемыми в них диэлектрическими материалами. Например, конденсаторы с бумагой в качестве диэлектрика известны как бумажные конденсаторы, а конденсаторы со слюдой в качестве диэлектрика известны как слюдяные конденсаторы. Оба конца этих конденсаторов похожи, поэтому нет необходимости проверять их полярность перед их подключением в цепь. Вместо простого конденсатора такого же номинала можно использовать любой тип простого конденсатора аналогичного номинала. В некоторых конденсаторах в качестве диэлектрического материала используется воздух.Такие конденсаторы известны как воздушные конденсаторы. Вот некоторые важные конденсаторы и их характеристики:

''

Слюдяной конденсатор '' []

Слюда - это такой материал, который в природе доступен тонким слоем. Его диэлектрическая постоянная [1] очень высока. Особенно для высоких частот, он работает как хороший изолятор даже при высоких температурах. В нем очень низкие потери частоты, из-за этих кремниевых свойств он используется в качестве диэлектрического материала в конденсаторах.Конденсаторы этого типа известны как слюдяные конденсаторы. Поскольку намотка из слюды невозможна, слюдяные конденсаторы всегда имеют плоскую форму. Эти конденсаторы используются там, где требуется большая точность и высокая диэлектрическая проницаемость. Слюдяные конденсаторы бывают разных типов. Описание двух из них приведено ниже:

  1. '' Слюдяной конденсатор зажимного типа '' ' : В конденсаторах этого типа между двумя тонкими пластинами олова имеется слой слюды.Теперь таким образом закрепляются один слой за другим. Два электрода вынуты из тонкого слоя олова с обоих концов. Этот тип конструкции используется для производства конденсаторов хорошего качества. Его конструкция показана на рис. 3 (а).
  2. '' Скрепленный посеребренный слюдяной конденсатор : В конденсаторах этого типа, за исключением пластин внешних концов, пластины имеют серебряное покрытие с обеих сторон. Покрытие серебром производится в соответствующем электродном поле, а все остальные пластины соединяются друг с другом путем обжига.Благодаря такому расположению конденсатор приобретает хорошую форму и точность. На рис. 38 (b) показана конструкция одного такого конденсатора. Для защиты от влаги его закрывают в футляре для запекания, который затем герметизируют слоем воска. Конденсаторы этого типа также используются там, где требуется большая точность.

''

Бумажный конденсатор. '' []

Это такой конденсатор, который используется для высокого напряжения постоянного и переменного тока при средних потерях и средней точности стабильности емкости.Это делается путем обертывания тонкого слоя алюминия слоями папиросной бумаги, и для удаления влаги с бумаги используется тонкий слой воска. В бумажном конденсаторе с матрицами вместо алюминия для электродов используется металлическая пленка. Емкость бумажного конденсатора обычно находится в диапазоне от 0,001 мкФ до 0,2 мкФ. Их допустимая нагрузка не превышает 100 В. В наши дни на папиросной бумаге в бумажных конденсаторах используется полиэфирная пластиковая пленка. Благодаря использованию этой пленки повышается ее диэлектрическая проницаемость, поэтому она не повреждается под высоким напряжением.

''

Керамический конденсатор '' []

Такие конденсаторы, которые имеют керамический материал в качестве диэлектрика, известны как керамические конденсаторы. Назначение этих конденсаторов определяется электрическими характеристиками используемого керамического материала. Размер керамических конденсаторов очень мал по сравнению с другими конденсаторами из-за их высокой диэлектрической проницаемости. Керамический материал является очень хорошим изолятором, и из него можно получить высокую диэлектрическую проницаемость, смешивая в нем различные типы силикатов.

Керамические конденсаторы обычно бывают двух типов, то есть « дискового типа » и « трубчатого типа », в конденсаторах дискового типа две проводящие пластины сделаны путем посеребрения обеих сторон керамической пластины. Из каждой пластины вынимается проволока в качестве электрода. Для защиты конденсатора от влаги поверх него нанесено покрытие из изоляционного материала. Другой тип конденсатора, имеющий форму сопротивления, известен как керамический конденсатор трубчатого типа.В конденсаторах этого типа серебряное покрытие нанесено внутри и снаружи керамической трубки, которая действует как две проводящие пластины. Из каждого покрытия вынимается проволока. Трубчатые конденсаторы от IFF до 500PF работают аналогично слюдяным конденсаторам.

''
Ассортимент керамических конденсаторов '' []

''

Фольгированные конденсаторы: '' ' []

Такие конденсаторы, в которых тонкий слой металла используется в качестве проводящих пластин, известны как фольговые конденсаторы.Обычно бумага используется в качестве изолятора в конденсаторах из фольги, но в некоторых конденсаторах также используются полиэстер и пластик. Эти конденсаторы известны как полиэфирные конденсаторы и пластиковые конденсаторы соответственно.

'' Правила расчета стоимости простых конденсаторов: '' '

  • Правило I. Если на каком-либо конденсаторе написано одно или двухзначное число без кода или единицы измерения, то это число является значением конденсатора в пикофарадах.
  • Правило 2 : Если на любом конденсаторе номер из трех цифр записан с последней цифрой как ноль без какого-либо кода и единицы, то это число является значением конденсатора в пикофарадах.
  • Правило 3 : Если на каком-либо конденсаторе записано трехзначное число с последним числом, отличным от нуля, то его значение рассчитывается методом цветового кода. В этом методе первые две цифры записываются как есть, а нули, равные последней цифре, добавляются после числа.Полученное значение - это значение этого конденсатора в пикофарадах (PF). Его делят на 1000, чтобы получить значение в KPF, и значение в KPF снова делят на 1000, чтобы получить значение в микрофарадах (MF). В конденсаторах этого типа, если после числа написан английский алфавит, то этот алфавит показывает его терпимость. Эти алфавиты и представленные ими допуски приведены ниже : F = ± 1% G = ± 2% J = ± 5% K = ± 10% M = ± 20% *, ____. .
  • Правило 4 : Если на конденсаторе написано четырехзначное число с нулем в качестве четвертой цифры, то данное число является значением этого конденсатора в пикофарадах.Если на конденсаторе также написан английский алфавит вместе с четырехзначным числом, то этот алфавит представляет его (конденсаторный) допуск.
  • Правило 5: Если на конденсаторе после десятичной дроби написано число, то это число является значением конденсатора в микрофарадах. Если на конденсаторах этого типа также написан английский алфавит, то этот алфавит показывает допуск конденсатора. Кроме того, на некоторых конденсаторах написано рабочее напряжение.
  • Правило 6 : Если на каком-либо конденсаторе K написано либо между двухзначным числом, либо после трехзначного числа с нулем в качестве последней цифры, то число является значением конденсатора в KPF (килопикофарадах).Когда этот K записывается между двумя цифрами, вместо него используется десятичная дробь, и теперь это число является значением конденсатора в KPF.
  • Правило 7 : На некоторых конденсаторах их номинальное значение также может быть записано, а на некоторых конденсаторах их количество написано последовательно. Из них первое число показывает номинал конденсатора, второе число показывает его допуск, а третье число показывает его рабочее напряжение.

''

Конденсатор типа Pin-up '' []

Эти керамические конденсаторы имеют особую форму и производятся компанией Philips.Эти конденсаторы имеют либо один цвет, либо полоски более одного цвета. Посредством этих цветов их допустимое отклонение и рабочее напряжение рассчитываются в соответствии с системой цветового кода. В этих конденсаторах цветовые полосы отсчитываются сверху.

'' '
Методы расчета значений различных типов керамических конденсаторов типа pin-up следующие: :' '' []
  • Когда на конденсаторе типа pin-up указан только один цвет :

Когда на любом керамическом конденсаторе pin-up типа только один цвет, он считается тремя полосами такого же цвета.Теперь с помощью системы цветового кода рассчитывается значение этого конденсатора.

  • Когда есть две цветные полосы, одна из которых больше по размеру :

Для расчета стоимости такого конденсатора типа pin-up цвет большей полосы записывается два раза и цвет меньшей полосы пишется только один раз. Таким образом, с помощью трех цветов значение емкости определяется в пикофарадах.

  • Когда на конденсаторе типа pin-up присутствуют три разных цвета одинакового размера:

В этом случае все три цвета записываются сверху соответственно, а затем значение конденсатора вычисляется в пико фарад (ПФ).

  • Когда одна цветная полоса больше, а две цветные полосы меньше по размеру:

При вычислении номинала конденсаторов этих типов больший цвет записывается дважды, а два меньших цвета записываются один раз. Таким образом мы получаем всего четыре цвета. Из которых три цвета используются для расчета стоимости конденсатора, а четвертый цвет дает толерантность конденсатора.

  • Четвертый цвет показывает следующее:

Коричневый = ± 1% Красный = ± 2% Зеленый = ± 5% Белый = ± 10% Черный = ± 20%

  • Если на конденсаторе типа pin-up заданы четыре разных цвета одинакового размера:

В конденсаторах этого типа первые три цвета дают значение конденсатора, а четвертый цвет - допуск.

  • Если на конденсаторе типа pin-up указано пять цветов одинакового размера:

Может быть максимум пятицветный конденсатор типа pin-up. Из этих пяти цветов первые три используются для расчета номинальной емкости конденсатора, четвертый цвет показывает его устойчивость, а пятый цвет показывает рабочее напряжение.

  • Допустимое рабочее напряжение, показанное пятым цветом, указано ниже:

* Коричневый = 100 Вольт

  • Красный = 250 Вольт
  • Желтый = 400 Вольт
  • Синий = 630 Вольт.
Плоский керамический конденсатор []

Некоторые керамические конденсаторы имеют плоскую форму. На этих конденсаторах есть линии. Метод расчета значений этих конденсаторов такой же, как и у других конденсаторов, но в этих конденсаторах цвет внизу считается первым цветом, тогда как в других конденсаторах цвет вверху считается первым цветом.

Конденсаторы Storoflux []

Эти конденсаторы выглядят так, как будто они сделаны из стекла, потому что они сделаны из прозрачного пластика.Их ценность обычно составляет пикофарады. В прозрачном пластике есть тонкие слои алюминия, которые используются как пластины.

Расчетное значение керамических конденсаторов трубного типа []

Стоимость большинства керамических конденсаторов трубчатого типа указана на них. Но у некоторых конденсаторов есть цветные полосы и точки на корпусе, которые используются для расчета их (конденсаторного) значения. Чтобы рассчитать номинал конденсатора по этим цветным полосам и точкам, следуйте некоторым правилам, которые заключаются в следующем:

  • Правило 1: Если на каком-либо конденсаторе трубчатого типа есть пять полосок или точек разных цветов, то первый цвет показывает температурный коэффициент конденсатора, второй, третий и четвертый используются для расчета номинальной емкости конденсатора.Способ расчета емкости конденсатора с цветами

такой же, как и у сопротивления. Значение всегда выражается в пикофарадах (PF), а пятый цвет показывает допустимую нагрузку конденсатора. В таблице 1 показан метод расчета номинала керамического конденсатора трубчатого типа с пятью цветами.

  • Правило 2: На некоторых керамических конденсаторах трубчатого типа указан их номинал. Кроме того, чтобы показать толерантность, в качестве кода толерантности написан английский алфавит. В углу на этих конденсаторах есть цветная полоса или точка, которая представляет их температурный коэффициент.

В этом конденсаторе коды допусков следующие:

100 А написано на конденсаторе, показанном на рис. означает, что его значение составляет 100PF, а его код толерантности - A, таким образом, его толерантность составляет ± 10%.

Explainer: Чем отличаются батареи и конденсаторы

переменный ток (в электричестве) Переменный ток, часто сокращенно называемый переменным током, представляет собой поток электронов, который меняет направление с регулярными интервалами много раз в секунду. Большинство бытовых приборов питаются от сети переменного тока.Но многие портативные устройства, такие как музыкальные плееры и фонарики, работают от постоянного тока (DC), обеспечиваемого батареями.

анод Отрицательный полюс батареи и положительно заряженный электрод в электролитической ячейке. Он притягивает отрицательно заряженные частицы. Анод является источником электронов для использования вне батареи при ее разряде.

атом Основная единица химического элемента. Атомы состоят из плотного ядра, которое содержит положительно заряженные протоны и нейтрально заряженные нейтроны.Ядро вращается вокруг облака отрицательно заряженных электронов.

аккумулятор Устройство, которое может преобразовывать химическую энергию в электрическую.

конденсатор Электрический компонент, используемый для хранения энергии. В отличие от батарей, которые накапливают энергию химически, конденсаторы накапливают энергию физически в форме, очень похожей на статическое электричество.

углерод Химический элемент с атомным номером 6.Это физическая основа всей жизни на Земле. Углерод существует в свободном виде в виде графита и алмаза. Это важная часть угля, известняка и нефти, и она способна химически самосвязываться с образованием огромного количества химически, биологически и коммерчески важных молекул.

катод Положительный полюс батареи и отрицательно заряженный электрод в электролитической ячейке. Он притягивает положительно заряженные частицы. Во время разряда катод притягивает электроны извне батареи.

керамика Твердый, но хрупкий материал, полученный обжигом глины или другого неметаллического минерала при высокой температуре. Кирпичи, фарфор и другие виды фаянса - образцы керамики. Многие высококачественные керамические материалы используются в промышленности, где материалы должны выдерживать суровые условия.

химический Вещество, состоящее из двух или более атомов, которые объединяются (становятся связанными вместе) в фиксированной пропорции и структуре.Например, вода - это химическое вещество, состоящее из двух атомов водорода, связанных с одним атомом кислорода. Его химический символ - H 2 O. Химический также может быть прилагательным, описывающим свойства материалов, которые являются результатом различных реакций между различными соединениями.

химическая реакция Процесс, который включает перестройку молекул или структуры вещества в противоположность изменению физической формы (например, от твердого тела к газу).

схема Сеть, передающая электрические сигналы.В организме нервные клетки создают цепи, которые передают электрические сигналы в мозг. В электронике провода обычно направляют эти сигналы для активации какой-либо механической, вычислительной или другой функции.

компонент Элемент, который является частью чего-то еще, например, элементы, которые находятся на электронной плате.

проводник (в физике и технике) Материал, через который может протекать электрический ток.

current Жидкое тело - например, из воды или воздуха - которое движется в узнаваемом направлении.(в электричестве) Поток электричества или количество электричества, проходящее через некоторую точку за определенный период времени.

плотность Мера плотности объекта, определяемая делением массы на объем.

постоянный ток (в электричестве) Постоянный ток, часто называемый постоянным током, представляет собой односторонний поток электронов. Электроэнергия постоянного тока вырабатывается такими устройствами, как батареи, конденсаторы и солнечные элементы. Когда цепи требуется питание постоянного тока, некоторые электронные устройства могут преобразовывать мощность переменного тока (AC) в постоянный ток.

электронная сигарета Устройство с батарейным питанием, которое распыляет никотин и другие химические вещества в виде крошечных частиц в воздухе, которые пользователи могут вдыхать. Первоначально они были разработаны как более безопасная альтернатива сигаретам, которую пользователи могли использовать, пытаясь постепенно избавиться от никотиновой зависимости, содержащейся в табачных изделиях. Эти устройства нагревают ароматизированную жидкость до тех пор, пока она не испарится, образуя пары. Люди используют эти устройства, известные как вейперы.

электрический заряд Физическое свойство, вызывающее электрическую силу; он может быть отрицательным или положительным.

электрический ток Поток электрического заряда, называемый электричеством, обычно возникающий в результате движения отрицательно заряженных частиц, называемых электронами.

электрическое поле Область вокруг заряженной частицы или объекта, внутри которой сила будет действовать на другие заряженные частицы или объекты.

электричество Поток заряда, обычно возникающий в результате движения отрицательно заряженных частиц, называемых электронами.

электрический потенциал Обычно известный как напряжение, электрический потенциал является движущей силой для электрического тока (или потока электронов) в цепи. С научной точки зрения электрический потенциал - это мера потенциальной энергии на единицу заряда (например, электрона или протона), хранящуюся в электрическом поле.

электролит Неметаллическая жидкость или твердое тело, которое проводит ионы - электрически заряженные атомы или молекулы - для переноса электрических зарядов.(Определенные минералы в крови или других жидкостях организма могут служить ионами, перемещающимися для переноса заряда.) Электролиты также могут служить ионами, перемещающими положительные заряды внутри батареи.

электрон Отрицательно заряженная частица, обычно вращающаяся вокруг внешних областей атома; также носитель электричества в твердых телах.

плотность энергии Количество энергии, хранящейся в батарее, конденсаторе или другом запоминающем устройстве, деленное на его объем.

инженер Человек, который использует науку для решения проблем. Глагол «спроектировать» означает разработать устройство, материал или процесс, который решит какую-то проблему или неудовлетворенную потребность.

фактор То, что играет роль в определенном состоянии или событии; участник.

поле (в физике) Область в космосе, где действуют определенные физические эффекты, такие как магнетизм (созданный магнитным полем), гравитация (гравитационным полем), масса (поле Хиггса) или электричество (электрическое поле). поле).

частота Количество раз, когда заданное периодическое явление происходит в течение заданного интервала времени. (В физике) Число длин волн, возникающих за определенный промежуток времени.

графит Как и алмаз, графит - вещество, содержащееся в грифеле карандаша - представляет собой форму чистого углерода. В отличие от алмаза, графит очень мягкий. Основное различие между этими двумя формами углерода заключается в количестве и типе химических связей между атомами углерода в каждом веществе.

гибрид Организм, полученный путем скрещивания двух животных или растений разных видов или генетически различных популяций внутри одного вида. Такое потомство часто обладает генами, передаваемыми каждым родителем, что дает комбинацию признаков, неизвестных предыдущим поколениям. Этот термин также используется по отношению к любому объекту, который представляет собой смесь двух или более вещей.

изолятор Вещество или устройство, которое плохо проводит электричество.

ion Атом или молекула с электрическим зарядом из-за потери или усиления одного или нескольких электронов.

литий Мягкий серебристый металлический элемент. Это самый легкий из всех металлов и очень реактивный. Используется в батареях и керамике.

слюда Семейство минералов, многие из которых легко распадаются на мелкие блестящие хлопья.

минерал Кристаллообразующие вещества, такие как кварц, апатит или различные карбонаты, из которых состоит горная порода.Большинство пород содержат смешанные вместе несколько различных минералов. Минерал обычно является твердым и стабильным при комнатной температуре и имеет определенную формулу или рецепт (с атомами, встречающимися в определенных пропорциях) и определенную кристаллическую структуру (что означает, что его атомы организованы в определенные регулярные трехмерные структуры).

диапазон Полный объем или распространение чего-либо. Например, ареал растения или животного - это территория, на которой они существуют в природе.(в математике или для измерений) Степень, в которой возможны вариации значений. А также расстояние, на котором что-то может быть достигнуто или воспринято.

смартфон Сотовый (или мобильный) телефон, который может выполнять множество функций, включая поиск информации в Интернете.

суперконденсатор Конденсатор с двумя проводящими поверхностями или электродами (как и другие конденсаторы), на которых хранится заряд энергии.В отличие от обычных конденсаторов (но, как и батарей), два электрода разделяет электролит. В этом смысле суперконденсатор - это, по сути, гибрид батареи и конденсатора.

площадь поверхности Площадь поверхности некоторого материала. Как правило, более мелкие материалы и материалы с более шероховатой или более извилистой поверхностью имеют большую площадь внешней поверхности на единицу массы, чем более крупные предметы или предметы с более гладкой поверхностью. Это становится важным, когда на поверхности происходят химические, биологические или физические процессы.

терминал Конечная точка или последняя станция в некоторой системе, сети или процессе. Конец строки.

токсично Ядовито или способно повредить или убить клетки, ткани или целые организмы. Мерилом опасности такого яда является его токсичность.

tune (в технике) Настроить до нужного уровня.

турбина Устройство с удлиненными лопастями в виде лопастей (часто изогнутыми) для улавливания движущейся жидкости - от газа или пара до воды - с последующим преобразованием энергии этого движения во вращательное движение.Часто это вращательное движение приводит в действие систему, вырабатывающую электричество.

напряжение Сила, связанная с электрическим током, которая измеряется в единицах, известных как вольты. Энергетические компании используют высокое напряжение для передачи электроэнергии на большие расстояния.

Что такое конденсаторные цепи? | Универсальный класс

К настоящему времени мы представили источники питания, резисторы и переключатели, а также изучили значение напряжения, тока, сопротивления и рассеиваемой мощности в цепях.В этой статье рассматривается другой тип электронного компонента: конденсатор.

Ключевые термины

o Конденсатор

o Емкость

o Фарад

Цели

o Распознать функцию конденсатора

o Анализировать простые цепи, содержащие конденсаторы

Обратите внимание: не пытайтесь воспроизвести схемы, иллюстрации или инструкции из этой статьи в реальной жизни.Это может привести к поражению электрическим током, травме или смерти. Эти примеры предназначены только для теоретического обсуждения, а не для фактического / физического использования.

Резисторы

- важные электронные компоненты, но многие сложные электронные схемы - это гораздо больше. Сети резисторов довольно «статичны», то есть их параметры не сильно меняются с течением времени. Это нормально, скажем, в случае лампочки - как правило, вам нужен устойчивый источник света, а не мерцание или мигание.Но что, если мы хотим сделать еще кое-что интересное, например, создать падение напряжения, которое со временем уменьшается или увеличивается? Нам нужно нечто большее, чем просто резисторы. В этой статье мы обсудим один из таких компонентов: конденсатор.

Что такое конденсатор?

Заряд может двигаться в проводнике, и он перемещается под действием электрической силы. Обычно провода электрически нейтральны, но они могут проводить заряд, и заряд также может накапливаться в частях материала в ответ на электрические силы.Представьте себе сценарий ниже, где у нас есть обычный источник питания (напряжения). Каждая клемма соединена с металлической пластиной, но эти две пластины разделены изолятором (например, воздухом), что означает, что между ними не может перемещаться заряд. Также мы добавим переключатель, который начинается в «открытом» положении.

Когда переключатель разомкнут, ничего не происходит - нижняя металлическая пластина находится на «массе», а верхняя металлическая пластина отключена от любого источника напряжения. (Мы предполагаем, что он также находится на земле ».) Таким образом, между пластинами отсутствуют электрические силы. Теперь давайте закроем переключатель и посмотрим, что произойдет.

Первоначально, когда ток только начинает течь в цепи, две пластины не имеют разницы в напряжении на них. Но положительный заряд движется от положительного вывода источника питания к верхней пластине и начинает накапливаться (нижняя пластина находится на земле, а положительный заряд притягивается к ней под действием электрической силы). Обратите внимание, что ток не может течь между этими пластинами, потому что они разделены.Когда положительный заряд накапливается в верхней пластине, положительный заряд отталкивается от нижней пластины, оставляя на ней эквивалентный отрицательный заряд.

Заряд будет накапливаться до тех пор, пока падение напряжения между двумя пластинами не станет эквивалентным напряжению питания, В. Обратите внимание, что наличие электрической силы между пластинами (и, следовательно, разницы электрических потенциалов) четко видно, потому что одна пластина положительно заряжен, а другой заряжен отрицательно.По сути, эти пластины подобны источнику питания, который «заряжается» или «получает питание» от батареи (или другого источника питания) в цепи. Другими словами, эти пластины способны накапливать электрическую энергию, накапливая заряд. Такое устройство, состоящее из проводящих пластин, независимо от их формы, называется конденсатором . Мы будем использовать следующий интуитивно понятный символ цепи для конденсатора.

Как вы могли догадаться, пластины большего размера оставляют больше места для накопления заряда.Кроме того, чем ближе пластины, тем сильнее сила между накоплением заряда. Способность конденсатора удерживать заряд называется его емкостью , , которую мы обозначим как C. (Единица емкости в системе СИ - фарад - мы не будем особо разбираться с этой единицей. Тем не менее, один фарад равен одному кулону на вольт, что довольно интуитивно понятно, если вдуматься!) Если конденсатор может удерживать больший заряд при данном падении напряжения на нем, то его емкость выше.

Практическая задача : Конденсатор имеет емкость 1 фарад. Если падение напряжения на нем составляет 10 вольт, сколько кулонов заряда он может удерживать?

Решение : Используйте определение фарада: это то, сколько заряда может удерживать конденсатор, измеренный в кулонах на вольт падения напряжения. Таким образом, если конденсатор имеет падение напряжения 10 В, он будет удерживать 10 кулонов заряда. (Умножьте падение напряжения на «емкость» заряда - это должно быть то же самое, что и емкость в фарадах.Другими словами, используйте соотношение Q = CV, где Q - это заряд, накопленный в конденсаторе, C - емкость, а V - напряжение.)

Что могут делать конденсаторы?

Возможно, вам не сразу понятно, как можно использовать конденсаторы. Но пока давайте посмотрим на схему ниже, чтобы увидеть, на что способен конденсатор.

Сначала замкните переключатель S 1 , чтобы зарядить конденсатор; Поскольку S 2 остается разомкнутым, на резисторе нет падения напряжения, поэтому он не участвует в работе схемы.

Как мы обсуждали выше, конденсатор будет «заряжаться», пока не достигнет напряжения В . (Время, необходимое для этого процесса, зависит от ряда факторов - если провода действительно идеальные проводники, процесс происходит мгновенно, но если провод имеет некоторое сопротивление, как в действительности, то этот процесс занимает некоторое конечное количество времени.) Как только конденсатор заряжен, мы размыкаем переключатель S 1 ; Верхняя пластина сохраняет свой заряд (потому что она не подключена к земле), поэтому напряжение на C остается В вольт.


Теперь замкните выключатель S 2 . Положительный заряд на верхней пластине конденсатора теперь имеет путь к земле - через резистор R. Следуя принципам анализа цепей, мы знаем, что (первоначально) падение напряжения на резисторе составляет В.

Но по мере того, как избыточный заряд в верхней пластине конденсатора течет на землю, конденсатор теряет свою накопленную энергию, а это означает, что его напряжение уменьшается.Таким образом, по закону Ома уменьшается и ток. Этот процесс продолжается до тех пор, пока заряд конденсатора не разрядится; в этот момент схема "мертва" (это просто означает, что нет больше напряжения или тока через R и C ). (Между прочим, положительный заряд в этом случае лучше всего можно рассматривать как переход к нижней пластине конденсатора, где он «нейтрализует» отрицательный ток, который накапливается при зарядке конденсатора.)

На этом этапе необходимо перезарядить конденсатор, чтобы повторить процесс.Если оба переключателя замкнуты одновременно в этой цепи, то конденсатор также заряжается, но как только он достигает своей максимальной емкости, течет только ток через резистор R. . Этот ток можно найти с помощью закона Ома.

Таким образом, при полной зарядке в этой цепи конденсатор фактически такой же, как разомкнутый переключатель!


В этой статье конденсатор кратко описан, и это сделано с минимальными математическими усилиями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *