ЭЛЕКТРОННЫЙ ВЫКЛЮЧАТЕЛЬ
Схема электронного выключателя основана на микросхеме CD4013, и имеет два устойчивых состояния, ON и OFF. Когда он включен, то и остается включенным, пока вы не нажмёте кнопку выключателя еще раз. Короткое нажатие кнопки SW1, переключает его в другое состояние. Устройство будет полезно для исключения громоздких и ненадёжных клавишных переключателей либо для дистанционного управления разными электроприборами.
Электронное реле — схема принципиальная
Контакты реле могут выдерживать высокое сетевое напряжения переменного тока, а также достаточный постоянный ток, что делает проект подходящим для таких приборов, как вентилятор, свет, телевизор, насос, электродвигатель постоянного тока, да и вообще любой электронный проект требует подобный электронный переключатель. Устройство работает от сети переменного тока напряжением до 250 В и коммутирует нагрузку до 5 A.
Параметры и элементы схемы
- Питание: 12 вольт
- Ток: 60 мA
- Нагрузка: до 250 В 5 А
- D1: индикатор подачи питания
- D3: индикатор включения реле
- CN1: вход питания
- SW1: выключатель
Транзистор Q1 можно заменить на любой похожей структуры с предельным током минимум 100 мА, например КТ815. Реле можно взять автомобильное, или любое другое на 12 В. Если электронный выключатель требуется собрать в виде отдельной малогабаритной коробочки, имеет смысл питание схемы осуществить от маленького импульсного блока питания, типа зарядки мобильного. Поднять напряжение с 5 до 12 В можно заменой стабилитрона на плате. При необходимости вместо реле ставим мощный полевой транзистор, как это реализовано в таком переключателе.
Казалось бы, чего проще, включил питание и прибор, содержащий МК, заработал. Однако на практике бывают случаи, когда обычный механический тумблер для этих целей не годится. Показательные примеры:
- микропереключатель хорошо вписывается в конструкцию, но он рассчитан на низкий ток коммутации, а устройство потребляет на порядок больше;
- необходимо осуществить дистанционное включение/выключение питания сигналом логического уровня;
- тумблер питания сделан в виде сенсорной (квазисенсорной) кнопки;
- требуется осуществить «триггерное» включение/выключение питания повторным нажатием одной и той же кнопки.
Для таких целей нужны специальные схемные решения, основанные на применении электронных транзисторных ключей (Рис. 6.23, а…м).
Рис. 6.23. Схемы электронного включения питания (начало):
а) SI — это выключатель «с секретом», применяемый для ограничения несанкционированного доступа к компьютеру. Маломощный тумблер открывает/закрывает полевой транзистор VT1, который подаёт питание на устройство, содержащее МК. При входном напряжении выше +5.25 В требуется поставить перед М К дополнительный стабилизатор;
б) включение/выключение питания +4.9 В цифровым сигналом ВКЛ-ВЫКЛ через логический элемент DD1 и коммутирующий транзистор VT1
в) маломощная «квазисенсорная» кнопка SB1 триггерно включает/выключает питание +3 В через микросхему DDL Конденсатор C1 снижает «дребезг» контактов. Светодиод HL1 индицирует протекание тока через ключевой транзистор VTL Достоинство схемы — очень низкое собственное потребление тока в выключенном состоянии;
Рис. 6.23. Схемы электронного включения питания (продолжение):
г) подача напряжения +4.8 В маломощной кнопкой SBI (без самовозврата). Источник входного питания +5 В должен иметь защиту по току, чтобы не вышел из строя транзистор VTI при коротком замыкании в нагрузке;
д) включение напряжения +4.6 В по внешнему сигналу £/вх. Предусмотрена гальваническая развязка на оптопаре VU1. Сопротивление резистора RI зависит от амплитуды £/вх;
е) кнопки SBI, SB2 должны быть с самовозвратом, их нажимают по очереди. Начальный ток, проходящий через контакты кнопки SB2, равен полному току нагрузки в цепи +5 В;
ж) схема Л. Койла. Транзистор VTI автоматически открывается в момент соединения вилки ХР1 с розеткой XS1 (за счёт последовательно включённых резисторов R1, R3). Одновременно в основное устройство подаётся звуковой сигнал от аудиоусилителя через элементы С2, R4. Резистор RI допускается не устанавливать при низком активном сопротивлении канала «Audio»;
з) аналогично Рис. 6.23, в, но с ключом на полевом транзисторе VT1. Это позволяет снизить собственное потребление тока как в выключенном, так и во включённом состоянии;
Рис. 6.23. Схемы электронного включения питания (окончание):
и) схема активизации МК на строго фиксированный промежуток времени. При замыкании контактов переключателя S1 конденсатор С5 начинает заряжаться через резистор R2, транзистор VTI открывается, МК включается. Как только напряжение на затворе транзистора VT1 уменьшится до порога отсечки, МК выключается. Для повторного включения надо разомкнуть контакты 57, выдержать небольшую паузу (зависит от R, С5) и затем снова их замкнуть;
к) гальванически изолированное включение/выключение питания +4.9 В при помощи сигналов с СОМ-порта компьютера. Резистор R3 поддерживает закрытое состояние транзистора VT1 при «выключенной» оптопаре VUI;
л) удалённое включение/выключение интегрального стабилизатора напряжения DA 1 (фирма Maxim Integrated Products) через СОМ-порт компьютера. Питание +9 В может быть снижено вплоть до +5.5 В, но при этом надо увеличить сопротивление резистора R2, чтобы напряжение на выводе 1 микросхемы DA I стало больше, чем на выводе 4;
м) стабилизатор напряжения DA1 (фирма Micrel) имеет вход включения питания EN, который управляется ВЫСОКИМ логическим уровнем. Резистор RI нужен, чтобы вывод 1 микросхемы DAI «не висел в воздухе», например, при Z-состоянии КМОП-микросхемы или при расстыковке разъёма.
Источник: Рюмик С.М. 1000 и одна микроконтроллерная схема.
С батарейным питанием все замечательно, кроме того, что оно кончается, а энергию надо тщательно экономить. Хорошо когда устройство состоит из одного микроконтроллера — отправил его в спячку и все. Собственное потребление в спящем режиме у современных МК ничтожное, сравнимое с саморазрядом батареи, так что о заряде можно не беспокоиться. Но вот засада, не одним контроллером живо устройство. Часто могут использоваться разные сторонние периферийные модули которые тоже любят кушать, а еще не желают спать. Прям как дети малые. Приходится всем прописывать успокоительное. О нем и поговорим.
▌Механическая кнопка
Что может быть проще и надежней сухого контакта, разомкнул и спи спокойно, дорогой друг. Вряд ли батарейку раскачает до того, чтобы пробить миллиметровый воздушный зазор. Урания в них для этого не докладывают. Какой нибудь PSW переключатель то что доктор прописал. Нажал-отжал.
Вот только беда, ток он маленький держит. По паспорту 100мА, а если запараллелить группы, то до 500-800мА без особой потери работоспособности, если конечно не клацать каждые пять секунд на реактивную нагрузку (катушки-кондеры). Но девайс может кушать и поболее и что тогда? Приматывать синей изолентой к своему хипстерскому поделию здоровенный тумблер? Нормальный метод, мой дед всю жизнь так делал и прожил до преклонных лет.
▌Кнопка плюс
Но есть способ лучше. Рубильник можно оставить слабеньким, но усилить его полевым транзистором. Например вот так.
Тут переключатель просто берет и поджимает затвор транзистора к земле. И он открывается. А пропускаемый ток у современных транзисторов очень высокий. Так, например, IRLML5203 имея корпус sot23 легко тащит через себя 3А и не потеет. А что-нибудь в DPACK корпусе может и десяток-два ампер рвануть и не вскипеть. Резистор на 100кОм подтягивает затвор к питанию, обеспечивая строго определенный уровень потенциала на нем, что позволяет держать транзистор закрытым и не давать ему открываться от всяких там наводок.
▌Плюс мозги
Можно развить тему управляемого самовыключения, таким вот образом. Т.е. устройство включается кнопкой, которая коротит закрытый транзистор, пуская ток в контроллер, он перехватывает управление и, прижав ногой затвор к земле, шунтирует кнопку. А выключится уже тогда, когда сам захочет. Подтяжка затвора тоже лишней не будет. Но тут надо исходить из схемотехники вывода контроллера, чтобы через нее не было утечки в землю через ногу контроллера. Обычно там стоит такой же полевик и подтяжка до питания через защитные диоды, так что утечки не будет, но мало ли бывает…
Или чуть более сложный вариант. Тут нажатие кнопки пускает ток через диод на питание, контроллер заводится и сам себя включает. После чего диод, подпертый сверху, уже не играет никакой роли, а резистор R2 эту линию прижимает к земле. Давая там 0 на порту если кнопка не нажата. Нажатие кнопки дает 1. Т.е. мы можем эту кнопку после включения использовать как нам угодно. Хоть для выключения, хоть как. Правда при выключении девайс обесточится только на отпускании кнопки. А если будет дребезг, то он может и снова включиться. Контроллер штука быстрая. Поэтому я бы делал алгоритм таким — ждем отпускания, выбираем дребезг и после этого выключаемся. Всего один диод на любой кнопке и нам не нужен спящий режим 🙂 Кстати, в контроллер обычно уже встроен этот диод в каждом порту, но он очень слабенький и его можно ненароком убить если вся ваша нагрузка запитается через него. Поэтому и стоит внешний диод. Резистор R2 тоже можно убрать если нога контроллера умеет делать Pull-down режим.
▌Отключая ненужное
Можно сделать и по другому. Оставить контроллер на «горячей» стороне, погружая его в спячку, а обесточивать только жрущую периферию.
Выделив для нее отдельную шину питания. Но тут надо учесть, что есть такая вещь как паразитное питание. Т.е. если вы отключите питание, например, у передатчика какого, то по шине SPI или чем он там может управляться пойдет питание, поднимется через защитные диоды и периферия оживет. Причем питания может не хватить для его корректной работы из-за потерь на защитных диодах и вы получите кучу глюков. Или же получите превышение тока через порты, как результат выгоревшие порты на контроллере или периферии. Так что сначала выводы данных в Hi-Z или в Low, а потом обесточивайте.
▌Выкидываем лишнее
Что-то мало потребляющее можно запитать прям с порта. Сколько дает одна линия? Десяток миллиампер? А две? Уже двадцать. А три? Параллелим ноги и вперед. Главное дергать их синхронно, лучше за один такт.
Правда тут надо учитывать то, что если нога может отдать 10мА ,то 100 ног не отдадут ампер — домен питания не выдержит. Тут надо справляться в даташите на контроллер и искать сколько он может отдать тока через все выводы суммарно. И от этого плясать. Но до 30мА с порта накормить на раз два.
Главное не забывайте про конденсаторы, точнее про их заряд. В момент заряда кондера он ведет себя как КЗ и если в вашей периферии есть хотя бы пара микрофарад емкостей висящих на питании, то от порта ее питать уже не следует, можно порты пожечь. Не самый красивый метод, но иногда ничего другого не остается.
▌Одна кнопка на все. Без мозгов
Ну и, напоследок, разберу одно красивое и простое решение. Его несколько лет назад набросил мне в комменты uSchema это результат коллективного творчества народа на его форуме.
Одна кнопка и включает и выключает питание.
Как работает:
При включении, конденсатор С1 разряжен. Транзистор Т1 закрыт, Т2 тоже закрыт, более того, резистор R1 дополнительно подтягивает затвор Т1 к питанию, чтобы случайно он не открылся.
Конденсатор С1 разряжен. А значит мы в данный момент времени можем считать его как КЗ. И если мы нажмем кнопку, то пока он заряжается через резистор R1 у нас затвор окажется брошен на землю.
Это будет одно мгновение, но этого хватит, чтобы транзистор Т1 распахнулся и на выходе появилось напряжение. Которое тут же попадет на затвор транзистора Т2, он тоже откроется и уже конкретно так придавит затвор Т1 к земле, фиксируясь в это положение. Через нажатую кнопку у нас С1 зарядится только до напряжения которое образует делитель R1 и R2, но его недостаточно для закрытия Т1.
Отпускаем кнопку. Делитель R1 R2 оказывается отрезан и теперь ничто не мешает конденсатору С1 дозарядиться через R3 до полного напряжения питания. Падение на Т1 ничтожно. Так что там будет входное напряжение.
Схема работает, питание подается. Конденсатор заряжен. Заряженный конденсатор это фактически идеальный источник напряжения с очень малым внутренним сопротивлением.
Жмем кнопку еще раз. Теперь уже заряженный на полную конденсатор С1 вбрасывает все свое напряжение (а оно равно напряжению питания) на затвор Т1. Открытый транзистор Т2 тут вообще не отсвечивает, ведь он отделен от этой точки резистором R2 аж на 10кОм. А почти нулевое внутреннее сопротивление конденсатора на пару с его полным зарядом легко перебивает низкий потенциал на затворе Т1. Там кратковременно получается напряжение питания. Транзистор Т1 закрывается.
Тут же теряет питание и затвор транзистора Т2, он тоже закрывается, отрезая возможность затвору Т1 дотянуться до живительного нуля. С1 тем временем даже не разряжается. Транзистор Т2 закрылся, а R1 действует на заряд конденсатора С1, набивая его до питания. Что только закрывает Т1.
Отпускаем кнопку. Конденсатор оказывается отрезан от R1. Но транзисторы все закрыты и заряд с С1 через R3 усосется в нагрузку. С1 разрядится. Схема готова к повторному включению.
Вот такая простая, но прикольная схема. Вот тут еще полно реализаций похожих схем. На сходном принципе действия.
Проходные выключатели обычно используют в длинных коридорах или на больших расстояниях, когда нужно включать или выключать в одном месте и включать или выключать в другом освещение или электроприборы. При этом приходится тянуть 3-х проводные и более кабели.
Ниже схема стандартного проходного выключателя:
Предлагаемый электронный выключатель свободен от этих недостатков, он устанавливается в распаечную коробку и от него параллельно сигнальными проводами подключаются кнопки (выключатели) которыми можно независимо включать и выключать освещение или другие приборы.
В качестве выключателей используются кнопки от звонка или любые другие кнопки без фиксации (нажали отпустили – включили свет, ещё раз нажали отпустили – выключили свет), есть также в продаже выключатели без фиксации.
Понадобится
Для изготовления необходимо:
- Клемник в плату с шагом 5 мм. 3 шт. (можно не ставить, а просто припаять провода)
- Резистор 1 К 1206 – 2 шт.
- Резистор 100 К 1206 – 6 шт.
- Резистор 470 К 1206 – 1 шт.
- Резистор 10 К 1206 – 1 шт.
- Конденсатор 0,01 мкФ 1206 – 1 шт.
- Конденсатор 0,1 мкФ 1206 – 2 шт.
- Конденсатор 10 мкФ 1206 – 1 шт.
- Диод 4007 (любой на 600-800 В подходящего размера) 1 шт.
- Стабилитрон 12 В BZV55-C12 (можно 2 шт. на 5.6 В) 1 шт.
- Диодный мост DF10S (любой подходящего размера на 1 А 600-1000 В ) 1 шт.
- Транзистор IRF840 – 1 шт.
- Микросхема ICM7555 (аналог ALD555, LMC555, TS555, TLC555) – 1 шт.
Все компоненты SMD т.к печатная плата сделана для них.
Схема
Вот собственно схема устройства:
Описание
на микросхеме создан триггер, R1,R2 можно поставить на 470 Ом-1,5 К они нужны для улучшения помехозащищенности и отчасти безопасности (конструкция имеет гальваническую связь с сетью).
Цепь R6, С3 нужна для того чтоб триггер при включении питания всегда находился в выключенном состоянии.
Конденсатор С4 фильтр питания, стабилитрон V2 ограничивает питание 12V /на плате есть место для установки 2-х стабилитронов по 5.6V последовательно и при использовании одного на 12 V в место второго нужно поставить перемычку он на плате обозначен V2*.
Резистор R7 можно установить номиналом 470 Ом -20 К он нужен для стабильного открытия транзистора и подавления его самовозбуждения в момент открытия/закрытия.
R8-R10 гасят напряжение сети (почему их 3 последовательно? Потому что 1 резистор в корпусе 1206 рассчитан на напряжение не более 200V и для безопасности и надежности их установлено 3 шт. )
На кнопки или выключатели без фиксации приходит напряжение примерно 12 В и можно использовать любые самые слаботочные но схема имеет связь с сетью соблюдайте осторожность при проверке!
Сборка платы:
Выпиливаем из одностороннего фольгированного стеклотекстолита плату размером 20х60 мм, зачищаем мелкой шкуркой, обезжириваем. Печатаем плату на лазерном принтере без экономии чернил на глянцевой бумаге из журнала.
Файлы здесь печатной платы скачать можно тут:
fajly.zip [113,48 Kb] (cкачиваний: 209)
Методом ЛУТ наносим рисунок и вытравливаем в хлорном железе. Смываем тонер ацетоном и зачищаем мелкой шкуркой. Облуживаем дорожки и смываем остатки флюса. Припаиваем все компоненты со стороны дорожек.
Смываем флюс! это очень важно! Микросхема довольно высокоомная и если флюс активный может не заработать!
Должно получится примерно так:
Будьте внимательны – конструкция имеет связь с сетью 220 В! Соблюдайте меры предосторожности!
Проверяем монтаж!
Подключаем лампочку, кнопку, шнур питания. Включаем в сеть 220 В. Будьте внимательны – конструкция имеет связь с сетью 220 В! Соблюдайте меры предосторожности!
Проверяем работоспособность. Если все работает нормально – берем термоусадочную трубку подходящего диаметра и упаковываем плату туда для безопасности.
Характеристики:
Максимальная нагрузка -150 Вт (ограничена диодным мостом и транзистором при их замене на более мощные нагрузку можно увеличить).
Напряжение питания -180-250 В.
Потребляемая мощность в выключенном состоянии -0,1 Вт.
Смотрите видео
На видео ниже представлена работа устройства.
Плату можно вообще не делать если взять макетную плату и распаять на ней обычные DIP элементы с выводами соединив их проволочкой.
Только будет она немного больше. Есть вопросы – пишите отвечу.
Рассмотрено 6 принципиальных схем самодельных электронных выключателей и реле времени, выполненных на основе микросхем К561ТМ2 и CD4060, описана их работа и возможности по применению. В настоящее время в радиоэлектронной аппаратуре, в основном, электронные выключатели, либо и электронный и механический.
Электронный выключатель управляется обычно одной кнопкой, – одно нажатие, и аппарат включен, при следующем нажатии -выключен. Реже бывают с двумя кнопками, – одна для включения, вторая для выключения.
Электронный выключатель в радиоэлектронной аппаратуре в подавляющем большинстве случаев входит в состав контроллера управления, управляющего и другими функциями аппарата.
Но, если нужно оборудовать электронным выключателем какое-то устройство, самодельное или у которого не предусмотрен электронный выключатель, это можно по одной из приводимых здесь схем, на основе микросхемы КМОП-логики и мощного полевого ключевого транзистора.
Выключатель управляемый одной кнопкой
Первая схема простого выключателя, управляемого одной кнопкой приведена на рисунке 1. Мощный полевой транзистор VТ1 выполняет функции электронного ключа, а управляет им D-триггер микросхемы К561ТМ2.
Данная схема, как и все последующие, потребляет минимальный ток, измеряемый единицами микроампер, и поэтому, практически не оказывает влияния на расход источника питания.
Рис. 1. Схема простого электронного выключателя, управляемого одной кнопкой.
Для того чтобы в момент подключения источника питания нагрузка не включилась сама здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние.
То есть, на его прямом выходе – единица. При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, – питание на нагрузку не поступает.
При этом, на инверсном выходе триггера будет напряжение логического нуля. Оно через резистор R3, с небольшой задержкой, поступает на вход «D» триггера.
Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.
Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку поступает питание.
Теперь на инверсном выходе триггера -единица. Эта единица, с небольшой задержкой, через резистор R3 поступает на вход «D» триггера.
Теперь, при следующем нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в единицу. Единица на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ1 падает до величины, недостаточной для открывания полевого транзистора VТ1. Нагрузка выключается.
Электронный переключатель двух нагрузок
Но не всегда требуется именно выключатель, бывает что нужен переключатель. На рисунке 2 показана схема электронного переключателя двух нагрузок. Главное отличие от схемы на рис.1 в том, что здесь два мощных полевых транзистора.
Для того чтобы в момент подключения источника питания схема устанавливалась в одно известное положение, то есть, в данном случае, нагрузка 1 выключена, нагрузка 2 включена, здесь имеется цепь C1-R2, которая при подаче питания триггер устанавливает в единичное состояние. То есть, на его прямом выходе – единица, на инверсном – ноль.
При этом, напряжение между истоком и затвором транзистора VТ1 будет слишком мало для его открывания, и транзистор остается закрытым, питание на нагрузку 1 не поступает. А напряжение между истоком и затвором транзистора VТ2 будет достаточным для его открывания, и транзистор откроется, поступит питание на нагрузку 2.
Рис. 2. Схема простого самодельного электронного переключателя двух нагрузок.
При этом, нуль с инверсного выхода триггера через резистор R3, с небольшой задержкой, поступает на вход «D» триггера. Теперь, при нажатии кнопки S1 на вход «С» триггера поступает от кнопки импульс и триггер устанавливается в то состояние, которое имеет место на его входе «D», то есть, в данный момент, в логический нуль.
Логический нуль на затворе VТ1 приводит к тому, что напряжение между истоком и затвором VТ 1 возрастает до величины, достаточной для открывания полевого транзистора VТ1. На нагрузку 1 поступает питание.
Но транзистор VТ2 при этом закрывается, и нагрузка 2 выключается. Таким образом, при каждом нажатии кнопки S1 происходит переключение нагрузок.
Несколько слов, о назначении цепи C2-R3 в схемах на рис.1 и рис.2. Дело в том, что кнопка -это механические контакты, которые соединяются механически, и здесь практически не возможно обойтись без дребезга контактов. И чем больше износ кнопк
РадиоКот :: Электронная сетевая кнопка
РадиоКот >Схемы >Аналоговые схемы >Бытовая техника >Электронная сетевая кнопка
Казалось бы, нет ничего проще, чем сетевая кнопка! Но иногда хочется чего-то такого… чего-то другого… чего-то такого, как не у всех. И если во всем остальном мы горазды, то сетевая кнопка всех ровняет. Шутки шутками, но иногда сетевая кнопка действительно доставляет массу хлопот. Например, когда ее надо разместить на передней панели устройства, и сетевые провода тащатся через весь корпус, наполняя его фоном 50 Герц. Или брутальный щелкающий тумблер не вписывается в концепцию дизайна устройства. Может возникнуть ситуация когда сетевой кнопке будет недоставать интеллектуальности. Например, при сопряжении какого-либо устройства или старого советского измерительного прибора с компьютером. В этом случае нас может выручить электронная сетевая кнопка.
В основе «электронной кнопки» (рис. 1), как это ни странно, лежит кнопка – S1. Обычный «микрик», без переключения (тройника), без фиксации, который можно комфортно разместить на передней панели устройства, снабдив элегантной клавишей. Можно встретить подобные кнопочные переключатели, совмещенные конструктивно с индикаторным светодиодом (рис. 2) и разных видов исполнения. Для «печатного» монтажа (рис. 2.а), и более солидные, антивандальные (рис. 2.б). У последних, кроме всего прочего, неплохой дизайн. В общем, выбрать есть из чего.
Ну а самым главным элементом «электронной кнопки» является легендарный таймер NE555. В нашей конструкции он выполняет функции триггера, компаратора уровня, силового ключа, для управления исполнительным реле. Управляет светодиодом двухрежимной индикации состояния «кнопки» (включено/ярко, выключено/тускло), а также выполняет ряд специфических для простой сетевой кнопки функций.
Теперь давайте по порядку. Компаратор уровня, точней два компаратора, интегрированы в сам таймер со всеми цепями обвязки необходимыми для задания порогов срабатывания. Типовые значения уровней срабатывания компараторов составляют – 1/3Uпит для компаратора нижнего порога переключения и 2/3Uпит для компаратора верхнего порога переключения. Каждый из компараторов управляет RS триггером, который тоже интегрирован в сам таймер. Компаратор, срабатывающий по нижнему уровню напряжения, переключает встроенный триггер в состояние Set (установлено), а компаратор срабатывающий по верхнему уровню, устанавливает триггер в состояние Reset (сброшено). Выходной сигнал таймера полностью соответствует состоянию внутреннегоRS триггера. Так, при состоянии Set на выходе таймера высокий уровень, при состоянии Reset низкий. Исполнительным реле управляет выходной драйверный каскад таймера. Выходной ток этого каскада может достигать 200 mA, чего вполне достаточно для включения небольшого реле. Высокий уровень напряжения на выходе драйвера, равен напряжению питания схемы, за минусом 1,7 Вольт (типовое значение). Низкий, порядка 0,3 Вольт. Стоит помнить, что напряжение низкого уровня зависит от втекающего тока.
Яркостью светодиода управляет тоже таймер. Для этого используется интегрированный в микросхему транзистор, предназначенный, в оригинальном включении, для разряда времязадающего конденсатора (Discharging). В нашем случае он используется как еще один выход таймера с открытым коллектором. В состоянииSet транзистор закрыт, а в состоянии Reset, сигналом логической единицы с инверсного выхода RS триггера, транзистор открыт.
В нашей схеме этот выход таймера, может выполнять и другую функцию – он может «сообщать» сторонним устройствам о том, что кнопка находится в состоянии «включено». Еще в нашей схеме может быть использован вход таймера Reset. Предназначен этот вход не только для сброса встроенного в таймер RS триггера. При удержании этого входа в нулевом состоянии, таймер вообще прекращает реагировать на внешние сигналы. Это свойство таймера, можно использовать, если необходимо запретить выключать «кнопку», подав на этот вход внешний сигнал логического ноля.
Теперь давайте разберемся, как это все работает. Начнем, пожалуй, с самого начала – с момента подачи напряжения питания на схему «кнопки». В этот момент, по логике, «кнопка» должна установится в состояние «выключено», и чтоб это происходило надежно, в схеме предусмотрен конденсатор С1. Давайте посмотрим, как это происходит. В момент подачи напряжения на схему, напряжение, на средних точка внутреннего делителя напряжения таймера, состоящего из резисторов Ra, Rb и Rc, практически сразу достигает своих типовых значений – 1/3Uпит и 2/3Uпит. Как мы узнали выше, условием переключения RS триггера таймера в состояние Set (оно и соответствует в нашей схеме состоянию «кнопка выключена»), является величина напряжения, на входеTrigger таймера, меньше 1/3Uпит. Напряжение на этот вход подается с делителя R1 и R2 и составляет 1/2Uпит, что не выполняет условий переключения внутреннего RS триггера в состояние Set. Как же быть? Неувязочка… – Да, неувязочка. Как раз для этой цели и служит конденсатор С1, он задерживает рост напряжения на входе Trigger. Фронт становится более пологим и когда опорное напряжение компаратора уже давно 1/3Uпит, напряжение на входе Trigger еще где-то тянется к своим заветным 1/2Uпит, и еще гораздо меньше чем 1/3Uпит. Тем самым, создаются условия для начальной установки таймера в состояние Set, а «кнопки» в состояние «выключено». Этот момент времени обозначен как Self OFF (смотрим Рис. 3).
Теперь о резисторах R1 и R2. Эти два резистора образуют делитель напряжения, которое поступает на входы таймера. Напряжение это составляет 1/2Uпит. Почему именно столько? Схематически этот уровень показан (смотрим Рис. 3) как уровень Middle (средний). Уровни Set level и Reset level соответствуют уровням переключения компараторов таймера. То есть в состоянии ожидания нажатия на кнопку, уровень сигнала на входах таймера занимает промежуточное значение, равноудаленное от верхнего и нижнего уровней срабатывания/переключения таймера. Помимо того, что, это необходимо для правильной работы устройства, это еще и выгодно тем, что величина импульсной помехи, наводимой в проводе которым подключена кнопка S1 может достигать +/- 2 Вольта. То есть, провода могут быть достаточно длинными и даже не экранированными (хотя экраном пренебрегать не стоит).
Резистор R5 и конденсатор С3 выполняют функцию обратной связи и являются элементами формирования импульсов. Обратная связь обладает постоянной времени равной 1 секунде, которая чудесным образом совпадает с «тау» RC цепи. Это означает, что кнопку нельзя переключать чаще одного раза в секунду. Можно сделать и больше. Как? Пересчитать постоянную времени или просто подобрать конденсатором С3. Резистор R5 для этих целей не подходит. Увеличивая конденсатор С3 это время можно увеличить, а уменьшая соответственно уменьшить. Эти интервалы времени обозначены как Relax ON и Relax OFF (смотрим рис. 3). Кроме того, после включения сетевой вилки в розетку, «кнопку» нельзя будет «включить» еще в течение 1 секунды. Это время на графике (рис. 3), обозначено как Lost time (потерянное время).
Теперь, – че за импульсы и откуда они берутся? Импульсы, генерируются при нажатии на кнопку. Причем каждый раз разные. При нажатии на кнопку S1 когда «кнопка выключена», генерируется импульс положительной полярности относительно уровня Middle, а при нажатии наS1 когда «кнопка включена», отрицательной (смотрим рис. 3). Происходит это благодаря обратной связи, состоящей из резистора R5 и конденсатора С3. Обратная связь, она на то и обратная, чтоб передать на вход устройства часть сигнала с выхода этого устройства. В состоянии «кнопка выключена» на выходе устройства высокий уровень сигнала, поскольку внутренний RS триггер находится в состоянии Set (мы об этом говорили раньше). Это означает, что напряжение на конденсаторе С3 составляет (в установившемся режиме) порядка 10 Вольт. Этот уровень отмечен как Timer OUT Hi (рис. 3). При замыкании контактов кнопки S1, конденсатор С3 начинает разряжаться на резистор делителя R2, что приводит к появлению на нем импульса амплитудой 4 Вольта, который и поступает на вход таймера. Таймер незамедлительно отреагирует срабатыванием компаратора верхнего уровня и переключением RS триггера в состояние Reset. На выходе таймера устанавливается низкий уровень напряжения, и конденсатор С3 продолжит свой разряд, только уже не на резистор R2, а на выход таймера через резистор R5. Спустя некоторое время заряд конденсатора будет равен напряжению на выходе таймера, порядка 1 Вольта. Этот уровень отмечен на графике как Timer OUT Lo (смотрим рис. 3). Теперь если опять замкнуть контакты кнопки S1, он будет заряжаться через резистор R1, что приведет к образованию на резисторе импульса напряжения, только в данном случае обратной полярности относительно уровня Middle (смотрим рис. 3). Появление этого импульса на входе таймера приведет к срабатыванию компаратора нижнего уровня и переключению внутреннего RS триггера в состояние Set. И наша кнопка перейдет в состояние «выключено».
Конденсатор С2, существенно важной роли не играет. Но, говорят – надо… Надо – значит – надо. Он является блокировочным, и защищает от импульсных помех. Подключен он к входу таймера Control, который в нашей схеме никак не используется.
Как и у любой сетевой кнопки, у нашей «электронной кнопки», тоже есть группа мощных контактов. Только это контакты исполнительного реле Р1. Как раньше упоминалось, исполнительным реле управляет встроенный в таймер драйвер. Когда на выходе высокое напряжение (10 Вольт) – реле выключено, а когда низкое – реле включено. Как это, как это… – А вот так это… Посмотрите, как включено реле – между плюсом питания схемы и выходом таймера. Это можно представить себе как инверсный выход логического элемента с подключенным светодиодом, когда на выходе ноль – светодиод горит, когда единица – нет. И тут так же, при высоком уровне напряжения на выходе таймера к обмотке реле прикладывается всего два вольта, и этого не достаточно, чтоб оно притянуло свой якорь. А при низком уровне на выходе таймера, на обмотке реле напряжение составит 11 Вольт и оно сработает. При выборе реле, для схемы «кнопки», следует учитывать ток, на который рассчитаны контакты реле. Сопротивление обмотки не должно быть менее 200 Ом, рабочее напряжение не более 12 Вольт.
Индикация состояния «электронной кнопки» осуществляется светодиодом HL1. Как один светодиод может отображать два состояния? А очень просто – яркостью свечения. Для этого используется вход таймера Discharging, и в нашем устройстве используется как дополнительный выход таймера с «открытым коллектором». Когда наша «кнопка» находится в выключенном состоянии, транзистор внутри таймера подключенный к этому выходу закрыт, и выход имеет высокое сопротивление. Ток, который «поджигает» светодиод протекает через два резистора, R3 и R4, и хватает этого тока только на свечение светодиода в полнакала. Когда «кнопка» находится в состоянии «включено» то транзистор открыт, вход имеет малое сопротивление и резистор R4 оказывается не у дел, а большая часть тока протекает через открытый транзистор. Суммарное сопротивление в цепи уменьшается, ток в цепи увеличивается, и светодиод светит ярко, сигнализируя о включенном состоянии «кнопки». Если иллюминации надо больше, то светодиодов можно установить два, и разных цветов. Как это сделать показано на рис. 5. При высоком уровне сигнала, на выходе таймера, будет гореть светодиод HL1, а при низком HL2. Включенное состояние наверно удобней индицировать зеленым светодиодом, а выключенное красным. Хотя можно и наоборот…
Обмотка реле зашунтирована защитным диодом VD2, и защищает он не обмотку реле, а выход таймера от этой обмотки. Диод включен в обратном направлении по отношению к полюсам источника питания схемы, и большую часть времени попросту закрыт. Открывается он только в момент выключения реле. В этот момент, момент разрыва тока, на обмотке реле, которую в данный момент времени правильней рассматривать как катушку индуктивности, возникает импульс напряжения. Если предоставить этому импульсу свободу выбора, то он поспешит натворить дел! Например, пробьет один из транзисторов выходного драйвера таймера. Для того чтоб этого не случилось и устанавливается этот диод. В момент возникновения импульса диод открывается, и импульс напряжения превращается в импульс тока, который протекает по цепи: обмотка – диод – обмотка. Все целы и довольны, а мнение импульса никого не волнует, он знаете ли тут и так лишний…
Теперь о питании кнопки. По логике вещей оно должно быть индивидуальным и появляться сразу, как только устройство включено в сеть. Я применил для этих целей бестрансформаторный, или как их еще называют – конденсаторный блок питания. Для маломощных нагрузок с малым потреблением тока их можно с успехом применять. Эти блоки более простые, так как не имеют намоточных изделий, однако имеют пару серьезных недостатков. Нет гальванической развязки с первичной сетью – это первое, второе – обладают практически нулевой помехозащищенностью. Поэтому, при работе с аппаратурой, питающейся от таких блоков, нужно быть очень осторожным.
Самым главным элементом, который лежит в основе идеи такого рода блоков питания это – омический балласт, на котором должно падать все лишнее напряжение источника питания подключенного к схеме. В нашем случае в роли балласта, выступает конденсатор С5. Как конденсатор!? – А вот так… Как известно из курса школьной физики, конденсаторы по мимо емкости обладают еще и сопротивлением. Только не, активным – как обычные резисторы, а реактивным. Активное сопротивление проявляет себя вне зависимости от того какой ток через него протекает – переменный или постоянный. А вот реактивное сопротивление, признает только переменный ток, как раз тот, который и живет в сетевой розетке. Зная величину тока, который потребляет «кнопка», и напряжение питания, на которое она рассчитана, можно рассчитать величину сопротивления, которое необходимо установить последовательно, в цепь питания, от сети переменного тока напряжением 220 Вольт. Ну и поскольку величина реактивного сопротивления напрямую связана с емкостью конденсатора и частотой переменного тока, нетрудно вычислить какой емкости конденсатор необходимо применить, чтоб погасить лишнее напряжение при заданном токе. Какой попало конденсатор тут не подойдет. Подойдут отечественные конденсаторы типа К73-17 или импортные Klass X2 или Klass X1 на рабочее напряжение не менее 400 Вольт.
Так, с главным «кондером» разобрались, посмотрим, что еще у нас есть в блоке питания. Параллельно конденсатору установлен резистор R6. Это необходимо для разряда конденсатора при отключении устройства от сети. Если этого не делать, то штОпсель может сильно биться током. Последовательно с конденсатором и диодным мостиком установлен ограничивающий ток резистор R7. Стоп топ стоп… – мы же уже поставили конденсатор – этого мало? – Не-не… в самый раз… А этот резистор служит для ограничения тока в момент включения устройства в сеть. Если его не поставить мы рискуем потерять пару диодов в выпрямительном мостике, так как по самому «важному» закону нашей жизни, включение устройства в сеть будет происходить всегда именно в момент амплитудного максимума сетевого напряжения, равного 311 Вольт. Величина сопротивления этого резистора зависит от чувствительности диодов выпрямительного моста к предельно допустимым, для них, импульсам тока. Зная этот параметр диода и амплитудное значение напряжения в розетке можно прикинуть величину необходимого сопротивления по закону Ома. Стабилитрону VD2 это угрожает в меньшей степени, так как в момент включения он зашунтирован разряженным конденсатором C4. Заодно, в сумме с эквивалентным сопротивлением нагрузки и емкостью «гасящего» конденсатора, этот резистор играет роль эдакого фильтра сетевых помех (правда очень хилого, примерно до одного килогерца).
Диодный мост VD3-VD6, служит для выпрямления переменного напряжения, в постоянное, пульсирующее напряжение. Диоды можно заменить на 1N4007. Конденсатор С4 для сглаживания этих пульсаций, а стабилитрон VD2 для ограничения уровня напряжения на конденсаторе и выходе блока питания. Да, именно для ограничения, о полноценном параметрическом стабилизаторе с выбором режима работы стабилитрона, тут и речи быть не может. Но нам и не к чему стабилизатор, схема работает в большом интервале напряжений и плюс минус вольт ее не смутит.
С применением «кнопки» я думаю затруднений не должно возникнуть. Ей можно оборудовать уже имеющееся устройство или применить в новоделе. Схема включения очень проста (смотрим рис. 4).
Теперь об интеллекте… Как повыситьIQ сетевой кнопки не вмешиваясь в мозг оператора, я не знаю. Но когда кнопка «электронная» – сам Бог велел… эээ… ну, то есть я… Для начала давайте разберемся зачем это надо. Очень может так случится, что вам когда-нибудь понадобится подключить какое-либо устройство к компьютеру по интерфейсу LPT или COM или даже USB. Как компьютер определит, а не забыли ли вы нажать кнопку «сеть» на устройстве, перед тем как начать обмен данными? Или как раз во время обмена данными вы, зазевавшись, нажмете кнопку и выключите прибор, подключенный к компьютеру? Данные потеряны! Да и фиг с ними, главное время, а время, как говорится – деньги, а деньги все любят, и терять их не любят… даа… Для того чтоб избежать подобных казусов, «кнопку» надо научить сообщать компьютеру что она включена, а еще научить «кнопку» не обращать внимание на оператора, то есть на вас, некоторое время. Разрешить компьютеру, разрешать это делать «кнопке». Именно эти две возможности и реализованы в схеме, показанной на рис. 5. Ну и поскольку в нашей «кнопке» используется источник питания без гальванической развязки с первичной сетью, то при реализации этих возможностей без оптопар не обойтись.
Пример реализации показан на рис. 6 для COM порта, и на рис. 7 дляLPT порта. И приведен исключительно в качестве примера использования «специфических функций» «кнопки», ну а как это будет реализовано в вашем случае… тем более что эти два «старичка», молодежь пугают только одним своим внешним видом… да и давно уже освоены FTDI и прочиеV-USB…
Начнем с первой – «сообщать, что все включено». Для того чтоб реализовать эту функцию придется пожертвовать индикацией на светодиоде HL1 и воспользоваться схемой индикации показанной на рис. 5. А к выходу таймера DIS (вывод 7), о котором уже много было рассказано, подключить светодиод оптопары U2. Но можно обойтись и без жертв, тогда, индикация остается прежней (как на рис. 1), а светодиод оптопары U2 перекочевывает на место светодиода HL1 (смотрим рис. 5). Фотодиод оптопары U2, совместно с подтягивающим резистором R19, подключен к необходимой линии порта (в моем случае это была линия RI – индикатор вызова). Напряжение, к которому подтягивается линия в свободном состоянии должно сниматься с одной из линий порта выставленной программно в единицу (поскольку в моем случае был реализован стандартный протокол обмена RS232, это была линия DTR – готовность выходных данных). При «включенной кнопке» линия RI будет прижата к нулевому потенциалу SG. При «выключенном» состоянии, линия порта подтянется к потенциалу логической единицы. Это все сказано дляCOM порта, а с LPT все гораздо проще и выставлять заранее там ничего не потребуется. Правда полной гальванической развязки устройства и компьютера не выйдет, но схема «кнопки» будет надежно развязана по питанию, с остальной схемой устройства в котором она будет применена.
Теперь об – «не обращать внимания на оператора, то есть на вас». Где-то выше мы вспоминали про один из входов таймера под названием Reset. Это было не случайно. Как раз именно этот вход и задействован для реализации этой функции «кнопки». Для этого, ко входу Reset (вывод 4), необходимо подключить фотодиод оптопары U1, через токоограничивающий резистор R3 (смотрим рис. 5). Этот резистор в данном случае будет еще являться и подтягивающим резистором для входа Reset таймера. Когда фотодиод оптопары не освещен, сопротивление фотодиода высокое и на входе Reset установится высокий логический уровень как раз через этот резистор. Теперь, после всех нововведений, для того чтоб запретить «кнопке» реагировать на необдуманные нажатия, на вход оптопары надо подать напряжение. Напряжение «логической единицы», не забыв при этом ограничить ток светодиода оптопары резистором R21. При этом вход Reset таймера прижмется к земле, и таймер перестанет реагировать на внешние сигналы. Кроме того при помощи этого входа кнопку можно принудительно включить сигналом с компьютера. Такой вот, своеобразный Master ON. Ну а выключать придется всегда вручную – пальцем…
Файлы:
Плата
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
Основное назначение транзисторных выключателей, схемы которых предлагаются вниманию читателей, — включение и выключение нагрузки постоянного тока. Кроме этого, он может выполнять ещё дополнительные функции, например, индицировать своё состояние, автоматически отключать нагрузку при разрядке аккумуляторной батареи до предельно допустимого значения или по сигналу датчиков температуры, освещённости и др. На базе нескольких выключателей можно сделать переключатель. Коммутация тока осуществляется транзистором, а управление осуществляется одной простой кнопкой с контактом на замыкание. Каждое нажатие на кнопку изменяет состояние выключателя на противоположное.
Описание аналогичного выключателя было приведено в [1], нотам для управления применены две кнопки. К достоинствам предлагаемых выключателей можно отнести бесконтактное подключение нагрузки, практически отсутствие потребляемого тока в выключенном состоянии, доступные элементы и возможность применения малогабаритной кнопки, занимающей мало места на панели прибора. Недостатки — собственный потребляемый ток (несколько миллиампер) во включённом состоянии, падение напряжения на транзисторе (доли вольта), необходимость принятия мер для защиты от импульсных помех надёжного контакта во входной цепи (может самопроизвольно выключаться при кратковременном нарушении контакта).
Схема выключателя показана на рис. 1. Принцип его работы основан на том, что у открытого кремниевого транзистора напряжение на переходе база- эмиттер транзистора — 0,5…0,7 В, а напряжение насыщения коллектор-эмиттер может быть 0,2…0,3 В. По сути, это устройство представляет собой триггер на транзисторах с разной структурой, управляемый одной кнопкой. После подачи питающего напряжения оба транзистора закрыты, а конденсатор С1 разряжен. При нажатии на кнопку SB1 ток зарядки конденсатора С1 открывает транзистор VT1, и следом за ним откроется транзистор VT2. При отпускании кнопки транзисторы остаются во включённом состоянии, питающее напряжение (за вычетом падения напряжения на транзисторе ѴТ1) поступает на нагрузку и продолжится зарядка конденсатора С1. Он зарядится до напряжения, немногим большем, чем напряжение на базе этого транзистора, поскольку напряжение насыщения коллектор—эмиттер меньше напряжения база-эмиттер.
Рис. 1
Поэтому при следующем нажатии на кнопку напряжение база-эмиттер на транзисторе ѴТ1 будет недостаточным для поддержания его в открытом состоянии и он закроется. Следом закроется транзистор VT2, и нагрузка обесточится. Конденсатор С1 разрядится через нагрузку и резисторы R3—R5, и выключатель вернётся в исходное состояние. Максимальный коллекторный ток транзистора ѴТ1 Iк зависит от коэффициента передачи тока h21э и базового тока Іб: Iк = lб h2lэ. Для указанных на схеме номиналов и типов элементов этот ток — 100…150 мА. Чтобы выключатель работал нормально, ток, потребляемый нагрузкой, должен быть меньше этого значения.
У этого выключателя есть две особенности. Если на выходе выключателя будет короткое замыкание, после кратковременного нажатия на кнопку SB1 транзисторы на короткое время откроются и затем, после зарядки конденсатора С1, закроются. При уменьшении выходного напряжения примерно до 1 В (зависит от сопротивлений резисторов R3 и R4) транзисторы также закроются, т. е. нагрузка будет обесточена.
Второе свойство выключателя можно использовать для построения разрядного устройства для отдельных Ni-Cd или Ni-Mh аккумуляторов до 1 В перед составлением их в батарею и дальнейшей общей зарядке. Схема устройства показана на рис. 2. Выключатель на транзисторах ѴТ1, ѴТ2 подключает к аккумулятору разрядный резистор R6, параллельно которому подключён преобразователь напряжения [2], собранный на транзисторах ѴТЗ, ѴТ4, питающий светодиод HL1. Светодиод индицирует состояние процесса разрядки и является дополнительной нагрузкой аккумулятора. Резистором R8 можно изменять яркость свечения светодиода, вследствие этого изменяется потребляемый им ток. Так можно производить корректировку разрядного тока. По мере разрядки аккумулятора снижается напряжение на входе выключателя, а также на базе транзистора ѴТ2. Резисторы делителя в цепи базы этого транзистора подобраны так, что при напряжении на входе 1 В напряжение на базе уменьшится настолько, что транзистор ѴТ2 закроется, а вслед за ним и транзистор ѴТ1 — разрядка прекратится. При указанных на схеме номиналах элементов интервал регулировки тока разрядки — 40…90 мА. Если резистор R6 исключить, разрядный ток можно менять в интервале от 10 до 50 мА. При использовании сверхъяркого светодиода это устройство можно применить для построения карманного фонаря с защитой аккумулятора от глубокой разрядки.
Рис. 2
На рис. 3 показано ещё одно применение выключателя — таймер. Он был использован мною в портативном приборе — испытателе оксидных конденсаторов. В схему дополнительно введён светодиод HL1, который индицирует состояние устройства. После включения загорается светодиод и конденсатор С2 начинает заряжаться обратным током диода VD1. При определённом напряжении на нём откроется транзистор ѴТ3, который закоротит эмиттерный переход транзистора ѴТ2, что приведёт к выключению устройства (светодиод погаснет). Конденсатор С2 быстро разрядится через диод VD1, резисторы R3, R4 и выключатель вернётся в исходное состояние. Время выдержки зависит от ёмкости конденсатора С2 и обратного тока диода. При указанных на схеме элементах оно составляет около 2 мин. Если взамен конденсатора С2 установить фоторезистор, терморезистор (или другие датчики), а взамен диода — резистор, получим устройство, которое будет выключаться при изменении освещённости, температуры и т. п.
Рис. 3
Если в нагрузке есть конденсаторы большой ёмкости, выключатель может не включиться (это зависит от их ёмкости). Схема устройства, лишённого этого недостатка, показана на рис. 4. Добавлен ещё один транзистор ѴТ1, который выполняет функцию ключа, а два других транзистора управляют этим ключом, чем исключается влияние нагрузки на работу выключателя. Но при этом потеряется свойство не включаться при наличии в цепи нагрузки короткого замыкания. Светодиод выполняет аналогичную функцию. При указанных на схеме номиналах деталей ток базы транзистора ѴТ1 — около 3 мА. Были опробованы несколько транзисторов КТ209К и КТ209В в качестве ключа. Они имели коэффициенты передачи тока базы от 140 до 170. При токе нагрузки 120 мА падение напряжения на транзисторах было 120…200 мВ. При токе 160 мА — 0,5…2,2 В. Использование в качестве ключа составного транзистора КТ973Б позволило значительно увеличить допустимый ток нагрузки, но падение напряжения на нём было 750…850 мВ, и при токе 300 мА транзистор слабо грелся. В выключенном состоянии потребляемый ток настолько мал, что измерить его с помощью мультиметра DT830B не удалось. При этом транзисторы предварительно не отбирались ни по каким параметрам.
Рис. 4
На рис. 5 представлена схема трёхканального зависимого переключателя. В ней объединены три выключателя, но при необходимости их число может быть увеличено. Кратковременное нажатие на любую из кнопок вызовет включение соответствующего выключателя и подключение соответствующей нагрузки к источнику питания. Если нажать на какую-либо другую кнопку, включится соответствующий выключатель, а предыдущий выключится. Нажатие на следующую кнопку включит следующий выключатель, а предыдущий опять отключится. При повторном же нажатии на ту же кнопку последний работающий выключатель выключится, и устройство возвратится в исходное состояние — все нагрузки будут обесточены. Режим переключения обеспечивает резистор R5. При включении какого-либо выключателя напряжение на этом резисторе возрастает, что приводит к закрыванию включённого ранее выключателя. Сопротивление этого резистора зависит от тока, потребляемого самими выключателями, в данном случае его значение — около 3 мА. Элементы VD1, R3 и С2 обеспечивают прохождение разрядного тока конденсаторов СЗ, С5 и С7. Через резистор R3 конденсатор С2 разряжает в паузах между нажатиями на кнопку. Если эту цепь исключить, останутся только режимы включения и переключения. Заменив резистор R5 проволочной перемычкой, получим три независимо работающих устройства.
Рис. 5
Переключатель предполагалось применить в коммутаторе телевизионных антенн с усилителями, но с появлением кабельного телевидения необходимость в нём отпала, и проект не был реализован на практике.
В выключателях могут быть применены транзисторы самых разных типов, но они должны соответствовать определённым требованиям. Во-первых, все они должны быть кремниевыми. Во-вторых, транзисторы, коммутирующие ток нагрузки, должны иметь напряжение насыщения Uк-э нас не более 0,2…0,3 В, максимальный допустимый ток коллектора Iк макс должен быть в несколько раз больше коммутируемого тока, а коэффициент передачи тока h21э достаточный, чтобы при заданном токе базы транзистор находился в режиме насыщения. Из имеющихся у меня в наличии транзисторов хорошо зарекомендовали себя транзисторы серий КТ209 и КТ502, несколько хуже — серий КТ3107 и КТ361.
Сопротивления резисторов можно изменять в значительных пределах. Если требуется большая экономичность и не нужна индикация состояния выключателя, светодиод не устанавливают, а резистор в цепи коллектора ѴТЗ (см. рис. 4) можно увеличить до 100 кОм и более, но надо учесть, что при этом уменьшится базовый ток транзистора ѴТ2 и максимальный ток в нагрузке. Транзистор ѴТЗ (см. рис. 3) должен иметь коэффициент передачи тока h21э более 100. Сопротивление резистора R5 в зарядной цепи конденсатора С1 (см. рис. 1) и аналогичных ему в других схемах может быть в интервале 100.. 470 кОм. Конденсатор С1 (см. рис. 1) и аналогичные ему в других схемах должны быть с малым током утечки, желательно применить оксиднополупроводниковые серии К53, но можно применять и оксидные, при этом сопротивление резистора R5 должно быть не более 100 кОм. При увеличении ёмкости этого конденсатора уменьшится быстродействие (время, по истечении которого устройство можно выключить после включения), а если уменьшить — снизится чёткость в работе. Конденсатор С2 (см. рис. 3) — только оксидно-полупроводниковый. Кнопки — любые малогабаритные с самовозвратом. Катушка L1 преобразователя (см. рис. 2) применена от регулятора линейности строк чёрно-белого телевизора, хорошо работает преобразователь и с дросселем на Ш-образном магнитопроводе от КЛЛ. Можно также воспользоваться рекомендациями, приведёнными в [2]. Диод VD1 (см. рис. 5) может быть любым маломощным, как кремниевым, так и германиевым. Диод VD1 (см. рис. 3) должен быть обязательно германиевым.
Налаживания требуют устройства, схемы которых показаны на рис. 2 и рис. 5, остальные в налаживании не нуждаются, если нет особых требований и все детали исправны. Для налаживания разрядного устройства (см. рис. 2) потребуется источник питания с регулируемым напряжением на выходе. Прежде всего, взамен резистора R4 временно устанавливают переменный резистор сопротивлением 4,7 кОм (в максимум сопротивления). Подключают источник питания, предварительно установив на его выходе напряжение 1,25 В. Включают разрядное устройство нажатием на кнопку и устанавливают с помощью резистора R8 требуемый ток разрядки. После этого устанавливают на выходе источника питания напряжение 1 В, и с помощью добавочного переменного резистора добиваются выключения устройства. После этого надо несколько раз проверить напряжение выключения. Для этого необходимо увеличить напряжение на выходе источника питания до 1,25 В, включить устройство, затем необходимо плавно уменьшать напряжение до 1 В, наблюдая момент выключения. Затем измеряют введённую часть дополнительного переменного резистора и заменяют его постоянным с таким же сопротивлением.
Во всех других устройствах также можно реализовать аналогичную функцию выключения при снижении входного напряжения. Налаживание производится аналогично. При этом надо иметь в виду то обстоятельство, что вблизи точки выключения транзисторы начинают закрываться плавно и ток в нагрузке тоже будет плавно уменьшаться. Если в качестве нагрузки будет радиоприёмник, то это проявится как уменьшение громкости. Возможно, рекомендации, описанные в [1], помогут решить эту проблему.
Налаживание переключателя (см. рис. 5) сводится к временной замене постоянных резисторов R3 и R5 на переменные с сопротивлением в 2…3 раза больше. Последовательно нажимая на кнопки, с помощью резистора R5 добиваются надёжной работы. После этого повторными нажатиями на одну и ту же кнопку с помощью резистора R3 добиваются надёжного выключения. Затем переменные резисторы заменяют постоянными, как сказано выше. Для повышения помехоустойчивости параллельно резисторам R7, R13 и R19 надо установить керамические конденсаторы ёмкостью несколько нанофарад.
ЛИТЕРАТУРА
- Поляков В. Электронный выключатель защищает аккумуляторную батарею. — Радио, 2002, № 8, с. 60.
- Нечаев И. Электронная спичка. — Радио, 1992, N° 1, с. 19—21.
Автор: В. БУЛАТОВ, пгт Новый Свет, Донецкая обл., Украина
Источник: Радио №5/2016
Схема
Колебания напряжения всегда были проблемой и являются причиной большинства сбоев в работе устройств переменного тока. Будь то обычный бытовой прибор, такой как тостер, или высокопроизводительный промышленный станок, такой как ЧПУ, все имеет номинальное напряжение, на котором оно будет работать без каких-либо проблем при максимальной эффективности. К сожалению, наши Внутренние / Промышленные Линии не в состоянии предоставить нам это номинальное напряжение по разным причинам, поэтому в этом проекте мы собираемся создать простой электронный выключатель , который может запускать реле для отключения нагрузки при обнаружении высокого / низкого напряжения ,
Этот проект разработан вокруг известного операционного усилителя LM358. Мы собираемся заставить операционный усилитель работать в дифференциальном режиме, чтобы сравнить текущее напряжение с заданным напряжением. Весь проект может быть построен на макетной плате (кроме линий электропередачи) и может быть запущен в кратчайшие сроки. Итак, давайте начнем …..
Компоненты, необходимые для автоматического выключателя:
- LM358 (двухкомпонентный операционный усилитель)
- 7805 (+ 5В регулятор)
- 12V понижающий трансформатор
- 5V реле
- BC547 (2 номера)
- 10K Переменная POT
- 1К, 2К, 2.2K, 10K, 5.1K Резисторы Конденсаторы, 100 мкФ, 10 мкФ, 0,1 мкФ
- Диодный мост
- Соединительные провода
- Хлебная доска
Принципиальная схема :
Полная принципиальная схема электронного выключателя приведена на рисунке ниже. Читайте дальше для объяснения того же.
Описание схемы:
Как показано выше на схеме автоматического выключателя , это действительно просто и просто набор резисторов, конденсаторов и прочего.Но что на самом деле происходит за всем этим. Как выбираются значения компонентов и какова их роль здесь?
Я попытался ответить на этот вопрос, разбив их на каждый сегмент и объяснив их ниже.
Силовая часть:
Операционный усилитель является сердцем схемы электронного выключателя . Нам нужен регулируемый источник 5 В для питания этого операционного усилителя. Также нам нужно подать текущее напряжение (напряжение в любое конкретное время) на операционный усилитель.Операционный усилитель может работать только до 5 В, так как он питается от 5 В. Следовательно, нам нужно преобразовать входное напряжение переменного тока (220 В переменного тока) в 0-5 В постоянного тока.
Итак, вышеуказанная схема решает две задачи.
- Обеспечить постоянное 5 В для включения схемы
- отображает напряжение переменного тока на входе до 0-5 В для операционного усилителя
Для достижения этого мы использовали 12-вольтный понижающий трансформатор, который преобразует 220 В переменного тока в 12 В переменного тока, затем выпрямляем его с помощью диодного моста до 12 В постоянного тока (приблизительно), а затем регулируем напряжение до 5 В с помощью регулятора напряжения 7805.Любые изменения входного напряжения будут влиять на значение напряжения на выходной стороне диодного моста. Следовательно, это напряжение можно рассматривать как «текущее напряжение» сети переменного тока. Используя резистор 5.1K и 10K POT (формируя делитель потенциала), мы установили напряжение между 0-5В.
Op-Amp Раздел:
В этом разделе проводится сравнение. У нас есть два подразделения в разделе операционных усилителей. Один используется для сравнения «текущего напряжения» со значением «Высокое напряжение», а другой – для сравнения со значением «Низкое напряжение».Оба раздела показаны на рисунке ниже.
Показанная выше схема операционного усилителя является дифференциальным режимом операционного усилителя. Операционный усилитель действительно рабочая лошадка для большинства электронных схем, он имеет множество режимов работы и приложений, таких как суммирование, вычитание, усиление и т. Д. Мы использовали его в качестве компаратора напряжения здесь.
Так что же такое компаратор напряжения и зачем он нам нужен здесь?
Компаратор напряжения в нашем случае сравнивает напряжение между контактами 3 и 2, и если напряжение на контакте 3 больше, чем на контакте 2, тогда выход на контакте 1 становится высоким (3.6В) иначе выход будет 0В. Мы сравниваем «текущее напряжение» с предварительно установленным высоким и низким напряжением, чтобы получить триггер высокого / низкого напряжения.
В схеме, показанной выше, порог низкого напряжения устанавливается на выводе 2 с использованием резисторов 1K и 2K. Порог высокого напряжения устанавливается на контакты 5 с помощью резисторов 1 кОм и 2,2 кОм.
Использование этих резисторов образует делитель потенциала и обеспечивает отключение низкого напряжения 3,33 В и отключение высокого напряжения 3,43 В. Это означает, что только если «текущее напряжение» находится между 3.От 33 В до 3,43 В оба операционных усилителя пойдут высоко.
Примечание: я установил пороговые напряжения на 3,33 В и 3,43 В, так как у меня верхнее отключение было 230 В, а отключение любовника было 220 В. Вы можете установить их соответствующим образом, а затем откалибровать цепь, используя регулятор 10K для управления «текущим напряжением».
Релейная секция:
Это место, где мы подключаем нагрузку переменного тока. Реле используется для включения / выключения нагрузки переменного тока.
Как обсуждено в разделе операционных усилителей.Оба операционных усилителя получат высокое значение только в том случае, если напряжение находится между пределами высокого и низкого напряжения. Поэтому мы должны включать нагрузку переменного тока, только если оба выхода операционного усилителя высоки. Здесь « Low Voltage Trigger » и « High Voltage Trigger » являются выходом контакта 1 и 7 соответственно.
Только если оба уровня высоки, реле получит свое основание и сработает. Нагрузка переменного тока (здесь лампочка) идентифицируется через реле. Резистор 1K используется для ограничения тока.
Как только вы поймете, как работает схема, она не будет проблемой. Просто подключите цепи и используйте 10-килограммовую емкость, чтобы установить «текущее напряжение» между вашим «триггером высокого напряжения» и «триггером низкого напряжения». Теперь, если произойдут какие-либо изменения в главном напряжении переменного тока, ваш операционный усилитель опустится и ваше реле выключится, таким образом отключив подключенную к нему нагрузку.
Вы также можете использовать файл симуляции, приложенный здесь, чтобы проверить / изменить вашу схему на основе ваших пороговых значений высокого или низкого напряжения.
При моделировании используется потенциометр для изменения входного напряжения и зеленый светодиод в качестве нагрузки. Вы также можете отслеживать значения напряжения на каждой клемме, что поможет вам лучше понять схему.
Надеюсь, вам понравился этот проект выключателя и вы поняли, что стоит за ним. Полную работу над проектом можно увидеть на видео ниже.
Этот проект страдает от следующих недостатков, которые вы можете рассмотреть на всякий случай, если это значит для вас.
- Измеренное здесь напряжение не является Vrms-напряжением. Значение также подвержено пикам и ряби
- Ваша нагрузка может испытывать эффект переключения, если напряжение падает / повышается постепенно (в большинстве случаев оно не будет).
- Не подключайте нагрузки, которые потребляют ток более 5А. Это, скорее всего, убьет ваше реле и его драйвер.
Вы также можете проверить этот аналогичный проект, чтобы узнать больше: Обнаружение высокого / низкого напряжения с помощью PIC Microcontroller
,Автоматические выключатели– необходимость и определение
Электричество, поступающее в наш дом или любые другие места от распределительных сетей, образует большую цепь, линии которой соединяются с электростанцией, образуя один конец называется горячим проводом, а линии, соединяющие землю, образуют другой конец. Между этими двумя линиями протекает электрический заряд, и между ними развивается потенциал. Соединение нагрузок (приборов), обеспечивающих сопротивление этому потоку заряда, завершает полный цикл, и вся электрическая система внутри дома работает плавно, пока приборы имеют достаточное сопротивление и не вызывают перегрузки по току.Короткое замыкание или слишком большой заряд, протекающий по цепи, или внезапное подключение провода горячего конца к заземляющему проводу может привести к нагреву проводов и вызвать возгорание. Для предотвращения таких ситуаций используется защита цепи, которая просто отключает оставшуюся цепь в таких условиях.
Обычно существует два способа решения вышеуказанной проблемы:
Предохранитель . : Состоит из тонкого провода, заключенного в корпус. В случае чрезмерного тока провод плавкого предохранителя просто перегорает или разрушается, что приводит к обрыву цепи.Тем не менее, они не являются надежными, и провод предохранителя должен быть заменен вручную, когда он горит. Таким образом, они в основном не являются предпочтительными.
Коммутаторы : Еще один способ защиты цепи заключается в обеспечении прекращения подачи тока или прекращения подачи напряжения в линию в случае превышения тока. Это осуществляется с помощью автоматического срабатывания переключателя, который отключается при обнаружении перегрузки по току или любой неисправности, таким образом изолируя линию неисправности от всей цепи, и снова может быть включен для восстановления работы.Это более выгодно, так как позволяет быстро идентифицировать зону повреждения и быстрое восстановление. Это также электрически безопасно по сравнению с предохранителем.
Электронный предохранитель
Прежде чем мы углубимся в информацию об электронном выключателе, давайте взглянем на электронный предохранитель.
Номинальное напряжение реле должно быть равно приложенному напряжению, и следует использовать конденсатор 100 мкФ, а ток, проходящий через цепь, можно регулировать с помощью потенциометра 100К.Если используется предохранитель, значение R2 следует уменьшить. В то время как SW1 включен, это приводит L2 к цепи, следовательно, ток на резисторе R2 увеличивается, вызывая более высокое падение напряжения на R2.
самовосстанавливающийся электронный предохранитель – принципиальная схема:
Через предустановки 100K и R1 это напряжение запускает SCR U1, который управляет реле RL1. Это отключает подачу питания на нагрузку и одновременно отключает подачу питания на SCR.Перегрузка должна быть устранена, и sw2 должен быть выключен и снова включен для сброса. Любой SCR может быть использован для удовлетворения требований по напряжению и срабатыванию затвора.
Потребность в электронном выключателе
Традиционный миниатюрный автоматический выключатель состоит из биметаллической полосы для защиты от тока нагрузки и электромагнита для защиты от тока короткого замыкания. В случае перегрузки биметаллическая полоса изгибается, вызывая освобождение пружины при перемещении точки защелки и, в конечном итоге, размыкание контактов MCB.Электромагнитная катушка создает магнитодвижущую силу через нее, когда через нее протекает большой ток, что приводит к смещению точки защелки, и это снова открывает контакты MCB. Таким образом, в случае перегрузки и короткого замыкания MCB отключается.
Однако у этого обычного миниатюрного автоматического выключателя есть несколько недостатков:
- Они довольно дороги, и чем больше ток короткого замыкания, тем больше стоимость MCB.
- Биметаллическая полоса имеет тенденцию легко деформироваться из-за высокой температуры или повышения температуры из окружающей среды, что приводит к снижению текущей мощности выключателя.
- Из-за используемых механических компонентов они более подвержены износу.
- Время срабатывания медленнее.
Для преодоления всех этих проблем наиболее удобным решением является использование электронного автоматического выключателя или автоматического выключателя с автоматическим переключателем с электронным управлением.Он не включает электромагнитную катушку, тепловую полосу или механический компонент.
Определение электронного автоматического выключателя
Электронный автоматический выключатель состоит из автоматически управляемого выключателя, управляемого обратной связью от нагрузки. Он основан на том факте, что во время слишком сильного потребления тока нагрузками или чрезмерного протекания в линии переключатель автоматически на некоторое время замыкается, а затем переключатель автоматически включается по истечении определенного промежутка времени. ,Переключатель может быть силовым электронным переключателем, таким как SCR, или электромеханическим переключателем, таким как реле, которое управляется любым чувствительным к току элементом, таким как резистор. Это сверхбыстрое устройство прерывания цепи использует последовательный резистор для определения тока, и, хотя оно превышает установленное значение, соответствующее падение напряжения (через последовательное сопротивление) также увеличивается. Это напряжение измеряется, выпрямляется до постоянного тока, а затем сравнивается с предварительно установленным напряжением компаратором для генерации выхода, который управляет реле через полевой МОП-транзистор, чтобы мгновенно отключить нагрузку.Механизм отключения очень быстрый, так как он основан на принципах измерения тока, а не на тепловых механизмах отключения, таких как MCB. Микроконтроллер может быть использован для отображения на ЖК-дисплее состояния выключателя.
Таким образом, используя это устройство, можно добиться сверхбыстрого размыкания цепи, чтобы уберечь дорогостоящее оборудование от возможных повреждений. Используя эту уникальную концепцию, прототип может быть разработан как проектная работа для студентов-электротехников.
Электронный автоматический выключатель работает по принципу механизма измерения тока.Он обеспечивает защиту как от перегрузки, так и от короткого замыкания, так как в любом случае ток через линию контролируется, и переключатель срабатывает в случае протекания перегрузки по току.
Пример работы простого электронного выключателя
Чувствительный к току элемент или резистор можно использовать для определения величины тока, протекающего через нагрузку. Падение напряжения с резистора подается на неинвертирующий вход компаратора, а фиксированное напряжение подается на инвертирующий вывод компаратора.В случае нормальной работы (ток, протекающий при достаточном количестве нагрузок) падение напряжения на резисторе меньше фиксированного напряжения, а вход компаратора достаточно низок, чтобы вызвать отключение МОП-транзистора. Общий контакт реле подключен к нормально замкнутому контакту, и цепь замыкается нагрузкой, получающей питание от сети.
Однако когда подключена какая-либо дополнительная нагрузка, ток через чувствительный элемент тока увеличивается, что, в свою очередь, увеличивает падение напряжения на резисторе.В некоторый момент времени это падение напряжения больше, чем фиксированное напряжение, то есть вход на неинвертирующей клемме больше, чем на инвертирующей клемме компаратора. Это вызывает высокий логический выход на компараторе с напряжением, достаточным для включения полевого МОП-транзистора. Когда MOSFET проводит, катушка реле получает питание, и общий контакт теперь подключен к нормально разомкнутому контакту. Это создает помехи для протекания тока, так как теперь цепь обрывается и нагрузки переключаются из-за отсутствия электропитания.
Преимущества электронного автоматического выключателя
- Электронные автоматические выключатели могут быть спроектированы для отключения при небольших перегрузках и не реагируют на пусковые токи.
- У них более быстрое время отклика, поскольку характеристики отклика зависят только от времени, необходимого для обнуления тока, проходящего через проводящий полупроводниковый переход.
- Они не страдают от проблем износа традиционных систем, поскольку используемые компоненты являются электронными.
- Они дешевле, так как используемые компоненты легче, дешевле и удобнее в обслуживании.
Практические электронные автоматические выключатели
Электронный защитный выключатель от Phoneix
Работает от источника постоянного тока 24 В и поставляется с концепцией мониторинга и дистанционной сигнализации. Он состоит из сброса с дистанционным управлением. Он используется для защиты реле, программируемых контроллеров, двигателей, датчиков, приводов, клапанов и т. Д.
HFDE308032
Имеет 15-80 регулируемых токовых функций и состоит из настраиваемой длительной настройки, кратковременной и мгновенной настройки настройка с включенным сигналом состояния и сигнализацией.
Фото Кредит:
.Автоматический выключатель – это коммутационное устройство, которое прерывает ненормальный ток или ток повреждения. Это механическое устройство, которое нарушает поток тока большой величины (неисправности) и, кроме того, выполняет функцию выключателя. Автоматический выключатель в основном предназначен для замыкания или размыкания электрической цепи, что защищает электрическую систему от повреждений.
Принцип работы выключателя
Автоматический выключатель состоит из неподвижных и подвижных контактов. Эти контакты касаются друг друга и проводят ток в нормальных условиях, когда цепь замкнута. Когда автоматический выключатель замкнут, токонесущие контакты, называемые электродами, зацепляются друг с другом под давлением пружины.
При нормальных условиях эксплуатации плечи выключателя можно открывать или закрывать для переключения и технического обслуживания системы.Для размыкания выключателя требуется только давление на триггер.
Всякий раз, когда происходит сбой в любой части системы, катушка отключения выключателя получает питание, и подвижные контакты разъединяются каким-либо механизмом, таким образом, размыкая цепь.
Типы выключателей
Автоматические выключатели в основном классифицируются по номинальному напряжению. Автоматические выключатели ниже номинального напряжения 1000 В называются автоматическими выключателями низкого напряжения, а свыше 1000 В называются автоматическими выключателями высокого напряжения.
Наиболее общий способ классификации автоматического выключателя основан на гашении дуги. Такими типами автоматических выключателей являются: –
- масляный выключатель Минимальный автоматический выключатель Воздушный выключатель
- Гексафторид серы Автоматический выключатель Вакуумный выключатель
- Воздушный выключатель
Все высоковольтные автоматические выключатели можно классифицировать по двум основным категориям i.масляные автоматические выключатели и безмасляные автоматические выключатели.
,Электронные автоматические выключатели
Электронные автоматические выключатели – это автоматически управляемые электрические выключатели, которые предназначены для защиты электрической цепи от повреждения. Они отключают цепь всякий раз, когда ток поднимается выше безопасного уровня. p>
Как работают электронные автоматические выключатели h3> p>
Электронные автоматические выключатели предотвращают перегрузку или короткое замыкание.Их основная функция заключается в обеспечении безопасной работы электрической системы путем прерывания потока тока при обнаружении неисправности. Они делают это путем комбинации активного электронного ограничения тока в случае короткого замыкания и деактивации перегрузки. p>
Почему важны электронные автоматические выключатели h3> p>
В домах обычно есть главный электронный автоматический выключатель, который защищает всю систему, плюс небольшие автоматические выключатели, встроенные во многие бытовая техника, такая как стиральные машины, сушилки и системы кондиционирования воздуха. p>
Без автоматических выключателей (или альтернативных предохранителей ), бытовые электричество было бы непрактичным из-за возможного возникновения пожаров и других проблем, возникающих в результате простых проблем с электропроводкой и сбоев оборудования. По сравнению с предохранителями, которые работают только один раз, а затем требуют замены, автоматические выключатели можно использовать снова и снова. P>
Наш веб-сайт использует файлы cookie и аналогичные технологии, чтобы предоставить вам лучший сервис при поиске или размещении заказа, в аналитических целях и для персонализации нашей рекламы для вас.Вы можете изменить настройки файлов cookie, ознакомившись с нашей политикой использования файлов cookie. В противном случае мы будем считать, что вы согласны с использованием файлов cookie.ОК, я понимаю
,