Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments
IR2153 — параметры микросхемы, даташит и схемы блоков питания

На основе микросхемы IR2153 и силовых IGBT транзисторов было сконструировано множество схем, таких как драйвер и генератор индукционного нагревателя, источник питания для катушки Тесла, DC-DC преобразователи, импульсные источники питания и так далее. А связка NGTB40N120FL2WG + IR2153 работают вместе как нельзя лучше, где IR2153 является драйвером — задающим генератором импульсов, а пара биполярных транзисторов с изолированным затвором на 40А/1000В может обрабатывать большой ток нагрузки.

Схемы включения IR2153

Принципиальная схема включения IR2153 IR2153 — схема электрическая БП
Схема Теслы на IR2153

Если вы собираетесь повторить одну из этих схем — вот архив с файлами печатных плат. Схема формирователя стробирующих импульсов для их управления работает от 15 В постоянного тока — на транзисторы выходного каскада подаётся до 400 В напряжения.

IR2153 импульсный блок питания на плате

Кстати, IR2153 — это улучшенная версия популярных микросхем IR2155 и IR2151, которая включает высоковольтный полумостовой драйвер затвора. IR2153 предоставляет больше возможностей и проще в использовании, чем предыдущие м/с. Тут имеется функция отключения, так что оба выхода формирователя стробирующих импульсов могут быть отключены с помощью низкого напряжения сигнала. Помехоустойчивость была значительно улучшена, как за счет снижения пиковых импульсов. Наконец, особое внимание было уделено максимально всесторонней защите от электростатических разрядов на всех выводах.

Особенности БП на IR2153

  • Питание нагрузки от 60 до 400 В DC
  • Напряжение питания драйвера 15 В DC
  • Частоты генерации 12 кГц — 100 кГц
  • Скважность приблизительно 50%
  • Ручной потенциометр для установки частот

Технические характеристики микросхем и транзисторов

МИКРОСХЕМА

Максимальное напряжение драйвера

Напряжение питания старта

Напряжение питания стопа

Максимальный ток для зарядки затворов силовых транзисторов / время нарастания

Максимальный ток для разрядки затворов силовых транзисторов / время спада

Напряжение внутреннего стабилитрона

IR2151

600 V

7,7…9,2 V

7,4…8,9 V

100 mA / 80…120 nS

210 mA / 40…70 nS

14,4…16,8 V

IR2153

600 V

8,1…9,9 V

7,2…8,8 V

НЕ УКАЗАНО / 80…150 nS

НЕ УКАЗАНО / 45…100 nS

14,4…16,8 V

IR2155

600 V

7,7…9,2 V

7,4…8,1 V

210 mA / 80…120 nS

420 mA / 40…70 nS

14,4…16,8 V

 

ТРАНЗИСТОРЫ ДЛЯ ИМПУЛЬСНЫХ БП

НАИМЕН.

НАПР.

ТОК

СОПР.

МОЩНОСТЬ

ЕМКОСТЬ
ЗАТВОРА

Qg
(ПРОИЗВ.)

СЕТЕВЫЕ (220 V)

IRFBC30

600V

3.6A

1.8 Ω

100W

660pF

17…23nC (ST)

IRFBC40

600V

6.2A

1 Ω

125W

1300pF

38…50nC (ST)

IRF740

400V

10A

0.48 Ω

125W

1400pF

35…40nC (ST)

IRF840

500V

8A

0.85 Ω

125W

1300pF

39…50nC (ST)

STP8NK80Z

800V

6A

1.3 Ω

140W

1300pF

46nC (ST)

STP10NK60Z

600V

10A

0.75 Ω

115W

1370pF

50…70nC (ST)

STP14NK60Z

600V

13A

0.5 Ω

160W

2220pF

75nC (ST)

STP25NM50N

550V

22A

0.14 Ω

160W

2570pF

84nC (ST)

IRFB18N50K

500V

17A

0.26 Ω

220W

2830pF

120nC (IR)

SPA20N60C3

650V

20A

0.19 Ω

200W

2400pF

87…114nC (IN)

STP17NK40Z

400V

15A

0.25 Ω

150W

1900pF

65nC (ST)

STP8NK80ZFP

800V

6A

1.3 Ω

30W

1300pF

46nC (ST)

STP10NK60FP

600V

10A

0.19 Ω

35W

1370pF

50…70nC (ST)

STP14NK60FP

600V

13A

0.5 Ω

160W

2220pF

75nC (ST)

STP17NK40FP

400V

15A

0.25 Ω

150W

1900pF

65nC (ST)

STP20NM60FP

600V

20A

0.29 Ω

45W

1500pF

54nC (ST)

IRFP22N60K

600V

22A

0.24 Ω

370W

3570pF

150nC (IR)

IRFP32N50K

500V

32A

0.135 Ω

460W

5280pF

190nC (IR)

IRFPS37N50A

500V

36A

0.13 Ω

446W

5579pF

180nC (IR)

IRFPS43N50K

500V

47A

0.078 Ω

540W

8310pF

350nC (IR)

IRFP450

500V

14A

0.33 Ω

190W

2600pF

150nC (IR)
75nC (ST)

IRFP360

400V

23A

0.2 Ω

250W

4000pF

210nC (IR)

IRFP460

500V

20A

0.27 Ω

280W

4200pF

210nC (IR)

SPW20N60C3

650V

20A

0.19 Ω

200W

2400pF

87…114nC (IN)

SPW35N60C3

650V

34A

0.1 Ω

310W

4500pF

150…200nC (IN)

SPW47N60C3

650V

47A

0.07 Ω

415W

6800pF

252…320nC (IN)

STW45NM50

550V

45A

0.1 Ω

417W

3700pF

87…117nC (ST)

Возможные изменения

Частота колебаний генератора регулируется потенциометром и охватывает диапазон от 10 кГц до 100 кГц, скважность 50%.

Готовый БП на IR2153

Естественно и другие МОП-транзисторы или IGBT могут быть использованы в приведённых схемах. Не забывайте, что транзисторы требуют большого размера радиатор. Скачать даташит на IR2153 можно по ссылке.

IR2153 софтстарт, простой испульсный блок питания

Предлагаю вам простую схему импульсного блока питания для усилителя на основе легендарной микросхемы IR2153. Схем в сети очень много, но ни одна не имеет нормального софтстарта, из-за чего начинающие радиолюбители палят много полевых транзисторов и микросхем (я тоже с этого начинал).

ИИП IR2153

Характеристики:
— напряжение питания: 210-240в;
— напряжение на выходе (холостой ход): +38/-38в;
— мощность: 300вт;
— софтстарт: есть.
— защита от короткого замыкания: есть.

DA_Power IR2153 схема

Данная схема отличается от всех остальных тем, что в ней каждый полевик защищен от токовой перегрузки. Принцип работы защиты очень прост, рассмотрим схему управления нижним полевиком. С выхода LO микроcмы IR2153 поступаем меандр амплитудой 12в и частотой 44кГц, через конденсатор С11 и затворный резистор R8 этот сигнал открывает и закрывает полевик. Как только ток через шунт R10 хоть на мгновение превысит значение 7А, зарядится конденсатор С13, транзистор VT2 откроется и разрядит внутреннюю емкость полевика и конденсатор С11. Трансзистор T2 закроется , и может быть открыт только поле следующего сигнала от IR2153. Ток через полевый транзистор будет иметь форму острой иголки (подобие ШИМ с малым заполнением импульса).

Рисунок платы

Скачать файлы: DA-Power-IR2153.zip (Одна Загрузка)

При 6А импульсы обычные:

При токе более 7А импульсы принимают следующую форму:

Первое включение нужно осуществлять при подаче на вход 12в вместо 220, установив перемычку на резистор R4. На плате подписаны +12 и -12в для проверки. Если все нормально работает и на выходе в плечах есть небольшое постоянное напряжение, значит все собрано верно и можно включать в сеть через лампочку, затем напрямую. Блок питания стартует очень мягко, можно смело ставить на выходе большие емкости, при коротком замыкании на выходе напряжение падает до нуля, затем снова поднимается до оптимального значения.

Фото собранного блока питания:

Осциллограммы на обмотках трансформатора:

Холостой ход Добавляем снаббер 100ом + 220пф стало поменьше звона Нагрузка 250вт, огромный Deadtime Удалось зафиксировать работу софтстарта при включении, заряд емкостей по 1000мкф в плече происходит за 10мС Увеличиваем развертку Начало пуска

Удачи в повторении….

Более надежный вариант с триггерной защитой:

Собранный блока питания.

R17 и транзистор VT4 — датчик тока, VT1 и VT3 — триггер, VT2 — при защелкивании притягивает вывод (CT) микросхемы IR2153 к земле, мгновенно останавливая генерацию. При токовой перегрузке или КЗ ИИП выключается, дальнейшая работа возможна при обесточивании на 1 минуту. С9 — предотвращает ложное срабатывание защиты при первом пуске, когда заряжаются емкости во вторичке.

Печатная плата второй версии:

Скачать файл печатной платы: DA_Power_IR2153-v2.1.zip (490 Загрузок)

Описание сборки данного блока питания.

Силовой трансформатор намотан на кольце R31*19*15 PC40.

Ферритовое кольцо.

Для надежности поверх лака уложен слой изоляции в 1 слой:

Слой изоляции.

Первичная обмотка содержит 52 витков проводом 0,75мм. Выводы дополнительно изолируются термоусадкой.

Первичная обмотка.

Далее накладываются 2 слоя изоляиции:

Двойной слой изоляции.

Вторичная обмотка содержит 11 витков, мотается разом 4-мя жилами провода 0,75мм (в диаметре). При 52 витках первички будет ровно 3в/виток, 11 витков вторички дадут нам +33/-33в на выходе.

Вторичная обмотка.

Те выводы, что снизу фиксируются нитками, также сразу надо зачистить все жилы:

Готовый трансформатор.

Синфазный дроссель, установлена перегодка для разделения обмоток:

Ферритовое кольцо для синфазного фильтра. R16*10*4.5 PC40

Обмотки выполнены проводом 0,5 мм длиной по 50см каждая, выводы также зачищаются:

Синфазный дроссель.

Проводом 0,75мм на оправке сделаны обмотки для силовых дросселей:

Намотка дросселя.

Далее на сердечниках 6*20 Zn600 с помощью клея крепятся обмотки:

Силовые дроссели.

Закупаем все необходимые детали:

Набор деталей.

Подложка от самоклейки с помощью скотчка крепится на лист бумаги А4:

Подложка.

Распечатываем на принтере рисунок платы, зеркалить ничего не надо!

Распечатанный рисунок.

Подготавливаем поверхность:

Чистка меди наждачкой.

Обезжириваем медь и кладем подложку рисунком вверх на полумягкую поверхность, например книгу:

До переноса рисунка обезжириваем поверхность меди.

Кладем текстолит медью вниз и выравниваем по отметкам:

Текстолит на рисунке.

Ставим сверху утюг, прижимаем сильно, не двигаем горячий утюг в течении 1 минуты:

Утюг — мощность на максимум.

После убираем утюг, приживаем сверху текстолит еще парочкой книг, и даем немного остынуть. Далее подложка легко отрывается, а рисунок остается на медной поверхности:

Отрываем подложку.

Кладем текстолит в раствор хлорного железа:

В растворе хлорного железа.

После травления сверлим отверстия и залуживаем:

Олово, паяльник с оплеткой и канифоль.

Вставляем резисторы и всякую мелочь:

Резисторы+перемычки.

Далее более габаритные элементы:

Остальное

Правильно фазируем обмотки, тут проще некуда, если провода заранее промаркировать:

Не забываем зачищать лак на проводах.

Вставляем трансформатор на место:

Установка трансформатора.

Загибаем выводы и запаиваем:

Осталось запаять.

Сверлим радиатор для крепления транзисторов, делаем прижимную планку, а снизу делаем отверстие сверлом на 2,5мм и метчиком на 3 нарезаем резьбу для крепления радиатора:

Сверловка отверстий и нарезка резьбы.

Устанавливаем радиатор на место:

Крепим радиатор.

Все тщательно проверяем:

Проверка на «сопли» с помощью подсветки платы фонариком.

Готовимся к проверке работоспособности от блока питания 12в:

Перед проверкой от 12 в ставим перемычку.

На вход вместо 230в подаем 12в ( +и- обозначены на плате) на выходе должно появится небольшое постоянное напряжение:

Проверка от 12в с перемычкой, на выходе около 1в в плече.

Смотрим форму сигнала на затворах транзисторов:

Форма сигнала на затворе полевика, питание 12в ( для безопасности).

А на обмотках трансформатора должен появится меандр частотой 45-47кГц:

Проверка меандра на первичке при питании от 12в.

Далее обязательно убираем перемычку с резистора снизу платы и включаем в сеть:

Первое включение от сети с резистором 200ом в разрыв.

Прижимаем транзисторы к радиатору изолировав их с помощью теплопроводных прокладок:

Крепление транзисторов к радиатору.

ИИП в сборе:

Силовые диоды при работе греются довольно сильно. Вид сверху.

Форма сигнала на вторичных обмотках на холостом ходу:

Холостой ход, питание 220в, вторичка.

Тоже самое, но нагрузка 180вт.

Нагрузка 180вт.

ИИП работает хорошо, софтстарт, триггерная защита от КЗ. Микры китайские с али, но работают нормально, частота 47кГц. IR2153 Deadtime бы поменьше, было бы круто, напряжение под нагрузкой падает на 15%.

Удачи в повторении, вопросы задаем в комментариях, в группе вконтакте или vatsapp( в нижней правой части экрана жмем кнопку).

 

Схема импульсного блока питания на IR2151-IR2153

Импульсный блок питания на IR2151-IR2153

импульсный блок питания своими руками Плюс любого импульсного блока питания состоит в том что не требуется намотки или покупки громоздкого трансформатора.А требуется всего лишь трансформатор с несколькими витками.Данный блок питания сделать самому несложно и требует немного деталей. И основа,это то что блок питания на микросхеме IR2151

 

 

 

 

 

Характерной чертой этого блока питания является его простота и повторяемость. Схема содержит малое количество компонентов и хорошо себя зарекомендовала на протяжении более двух лет. В качестве импульсного трансформатора используется типовой понижающий трансформатор из компьютерного блока питания.

импульсный блок питания своими руками

На входе стоит PTC термистор– полупроводниковый резистор с положительным температурным коэффициентом, который резко увеличивает свое сопротивление, когда превышена некоторая характеристическая температура TRef. Защищает силовые ключи в момент включения на время зарядки конденсаторов.

Диодный мост на входе для выпрямления сетевого напряжения на ток 10А. Использована диодная сборка типа “вертикалка”, но можно использовать диодную сборку типа “табуретка”.

Пара конденсаторов на входе берется из расчета 1 мкф на 1 Вт. В нашем случае конденсаторы “вытянут” нагрузку в 220Вт.

Гасящее сопротивление в цепи питания драйвера мощностью 2 Вт. Предпочтение отдано отечественным резисторам типа МЛТ-2.

Драйвер IR2151 – для управления затворами полевых транзисторов, работающих под напряжением до 600В. Возможная замена на IR2152, IR2153. Если в названии есть индекс “D”, например IR2153D, то диод FR107 в обвязке драйвера не нужен. Драйвер поочередно открывает затворы полевых транзисторов с частотой, задаваемой элементами на ножках Rt и Ct.

Полевые транзисторы используются предпочтительно фирмы IR . Выбирают на напряжение не менее 400В и с минимальным сопротивлением в открытом состоянии. Чем меньше сопротивление, тем меньше нагрев и выше КПД. Можно рекомендовать IRF740, IRF840 и пр. Справочник по полевым транзисторам фирмы IR на русском языке можно скачать здесь. Внимание! Фланцы полевых транзисторов не закорачивать; при монтаже на радиатор использовать изоляционные прокладки и шайбы-втулки.

Трансформатор типовой понижающий из блока питания компьютера. Как правило, цоколевка соответствует приведенной на схеме. В этой схеме работают и самодельные трансформаторы, намотанные на ферритовых торах. Расчет самодельных трансформаторов ведется на частоту преобразования 100 кГц и половину выпрямленного напряжения (310/2 = 155В).

При выборе трансформатора следует брать такой, у которого на родной плате закорочены вывода так, как это показано на схеме. Это важно. Иначе вам следует закротить как это сделано на плате, из которой вы демонтируете трансформатор.

Диоды на выходе с временем восстановления не более 100 нс. Этим требованиям отвечают диоды из семейства HER (High Efficiency Rectifier – высоко-эффективные выпрямительные). Не путать с диодами Шоттки.

Емкость на выходе – буферная емкость. Не следует устанавливать емкость более 10000 мкф.

Печатная плата

импульсный блок питания своими руками Практика показала, что в данном приложении не требуется специальной организации обратной связи, индуктивных фильтров по питанию, снабберов и прочих “наворотов”, присущих импульсным преобразователям. Так или иначе, в звуке на слух не ощущается типичных дефектов, свойственных “плохому питанию” (фон и посторонние звуки).

В работе полевые транзисторы не сильно нагреваются.

Для них достаточно пассивного охлаждения. Полевые транзисторы фирмы IR очень устойчивы к тепловому разрушению и работают вплоть до температуры 150?С. Но это не означает, что их следует эксплуатировать в таком критическом режиме. Для таких случаев потребуется организация активного охлаждения, а по-простому, установить вентилятор.

Как и любое устройство, этот блок питания требует внимательной и аккуратной сборки, правильной установки полярных элементов и осторожности при работе с сетевым напряжением. После ВЫключения данного блока питания в его цепях не остается опасного напряжения. Правильно собранный блок питания не нуждается в настройке и налаживании.

Схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт (IR2153, IR2155)

Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует.

Описаний методик расчетов типовых трансформаторов более чем достаточно. Поэтому здесь предлагается описание импульсного источника питания, который может использоваться как с усилителями на базе TDA7293 (TDA7294), так и с любым другим усилителем мощности ЗЧ как на микросхемах,так и на транзисторах.

Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания.

Принципиальная схема

Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2.

Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.

Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор ТV2.

Функциональная схема микросхем IR2153, IR2155

Рис. 1. Функциональная схема микросхем IR2153, IR2155.

Емкость конденсатора С2 выбирается из расчета 1… 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150…220 мкФ.

Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4…6А, например RS407 или RS607.

При емкости конденсаторов 470… 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.

Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно.

Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.

Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования.

Изготавливать трансформатор для частот ниже 40 кГц не очень логично – гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами.

Графики зависимости выходной частоты от номиналов RC-задающей цепочки для микросхемы IR2153

Рис. 2. Графики зависимости выходной частоты от номиналов RC-задающей цепочки для микросхемы IR2153.

В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит.

Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В – сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения.

Принципиальная схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт

Рис. 3. Принципиальная схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт.

Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.

Таблица приведена до мощностей 2400 Вт (на будущее, для более мощных вариантов схем блока питания).

Таблица 1.

  тип   40кГц 50кГц 60кГц 70кГц 80кГц 90кГц 100кГц
ДЛЯ КОЛЬЦА К40х25х11
1 кольцо К40х25х11 мощность 100 130 160 175 200 220 250
витки 180 145 120 105 90 80 72
2 КОЛЬЦА К40х25х22 мощность 200 230 280 330 370 420 470
витки 90 72 60 52 45 40 36
 
ДЛЯ КОЛЬЦА К45х28х8
1 КОЛЬЦО К45х28х8 мощность 110 135 150 180 200 230 240
витки 217 174 145 124 110 97 87
2 КОЛЬЦА К45х28х16 мощность

Импульсный источник питания для TDA7294 на IR2153

Приспичило как-то мне собрать усилитель на TDA7294. Причем собрать нужно было как можно скорее. День рождения был на носу, и планировалось отметить его на открытом воздухе, под звуки, испускаемые моими раритетными колонками Радиотехника S30.

Усилитель собран был незамедлительно. Кому интересно, читайте статью “Усилитель НЧ на TDA7294”. Пришло время сборки импульсного источника питания. Крайне важны были малые габариты источника.

Была выбрана наипростейшая схема импульсного источника питания на ir2153.

В интернете полно аналогичных схем чуть-чуть отличающихся друг от друга. Схемы не все рабочие, что в сети. Это я тоже не сразу понял, поэтому, немного намучился. Приведенная мною схема полностью рабочая. Соблюдая все номиналы данной схемы, и используя мою печатную плату, сэкономите время на исправлении своих и чужих ошибок.

Более сложный аналог данной схемы описан в статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт”. Эту схему отличает наличие блока защиты от перегрузок и плавный запуск.

Простота схемы ИИП для TDA7294 на ir2153 позволяет новичкам с легкостью повторить её. Еще один плюс, это габариты. Плата импульсного источника питания имеет размеры 80мм в ширину и 80мм в высоту.

Принцип работы схемы.
Как работает блок питания на ir2153 описано в статье “Импульсный блок питания для усилителя НЧ на ir2153 мощностью 300Вт”.

На принципиальной схеме не нарисован варистор, но в печатной плате он есть. В принципе его можно не ставить, так как роли почти не играет, он служит защитой от скачков напряжения в сети (никаких перемычек не нужно впаивать, просто не ставим варистор и все).

Термистор NTC при первом включении ограничивает скачок тока, при зарядке сетевых и выходных электролитов, через некоторое время он нагревается и его сопротивление уменьшается. Простая, но не совсем надежная защита. При повторном включении, когда термистор нагретый, защита уже не эффективна. Но как показала практика, блок питания надежен и не выходит из строя, как пишут некоторые люди в комментариях.

Времязадающие элементы R2 и C3 выбраны таким образом, чтобы драйвер обеспечивал генерацию импульсов с частотой около 70 кГц. Программа для расчета R2 и C3 находится под статьей, можете рассчитать под нужную вам частоту.

Элементы.

ОБОЗНАЧЕНИЕТИПНОМИНАЛКОЛИЧЕСТВОКОММЕНТАРИЙ
Драйвер питанияIR21531
VT1,VT2MOSFET – транзисторIRF7402
VDS1Диодный мостRS60716А 1000В
VDR1ВаристорMYG14-4311Можно не ставить
NTCТермистор5D-91Или другой на 5Ом
R1Резистор 2Вт18кОм1
R2Резистор 0,25ВтHER10810кОм
R3,R4Резистор 0,25Вт33 Ом2
C1,C2Электролит220мкФ 220В2
C3Конденсатор неполярный1нФ1Керамика любое напряж.
C4Конденсатор неполярный0,1 мкФ1Керамика любое напряж.
C5Электролит220мкФ 16В1
C6Конденсатор неполярный0,33 мкФ1Керамика любое напряж.
C7Конденсатор неполярный1мкФ 400В1Пленка
C8-C9Электролит470 мкФ 50В2
C10-C11Конденсатор неполярный0,1 мкФ2Пленка
VD1ДиодHER1081
VD2Импульсный диодFR107,FR1571Любой другой импульсный
VD3-VD6Диод ШотткиКД213А4

Список компонентов в PDF формате СКАЧАТЬ

Трансформатор.
Самым трудным этапом сборки является расчёт и напитка импульсного трансформатора. Подробно рассказывать про технологию расчёта и намотки транса я не буду, так как уже рассказывал ранее, читайте статью ”Расчет и намотка импульсного трансформатора”. Также рекомендую прочесть статью “Как перемотать трансформатор из блока питания ПК

На этом этапе поделюсь немного опытом. В статье, ссылка на которую расположена чуть выше, описан метод намотки вторички с отводом от середины, сдвоенным проводом (если по расчетам вторичка имеет одну жилу) а потом соединении их в среднюю точку. Это дает синхронность, то есть, в обоих плечах будет одинаковое напряжение. Вторичная обмотка трансформатора для этого устройства должна иметь две жилы диаметром 0,85 мм, чтобы обеспечить нужную нам мощность (по моим расчетам, у вас может иметь и одну жилу).

Поэтому, если мотать методом из статьи выше, то пришлось бы мотать сразу 4-мя проводами, это крайне неудобно.

Я решил мотать двумя проводами, то есть, сначала мотал одно плечо двумя проводами, потом изоляция и далее второе плечо двумя проводами.

Таким способом советуют не мотать, из-за не синхронной намотки будет разное напряжение. У меня же получилось совсем одинаковое напряжение, и мотать мне было легче, бублик маленький.

Ниже я приведу некоторые намоточные данные.

Диаметр провода и первичной и вторичной обмотки 0,85 мм. Магнитопровод склеен из двух колец размером 28мм*16мм*9мм и магнитной проницаемостью 2000НМ.

Первичная обмотка содержит 39 витков, хотя по расчетам было сорок с копейками, ноне влезли они. Вследствие чего, пришлось уменьшить количество витков вторичной обмотки, относительно расчетов.

Итак, вторичная обмотка содержит 8 + 8 витков. Это значит 8 витков, далее отвод (это будет средняя точка), изоляция, потом еще 8 витков.

Вторичная обмотка мотается двумя жилами диаметром 0,85 мм.

(мотаем 8 витков вторички)

(кладем изоляцию)

(скручиваем концы)

(соединяем конец 8-го витка с проводом, чтобы сделать отвод, и мотаем еще 8 витков в ту же сторону)

Изоляцию берем по вкусу (тряпочную изоленту, киперную или ФУМ ленту, лавсановую пленку или скотч). Я использую лавсановую пленку из обрезков витой пары.

Все обмотки должны мотаться в одном выбранном вами направлении.

Охлаждение.

Радиатором для ключей у меня является передняя панелька усилителя. Исполнена она из дюрали, высота 47мм, ширина 92мм, толщина 7мм. При испытаниях и дальнейшей эксплуатации одного канала TDA7294, ключи теплые, не горячие.

Ключи установлены на радиатор через силиконовые прокладки и диэлектрические втулки.

Шоттки без радиаторов. Греются не сильно, опять же при эксплуатации одного канала, трансформатор не горячий.

Сборка данной схемы на трансформаторе от блока питания персонального компьютера описана в статье “Самый простой двухполярный ИИП”.

Список компонентов для ИИП на IR2153 СКАЧАТЬ

Печатная плата ИИП на IR2153 СКАЧАТЬ

Даташит на IR2153 СКАЧАТЬ

Калькулятор расчета времязадающих элементов IR2153 СКАЧАТЬ


Похожие статьи

Упрощенный мост на IR2153 – эффективная схема преобразователя

Упрощенный мост на IR2153

Упрощенный мост на IR2153 — такое устройство как мост реализованный на универсальном драйвере для управления полевыми транзисторами, справедливо считается одним из наиболее эффективных модулей преобразователя. Но, чтобы собрать такой прибор потребуются существенные денежные вложения, а также нужно учитывать технологический уровень сложности при его изготовлении. Это если вы собираетесь взяться за конструирование высоко мощного моста на несколько киловатт, тогда да, будут некоторые затруднения.

А вот если воспользоваться приведенной ниже схемой, то никаких проблем не будет, тем более устройство собрано на двух популярных чипах IR2153 , представляющих собой высоковольтные драйвера с внутренним генератором. Принцип включения микросхем обычный и неоднократно тестировался на полумосте. Особенность вызывает первоочередное тактирование второй микросхемы от R-входа.

Упрощенный мост на IR2153-2Упрощенный мост на IR2153-2

Номинальные значения электронных компонентов:

B1 — диодный мост RS2007, RS3507 и тому подобные. При эксплуатации на мощностях более пары сотен ватт необходимо поставить на него радиатор.
C1, C7 — электролиты 630…1000мкФ х 400В
R1, R5 — 33..56кОм 2Вт. Для более точного расчета можете воспользоваться формулой
R=310/(2*Cзатвора*15.6*fраб+0.003)
C2, C5 — электролиты 220мкФ 25В
C8, C9 — керамика 0.1мкФ 25В
R8 — 2Ом 0.25Вт
R9 — 24кОм
R10 — 6кОм
R2, C3 — рассчитываются по даташиту на IR2153 исходя из требуемой частоты
IC1, IC2 — IR2153, IR2153D, IR21531 (если применяется IR2153D то D1 и D2 не ставить!)
D1, D2, D3, D4 — UF4007, BYW26C, BY329 или другие подобные ультрабыстрые диоды
C4, C6 — танталовые 22мкФ 25В
R3, R4, R6, R7 — 10…30Ом 0.25Вт (меньшее значение для тяжелых затворов, большее — для легких)
Q1, Q2, Q3, Q4 — IRF840 или что-то подобное. Все зависит от ваших потребностей

Насчет расчетов например: R2,С3 как сказано выше, нужно определять по даташиту, к тому же есть множество программ для расчета. Если для кого то это дремучий лес то я считаю, тогда и не надо вообще браться за конструирование.

Ниже показана печатная плата с нанесенной на нее обозначениями деталей и их места установки.

Упрощенный мост на IR2153-3Упрощенный мост на IR2153-3

Упрощенный мост на IR2153-4Упрощенный мост на IR2153-4

В качестве нагрузки данного моста могут послужить выходной трансформатор строчной развертки телевизора, SSTC-катушка либо что-то аналогичное им, но мощность не должна превышать 1000 Вт. Если использовать большие мощности, то нет никакой гарантии в стабильной работе микросхемы. Если же все таки возникает необходимость реализовать высокие мощности, то тогда необходимо добавить емкость конденсаторов в цепи фильтров 310v, то тогда существует вероятность, что будет прекрасно работать и на высокой мощности.

Техническая информация

1. Когда осуществляется запуск, то создается сильный импульсный бросок тока в следствии происходящего цикла зарядки конденсаторов в цепи фильтра. При этом возможно срабатывание автоматов, если такое происходит, то нужно в сетевую цепь установить NTC-термистор, который применяется для защиты импульсных питающих источников и электронных балластных систем, предварительно подобрав его значения по необходимому току.
2. При подключении к мосту в качестве нагрузки выходной строчный трансформатор, то первичную обмотку нужно наматывать в количестве 65 витков не меньше.
3. При компоновке элементов на печатную плату, лучше всего под микросхемы нужно будет устанавливать панельки, а в них уже помещать саму микросхему после полного завершения монтажа схемы.

Тестирование на практике:

Упрощенный мост на IR2153-5Упрощенный мост на IR2153-5

Импульсный блок питания на IR2153

Приветствую, Самоделкины!
В данной статье мы вместе с Романом (автором YouTube канала «Open Frime TV») соберем универсальный блок питания на микросхеме IR2153. Это некий «франкенштейн», который содержит в себе лучшие качества из разных схем.

В интернете полно схем блоков питания на микросхеме IR2153. Каждая из них имеет некие положительные особенности, но вот универсальной схемы автор еще не встречал. Поэтому было принято решение создать такую схему и показать ее вам. Думаю, можно сразу к ней перейти. Итак, давайте разбираться.

Первое, что бросается в глаза, это использование двух высоковольтных конденсаторов вместо одного на 400В. Таким образом мы убиваем двух зайцев. Эти конденсаторы можно достать из старых блоков питания от компьютера, не тратя на них деньги. Автор специально сделал несколько отверстий в плате под разные размеры конденсаторов.

Если же блока нету в наличии, то цены на пару таких конденсаторов ниже чем на один высоковольтный. Емкость конденсаторов одинакова и должна быть из расчета 1 мкФ на 1 Вт выходной мощности. Это означает, что для 300 Вт выходной мощности вам потребуется пара конденсаторов по 330 мкФ каждый.


Также, если использовать такую топологию, отпадает потребность во втором конденсаторе развязки, что экономит нам место. И это еще не все. Напряжение конденсатора развязки уже должно быть не 600 В, а всего лишь 250В. Сейчас вы можете видеть размеры конденсаторов на 250В и на 600В.


Следующая особенность схемы, это запитка для IR2153. Все кто строил блоки на ней сталкивались нереальным нагревом питающих резисторов.


Даже если их ставить от переменки, количество тепла выделяется очень много. Тут же применено гениальное решение, использование вместо резистора конденсатор, а это нам дает то, что нагрев элемента по питанию отсутствует.

Такое решение автор данной самоделки увидел у Юрия, автора YouTube канала “Red Shade”. Также плата оснащена защитой, но в первоначальном варианте схемы ее не было.

Но после тестов на макете выяснилось, что для установки трансформатора слишком мало места и поэтому схему пришлось увеличить на 1 см, это дало лишнее пространство, на которое автор установил защиту. Если она не нужна, то можно просто поставить перемычки вместо шунта и не устанавливать компоненты, отмеченные красным цветом.


Ток защиты регулируется с помощью вот этого подстроечного резистора:

Номиналы резисторов шунта изменяетюся в зависимости от максимальной выходной мощности. Чем больше мощность, тем меньше нужно сопротивление. Вот к примеру, для мощности ниже 150 Вт нужны резисторы на 0,3 Ом. Если мощность 300 Вт, то нужны резисторы на 0,2 Ом, ну и при 500 Вт и выше ставим резисторы с сопротивлением 0,1 Ом.

Данный блок не стоит собирать мощностью выше 600 Вт, а также нужно сказать пару слов про работу защиты. Она тут икающая. Частота запусков составляет 50 Гц, это происходит потому, что питание взято от переменки, следовательно, сброс защелки происходит с частотой сети.


Если вам нужен защелкивающийся вариант, то в таком случае питание микросхемы IR2153 нужно брать постоянное, а точнее от высоковольтных конденсаторов. Выходное напряжение данной схемы будет сниматься с двухполупериодного выпрямителя.

Основным диодом будет диод Шоттки в корпусе ТО-247, ток выбираете под ваш трансформатор.

Если же нет желания брать большой корпус, то в программе Layout его легко поменять на ТО-220. По выходу стоит конденсатор на 1000 мкФ, его с головой хватает для любых токов, так как при больших частотах емкость можно ставить меньше чем для 50-ти герцового выпрямителя.


Также необходимо отметить и такие вспомогательные элементы как снабберы (Snubber) в обвязке трансформатора;

сглаживающие конденсаторы;

а также Y-конденсатор между землями высокой и низкой стороны, который гасит помехи на выходной обмотке блока питания.

Про данные конденсаторы есть отличный ролик на Ютубе (ссылку автор прикрепил в описании под своим видеороликом (ссылка ИСТОЧНИК в конце статьи)).

Нельзя пропускать и частотозадающую часть схемы.

Это конденсатор на 1 нФ, его номинал автор не советует менять, а вот резистор задающей части он поставил подстроечный, на это были свои причины. Первая из них, это точный подбор нужного резистора, а вторая – это небольшая корректировка выходного напряжения с помощью частоты. А сейчас небольшой пример, допустим, вы изготавливаете трансформатор и смотрите, что при частоте 50 кГц выходное напряжение составляет 26В, а вам нужно 24В. Меняя частоту можно найти такое значение, при котором на выходе будут требуемые 24В. При установке данного резистора пользуемся мультиметром. Зажимаем контакты в крокодилы и вращая ручку резистора, добиваемся нужного сопротивления.


Сейчас вы можете видеть 2-е макетные платы, на которых производились испытания. Они очень похожи, но плата с защитой немного больше.

Макетки автор делал для того, чтобы со спокойной душой заказать изготовление данной платы в Китае. В описании под оригинальным видеороликом автора, вы найдете архив с данной платой, схемой и печаткой. Там будет в двух платках и первый, и второй варианты, так что можете скачивать и повторять данный проект.

После заказа автор с нетерпением ждал платы, и вот они уже приехали. Раскрываем посылку, платы достаточно хорошо упакованы – не придерешься. Визуально осматриваем их, вроде все отлично, и сразу же приступаем к запайке платы.


И вот она уже готова. Выглядит все таким образом. Сейчас быстренько пройдемся по основным элементам ранее не упомянутым. В первую очередь это предохранители. Их тут 2, по высокой и низкой стороне. Автор применил вот такие круглые, потому что их размеры весьма скромные.


Далее видим конденсаторы фильтра.

Их можно достать из старого блока питания компьютера. Дроссель автор мотал на кольце т-9052, 10 витков проводом 0,8 мм 2 жилы, но можно применить дроссель из того же компьютерного блока питания.
Диодный мост – любой, с током не меньше 10 А.

Еще на плате имеются 2 резистора для разрядки емкости, один по высокой стороне, другой по низкой.


Ну и остается дроссель по низкой стороне, его мотаем 8-10 витков на таком же сердечнике, что и сетевой.
Как видим, данная плата рассчитана под тороидальные сердечники, так как они при одинаковых размерах с Ш-образными, имеют большую габаритную мощность.

Настало время протестировать устройство. Пока основным советом является производить первое включение через лампочку на 40 Вт.


Если все работает в штатном режиме лампу можно откинуть. Проверяем схему на работу. Как видим, выходное напряжение присутствует. Проверим как реагирует защита. Скрестив пальцы и закрыв глаза, коротим выводы вторички.

Как видим защита сработала, все хорошо, теперь можно сильнее нагрузить блок. Для этого воспользуемся нашей электронной нагрузкой. Подключим 2 мультиметра, чтоб мониторить ток и напряжение. Начинаем плавно поднимать ток.


Как видим при нагрузке в 2А, напряжение просело незначительно. Если поставить мощнее трансформатор, то просадка уменьшится, но все равно будет, так как этот блок не имеет обратной связи, поэтому его предпочтительнее использовать для менее капризных схем.

А на этом все. Благодарю за внимание. До новых встреч!

Видео:


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь. 90000 Switching power supply for UMZCH on IR2153 (200-500W) – Meander – entertaining electronics 90001 90002 I present to you a switching power supply for UMZCH on the popular chip IR2153. 90003 90002 This power unit has the following advantages: 90005 – Protection against overload and short circuit in the primary winding of the pulse transformer, and secondary power circuits. 90005 – Driving a smooth start-ups. 90005 – The varistor protects the input to the UPS by raising the line voltage value above a dangerous and from the input feed 380.90005 – A simple and cheap circuit. 90003 90002 The main technical characteristics of the UPS (Specifications are for my particular instance): 90005 Rated power output – 200W (to 500W with a more powerful transformer) 90005 Software power output – 300W (to 700W with a more powerful transformer) 90005 operating frequency – 50kHz 90005 Output voltage – 2h45V (can be obtained any desired output voltage depending on the winding of the transformer). 90005 KPD – no less 90% (It depends on the transformer) 90003 90002 Management of the UPS is the standard and is taken directly from the datasheet on IR2153.90005 UPS circuit includes also: protection against overloads and short-circuit. The protection can be set to any desired operating current using a trimmer – R10. About the protection operation indicates the glow LED HL1. With active protection, in the emergency status of the UPS can be located anywhere as long, if it consumes current is the same as the idling no load. In my version of the protection is set to operate at a power consumption of 300W UPS and more. This ensures that, UPS will not be overloaded and will not fail due to overheating.As the current sensor used in this circuit the resistors in series with the primary winding of the pulse transformer. This eliminates the time-consuming process of winding of the current transformer. Short-circuit or overload, when the voltage drop across R11 reaches a predetermined value, such a value at which the voltage on the base of VT1 becomes greater 0,6 – 0,7AT, work circuit protection and power will be bridged to the ground . Which in turn disables the driver and all the PD as a whole. As soon as the overload or short-circuit is eliminated, Driver power supply is resumed, and the power supply continues to work in the normal mode.90003 90002 UPS circuit provides a smooth start, a special unit is present for this UPS, which limits the starting current. This is necessary in order, keys to facilitate operation at UPS startup. When you connect the UPS to the network, the inrush current limiting resistor R6. Via this resistor a current flows WHOLE. This main current charging capacitance C10 primary and secondary container. All this happens in a matter of seconds, and when charging is complete, and current consumption is reduced to the nominal value, there is a contact closure relays K1 and relay shunt R6, thus launching UPS at full capacity.The whole process takes no more than 1 seconds. This is enough time to complete all the transients. 90003 90002 The driver is powered directly from the mains, through a diode and resistor suppressant, and not after the main rectifier from bus + 310B as it is usually done. Such a method of powering gives us several advantages: 90003 90002 1. Reduces the power dissipation in the damping resistor. Which reduces the heat on the board, and increases the overall efficiency of the circuit. 90005 2.As distinguished from the powering bus + 310B provides a lower level driver supply voltage ripple. 90003 90002 In the power supply input, immediately after the fuse is mounted varistor. It serves for protection from higher voltage is above a dangerous limit. When an accident varistor resistance drops dramatically and is short-circuited, in consequence of which blows fuse F1, thereby opening the circuit. 90003 90002 This is how I tested the UPS at full power. 90003 90002 The load in my favor 4 ceramic, wire power resistor 25W, submerged in a container “crystal clear” water.After an hour of passing current through such water all impurities float upward and pure water turns to brown, ržavuû focus. The water evaporates vigorously and hour of heated to near boiling. Water is essential for heat removal from power resistor, if someone does not understand. 90003 90002 Transformer in my version of UPS, wound around the core EPCOS ETD29. The primary winding wire 0,8mm2, 46 turns in two layers. All four secondary windings are wound with the same wire in one layer of 12 turns.It could seem, that the wire size is not enough, but it is not. To operate the UPS powered UMZCH this is enough, since the average power consumption is significantly lower than the maximum, and short-term peaks of the UPS output current can easily work out at the expense of food containers. When long-term work on the resistor, at 200W output power, transformer temperature is not exceeded 45 degrees. 90003 90002 To increase the output voltage of 45V must be replaced more output diodes VD5 VD6 at a high.90003 90002 To increase the output power must be used with greater dimensional core power and windings, wound with heavy gauge wire. To install another transformer will have to change the pattern of the PCB. 90003 90002 The printed circuit board as a finished product looks like (performed loot): 90003 90002 Board dimensions 188h88mm. I used a PCB with thick copper – 50m, instead of the standard 35mkm. It is possible to use standard copper thickness. In any case remember to properly track proludit.90003 90043 90044 list of radio 90045 90046 90005 90005 90005 90050 90051 90052 90053 designation 90054 90053 Type of 90054 90053 nominal 90054 90053 amount 90054 90053 Note 90054 90063 90064 90065 90052 90067 90068 Power MOSFET and driver 90069 90068 90002 IR2153D 90003 90069 90068 1 90069 90076 90063 90052 90079 VT1 90054 90068 Bipolyarnиy transistor 90069 90068 90002 2N5551 90003 90069 90068 1 90069 90076 90063 90052 90079 VT2 90054 90068 Bipolyarnиy transistor 90069 90068 90002 2N5401 90003 90069 90068 1 90069 90076 90063 90052 90079 VT3 90054 90068 Bipolyarnиy transistor 90069 90068 90002 KSP13 90003 90069 90068 1 90069 90068 or MPSA13 90069 90063 90052 90079 VT4, VT5 90054 90068 MOSFET-transistor 90069 90068 90002 IRF740 90003 90069 90068 2 90069 90076 90063 90052 90079 VD2, VD4 90054 90068 rectifier diode 90069 90068 90002 HER108 90003 90069 90068 2 90069 90068 Or other fast diode 90069 90063 90052 90079 VD3 90054 90068 rectifier diode 90069 90068 90002 1N4148 90003 90069 90068 1 90069 90076 90063 90052 90079 VD5, VD6 90054 90068 Schottky diode 90069 90068 90002 MBR20100CT 90003 90069 90068 2 90069 90068 Or another at appropriate voltage and current 90069 90063 90052 90079 R5 90054 90068 resistor 0,25Vt 90069 90068 47 k 90069 90068 1 90069 90076 90063 90052 90079 R4, R7 90054 90068 resistor 0,25Vt 90069 90068 15 k 90069 90068 2 90069 90076 90063 90052 90079 R3 90054 90068 resistor 0,25Vt 90069 90068 100 ohm 90069 90068 1 90069 90076 90063 90052 90079 R1 90054 90068 resistor 0,25Vt 90069 90068 8.2 k 90069 90068 1 90069 90076 90063 90052 90079 R8, R9 90054 90068 resistor 0,25Vt 90069 90068 33 ohm 90069 90068 2 90069 90076 90063 90052 90079 R2 90054 90068 2W resistor 90069 90068 18 k 90069 90068 1 90069 90076 90063 90052 90079 R11, R11 90054 90068 2W resistor 90069 90068 0,2 ohm 90069 90068 2 90069 90076 90063 90052 90079 R6 90054 90068 2W resistor 90069 90068 22 ohm 90069 90068 1 90069 90076 90063 90052 90079 C4, C5, C7 90054 90068 Electrolyte 90069 90068 220 16B uF x 90069 90068 3 90069 90076 90063 90052 90079 C10 90054 90068 Electrolyte 90069 90068 330 uF x 400V 90069 90068 1 90069 90076 90063 90052 90079 C13, P14, C15, Cl6 90054 90068 Electrolyte 90069 90068 1000 63B uF x 90069 90068 4 90069 90076 90063 90052 90079 C1, C3, S17, C18 90054 90068 non-polar capacitor 90069 90068 100 nF x 400V X2 90069 90068 4 90069 90076 90063 90052 90079 C2 90054 90068 non-polar capacitor 90069 90068 470 nF x 400V 90069 90068 1 90069 90076 90063 90052 90079 C11, C12 90054 90068 non-polar capacitor 90069 90068 1 uF x 400V 90069 90068 2 90069 90076 90063 90052 90079 C6, C8 90054 90068 non-polar capacitor 90069 90068 1 NF 90069 90068 2 90069 90068 ceramic 90069 90063 90052 90079 C9 90054 90068 non-polar capacitor 90069 90068 680 NF 90069 90068 1 90069 90068 Ceramic 90069 90063 90052 90079 R10 90054 90068 resistor trimming 90069 90068 3.3 k 90069 90068 1 90069 90068 multi 90069 90063 90052 90079 HL1 90054 90068 Light-emitting diode 90069 90068 red 5mm 90069 90068 1 90069 90068 only red! Other colors are not permitted! 90069 90063 90052 90079 VDS1 90054 90068 rectifier diode 90069 90068 90002 1N4007 90003 90069 90068 4 90069 90076 90063 90052 90079 VDS2 90054 90068 Diode bridge 90069 90068 RS607 90069 90068 1 90069 90076 90063 90052 90079 VD1 90054 90068 zener diode 90069 90068 1N4743 90069 90068 1 90069 90068 13In 1.3Vt 90069 90063 90052 90079 VDR1 90054 90068 varistor 90069 90068 MYG14-431 90069 90068 1 90069 90076 90063 90052 90079 K1 90054 90068 Relay 90069 90068 Tianba HJR-3FF-S-Z 90069 90068 1 90069 90068 12V coil 400Om 90069 90063 90433 90434 .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *