Цифровые микросхемы транзисторы.
Поиск по сайту
Микросхемы ТТЛ (74…).
На рисунке показана схема самого распространенного логического элемента — основы микросхем серии К155 и ее зарубежного аналога — серии 74. Эти серии принято называть стандартными (СТТЛ). Логический элемент микросхем серии К155 имеет среднее быстродействие tзд,р,ср.= 13 нс. и среднее значение тока потребления Iпот = 1,5…2 мА. Таким образом, энергия, затрачиваемая этим элементом на перенос одного бита информации, примерно 100 пДж.
Для обеспечения выходного напряжения высокого уровня U1вых. 2,5 В в схему на рисунке потребовалось добавить диод сдвига уровня VD4, падение напряжения на котором равно 0,7 В. Таким способом была реализована совместимость различных серий ТТЛ по логическим уровням. Микросхемы на основе инвертора, показанного на рисунке (серии К155, К555, К1533, К1531, К134, К131, К531), имеют очень большую номенклатуру и широко применяются.
ТТЛ серия | Параметр | Нагрузка | ||||
---|---|---|---|---|---|---|
Российские | Зарубежные | Pпот. мВт. | tзд.р. нс | Эпот. пДж. | Cн. пФ. | Rн. кОм. |
К155 КМ155 | 74 | 10 | 9 | 90 | 15 | 0,4 |
К134 | 74L | 1 | 33 | 33 | 50 | 4 |
К131 | 74H | 22 | 6 | 132 | 25 | 0,28 |
К555 | 74LS | 2 | 9,5 | 19 | 15 | 2 |
К531 | 74S | 19 | 3 | 57 | 15 | 0,28 |
К1533 | 74ALS | 1,2 | 4 | 4,8 | 15 | 2 |
К1531 | 74F | 4 | 3 | 12 | 15 | 0,28 |
При совместном использовании микросхем ТТЛ высокоскоростных, стандартных и микромощных следует учитывать, что микросхемы серии К531 дают увеличенный уровень помех по шинам питания из-за больших по силе и коротких по времени импульсов сквозного тока короткого замыкания выходных транзисторов логических элементов. При совместном применении микросхем серий К155 и К555 помехи невелики.
Нагружаемый выход |
Число входов-нагрузок из серий | ||
---|---|---|---|
К555 (74LS) | К155 (74) | К531 (74S) | |
К155, КM155, (74) | 40 | 10 | 8 |
К155, КM155, (74), буферная | 60 | 30 | 24 |
К555 (74LS) | 20 | 5 | 4 |
К555 (74LS), буферная | 60 | 15 | 12 |
К531 (74S) | 50 | 12 | 10 |
К531 (74S), буферная | 150 | 37 | 30 |
Выходы однокристальных, т.
Параметр | Условия измерения | К155 | К555 | К531 | К1531 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Мин. | Тип. | Макс. | Мин. | Тип. | Макс. | Мин. | Тип. | Макс. | Мин. | Макс. | ||
U1вх, В схема |
U1вх или U0вх Присутствуют на всех входах | 2 | 2 | 2 | 2 | |||||||
U0вх, В схема |
0,8 | 0,8 | 0,8 | |||||||||
U0вых, В схема | Uи.п.= 4,5 В | 0,4 | 0,35 | 0,5 | 0,5 | 0,5 | ||||||
I0вых= 16 мА | I0вых= 8 мА | I0вых= 20 мА | ||||||||||
U1вых, В схема |
Uи. п.= 4,5 В | 2,4 | 3,5 | 2,7 | 3,4 | 2,7 | 3,4 | 2,7 | ||||
I1вых= -0,8 мА | I1вых= -0,4 мА | I1вых= -1 мА | ||||||||||
I1вых, мкА с ОК схема | U1и.п.= 4,5 В, U1вых=5,5 В | 250 | 100 | 250 | ||||||||
I1вых, мкА Состояние Z схема |
U1и.п.= 5,5 В, U1вых= 2,4 В на входе разрешения Е1 Uвх= 2 В | 40 | 20 | 50 | ||||||||
I0вых, мкА Состояние Z схема |
U1и. п.= 5,5 В, Uвых |
-40 | -20 | -50 | ||||||||
I1вх, мкА схема | U1и.п.= 5,5 В, U1вх= 2,7 В | 40 | 20 | 50 | 20 | |||||||
I1вх, max, мА | U1и.п.= 5,5 В, U1вх= 10 В | 1 | 0,1 | 1 | 0,1 | |||||||
I0вх, мА схема |
U1и.п.= 5,5 В, U0вх= 0,4 В | -1,6 | -0,4 | -2,0 | -0,6 | |||||||
Iк. з., мА | U1и.п.= 5,5 В, U0вых= 0 В | -18 | -55 | -100 | -100 | -60 | -150 |
Многоканальный шифратор на триггерах К561ТВ1
Принципиальная схема экономичного шифратора на базе микросхем, выполненных по технологии КМОП. Ток потребления четырех-канального варианта не превышает 1,7 мА.
Принципиальная схема
Его схема приведена на рис. 1. Тактовый генератор собран на элементах DD1.1, DD1.2 по традиционной схеме. Требуемый период повторения командных посылок устанавливается подбором величины резистора R1.
Основой формирователей канальных импульсов являются JK-триггеры К561ТВ1. Для выяснения принципа их работы в качестве ждущих мультивибраторов необходимо разобраться с их собственными возможностями.
Прежде всего отметим, что каждый корпус микросхемы содержит по два одинаковых триггера. Каждый триггер имеет синхронные входы «J» и «К», сигналы на которых изменяют состояние выходов «Q» и «Q» только по приходу положительного перепада напряжения на тактовый вход «С».
Отрицательный перепад на этом входе на состояние триггера не влияет. Асинхронные входы «S» и «R» не нуждаются в подаче тактовых импульсов и определяют состояние выходов триггера непосредственно.
Для используемого варианта включения, когда на входы «S» всегда принудительно подключен корпус (логический 0), подача высокого уровня на вход «R», вне зависимости от комбинации сигналов на других входах, приведет к установлению низкого уровня на выходе «Q».
Рис. 1. Принципиальная схема многоканального шифратора на триггерах К561ТВ1.
Когда же на входе «R» низкий потенциал, состояние триггера будет определяться только сигналами входов «J» и «К». Вход «J» в схеме постоянно подключен к плюсу источника, а вход «К» — к корпусу. В таком состоянии до прихода тактового импульса на вход «С» на выходе «Q» будет низкий потенциал, а по положительному перепаду на входе он скачком изменится на высокий.
Принцип действия
Перейдем к рассмотрению процедуры формирования канальных импульсов на примере первого ждущего мультивибратора, собранного на DD2.2. В исходном состоянии (после окончания предыдущей командной посылки) напряжение на тактовом входе «С2» (рис. 2, а) низкое.
Поскольку на входе «J2» высокий потенциал, а «К2» соединен с корпусом, на выходе «Q2» логический О (рис. 2, б). Наличие диода VD2 обеспечивает низкий потенциал и на входе «R2» (рис. 2, г).
На инверсном выходе «Q 2» потенциал всегда противоположен потенциалу прямого выхода (рис. 2, в). Конденсатор С5, очевидно, заряжен до напряжения питания (положительный потенциал на верхней по схеме обкладке).
С приходом положительного перепада на вход «С2» (момент времени t|) напряжение на выходе «Q2» скачком меняется на высокое. Конденсатор С5 начинает от этого напряжения перезаряжаться через резистор R3, напряжение на его нижней обкладке (а значит и на входе «R2») растет практически линейно (рис. 2, г). Напряжение логической единицы для входов микросхем серии КМОП составляет величину, примерно равную половине напряжения питания.
При достижении этого уровня на входе «R2» (момент времени t2) в соответствии с ранее рассмотренной логикой работы триггера происходит обнуление выхода «Q2».
Таким образом, на этом выходе формируется положительный прямоугольный импульс, длительность которого определяется положением движка потенциометра R3.
Низкий потенциал на выходе Q2 и высокий на выходе Q2 переводят схему в исходное состояние. Конденсатор С5 через открытый диод VD2 быстро заряжается до прежнего значения, подготавливая схему к следующему такту.
Рис. 2. Диаграммы работы многоканального шифратора на триггерах К561ТВ1.
Положительный перепад с инверсного выхода подается на тактовый вход «С1» верхнего триггера микросхемы, запуская аналогичный процесс формирования второго канального импульса, и т. д.
Выходные импульсы всех каналов (рис. 3, б—д) подаются на входы соответствующих дифференцирующих цепей (например C7R5 для первого). Короткие положительные всплески, пройдя через соответствующие развязывающие диоды, суммируются на резисторе R11.
Рис. 3. Формирование кодовой посылки.
Каждый из них, пересекая уровень опрокидывания элемента DD1.3 (примерно 2,5 В), формирует на его выходе короткие отрицательные импульсы. Эти импульсы быстро разряжают конденсатор С13 через открывающийся диод VD10.
Конденсатор затем медленно заряжается через резистор R12. В результате двукратного превышения уровня опрокидывания элемента DD1 .4 напряжением на конденсаторе, на выходе этого элемента формируются нормированные по амплитуде и длительности импульсы командной посылки (рис. 3, е).
Стабилизатор напряжения DA1 делает схему некритичной к напряжению используемого источника питания.
Очевидно, что количество каналов в рассмотренном шифраторе можно произвольно менять от одного до восьми путем исключения (добавления) звеньев ждущих мультивибраторов, дифференцирующих цепочек и развязывающих диодов.
Детали и конструкция
Печатная плата для четырехканального варианта приведена на рис. 4. При монтаже деталей необходимо обратить внимание на наличие перемычек П1—П5, которые следует впаять в первую очередь. Требования к используемым деталям обычные.
Рис. 4. Печатная плата четырхканального шифратора.
Времязадающие конденсаторы C3 — С5, С8, С9 и С13 — пленочные. Конденсаторы дифференцирующих цепей С6, С7, CIO—С12 можно использовать керамические (КМ6, например) из группы по ТКЕ не хуже М4700.
Потенциометры регулировки длительностей канальных импульсов должны иметь как можно большую износостойкость и характеристику типа «А». Вместо триггеров К561ТВ1 можно установить их зарубежный аналог CD4027.
Поскольку элементы DD1 используются в качестве инверторов, допустима их замена на K561J1A7. Стабилизатор напряжения DA1 — любого типа на напряжение 5 В. Все диоды типа КД521(522) с любым буквенным индексом.
Настройка
В процессе настройки путем подбора величины резистора R1 период повторения импульсов задающего генератора устанавливается равным 20 мс. Исходная длительность и диапазон изменения канальных импульсов при установке требуют внимания.
Корпус потенциометра необходимо зафиксировать в таком положении, при котором отклонение ручки управления из одного крайнего состояния в другое вызывает изменение его сопротивления в два раза. Тем самым будет обеспечен соответствующий диапазон перестройки длительности.
Затем, установив ручку управления в среднее положение, убедиться, что исходная длительность канального импульса (на выводе 15 DD2 для первого канала, например) равна 1,5 мс. При необходимости ее коррекции, например в сторону увеличения, придется либо припаять дополнительную емкость параллельно конденсатору С5, либо дополнительный резистор последовательно с потенциометром R3.
В последнем случае необходимо развернуть кррпус потенциометра таким образом, чтобы в рабочем диапазоне углов отклонения результирующее сопротивление опять бы имело коэффициент перекрытия, равный двум.
В заключение подбором R12 устанавливают длительность импульсов командной посылки на выводе 10 DD1 примерно равной 0,5 мс.