Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Конструкция и доработка нескольких типов светодиодных ламп

В мои руки попало несколько вышедших из строя, уже широко распространённых светодиодных ламп на напряжение 230 В, в изобилии предлагаемых в наших магазинах. Захотелось выяснить причину их быстрого выхода из строя и внутреннее устройство. Все лампы проработали не более одного года, хотя на упаковках утверждается, что их время непрерывной работы 30000 ч, получается 1250 суток, что составляет более трёх лет. И ведь наверняка сгоревшие лампы не эксплуатировались круглые сутки.

Итак, берём первую лампу под товарным знаком iEK. Кроме товарного знака, на корпусе указаны данные и параметры лампы LED-A60, 230 В, 50/60 Гц, 11 Вт, 4000 К. Как известно, большинство сетевых светодиодных ламп имеют примерно одинаковую конструкцию. К несущему корпусу, в котором расположены драйвер и светодиоды, крепится матовая колба светорассеивателя и металлический резьбовой цоколь лампы. Пробуем сначала снять колбу. Для этого я изготовил тонкий узкий нож из обломка полотна от ножовки по металлу, сделав тонкое остриё на наждачном станке. Осторожно вставляем нож между колбой и корпусом, сначала на небольшую глубину, и проходим по ругу. Далее всё повторяем на большей глубине. При этом можно пробовать покачивать колбу лампы, и когда колба будет покачиваться, отделяем её. Оказалось, что колба крепилась с помощью белого силиконового герметика. При этом следует отметить, что у некоторых ламп колба отделялась сравнительнолегко, а у некоторых – трудно. У одной лампы в герметике осталась часть нижнего пояска колбы. Но главное – соблюдать осторожность, тогда всё должно получиться.

На алюминиевой печатной плате, служащей ещё и теплоотводом, припаяны 12 светодиодов поверхностного монтажа белого свечения типоразмера 3528. Один из светодиодов был с чёрной точкой, как оказалось – сгоревший. Алюминиевая подложка плотно вставлена в корпус, оказавшийся внутри также алюминиевым, поверх покрытым пластиком. Корпус тоже должен выполнять функцию теплоотвода, но площадь соприкосновения тонкой алюминиевой платы корпусом невелика, атеп-лопроводящая паста отсутствует. Плата со светодиодами подпаяна к драйверу двумя проводами. Внешний вид разобранной лампы изображён на рис. 1. Удалив герметик, поддевают ножом и извлекают плату со светодиодами, но вынуть её из корпуса не дают провода, соединяющие драйвер с цоколем лампы. Поддев ножом, извлекают центральный контакт цоколя и разгибают идущий к нему провод. Места кернения резьбовой части цоколя к корпусу высверливаем сверлом диаметром 1,5 мм. Сняв цоколь, можно достать плату драйвера. На ней оказался разрушен оксидный конденсатор с обозначением на плате Е2. Часть элементов на плате для поверхностного монтажа установлена со стороны печатных проводников, а на противоположной стороне установлены дроссель, два оксидных конденсатора и микросхема. Схема драйвера с обозначениями элементов, как на плате, показана на рис. 2. Резистор, условно обозначенный как R1, находится не на плате, а соединяет центральный контакт цоколя лампы с ней. Схема драйвера построена на микросхеме OCP8191 в корпусе ТО-92. Микросхема представляет собой неизолированный квазирезонансный понижающий преобразователь для питания светодиодов со стабилизацией тока. В её состав входят MOSFET транзистор с максимальным напряжением сток-исток 550 В и узел управления. В микросхеме есть различные виды защиты: от перегрева, от короткого замыкания в нагрузке, от превышения максимального тока. Ток через светодиоды задают резисторами RS1 и RS2.

Рис. 1. Внешний вид разобранной лампы

 

Рис. 2. Схема драйвера

 

После замены конденсатора Е2 на исправный ёмкостью 2,2 мкФ на напряжение 400 В и замыкании контактов сгоревшего светодиода лампа заработала. Был замерен ток через светодиоды, он оказался равен 120 мА, что мне кажется несколько завышенным. Ёмкость конденсатора С3 и индуктивность дросселя были замерены на плате. Применённые светодиоды начинают слабо светить при напряжении 7 В, а при напряжении 8 В и токе 2 мА светят уже ярко. Судя по этому, в одном корпусе расположены два или три последовательно включённых кристалла. Тип светодиодов остался неизвестен.

Следующей “подопытной” стала лампа под торговой маркой General. На ней нанесены следующие обозначения: GLDEN-WA60; 11 Bт; 2700 K, 198-264 B; 50/60 Гц; 73 мА. Матовый светорассеиватель снимают, как и у предыдущей лампы. После этого увидим алюминиевую плату с расположенными на ней семью SMD-светодиодами типоразмера 3528. В отличие от предыдущей лампы, плата припаяна к драйверу и закреплена двумя винтами (рис. 3). Сняв её, увидим, что она была закреплена с помощью винтов на алюминиевом штампованном диске, плотно вставленном в корпус лампы (рис. 4). Заметно, что лампа сделана более качественно, и отвод тепла от светодиодов должен быть лучше.

Рис. 3. Лампа под торговой маркой General

 

Рис. 4. Диск лампы

 

Далее аналогично снимаем цоколь. А вот диск приходится потихоньку выбивать со стороны цоколя, просунув тонкий металлический стержень и уперев его ближе к краю, в ребро диска. Иначе диск будет выгибаться. Только после этого вынимаем плату драйвера. Он построен на аналогичной микросхеме BP9916C в корпусе SOP-8 и представляет собой также неизолированный понижающий преобразователь, позволяющий поддерживать постоянным ток через светодиоды. Схема отличается от предыдущей незначительно, в основном номиналами элементов и их обозначениями на плате, и ещё тем, что после резистора R1, параллельно диодному мосту, установлен керамический конденсатор ёмкостью 0,1 мкФ на напряжение 400 В. Поэтому приводить схему не имеет смысла. Микросхема установлена со стороны печатных проводников. Замкнув контакты неисправного светодиода, удалось восстановить работоспособность лампы. При сопротивлении регулировочных резисторов RS1 и RS2, равных 5,6 и 3,9 Ом, ток через светодиоды равен 130 мА.

Потом была вскрыта светодиодная лампа с товарным знаком ASD и с обозначениями на корпусе: LED-A60, 11 Вт, 220 В, 4000 К, 990 лм. Разборка лампы такая же, как и в предыдущих случаях. Вид лампы без матового светорассеивателя показан на рис. 5. На алюминиевой плате, которая просто вставлена в корпус, установлены 18 SMD-светодиодов типоразмера 3528. Площадь теплового контакта с корпусом, как и в первой лампе, очень мала. Плата со светодиодами припаяна непосредственно к плате драйвера. Эти светодиоды, как и в предыдущих лампах, начинают светить при напряжении 7 В, а при 8 В светятся достаточно ярко при токе 2 мА. Следовательно, их параметры должны быть схожими. Драйвер этой лампы построен на микросхеме BP9918C в миниатюрном корпусе для поверхностного монтажа SOT23-3. Эта микросхема аналогична микросхемам в предыдущих лампах и обладает схожими параметрами. Схема драйвера отличается отсутствием резистора R1, вместо которого на плате сделан тонкий змеевидный печатный проводник, а также номиналами некоторых элементов и обозначениями на плате. При сопротивлении резисторов RS1 и RS2, равных соответственно 13 и 10 Ом, ток через светодиоды – 55 мА, что примерно вдвое меньше, чем у предыдущих ламп.

Рис. 5. Вид лампы без матового светорассеивателя

 

Исходя из всего изложенного, напрашивается вывод, что причиной быстрого выхода из строя этих ламп является завышенный ток светодиодов и недостаточное их охлаждение и, следовательно, перегрев.

Было решено восстановить эти лампы, при этом постараться продлить срок их службы. Для начала были уменьшены токи светодиодов. В первой лампе – путём замены резисторов RS1 и RS2 (4,7 и 3,9 Ом) на два резистора сопротивлением по 10 Ом каждый. Ток через светодиоды со 120 мА уменьшился до 50 мА. Во второй лампе резистор сопротивлением 3,9 Ом был заменён резистором сопротивлением 10 Ом. Ток через светодиоды уменьшился с 130 до 85 мА. В третьей лампе взамен резистора сопротивлением 13 Ом установлен резистор сопротивлением 30 Ом. Ток через светодиоды при этом уменьшился с 50 до 40 мА. Светоотдача при этом упала незначительно, хотя всё по местам может расставить только дальнейшая опытная эксплуатация.

Кроме того, у первой и третьей ламп под светодиодами, на свободной стороне платы, были подложены толстые металлические шайбы, улучшающие тепловой контакт с корпусом. Везде была нанесена теплопроводная паста КПТ-8. Металлические цоколи ламп были приклеены к корпусу эпоксидным клеем, нанесённым в места высверленных отверстий. В корпусе, рядом с цоколем лампы, были просверлены вентиляционные отверстия, улучшающие охлаждение. Правда, при этом применять лампы во влажных помещениях будет нельзя. Если лампы планируется применять в закрытых светильниках, светорассеивающие колбы можно не устанавливать, соблюдая осторожность при установке самих ламп. В противном случае колбы приклеивают белым силиконовым герметиком, как было до этого. Посмотрим, как эти доработки повлияют на долговечность ламп.

И в заключение рассмотрим совершенно другую светодиодную лампу, ещё не бывшую в эксплуатации. Это лампа торговой марки ASD, предназначенная для подключения к переменно-му или постоянному напряжению 12 В. На корпус нанесены следующие обозначения: LED-JC, 5 ВТ, AC/DC, 12 В, цоколь G4, 3000 К. Эта небольшая лампа разбирается несложно. Снимают прозрачный пластиковый колпак, закрывающий светодиоды. Он крепится к корпусу на защёлках, которые очень хрупкие. Поэтому отгибать надо не сами защёлки, а часть корпуса колпака, к которому эти защёлки прикреплены. Для этого в корпусе колпака сделаны прорези, сразу не бросающиеся в глаза, но позволяющие поддеть отвёрткой и раздвинуть защёлки. Сняв колпачок, видно, что светодиоды и другие элементы установлены на гибкой печатной плате, которая с внутренней стороны покрыта слоем липкой ленты, поэтому просто снимают её.

Далее вынимают гибкую плату и отпаивают провода, соединяющие её с цоколем. После этого можно подробно рассмотреть конструкцию лампы. Её внешний вид показан на рис. 6. Материал её корпуса похож на керамику, видимо, чтобы не оплавился при нагреве светодиодов и, возможно, хоть как-то отводил тепло от них. Материал – довольно хрупкий, легко скалывается.

Рис. 6. Конструкция лампы

 

Схема драйвера этой лампы представлена на рис. 7. Он собран на микросхеме U1 в корпусе SOP 8. К сожалению, однозначно идентифицировать микросхему не удалось. На разных лампах неизменной была надпись на корпусе 1086. Светодиоды в лампе типоразмера 3528, с номинальным напряжением 3,4 В. Все остальные элементы – для поверхностного монтажа. При подключении к источнику напряжением 12 В выяснилось, что лампа потребляет ток 280 мА. При увеличении напряжения до 14 В ток через лампу возрос до 290 мА, а при снижении напряжения питания до 10,2 В он уменьшился до 270 мА.

Рис. 7. Схема драйвера

 

При питании лампы номинальным напряжением 12 В уже после семи минут работы, при касании корпуса или светодиодов пальцем, трудно удержать его на них – обжигает. Причина – в слишком плотном расположении светодиодов и в небольшом корпусе. Ручаться после этого в продолжительной работе этой лампы я бы не стал, если только не переделать лампу, снабдив светодиоды и драйвер дополнительными теплоотводами.

Автор:  П. Юдин, г. Уфа

СВЕТОДИОДНАЯ ЛАМПА

   Недавно в одном известном интернет магазине купил светодиодную лампу на мощность примерно 15 ватт. Понимаю, что этой мощности недостаточно для полноценной замены обычной лампы накаливания на LED новинку, но очень хотелось поэкспериментировать со светодиодным освещением, а заодно заглянуть внутр лампы и перерисовать схему.


   Данная модель имеет на борту 160 светодиодов и цоколь стандартного типоразмера – Е27. Провожу первое включение – сразу отмечу неочень приятный иссиня – белый свет. Очень напоминает обычную люминисцентную энергосберегалку. Надо будет в следующий раз брать цветовую температуру не выше 4000К. Зато лампа совершенно не греется, и её можно в любой момент открутить и закрутить в патрон. Субьективно данная светодиодная лампа по яркости эквивалентна обычной лампе накаливания на 60 ватт, только свет белее.


   Теперь проведём измерения и убедимся в разрекламированной энергосберегательности светодиодов. Цифровой амперметр показал 0,08А. Но вот ваттметр показывает всего 7 ватт. Непонятно – ведь по закону ома для расчёта мощности должно быть 220В х 0,08 = 17.6 ватта? В любом случае экономичность налицо. Даже КЛЛ будет тянуть в два раза больше энергии.


   Разбираем LED лампу и смотрим чего там китайцы засунули внутрь. Всё конечно проще простого – обычный бестрансформаторный выпрямитель в виде диодного моста с гасящим конденсатором.

   На фото всё отлично видно, но для наглядности нарисую реальную схему светодиодной лампы. 


   Получается как бы две одинаковые линейки светодиодов по 80 штук с отдельным блоком питания дл каждой. Напряжение сети 220В через ограничительный конденсатор 0,82мкФ 400В выпрямляется диодным мостом на IN4007 и сгладив пульсации небольшим электролитом 4,7мкФ 400В поступает на цепочку из 80-ти светодиодов. Всё просто, как диффузия.


   Конечно более мощные светодиодные лампы содержат специальный импульсный драйвер для токоограничения и питания LED элементов, но в данном случае вполне достаточно и такого недорогово решения. Вот купите 160 светодиодов и посмотрите – хватит ли вам 15 долларов. Тем более тут установлены не обычные светодиоды, а с увеличенной площадью кристалла. 


   Конечно такой метод питания сужает возможный диапазон питающих напряжений, зато просто ремонтировать. А это рано или поздно делать придётся, ведь если хоть один из 80-ти светодиодов перегорит – погаснет половина лампы. 


   В общем выводы такие: С одной стороны имеем неплохую экономичность и экологичность, но яркости всё же недостаточно для освещения комнаты или кухни – разве что поставить сразу 2-3 светодиодные лампы. А это уже почти полсотни баксов! Данную LED лампу разве что ставить в коридор или ванную комнату. Как вариант – использовать её в светодиодном настенном светильнике.

   Форум по светодиодным лампам

   Форум по обсуждению материала СВЕТОДИОДНАЯ ЛАМПА

Схемы самых надежных самодельных светодиодных ламп. Как сделать недорогую, но очень мощную светодиодную лампу. Светодиодная лампа из отходов

Светодиодная лампа на 220 вольт позволяет сэкономить в 1,5–2 раза больше электроэнергии, чем лампа дневного света, и в 10 раз больше, чем лампа накаливания. К тому же при сборке из перегоревшего светильника расходы на изготовление такой лампы будут значительно ниже. Светодиодная лампа своими руками собирается достаточно просто, хотя работать с высоким напряжением вы можете только при наличии у вас соответствующей квалификации.

Преимущества самодельной лампы

В магазине можно найти множество видов ламп. Каждый тип имеет свой недостаток и преимущество. Лампы накаливания постепенно сдают свои позиции из-за высокого потребления энергии, низкой светоотдачи, несмотря на высокий индекс цветопередачи. По сравнению с ними люминесцентные источники света – настоящее чудо. Энергосберегающие лампы – их более современная модернизация, позволившая применять преимущества люминесцентного света в самых распространенных светильниках, с цоколями Е27, лишенная неприятного мерцания старых представителей этого семейства.

Но и у ламп дневного света есть недостатки. Они быстро выходят из строя из-за частого включения-выключения, к тому же содержащиеся в трубках пары ядовиты, а сама конструкция требует специальной утилизации. По сравнению с ними лампа на светодиодах (LED) – вторая революция в области освещения. Они ещё более экономичны, не требуют особой утилизации и работают в 5–10 раза дольше.

У светодиодных ламп есть один, но существенный недостаток – они самые дорогие. Чтобы снизить этот минус до минимума или обернуть его в плюс, потребуется соорудить её из светодиодной ленты своими руками. При этом стоимость источника света становится ниже, чем у люминесцентных аналогов.

Самодельная светодиодная лампа обладает рядом преимуществ:

  • срок службы устройства при правильной сборке составляет рекордные 100 000 часов;
  • по эффективности ватт/люмен они также превосходят все аналоги;
  • стоимость самодельной лампы не выше, чем у люминесцентной.

Разумеется, есть один недостаток – отсутствие гарантий на изделие, который должен компенсироваться точным соблюдением инструкций и мастерством электрика.

Материалы для сборки

Способов создания лампы своими руками великое множество. Наиболее распространены методы с использованием старого цоколя от перегоревшей люминесцентной лампы. Такой ресурс найдется у каждого в доме, поэтому проблем с поиском не будет. Помимо этого понадобятся:

  1. Цоколь от перегоревшего изделия.
  2. Непосредственно ЛЕД. Они продаются в виде светодиодных лент или отдельных светодиодов НК6. Каждый элемент имеет силу тока примерно 100–120 мА и напряжение около 3–3,3 Вольта.
  3. Потребуется диодный мост или выпрямительные диоды 1N4007.
  4. Нужен предохранитель, который можно найти в цоколе перегоревшей лампы.
  5. Конденсатор. Его емкость, напряжение и другие параметры выбираются в зависимости от электрической схемы для сборки и количества светодиодов в ней.
  6. В большинстве случаев потребуется каркас, на который будут крепиться светодиоды. Каркас можно сделать из пластика или подобного материала. Главное требование – не должен быть металлическим, токопроводящим и должен быть теплоустойчивым.
  7. Для надежного прикрепления светодиодов к каркасу потребуется суперклей или жидкие гвозди (последние предпочтительней).

Один–два элемента из вышеперечисленного списка могут не пригодиться при некоторых схемах, в других случаях могут, наоборот, добавляться новые звенья цепи (драйвера, электролиты). Поэтому список необходимых материалов нужно составлять в каждом конкретном случае индивидуально.

Собираем лампу из светодиодной ленты

Разберем пошагово создание источника света на 220 В из светодиодной ленты. Чтобы решиться использовать новшество на кухне, достаточно вспомнить, что собранные своими руками светодиодные лампы существенно выгодней люминесцентных аналогов. Они живут в 10 раз дольше, а потребляют в 2–3 раза меньше энергии при одинаковом уровне освещения.

  1. Для конструирования понадобятся две перегоревшие люминесцентные лампы длиной полметра и мощностью 13 ватт. Покупать новые смысла нет, лучше найти старые и неработающие, но не сломанные и без трещин.
  2. Далее идем в магазин и покупаем светодиодную ленту. Выбор большой, поэтому к приобретению подойдите ответственно. Желательно покупать ленты с чистым белым или естественным светом, он не изменяет оттенки окружающих предметов. В таких лентах светодиоды собраны в группы по 3 штуки. Напряжение одной группы 12 вольт, а мощность 14 ватт на метровую ленту.
  3. Затем нужно разобрать люминесцентные лампы на составные части. Осторожно! Не повредите провода, а также не разбейте трубку, иначе ядовитые пары вырвутся наружу и придется проводить уборку, как после разбитого ртутного градусника. Извлеченные внутренности не выбрасывайте, они пригодятся в дальнейшем.
    Ниже представлена схема светодиодной ленты, которую мы купили. В ней ЛЕД подключены параллельно по 3 штуки в группе. Обратите внимание, что такая схема нам не подходит.
  4. Поэтому нужно разрезать ленту на участки по 3 диода в каждом и достать дорогие и бесполезные преобразователи. Разрезать ленту удобней кусачками или большими и крепкими ножницами. После спаивания проволочек должна получиться схема, приведенная ниже.
    В итоге должно получиться 66 светодиодов или 22 группы по 3 ЛЕД в каждой, подключенные параллельно по всей длине.
    Расчеты просты. Так как нам понадобится преобразовать переменный ток в постоянный, то стандартное напряжение 220 Вольт в электрической сети нужно увеличить до 250. Необходимость «накинуть» напряжение связана с процессом выпрямления.
  5. Для выяснения количества секций светодиодов нужно разделить 250 Вольт на 12 Вольт (напряжение для одной группы по 3 штуки). В итоге получим 20,8(3), округлив в большую сторону, получаем 21 группу. Здесь желательно добавить ещё одну группу, поскольку общее количество светодиодов придется разделить на 2 лампы, а для этого нужно четное число. К тому же добавив ещё одну секцию, сделаем общую схему безопаснее.
  6. Нам понадобится выпрямитель постоянного тока, именно поэтому нельзя выбрасывать извлеченные внутренности люминесцентной лампы. Для этого достаем преобразователь, при помощи кусачек удаляем конденсатор из общей цепи. Сделать это достаточно просто, поскольку он расположен отдельно от диодов, то достаточно отломить плату.
    На схеме показано, что должно в итоге получиться, более подробно.
  7. Далее при помощи пайки и суперклея нужно собрать всю конструкцию. Даже не пытайтесь уместить все 22 секции в один светильник. Выше говорилось, что нужно специально найти 2 полуметровые лампы, поскольку разместить все светодиоды в одной просто невозможно. Также не нужно рассчитывать на самоклеющийся слой на обратной стороне ленты. Он не протянет долго, поэтому светодиоды нужно закрепить при помощи суперклея или жидких гвоздей.

Подведем итоги и выясним достоинства собранного изделия:

  • Количество света от получившихся светодиодных ламп в 1,5 раза больше, чем у люминесцентных аналогов.
  • Потребляемая мощность при этом намного меньше, чем у ламп дневного света.
  • Служить собранный источник света будет в 5–10 раз дольше.
  • Наконец, последнее преимущество – направленность света. Он не рассеивается и направлен строго вниз, благодаря чему используется у рабочего стола или на кухне.

Разумеется, испускаемый свет не отличается высокой яркостью, но главным достоинством является низкое энергопотребление лампы. Даже если включить и никогда не выключать её, то она за год съест всего 4 кВт энергии. При этом стоимость потребляемой электроэнергии в год сопоставима со стоимостью билета в городском автобусе. Поэтому такие источники света особенно эффективно использовать там, где требуется постоянная подсветка (коридор, улица, подсобка).

Собираем простую лампочку из светодиодов

Разберем другой способ создания светодиодного светильника. Люстра или настольная лампа нуждается в стандартном цоколе E14 или E27. Соответственно, схема и используемые диоды будут отличаться. Сейчас широко используются компактные люминесцентные лампы. Нам потребуется один перегоревший патрон, также изменим общий список материалов для сборки.

Понадобятся:

  • перегоревший цоколь E27;
  • драйвер RLD2-1;
  • светодиоды НК6;
  • кусок картона, но лучше – пластика;
  • суперклей;
  • электрическая проводка;
  • а также ножницы, паяльник, плоскогубцы и другие инструменты.

Приступим к созданию самодельной лампы:


Световой поток собранного светильника равняется 100–120 люменам. Благодаря чистому белому свету лампочка кажется существенно светлее. Этого хватит для освещения небольшого помещения (коридора, подсобки). Главным достоинством светодиодного источника света является низкое энергопотребление и мощность – всего 3 Ватта. Что в 10 раз меньше ламп накаливания и в 2–3 раза – люминесцентных. Работает она от обычного патрона с питанием 220 вольт.

Заключение

Значит, имея под руками неработающие линейные или компактные люминесцентные лампы и несколько элементов, приведенных выше в данной статье, можно создать своими руками светодиодную лампу, обладающую рядом преимуществ. Одно из основных – низкая стоимость по сравнению с лампами, которые можно приобрести в магазине. При сборке и монтаже требуется соблюдать меры безопасности, так как приходится работать с высоким напряжением, поэтому следует придерживаться последовательности монтажа по схеме. В итоге получите лампу, которая будет долго работать и радовать глаз.

Видео

Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.

Пошаговая разработка светодиодного светильника

Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.

Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.

Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.

При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.

Видео: Светодиодный светильник в домашних условиях

Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.

Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.

Упрощённая схема светильника
  1. Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
  2. Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
  3. Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
  4. Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.

На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.


Лампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном. Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.


Фото: патрон лампы
Фото: резисторы и транзистор

Теперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.


Фото: пайка выпрямителя

В качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.


Фото: клей и патрон

После этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.


Фото: светодиоды на доске

Очень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.

Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.


Соединение светодиодов

Также без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.


Готовая мини лампа Резистор и лампа

Все готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.

Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.

Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.


Фото: лампа в действии

Светильник в офис

Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.

Для начала нужно определить количество светодиодов и номинальную мощность.

После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.


Схема: подключение ламп

Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.


Короткие провода светодиодов

Дальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком ~. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.

Добавляем конденсатор

Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.

Видео: как правильно сделать светодиодный светильник своими руками

При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.

Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.

При многообразии на прилавках страны, остаются вне конкуренции по причине экономичности и долговечности. Однако не всегда приобретается качественное изделие, ведь в магазине товар не разберешь для осмотра. Да и в этом случае не факт, что каждый определит, из каких деталей она собрана. перегорают, а покупать новые становится накладно. Выходом становится ремонт светодиодных ламп своими руками. Работа эта под силу даже начинающему домашнему мастеру, а детали недороги. Сегодня разберемся, как проверить , в каких случаях изделие ремонтируется и как это сделать.

Известно, что светодиоды не могут работать напрямую от сети 220 В. Для этого им нужно дополнительное оборудование, которое, чаще всего, и выходит из строя. О нем сегодня и поговорим. Рассмотрим схему , без которого невозможна работа осветительного прибора. Попутно и проведем ликбез для тех, кто ничего не понимает в радиоэлектронике.

драйвер gauss 12w

Схема драйвера светодиодной лампы 220 В состоит из:

  • диодного моста;
  • сопротивлений;
  • резисторов.

Диодный мост служит для выпрямления тока (превращает его из переменного в постоянный). На графике это выглядит как отсекание полуволны синусоиды. Сопротивления ограничивают ток, а конденсаторы накапливают энергию, увеличивая частоту. Рассмотрим принцип действия на схеме светодиодной лампы на 220 В.

Принцип работы драйвера в лампе на светодиодах

Вид на схеме Порядок работы

Напряжение 220 В подается на драйвер и проходит через сглаживающий конденсатор и сопротивление, ограничивающее ток. Это нужно для того, чтобы обезопасить диодный мост.

Напряжение подается на диодный мост, состоящий из четырех разнонаправленных диодов, которые отсекают полуволну синусоиды. На выходе ток постоянный.

Теперь, посредством сопротивления и конденсатора, ток снова ограничивается и ему задается нужная частота.

Напряжение с необходимыми параметрами поступает на равнонаправленные световые диоды, которые служат и как ограничение тока. Т.е. при перегорании одного из них напряжение повышается, что приводит к выходу из строя конденсатора, если он недостаточно мощный. Такое происходит в китайских изделиях. Качественные приборы от этого защищены.

Поняв принцип работы и схему драйвера, решение как починить светодиодную лампу на 220V уже не будет казаться сложным. Если говорить о качественных , то неприятностей от них ждать не стоит. Они работают весь положенный срок и не тускнеют, хотя есть «болезни», которым подвержены и они. Как с ними справиться сейчас поговорим.

Причины выхода из строя осветительных LED-приборов

Чтобы проще было разобраться с причинами, обобщим все данные в одной общей таблице.

Причина поломки Описание Решение проблемы
Перепады напряженияТакие светильники в меньшей мере подвержены поломкам из-за перепадов напряжения, однако чувствительные скачки могут «пробить» диодный мост. В результате перегорают LED-элементы.Если скачки чувствительны, нужно установить , который значительно продлит срок службы светового оборудования, но и остальных бытовых приборов.
Неправильно подобран светильникОтсутствие должной вентиляции влияет на драйвер. Выделяемое им тепло не отводится. В результате происходит перегрев.Выбрать с хорошей вентиляцией, которая обеспечит нужный теплообмен.
Ошибки монтажаНеправильно выбранная система освещения, его подключение. Неверно высчитанное сечение электропроводки.Здесь выходом будет разгрузить линию освещения или заменить осветительные приборы устройствами, потребляющие меньше мощности.
Внешний факторПовышенная влажность, вибрации, удары или запыленность при неправильном подборе IP.Правильный подбор или устранение негативных факторов.

Полезно знать! Ремонт светодиодных светильников невозможно выполнять до бесконечности. Намного проще исключит негативные факторы, влияющие на долговечность и не приобретать дешевые изделия. Экономия сегодня обернется затратами завтра. Как говорил экономист Адам Смит: «Я не настолько богат, чтобы покупать дешевые вещи».

Ремонт светодиодной лампы на 220 В своими руками: нюансы производства работ

Перед тем, как отремонтировать светодиодную лампу своими руками, обратите внимание на некоторые детали, требующие меньшего количество трудозатрат. Проверка патрона и напряжения в нем – первое, что стоит сделать.

Важно! Ремонт ЛЕД-ламп требует наличия мультиметра – без него не получится прозвонить элементы драйвера. Так же потребуется паяльная станция.

мультиметры бытовые

Паяльная станция необходима для ремонта светодиодных люстр и светильников. Ведь перегрев их элементов приводит к выходу из строя. Температура нагрева при пайке должна быть не выше 2600, в то время как паяльник разогревается сильнее. Но выход есть. Используем кусок медной жилы, сечением 4 мм, который наматывается на жало паяльника плотной спиралью. Чем сильнее удлинить жало, тем ниже его температура. Удобно, если на мультиметре присутствует функция термометра. В этом случае ее можно отрегулировать точнее.


паяльная станция

Но перед тем, как выполнить ремонт светодиодных прожекторов, люстр или ламп нужно определить причину выхода из строя.

Как разобрать светодиодную лампочку

Одна из проблем, с которой сталкивается начинающий домашний мастер – как разобрать светодиодную лампочку. Для этого понадобится шило, растворитель и шприц с иглой. Рассеиватель LED-лампы приклеен к корпусу герметиком, который нужно удалить. Проводя аккуратно вдоль кромки рассеивателя шилом, шприцем вводим растворитель. Через 2÷3 минуты, легко покручивая, рассеиватель снимается.

Некоторые световые приборы изготовлены без проклейки герметиком. В этом случае достаточно провернуть рассеиватель и снять его с корпуса.

Выявляем причину выхода из строя светодиодной лампочки

Разобрав осветительный прибор, обратите внимание на LED-элементы. Часто сгоревший определяется визуально: на нем имеются подпалины или черные точки. Тогда меняем неисправную деталь и проверяем работоспособность. Подробно о замене мы расскажем в пошаговой инструкции.

Если LED-элементы в порядке, переходим к драйверу. Для проверки работоспособности его деталей нужно их выпаять из печатной платы. Номинал резисторов (сопротивлений) указывается на плате, а параметры конденсатора – на корпусе. При прозвонке мультиметром в соответствующих режимах отклонений быть не должно. Однако часто конденсаторы, вышедшие из строя, определяются визуально – они вздуваются либо лопаются. Решение – замена подходящим по техническим параметрам.


Замену конденсаторов и сопротивлений, в отличие от светодиодов, часто выполняют обычным паяльником. При этом следует соблюдать осторожность, не перегревать ближайшие контакты и элементы.

Замена светодиодов лампочки: насколько это сложно

При наличии паяльной станции или фена работа эта проста. Паяльником работать сложнее, но тоже возможно.

Полезно знать! Если под рукой нет рабочих LED-элементов можно установить перемычку вместо сгоревшего. Долго такая лампа не проработает, но некоторое время выиграть удастся. Однако такой ремонт производится только если количество элементов более шести. В противном случае день – это максимум работы ремонтного изделия.

Современные лампы работают на SMD LED-элементах, которые можно выпаять из светодиодной ленты. Но стоит подбирать подходящие по техническим характеристикам. Если таковых нет, лучше поменять все.

Статья по теме:

Для правильного выбора LED-приборов надо знать не только общие . Пригодятся сведения о современных моделях, электрических схемах рабочих устройств. В этой статье вы найдете ответы на эти и другие практические вопросы.

Ремонт драйвера светодиодной лампы при наличии электрической схемы устройства

Если драйвер состоит из SMD-компонентов, которые имеют меньший размер, воспользуемся паяльником с медной проволокой на жале. При визуальном осмотре выявлен сгоревший элемент – выпаиваем и подбираем подходящий по маркировке. Нет видимых повреждений – это сложнее. Придется выпаивать все детали и прозванивать по отдельности. Найдя сгоревший, меняем на работоспособный и . Удобно использовать для этого пинцет.

Полезный совет! Не стоит удалять с печатной платы все элементы одновременно. Они похожи по внешнему виду, можно перепутать впоследствии местоположение. Лучше выпаивать элементы по одному и, проверив, монтировать на место.


Как проверить и заменить блок питания светодиодных светильников

При монтаже освещения в помещениях с повышенной влажностью ( или ) используются стабилизирующие , которые понижают напряжение до безопасного (12 или 24 вольта). Стабилизатор может выйти из строя по нескольким причинам. Основные из них – это избыточная нагрузка (потребляемая мощность светильников) или неправильный выбор степени защиты блока. Ремонтируются такие устройства в специализированных сервисах. В домашних условиях это нереально без наличия оборудования и знаний в области радиоэлектроники. В этом случае БП придется заменить.


Блок питания для светодиодов

Очень важно! Все работы по замене стабилизирующего блока питания светодиодов производятся при снятом напряжении. Не стоит надеяться на выключатель – он может быть неправильно скоммутирован. Напряжение отключается в распределительном щитке квартиры. Помните, что прикосновение рукой к токоведущим частям опасно для жизни.

Нужно обратить внимание на технические характеристики устройства – мощность должна превышать параметры ламп, которые от него запитаны. Отключив вышедший из строя блок, подключаем новый согласно схеме. Она находится в технической документации прибора. Сложностей это не представляет – все провода имеют цветовую маркировку, а контакты – буквенное обозначение.


Играет роль и степень защиты устройства (IP). Для ванной комнаты прибор должен иметь маркировку не ниже IP45.

Статья

Прежде чем продолжить читать, обязательно ознакомьтесь с этой информацией . Любой источник электроэнергии опасен для жизни, если не соблюдать правила безопасности. Описанные здесь схемы создания LED не имеют трансформаторов и, следовательно, представляют опасность. Сборку таких схем можно выполнять людям, которые имеют элементарные знания основ электротехники.

Светоизлучающий диод – это электронное устройство, излучающее свет, когда через него проходит ток. Светодиоды при своих небольших размерах чрезвычайно эффективны, очень яркие, при этом состоят из дешёвых и доступных электронных компонентов. Многие думают, что светодиоды – просто обычные светоизлучающие лампочки, но это совсем не так.

История светодиодов

Капитан Генри Джозеф Раунд, один из пионеров радио, во время эксперимента заметил необычное свечение, испускаемое карбидом кремния. Свои наблюдения он опубликовал в General World, но объяснить природу явления он не мог.

Русский учёный Олег Лосев наблюдал излучение света кристаллами – диодами. В 1927 году он опубликовал подробности своей работы в российском журнале и оформил патент на «Световое реле».

В 1961 году инфракрасный диод создали Б. Биард и Г. Питмен. Однако отцом-основателем светодиода по праву считывается Ник Холоняк. Его ученик Дж. Крэфорд в 1972 г. создал светодиод жёлтого цвета. В конце 80-х годов благодаря исследованиям русского учёного Ж. И. Алферова были открыты новые светодиодные материалы, которые дали толчок дальнейшему развитию светодиодов.

В начале 70-х впервые были изобретены светодиоды зелёного цвета, в 1971 году появился синий светодиод, который был очень неэффективным. Прорыв сделали японские учёные только в 1996 году, которые изобрели дешёвый светодиод синего цвета.

Принцип работы LED

Наиболее распространённые светодиоды состоят из галлия (Ga), мышьяка (As) и фосфора (P). Светодиод представляет собой диодный PN-переход, который излучает свет вместо тепла, генерируемого обычным диодом. Когда PN- переход находится в прямом смещении, некоторые из дырок объединяются с электронами N-области, а некоторые из электронов N объединяются с дыркой из P-области. Каждая комбинация излучает свет или фотоны.

Как устроена светодиодная лампа на 220 вольт? Светодиоды имеют полярность и, следовательно, не работают, если они подключены в обратном направлении. Самый простой способ проверить полярность общего светодиода – это определить на глаз толщину электродов. Более толстым является катод (-). Свет излучается от катода. Более тонкий электрод представляет собой анод (+). Некоторые производители выпускают светодиоды таким образом, что длина проводов катода и анода различна, анод (+) длиннее катода (-). Это также облегчает определение полярности . Некоторые изготовители изготавливают оба провода электродов одинаковой длины, в этом случае можно определить полярность, воспользовавшись мультиметром.

Преимущества и недостатки светодиодных ламп

Достоинства LED:

Недостатки светодиодов LED:

  • Могут быть ненадёжным для наружных применений с большими температурными перепадами.
  • Необходимость дополнительно использовать радиаторы для защиты полупроводников от теплового воздействия.

Светодиод используется в самых разных областях применения:

Светодиодное освещение с питанием от сети

Но для построения светодиодной схемы освещения необходимо построить специальные источники питания с регуляторами, трансформаторами или без них. В качестве решения нижеприведенная схема демонстрирует конструкцию светодиодного контура с питанием от сети без использования трансформаторов.

Схема светодиодной лампы на 220 В

Для питания этой цепи используется переменный ток 220 В, который подаётся в качестве входного сигнала. Ёмкостное реактивное сопротивление понижает напряжение переменного тока. Переменный ток поступает на конденсатор, пластины которого непрерывно заряжаются и разряжаются, а связанные токи всегда поступают в пластинки и выходят из них, что вызывает реактивное сопротивление, направленное против потока.

Реакция, создаваемая конденсатором, зависит от частоты входного сигнала. R2 сбрасывает накопленный ток из конденсатора, когда вся цепь выключена. Он способен хранить до 400 В, а резистор R1 ограничивает этот поток. Следующий этап схемы светодиодной лампы своими руками – это мостовой выпрямитель, который предназначен для преобразования сигнала переменного тока в постоянный ток. Конденсатор C2 служит для устранения пульсации в выпрямленном сигнале постоянного тока.

Резистор R3 служит в качестве ограничителя тока для всех светодиодов. В схеме использованы белые светодиоды, которые имеют падение напряжения около 3,5 В и потребляют 30 мА тока. Поскольку светодиоды подключены последовательно, потребление тока очень мало. Поэтому эта схема становится энергоэффективной и имеет бюджетный вариант изготовления.

Светодиодная лампа из отходов

LED 220 В может быть легко выполнена из неработающих ламп, ремонт или восстановление которых нецелесообразны. Лента из пяти светодиодов приводится в действие с использованием трансформатора. В цепи 0,7 uF / 400V полиэфирный конденсатор C1 снижает напряжение сети. R1 – это резистор для разрядки, который поглощает накопленный заряд от C1, когда вход переменного тока выключен.

Резисторы R2 и R3 ограничивают подачу тока при включении схемы. Диоды D1 – D4 образуют мост-выпрямитель, который выпрямляет пониженное напряжение переменного тока, а C2 действует как конденсатор фильтра. Наконец, стабилитрон D1 обеспечивает управление светодиодами.

Порядок изготовления настольной лампы своими руками:

LED для автомобиля

Используя ленту LED, можно легко изготовить самодельную красивую наружную подсветку автомобиля. Нужно использовать 4 светодиодных полосыы по одному метру для чёткого и яркого свечения. Для обеспечения водонепроницаемости и прочности соединения тщательно обрабатывают термоклеем. Правильное выполнение электрических соединений проверяется мультиметром. Реле IGN получает питание, когда двигатель работает и выключается после отключения двигателя. Чтобы понизить автомобильное напряжение, которое может достигать 14,8 V, в схему включается диод, обеспечивающий долговечность светодиодов.

Светодиодная лампа своими руками на 220в

Цилиндрическая лампа LED обеспечивает правильное и равномерное распределение генерируемой освещённости на всех 360 градусах, так что все помещение равномерно освещено.

Лампа оснащена интерактивной функцией защиты от перенапряжений, обеспечивающей идеальную защиту устройства от всех импульсов переменного тока.

40 светодиодов объединены в одну длинную цепь светодиодов, соединённых последовательно одна за другой. Для входного напряжения 220 В можно подключить около 90 светодиодов в ряд, для напряжения 120 В – 45 светодиодов.

Расчёт получен путём деления выпрямленного напряжения 310 В постоянного тока (от 220 В переменного тока) на прямое напряжение светодиода. 310/3,3 = 93 единиц, а для входов 120 В – 150/3,3 = 45 единиц. Если уменьшить количество светодиодов ниже этих цифр, возникнет риск перенапряжения и выход со строя собранной схемы.

Как сделать лампочку своими руками

Схема состоит из высоковольтного конденсатора, низкореактивного сопротивления для понижения тока, двух резисторов и конденсатора на положительном источнике для снижения входного напряжения и колебаний сети. Фактически коррекция всплеска производится C2, установленным после моста (между R2 и R3). Все мгновенные скачки напряжения эффективно поглощаются этим конденсатором, обеспечивая чистое и безопасное напряжение для встроенных светодиодов на следующем этапе схемы.

Список деталей:

Самодельные LED имеют защиту, а их срок службы увеличен путём добавления стабилитрона по линиям питания. Показанное значение zener составляет 310 В/2 Вт, и подходит, если LED включает в себя светодиоды от 93 до 96 В. Для другого, меньшего количества светодиодных строк необходимо уменьшить значение zener в соответствии с общим вычислением прямого напряжения светодиодной строки.

Например, если используется 50 светодиодная строка, а светодиод имеет 3,3 В, то рассчитываем 50×3,3 = 165 В, поэтому стабилизатора на 170 В будет достаточно, чтоб защитить светодиод.

Автоматическая цепь ночного освещения LED

Схема автоматически включит ночью лампу и отключит через заданное время, используя несколько транзисторов и таймер NE555. Схема недорогая и простая в установке. В качестве датчика здесь используется LDR. В дневное время сопротивление LDR будет низким, напряжение на нем упадет, а транзистор Q1 будет находиться в режиме проводки. Когда освещённость в помещении падает, сопротивление LDR увеличивается, как и напряжение на нем. Транзистор Q1 выключается. База Q2 подключена к эмиттеру Q1 и поэтому Q2 смещается и, в свою очередь, включает IC1.

NE555 автоматически включается при включении питания. Автоматический запуск происходит с помощью конденсатора C2. Выход IC1 остаётся высоким в течение времени, определяемого резистором R5 и конденсатором C4. Когда на выходе IC1 поступает транзистор Q3, он включается, запускает триггер T1 и лампа светится. В цепь входит 9-вольтная батарея для питания таймера во время сбоёв питания. Резистор R1, диод D1, конденсатор C1 и Zener D3 образуют секцию питания схемы. R7 и R8 являются токоограничивающими резисторами.

Схема светодиодного освещения своими руками

Примечания:

  1. Предустановка R2 может использоваться для настройки чувствительности схемы.
  2. Предустановку R5 можно использовать для настройки времени включения лампы.
  3. При R5 @ 4,7M время включения будет около трёх часов.
  4. Мощность L1 не должна превышать 200 Вт.
  5. Для BT136 рекомендуется использовать радиатор.
  6. IC1 должен быть установлен на держателе.

Мероприятия по борьбе с мерцанием светодиодов

Светодиодная лампа из энергосберегающей своими руками имеет огромное преимущество, но нужно потрудиться, чтобы при работе самоделки пользователей не беспокоило излишнее мерцание LED:

Чтобы избежать влияния мерцания светодиодов, нужно всегда помнить о вышеуказанных моментах.

Ремонт светодиодных ламп своими руками

Светодиодные лампы – самые дорогие осветительные приборы. Но их качество и долговечность не всегда соответствуют параметрам, указанным на упаковке. Досадно выбрасывать лампу, не отслужившую положенного срока, вложив в нее ощутимые для бюджета средства.

Если у вас есть мультиметр и навыки работы паяльником, то неисправную светодиодную лампу можно отремонтировать, сэкономив на этом средства.

Светодиодные лампы

Конструкция светодиодных ламп

Устройство светодиодной лампы немногим отличается от конструкции КЛЛ. На рисунке показаны узлы, входящие в состав лампы.

Устройство светодиодной лампы
  1. Рассеиватель. Предназначен для равномерного распределения светового потока в пространстве и исключения ослепления при взгляде на светодиоды.
  2. Светодиоды.
  3. Основание светодиодов с печатными проводниками для их последовательного соединения.
  4. Радиатор охлаждения. Необходим для отвода тепла, выделяющегося при работе светодиодов.
  5. Драйвер. Формирует напряжение, требующееся для работы светодиодов.
  6. Корпус драйвера (лампы).
  7. Цоколь.

В пояснении нуждается только функциональное назначение драйвера. Светодиод – полупроводниковый прибор, излучающий свет при прохождении через него тока. Как и обычный диод, он проводит его только в одном направлении. При изменении полярности ток через него равен нулю. Как и у обычного диода, напряжение на выводах светодиода имеет величину, не превышающую нескольких вольт, и не изменяющуюся при повышении напряжения.

Поэтому при последовательном соединении светодиодов необходимая для работы величина напряжения подсчитывается умножением количества изделий на падение напряжения в прямом направлении тока через них. Его можно узнать из справочника или измерить. При подключении требуемого количества светодиодов к сети 220 В переменного тока нужно:

  • понизить напряжение до требуемой величины;
  • преобразовать из переменного в постоянное;
  • сгладить пульсации;
  • защитить драйвер и его нагрузку от замыканий;
  • защитить сеть от помех, образующихся при работе устройства.

Для понижения напряжения используются:

  • схемы с конденсатором;
  • схемы с понижающим трансформатором;
  • инверторные схемы.

Схемы с конденсатором используются в большинстве драйверов светодиодных ламп бытового применения. Они простые и дешевые, но это – их единственное достоинство. Функционально они похожи на схему с включением гасящего резистора последовательно с нагрузкой, на котором «падает» лишнее напряжение. Применение резистора нецелесообразно, так как на нем выделяется мощность, соизмеримая или большая, чем на самих светодиодах.

Конденсатор же на переменном токе выполняет ту же самую функцию – он тоже гасит напряжение. На схеме элементы C2, C3 и R1 предназначены для понижения напряжения до требуемой величины.

Схема простейшего драйвера светодиодной лампы

Недостаток такой схемы – зависимость напряжения на нагрузке от напряжения питающей сети. Ток через светодиоды нестабилен и иногда превышает допустимые значения. В этот момент возможен выход из строя диодов.

Второй недостаток — нет гальванической развязки с сетью. При ремонте ламп не прикасайтесь к токоведущим частям. Хоть напряжение на них и не опасное, но «фаза» питающей сети может приходить напрямую.

Трансформаторные схемы применяются в мощных светодиодных лампах, инверторные – при большом количестве светодиодов или при необходимости регулировки яркости (диммируемые лампы).

Для выпрямления переменного напряжения используется диодный мост VD1, а для сглаживания пульсаций – электролитический конденсатор С4.

Резисторы R2 и R3 необходимы для ограничения тока в момент подачи напряжения на схему. Разряженный электролитический конденсатор имеет малое сопротивление и в первый момент времени ток через него большой. Он может вывести из строя полупроводниковые диоды выпрямителя. Дополнительно эти резисторы при коротких замыканиях играют роль предохранителей. Резистор R4 разряжает конденсатор после отключения от сети для скорейшего погасания лампы.

Детали R2, R3 и R4 некоторые производители не устанавливают. Конденсатор С1 нужен для предотвращения проникновения помех от работы лампы в питающую сеть.

Диагностика и замена светодиодов

Прежде, чем приступить к ремонту, снимают рассеиватель. Способы демонтажа различаются в зависимости от конструкции лампы. Большая часть рассеивателей снимается отверткой, для чего ею нужно его поддеть в нескольких местах, найдя слабое место.

Светодиоды нужно осматривают: черные точки на некоторых элементах говорят об их выходе из строя. Осматривается и качество пайки – оборвавшийся контакт в последовательной цепочке светодиодов прерывает цепь их питания. То же происходит и при выходе из строя любого из диодов.

Светодиодная лампа без рассеивателя

Исправность светодиодов проверяется мультиметром. Измеряется их сопротивление в прямом направлении. Оно должно быть небольшим, величина для сравнения определяется на исправных элементах. При проверке работоспособные диоды тускло светятся. Можно поверить светодиоды, подав на них напряжение от батарейки с напряжением 9 В через резистор сопротивлением 1 кОм.

Обнаруженные неисправные элементы выпаиваются из платы, и на месте их установки впаивается перемычка. При наличии лампы-донора светодиоды заменяют, или используют детали от светодиодной ленты с похожей конструкцией и характеристиками.

Выпаивают светодиоды аккуратно. Для этого сначала разогревают припой с одной стороны и удаляют его с помощью отсасывающих устройств. При их отсутствии после полного расплавления припоя на одном из выводов он удаляется путем энергичного встряхивания платы. Остатки удаляются чистым жалом (можно тоже предварительно его встряхнуть) с обильным количеством канифоли. Второй вывод отпаять уже проще.

После установки перемычки вместо диода вся лампа будет светиться тусклее. Это связано с тем, что общее сопротивление цепи хоть и незначительно, но уменьшится. Ток через лампу увеличится, в итоге на конденсаторе будет оставаться большее напряжение. При удалении одного-трех диодов это не скажется на работе лампы. Но когда их останется мало, то увеличение тока станет настолько ощутимым, что оставшиеся детали будут перегреваться, процесс выхода из строя приобретет лавинообразный характер. Поэтому при массовом характере поломки светодиодов оставьте лампу в качестве донора деталей, заменив ее новой.

Ремонт драйвера

Слабым местом драйверов являются токоограничивающие резисторы. Их проверяют в первую очередь. Заменить сгоревшие элементы можно такими же или ближайшими по величине сопротивления.

Проверка полупроводниковых диодов выпрямителя и конденсатора производится мультиметром в режиме проверки сопротивления. Однако есть более быстрый способ проверить исправность этого участка схемы. Для этого измеряется напряжение на конденсаторе фильтра. Ожидаемая величина подсчитывается путем умножения паспортного напряжения на одном диоде на их количество. Если измеренное напряжение не соответствует требуемому или равно нулю, поиск продолжается: проверяется конденсатор и диоды. Если напряжение в норме – ищите обрыв между светодиодами и драйвером.

Проверку диодов мультиметром можно провести, не выпаивая их из платы. Короткое замыкание в диоде или его обрыв будут видны. При замыкании прибор в обоих направлениях покажет ноль, при обрыве сопротивление в прямом направлении будет не соответствовать сопротивлению открытого p-n-перехода. Его вы узнаете на исправных элементах. Короткое замыкание в диодах дополнительно приводит к выходу из строя ограничительного резистора.

Виды драйверов светодиодных ламп

Ремонт трансформаторного драйвера немногим сложнее обычного. А вот с инверторным придется повозиться. Деталей в нем больше, а главное – в его состав всегда входит микросхема. Для того, чтобы сделать заключение о ее неисправности, понадобится либо изучит в деталях принцип работы драйвера, либо убедиться в исправности всех окружающих ее деталей.

Оцените качество статьи:

Схема настольной лампы на светодиодах. Ремонт светодиодных LED ламп на примерах

Экономичные полупроводниковые элементы, из которых удаётся изготовить светодиодные светильники своими руками, появились на нашем рынке сравнительно недавно. Первые образцы изделий из светодиодных ламп были разработаны ещё в 1962 году, но их качество оставляло желать лучшего (современные модели – на фото ниже).

Объяснялось это тем, что самодельная светодиодная лампа в те годы могла изготавливаться лишь на основе полупроводниковых приборов, излучающих в очень узком диапазоне светового спектра (только красный цвет). Кроме того, эти элементы имели высокую стоимость, вследствие чего изготавливать из них самодельные осветители было нецелесообразно с экономической точки зрения. С появлением новых технологий удалось расширить спектр излучения полупроводниковых компонентов до жёлтого, зелёного и белого цветов.

Одновременно с этим резко снизилась стоимость этих изделий, так что задача сделать лампу из светодиодов своими руками не казалось уже такой трудно выполнимой.

Особенности выбора светодиодов

Требования к осветительным элементам

Перед тем, как сделать светодиодную лампу своими руками, обязательно нужно определиться, какие излучающие диоды оптимально подходят для этих целей.

Дополнительная информация. В общем случае сделать лампу на основе светодиодов возможно лишь при условии, что их КПД превышает 50% (сравните: для обычной лампы накаливания этот показатель составляет всего лишь 3,5-4%).

Особенности выбора этих элементов предполагают учёт следующих определяющих факторов:

  • Возможность получения подходящего для заданных условий спектра излучения лампы своими руками изготовленной из светодиодов (красного, жёлтого, зелёного или белого). Образец изделия с белым свечением приводится на фото ниже;

  • Высокая светоотдача самодельного светильника;
  • Низкое энергопотребление при его питании от бытовой сети;
  • Длительные сроки службы (не менее 30000 часов) и экологическая чистота;
  • Надежность конструкции на светодиодах (способность выдерживать неограниченное число включений и выключений).

В этих изделиях должна быть предусмотрена возможность управления интенсивностью светового потока, а также обеспечиваться низкая температура в районе расположения излучающих элементов.

Порядок выбора

Всем перечисленным выше условиям вполне удовлетворяют современные LED светодиодные лампы для дома, ассортимент которых широко представлен на отечественном рынке.

Добавим к этому, что на изготовление самодельной конструкции не потребуется расходование дополнительных материальных средств. Для этих целей вполне могут подойти старые электронные узлы и изделия, содержащие соответствующие детали.

Прекрасным образцом рационального подхода к их изготовлению может служить светильник из телевизора с ж/к экраном (не работающего по каким-либо причинам), из которого можно «позаимствовать» исправные светодиоды подсветки. Образец такого дисплея приводится на фото ниже.

Устройство и схема лампы

Особенности конструкции

Для того чтобы иметь чёткое представление о том, как сделать светодиодный светильник своими руками, прежде всего, необходимо определиться со следующими вопросами:

  • Тип и напряжение питания диодной лампочки, выпаянной из старого прибора и предназначенной для использования в светильнике;
  • Количество излучающих ламп, необходимых для получения нужной светоотдачи;
  • Возможные схемы их подключения к бытовой питающей цепи, используемые именно для светодиодов.

Если светодиодная лампочка своими руками изготавливается из подручных средств и старых элементов, перед их использованием нужно определиться с напряжением, которое будет на неё подаваться.

Важно! Перед тем, как собрать электронную схему, обязательно следует проверить работоспособность б/у изделий, подав на них рабочее напряжение от внешнего источника (аккумулятора, например). При этом не следует забывать о соблюдении полярности включения полупроводниковых элементов.

Для получения требуемой светоотдачи нужно будет самому последовательно соединить необходимое их количество, обеспечивающее заданную излучающую мощность. Этот вариант чаще всего прорабатывается в том случае, когда изготавливается светодиодная люстра своими руками (в её состав может входить несколько отдельных светильников).

Схемные решения и детали

Большинство современных LED светодиодов рассчитаны на сравнительно небольшие постоянные напряжения (от 4,5 до 12-ти Вольт), вследствие чего для их включения в питающую сеть используются специальные преобразующие схемы.

Дополнительная информация. Оптимальным вариантом является схема, работающая по принципу импульсного преобразования (её можно взять из энергосберегающей лампы, светильник которой сгорел, а модуль ЭПРА ещё исправен).

Вследствие возможности такого выбора настольная светодиодная лампа своими руками изготавливаемая из старых деталей и заготовок обязательно должна оснащаться типовым цоколем, подходящим под классический патрон.

Для питания таких светодиодных ламп иногда применяется простейшая схема выпрямителя на полупроводниковых диодах, рассчитанных на напряжение порядка 400 Вольт. Последовательно с диодным мостиком включается ограничивающий резистор, сопротивление которого достаточно для того, что понизить потенциал на лампочке до 5-12 Вольт.

Рабочую схему собираем таким образом, чтобы параллельно выпрямительному мосту с резистором подсоединялся электролитический конденсатор с номинальной ёмкостью от 500 до 2200 микрофарад (чем больше, тем лучше). Этот элемент, рассчитанный примерно на 25 Вольт, необходим для окончательного выпрямления питающего напряжения (сглаживания остаточных пульсаций).

Ленточные светодиоды

Ленточная конструкция представляет собой набор из одинаковых светодиодов, объединенных по определённой схеме ещё при их производстве (то есть в заводских условиях). Она уже имеет встроенный ограничительный элемент (резистор) и может разрезаться на отдельные секции, соединяемые в параллельные, смешанные и последовательные цепочки.

Дополнительная информация. Ленточные светодиодные структуры, как правило, рассчитаны на постоянное напряжение 12в (а также 24, 36 и 220 Вольт), которое подаётся к ним с готового выпрямительного блока.

За счёт произвольного сочетания различным образом подключаемых секций удаётся получать осветительные устройства с заданной освещенностью и потребляемой мощностью. Для подключения такой конструкции к бытовой сети на 220в потребуется специальный модуль, обеспечивающий понижение питающего напряжения до нужной величины.

Любой самодельный светильник из светодиодной ленты должен рассчитываться на определённое количество элементов, от которого будет зависеть суммарный световой поток готового изделия (его образец приведён ниже).

Классический светильник из светодиодной ленты своими руками собираемый из набора определённой длины может быть выполнен как торшер с четырьмя гранями, в каждую из которых помещают по секции из 5-7-ми диодов.

Размещённую таким образом ленточку из светодиодов соединяют параллельно с остальными отрезками и подключают к питающему блоку, рассчитанному на выходное напряжение 12 Вольт, и току нагрузки порядка 0,5 Ампер.

Таким образом, кажущийся поначалу сложным вопрос, как сделать светильник из светодиодной ленты, на деле решается достаточно просто, если в распоряжении имеется нужный блок питания.

Самодельные светильники в автомобиле

Автомобильные самоделки для освещения салона машины заметно проще в изготовлении, чем уже рассмотренные ранее изделия. Дело в том, что в этом случае в распоряжении пользователя уже имеется бортовое напряжение автомобиля 12 Вольт, подводку которого к светильнику просто следует оформить соответствующим образом.

Для этого можно воспользоваться имеющимся в салоне гнездом прикуривателя, на которое с АКБ поступает постоянное напряжение. Таким образом, чтобы подключить применяемый для авто светодиодный светильник достаточно приобрести ответную часть гнезда прикуривателя (смотрите рисунок ниже).

После припаивания подводящих проводов к фирменному разъёму на основе всех собранных вместе частей питающего узла получается готовый модуль для подсоединения самодельного светильника.

Обратите внимание! В этом случае при его изготовлении также может применяться ленточная светодиодная конструкция, рассчитанная на 12 Вольт, правда для её подключения потребуется специальный драйвер.

В заключение обзора отметим, что сделанная своими руками светодиодная лампа или светильник практически ни в чём не уступает фирменному изделию. Если соблюдать все рассмотренные выше условия, то никаких проблем с их изготовлением и эксплуатацией, как правило, не возникает.

Видео

Изготовление светодиодной лампы на 220 В своими руками занятие интересное, требующее терпения. Дополнительно нужны небольшие знания физики, и умение паять. Главная задача состоит в создании схемы преобразователя переменного тока сети на постоянный в 12 В, на котором работает светодиодный светильник.

Светодиодная лампа

Представляет маленький светящийся диодный элемент, работающий от постоянного тока в основном в 12В. Для создания ламп их собирают по несколько, в зависимости от требуемой интенсивности света . Преимущества такого освещения:

  • мизерное потребление электроэнергии;
  • срок службы от 100 000 часов;
  • могут работать сутками, без отключения;
  • в продаже имеется большой выбор различных моделей.

Основной недостаток в высокой стоимости готовых светодиодных светильников. Продавцы плохо разбираются в вопросе и не могут квалифицированно ответить на ваши вопросы. В самой характеристике лампы не учитываются потери при прохождении света через рассеиватель , матовое стекло и свойства отражателя.

На упаковке светильника указаны расчетные данные, исходящие из характеристик и количества светодиодных элементов. Поэтому по факту световой поток купленной лампы значительно ниже требуемого и освещение слабое. Сами лампы и детали для создания схем стоят копейки. Поэтому проще всего умельцам сделать все своими руками.

Использование светодиодных светильников

В домах и квартирах часто необходимо постоянное освещение какого-то места. Это могут быть лестницы и детские комнаты, туалеты, где нет окон, а в доме живет ребенок, который не может дотянуться до выключателя.

Неяркий свет и малое потребление энергии позволяют ставить освещение в подъездах и на крыльце, перед калиткой и воротами гаража. Светильники с мягким свечением за счет гашения бликов, применяются для освещения рабочих столов в кабинетах и на кухне.

Создание светодиодного светильника своими руками

Многих мучает вопрос, как сделать светодиодную лампу своими руками и возможно ли это. Схем для создания светодиодного освещения, работающего от сети переменного тока в 220 В, много, все они решают ряд общих задач:

При создании светодиодного освещения своими руками приходится решать еще и задачи:

  • куда поместить схемы и светодиоды;
  • как изолировать осветительную конструкцию;
  • правильный теплообмен.

Схемы светодиодных ламп

Выравнивание переменного пота и создание необходимой мощности и сопротивления для светодиодных светильников решается двумя способами. Схемы условно можно разделить на:

  • с диодным мостом;
  • резисторные, с четным количеством светодиодных элементов.

Каждый вариант имеет простые схемы и свои преимущества.

Схема преобразователя с диодным мостом

Диодный мост состоит из 4 диодов , направленных в разные стороны. Его задача превратить синусоидальный переменный ток в пульсирующий. Каждая полуволна проходит через два элемента , и минус меняет свою полярность.

В схеме, для светодиодной лампы, перед мостом со стороны источника переменного тока на плюс подсоединяется конденсатор С10,47х250 v. Перед минусовой клеммой ставится сопротивление на 100 Ом. Позади моста, параллельно ему, устанавливается еще один конденсатор – С25х400 v, который сглаживает перепад напряжений. Сделать своими руками такую схему легко , достаточно иметь навыки работы с паяльником.

Светодиодный элемент

Плата со светодиодными элементами применяется стандартная, от вышедшего из строя светильника. Необходимо проверить перед сборкой, чтобы все детали были рабочими. Для этого используется аккумулятор на 12 V, можно от автомобиля. Нерабочие элементы можно заменить, распаяв аккуратно контакты и поставив новые. Внимательно следите за расположением ножек анода и катода. Они соединяются последовательно.

При замене 2 – 3 деталей, вы просто припаиваете их в соответствии с положением, которое занимали вышедшие из строя элементы.

Собирая новый светодиодный светильник своими руками, нужно помнить простое правило. Лампы соединяются по 10 последовательно , затем эти цепи подключаются параллельно. На практике это выглядит так:

  1. 10 светодиодов ставите в ряд и спаиваете ножки анод одной с катодом второй. Получается 9 соединений и по одному свободному хвостику по краям.
  2. Все цепочки припаиваете к проводам. К одному катодные концы, к другому анодные.

В текстах часто используется словесное обозначение контактов, на схемах значки. Напоминание для начинающих электриков:

  • катод, положительный – «+», присоединяется к минусу;
  • Анод отрицательный – «-», присоединяется к плюсу.

При сборке схем своими руками, следите, чтобы спаянные концы не касались других. Это приведет к замыканию и сгорит вся схема, которую вы сумели сделать.

Схемы для более мягкого свечения

Чтобы светодиодная лампа не раздражала глаза миганием, в схему сборки надо добавить несколько деталей. В целом преобразователь тока состоит из:

  • диодный мост;
  • конденсаторы на 400 нФ и 10 мкФ;
  • резисторы на 100 и 230 Ом.

Для защиты от скачков напряжения, вначале ставится резистор на 100 Ом, и за ним впаивается конденсатор в 400 нФ . В предыдущем варианте они установлены на разных концах входа. За конденсатором после диодного моста устанавливается еще один резистор 230 Ом. За ним идет последовательная цепочка светодиодов (+).

Схемы на резисторах

Самая простая схема для желающих сделать все своими руками состоит из двух резисторов 12 k и двух цепочек с одинаковым количеством светодиодных элементов припаиваются соединенные последовательно лампы с разной направленностью. Со стороны R 1 одна полоса припаивается катодом, вторая – анодом. Другой отводок к R 2 наоборот.

Это создает более мягкое свечение ламп, поскольку светодиодные элементы горят поочередно и пульсация вспышек для глаз практически незаметна. Такие светильники можно использовать даже в качестве местного освещения при работе за столом, заменив, таким образом, обычную настольную лампу.

Специалисты, которые сделали своими руками не одну лампу, рекомендуют собирать не менее 20 светодиодов для этой схемы . Чаще используют 40. Это обеспечивает хорошее освещение и схема собирается легко. Для большего количества сложно производить качественную пайку схемы, не задев соседних контактов. Да и собирать ее в корпус трудно.

Можно делать светильник из 4 или 6 более мощных светодиодов. Для расчета схем использовать специальный калькулятор, который можно найти в интернете.

При создании различных схем своими руками из светодиодных приборов и других, можно использовать для правильного расчета онлайн-калькулятор . Его легко найти на сайтах, которые посвящены электрическим приборам и описанию, как их сделать. Его использование значительно упростит процесс расчета силы тока, сопротивления и позволит проверить правильность подбора деталей.

Корпуса для светодиодных ламп

Для удобного включения светодиодной лампы, которую сделали своими руками, в обычные осветительные приборы, используют:

  • цоколи обычных ламп накаливания;
  • корпуса от энергосберегающих ламп;
  • галогенные лампы;
  • самодельные приспособления.

Каждый специалист, делая светодиодную лампу своими руками, выбирает наиболее подходящий вариант. Цоколь дает возможность закрутить лампу в обычный патрон и одновременно обеспечивает теплообмен. Перегреваясь, светодиодная лампа быстрее выходит из строя.

Цоколь с лампы накаливания

Аккуратно отделяем стеклянную колбу и извлекаем спираль. Затем внутрь цоколя помещается схема и сверху на плате крепятся лампы. Недостаток такого основания в неприглядном виде и плохой изоляции.

Корпус энергосберегающей лампы

Самый удобный и практичный вариант для создания светодиодной лампы своими руками. Способы крепления диодов могут быть разные. Вначале аккуратно разбирается сгоревшая лампа. Затем из нее извлекается плата преобразователя. Далее, имеются варианты.

Можно разместить в отверстиях крышки, которые сделаны под стеклянные колбы. Это в варианте лампы с тремя дугообразными световыми элементами. Схема располагается внутри цоколя , обеспечивающего теплообмен. Светодиоды вставляются в уже готовые отверстия и крепятся в них.

Готовую плату со светодиодами можно поместить в цоколь с помощью простой пластиковой крышки от бутыли с водой. Можно использовать сделанный самостоятельно кружок и просверлить в нем отверстия под диоды. В результате удобно использовать и эстетичный вид.

Некоторые умельцы, делая своими руками, используют корпус галогенной лампы. Неудобство такого варианта в отсутствии обычной для цоколя возможности закрутить лампу в патрон. Такой вариант больше подходит для создания своими руками индикаторов и светильников постоянного тока.

LED-светильники находят широкое применение в организации бытового, уличного, промышленного освещения. Их важными достоинствами является экономичность, экологичность, неприхотливость в обслуживании.

Изготовленная светодиодная лампа своими руками обязательно найдет свое применение в вашем доме. Подробную инструкцию по изготовлению, как и схемы сборки вы найдете в представленной статье.

Основой светодиодной лампы является односторонний полупроводник, величина которого составляет несколько миллиметров. В нем происходит однонаправленное движение электронов, что позволяет преобразовывать переменный ток в постоянный.

Состоящему из нескольких слоев кристаллу светодиода свойственны два типа электропроводимости: положительно и отрицательно заряженных частиц.

Сторона, где содержится минимальное количество электронов, получила названия дырочной (p-тип), тогда как другая с большим количеством этих частиц именуется электронной (n-тип).

При столкновении элементов на p-n-переходе они сталкиваются, генерируя частицы света фотоны. Если в это время поддерживать систему в постоянном напряжении, светодиод будет излучать стабильный поток света. Этот эффект используется во всех конструкциях LED-ламп.

Четыре разновидности светодиодных устройств

В зависимости от размещения светодиодов подобные модели можно разделить на следующие категории:

  1. DIP . Кристалл скомпонован с двумя проводниками, над которыми находится увеличитель. Модификация получила широкое распространение при изготовлении вывесок и гирлянд.
  2. «Пиранья» . Приборы собирают аналогично предыдущему варианту, но предусматривают четыре вывода. Надежные и прочные конструкции чаще всего применяют для оснащения автомобилей.
  3. SMD . Кристалл размещается сверху, что значительно улучшает отведение тепла, а также помогает уменьшить габариты устройств.
  4. СОВ . В этом случае светодиод впаивается непосредственно в плату, что способствует увеличению интенсивности свечения и защите от перегрева.

Существенный недостаток COB-устройств – невозможность замены отдельных элементов, из-за чего приходится приобретать новый механизм из-за одного-единственного вышедшего из строя чипа.

В люстрах и других бытовых осветительных приборах обычно применяется конструкция SMD.

Устройство LED-ламп

Светодиодная лампа состоит из шести следующих частей:

  • светодиод;
  • цоколь;
  • драйвер;
  • рассеиватель;
  • радиатор.

Действующим элементом подобного прибора является светодиод, генерирующий поток световых волн.

Светодиодные приборы могут быть рассчитаны на различное напряжение. Наиболее востребованы небольшие изделия на 12-15 Вт и более крупные светильники на 50 ватт

Цоколь, который может иметь различный вид и размер, применяется и для других видов ламп – люминесцентных, галогенных, накаливания. В то же время некоторые LED-приборы, например, светодиодные ленты, могут обходиться без этой детали.

Важным элементом конструкции служит драйвер, преобразующий сетевое напряжение в тягу, на которой работает кристалл.

От этого узла во многом зависит эффективная работа лампы, кроме того, качественный , имеющий хорошую гальваническую развязку, обеспечивает яркий постоянный световой поток без намека на моргание.

Обычный светодиод производит направленный пучок света. Чтобы изменить угол его распределения и обеспечить качественное освещение, используется рассеиватель. Еще одной функцией этого компонента является защита схемы от механических и природных воздействий.

Радиатор предназначен для отвода тепла, излишки которого могут повредить прибору. Надежная работа радиатора позволяет оптимизировать работу лампы и продлить ей жизнь.

Чем меньше эта деталь, тем большую тепловую нагрузку придется выдерживать светодиоду, что скажется на быстроте его выгорания.

Преимущество и недостатки самодельной лампы

Специализированные магазины предлагают большой выбор светодиодных аппаратов. Однако порой в ассортименте невозможно найти прибор, отвечающий необходимым параметрам. Кроме того, LED-приборы традиционно отличаются высокой стоимостью.

К недостаткам изделий следует отнести отсутствие гарантии от производителя. Кроме того, при небрежной сборке подобные устройства могут иметь непривлекательный внешний вид

Между тем, вполне возможно сэкономить средства и получить идеальную лампу, выполнив сборку самостоятельно. Сделать это несложно и достаточно будет элементарных технических знаний и практических умений.

Выполненное своими руками LED-устройство имеет ряд значительных преимуществ над приобретенным в магазине аналогом. Они отличаются экономичностью: при аккуратной сборке и использовании качественных деталей период эксплуатации достигает 100 тысяч часов.

Такие приборы показывают высокую степень энергоэффективности, которая определяется соотношением потребляемой мощности и яркости выработанного света. Наконец, их стоимость на порядок ниже, чем фабричных аналогов.

Проблемы самостоятельного изготовления

Главными вопросами, которые приходится решать при изготовлении LED-ламп, является перевод переменного электрического тока в пульсирующий и его выравнивание до постоянного. Помимо этого, предстоит ограничить силу электропотока 12 вольтами, что необходимо для питания диода.

Для самостоятельного создания светильника на светодиодах можно воспользоваться деталями, купленными в специализированных магазинах, или элементами из перегоревших приборов

Продумывая устройство, следует также решить ряд конструктивных задач, а именно:

  • как расположить схему и светодиоды;
  • как изолировать систему;
  • как обеспечить теплообмен в устройстве.

Перед сборкой желательно продумать все эти проблемы с учетом требований, которые предъявляются к самодельному источнику света.

Схемы светодиодных ламп

Прежде всего, следует выработать вариант сборки. Существует два основных способа, каждый из которых имеет собственные плюсы и минусы. Ниже мы рассмотрим их подробнее.

Вариант с диодным мостом

Схема включает четыре диода, которые подключаются разнонаправленно. Благодаря этому мост приобретает возможность трансформировать сетевой ток в 220 V в пульсирующий.

Происходит это следующим образом: при проходе по двум диодам синусоидальных полуволн, они изменяются, что вызывает потерю полярности.

При сборке к плюсовому выходу перед мостом подключается конденсатор; перед минусовой клеммой – сопротивление на 100 Ом. Еще один конденсатор устанавливается позади моста: он понадобится для сглаживания перепадов напряжения.

Изготовление светодиодного элемента

Наиболее простым способом создания LED светильника является выполнение источника света на основе сломанного светильника. Необходимо проверить работоспособность обнаруженных деталей, что можно сделать с помощью аккумулятора на 12 V.

Неисправные элементы нужно заменить. Для этого следует распаять контакты, убрав перегоревшие элементы, поставить на их место новые. При этом важно соблюдать чередование анодов и катодов, которые крепятся последовательно.

Если требуется поменять лишь 2-3 штуки чипа, достаточно просто припаять их на участки, где ранее находились вышедшие из строя компоненты.

При полной самостоятельной сборке нужно соединять в ряд по 10 диодов, соблюдая правила полярности. Несколько выполненных цепей припаиваются к проводам.

При изготовлении лампы можно воспользоваться платами со светодиодами, которые можно найти в перегоревших устройствах. Важно лишь проверить их работоспособность

При сборке схем важно следить, чтобы спаянные концы не касались друг друга, поскольку это может привести к замыканию прибора и выхода системы из строя.

Приспособления для более мягкого света

Чтобы избежать мерцания, свойственного LED-светильникам, описанную выше схему можно дополнить несколькими деталями. Таким образом, она должна состоять из диодного моста, резисторов на 100 и 230 Ом, конденсаторов на 400 нФ и 10 мкФ.

Чтобы защитить устройство от перепадов напряжения в начале схемы помещается резистор в 100 Ом, за которым впаивается конденсатор 400 нФ, после него устанавливается диодный мост и еще один резистор на 230 Ом, за которым идет собранная цепочка светодиодов.

Приборы с резисторным сопротивлением

Подобная схема также вполне доступна начинающему мастеру. Для ее выполнения требуются два резистора 12k и две цепочки из одинакового числа светодиодов, которые припаиваются последовательно с учетом полярности. При этом одна полоса со стороны R1 подсоединяется катодом, а другая – с R2 – анодом.

Выполненные по этой схеме светильники имеют более мягкий свет, поскольку действующие элементы зажигаются по очереди, благодаря чему пульсация вспышек почти незаметна невооруженному глазу.

Материалы для изготовления самоделки

Помимо корпуса, для создания лампы потребуются и другие элементы. Это, прежде всего светодиоды, которые можно приобрести в виде LED-лент или отдельных элементов НК6. Сила тока каждой детали равна 100-120 мА; напряжение 3-3,3 V.

Сборка некоторых схем предполагает использование дополнительных звеньев, например, драйвера, поэтому набор компонентов для каждого конкретного случая рассматривается отдельно

Необходимы также выпрямительные диоды 1N4007 либо диодный мост, а также предохранители, обнаружить которые можно в цоколе старого прибора.

Понадобится и конденсатор, емкость и напряжение которого должны соответствовать используемой электросхеме и количеству использованных в ней LED-элементов.

Если не используется готовая плата, нужно подумать о каркасе, к которому крепятся светодиоды. Для его изготовления подойдет теплоустойчивый материал, не являющийся металлом и непроводящий электрический ток.

Как правило, подобную деталь выполняют из прочных пластиков или плотного картона. Для крепления светодиодных элементов к каркасу понадобятся жидкие гвозди или суперклей.

Собираем простую LED-лампу

Рассмотрим выполнение светильника в стандартном цоколе от люминесцентной лампы. Для этого нам придется несколько изменить приведенный выше список материалов.

В этом случае мы используем:

  • старый цоколь Е27;
  • светодиоды НК6;
  • драйвер RLD2-1;
  • кусок пластика или плотного картона;
  • суперклей;
  • электропроводку;
  • паяльник, плоскогубцы, ножницы.

Первоначально требуется разобрать светильник. У люминесцентных устройств подсоединение цоколя к пластинке с трубками осуществляется с помощью защелок. Важно обнаружить место крепежа и поддеть элементы отверткой, что позволит легко отсоединить патрон.

Процесс сборки самодельной светодиодной лампы простой. В корпус от старого прибора вставляется драйвер, поверх которого устанавливается плата со светодиодами

Разбирая прибор, нужно соблюдать предельную осторожность, чтобы не нанести вреда трубкам, внутри которых находится ядовитое вещество. Одновременно необходимо следить за целостностью электропроводки, подсоединенной к цоколю, а также сохранять детали, содержащиеся в нем.

Верхнюю часть с подсоединенными газоразрядными трубками мы используем для выполнения пластинки, необходимой для подсоединения светодиодов. Достаточно удалить трубчатые элементы, а в оставшиеся круглые отверстия закрепить LED-детали.

Для их надежного крепления лучше сделать дополнительную пластмассовую или картонную крышку, которая послужит для изолирования чипов.

В лампе будут применяться светодиоды НК6, каждый из которых состоит из 6 кристаллов с параллельным подключением. Они позволяют создать довольно яркий осветительный прибор при минимуме потребляемого электричества.

Для подключения каждого светодиода к крышке необходимо выполнить по два отверстия. Прокалывать их следует аккуратно в строгом соответствии схеме.

Пластиковая деталь позволяет прочно зафиксировать LED-элементы, тогда как использование картона требует дополнительного закрепления светодиодов к основанию при помощи жидких гвоздей либо суперклея.

Так как устройство рассчитано на применение шести светодиодов мощностью по 0,5 ватт каждый, в схеме нужно предусмотреть три параллельно подсоединенных элемента.

Эффектный светильник можно выполнить, используя светодиодную ленту. Этот элемент вставляется в трубку, применяющуюся для люминесцентного освещения

В конструкции, которая будет работать от электросети мощностью 220 В, нужно предусмотреть драйвер RLD2-1, который следует приобрести в магазине или выполнить самостоятельно.

Во избежание короткого замыкания перед началом сборки важно заизолировать драйвер и плату друг от друга, используя пластик или картон. Поскольку лампа почти не нагревается, не стоит беспокоиться о перегреве.

Подобрав все компоненты можно собрать конструкцию по схеме, а затем подключить ее к электросети, чтобы проверить свечение.

Устройство, работающее от стандартного патрона с питанием 220 В, имеет низкое энергопотребление и мощность равную 3 Ваттам. Последний показатель в 2-3 раза меньше, нежели у люминесцентных устройств и в 10 раз меньше, чем у ламп накаливания.

Хотя световой поток равен всего лишь 100-120 люменов, благодаря ослепительно белому цвету лампа кажется значительно ярче. Собранный светильник можно применять в качестве настольного либо для освещения компактного помещения, например, коридора или чулана.

Выводы и полезное видео по теме

В приведенном ниже видеоролике вы можете увидеть подробный рассказ специалиста о самостоятельной сборке LED-светильника:

Лампы на светодиодах, выполненные самостоятельно, обладают высокими техническими характеристиками. Они почти не уступают фабричным моделям по таким качествам, как прочность, надежность, долговечность.

Сборка подобных устройств доступна практически каждому: для успешного ее выполнения необходимо лишь строго следовать схемам и аккуратно выполнять все предписанные манипуляции.

Возможно вам уже приходилось собирать светодиодную лампу своими руками и вы можете дать ценный совет посетителям нашего сайта? Или после прочтения статьи появились вопросы? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.

По статистическим данным, было выявлено, что стоимость светодиодных светильников значительно понизилась. Такие показатели повлекли за собой увеличение приобретения высокоэкономичных средств освещения в частные дома и квартиры. Тем, кто отлично управляется с паяльником, вовсе не потребуется поход в магазин для того, чтобы обустроить свое жилье, так как можно создать светильник своими руками, без обращения к заводским изделиям. Таким образом можно сэкономить большую сумму денег и подобрать дизайн прибора такой, который будет подходить под интерьер квартиры.

Схема светодиодного светильника.

У светодиодов есть своя особенность, заключающаяся в режиме работы постоянного тока и в низкой степени напряжения. Потому для осуществления процесса освещения преимущественно используются такие устройства, как блоки питания. Некоторые самостоятельно паяют электрические схемы на платах, что не так уж просто, особенно для тех, кто не знаком с этой сферой деятельности.

Создавая светильник своими руками, лампу или любой другой осветительный прибор, нужно брать в учет тот факт, что одна треть от такой единицы, как номинальная мощность, будет уходить на преобразование светового потока, остальные же части нужны для тепловых потерь.

Важно помнить о том, что при перегреве светодиодов может произойти сокращение срока работы. Собирая самостоятельно любую конструкцию из светодиодов, должно предусматриваться отведение тепла от всей конструкции во время подачи питания.

Какие светодиоды стоит использовать?

Таблица разновидностей светодиодов.

Первоначально желательно выбрать определенный вид светодиодов, который потребуется. Если рассматривать мощные и маломощные, то первый вид намного выгоднее, из-за того что трудоемкость выше. Отношение маломощных к мощным составляет 20:1. По таким показателям можно сделать вывод о том, что с маломощными светодиодами предстоит намного больше спаивания. Среди мощных светодиодов можно выделить пару разновидностей, одни из которых предназначены для выводных монтажных работ, а другие — для поверхностных. В большинстве случаев используют выводные, так как с ними монтажные работы проводятся намного быстрее.

Источники питания

Для долговечности светодиодов нужен отличный драйвер, а по-другому его можно назвать источником питания. Драйвер может быть корпусным и бескорпусным, с присутствием гальванической развязки и без нее. Если рассматривать именно переделку светильников, то желательно применять вид бескорпусного драйвера, в котором идет гальваническая развязка.

Вид без корпуса очень полезен тем, что он компактен по размеру, а также имеет меньшую степень нагревания. Но есть и свои определенные недостатки, которые проявляются в сложности при креплении.

Использование гальванической развязки, как правило, требуется для обеспечения безопасности, так как в этом случае можно избежать удара током. При отсутствии такой технологии некоторые получают минимальные удары электрического разряда.

Электрическая схема светодиодного светильника.

При выборе драйверов желательно обращать свое внимание на указание минимального и максимального количества светодиодов, которое можно подвести к подключению. Если же такие данные отсутствуют, то стоит просматривать выходные показатели напряжения источника питания.

Источник питания может быть двух видов, один из которых состоит из фильтра электромагнитной помехи, а второй, соответственно, его не имеет. Устройства, которые не имеют фильтров, в большей степени обладают помехами электромагнитных волн и проведения частот на приемники.

Использование радиатора для светодиодов

Для того чтобы пользоваться светодиодом успешно и долго, стоит применять радиаторы, так как они такие же важные составляющие процесса, как и источники питания. Радиатор должен быть выполнен исключительно из алюминия. Найти такой материал очень просто, так как у каждого человека найдется старая посуда из алюминия. Для того чтобы можно было рассеять тепло со светодиода, нужно брать в учет именно размер площади, а не толщину. Стоит отметить, что на компьютерных кулерах установлены вентиляторы, так как без такого устройства тепло от светодиода будет отводиться с минимальной скоростью.

Процесс изготовления светильника своими руками

Перед тем как начать разработку светильника самостоятельно, желательно подготовить все необходимые инструменты. В частности, желательно обзавестись:

Схема корпуса светильника.

  • базовыми и запасными светодиодами;
  • микротрансформатором;
  • мультиметром;
  • красными светодиодными лампочками;
  • резистором на 100 Ом;
  • конденсатором на 400 мкФ и на 10 мкФ;
  • патроном;
  • обезжиривателем;
  • паяльником;
  • монтажным клеем;
  • доской;
  • абажуром.

Первоначально желательно провести проверку каждого светодиода, который будет включен в цепь, и качество питающего напряжения в сетевом кабеле. Чтобы осуществить такой процесс, стоит использовать микротрансформатор. Таким образом, при настраивании и при тестовой проверке будущего прибора освещения регулировка будет проводиться намного плавне.

Для того чтобы измерять, падает напряжение при постоянном токе и воздействии на резистор или нет, и для точного расчета тока диодов применяют мультиметр. Как правило, при самостоятельной сборке стараются использовать шестивольтовые светильники, но нередко могут понадобиться и те, которые рассчитаны на 12 вольт.

Сами же диоды должны быть высокого качества, чтобы можно было избежать неприятного голубоватого свечения, которое не просто испортит внешний вид светильника, но также и навредит глазам.

Схема подключения светодиодных частей на корпус светильника.

Схему сборки можно назвать очень простой и без потери для драйвера. Единственный недочет состоит в отсутствии изоляции у проводов, то есть сам светильник из светодиодов может быть подвержен токовым ударам. Ориентируясь на последние данные, стоит учитывать, что желательно беречь лампу от падения, но впоследствии схема может быть модернизирована.

  1. Резисторы нужны для защиты платы при подключении к сети, чтобы избежать скачка напряжения. В случае его отсутствия желательно применение крошечного выпрямительного моста.
  2. Использование конденсатора 400 мкФ требуется для того, чтобы установить энергию на нужном уровне, которая требуется для передачи и дополнительного добавления ламп, при свободной пропускной способности. Перед работой желательно убедиться в том, что в работе идет именно вид номинального напряжения, которое, как правило, вполовину больше обычного тока в сети.
  3. Применение конденсатора 10 мкФ нужно для создания идеального источника света, а также для исключения таких последствий, как блики и мигания. Высота номинального напряжения в этом случае должна превышать показатели предыдущего конденсатора вдвое.

Если нет возможности приобретения нового патрона, его можно изъять из старой лампы. Для этого нужно аккуратно разбить лампочку, причем так, чтобы не повредилась гнездовая часть патрона. После такой процедуры сам патрон стоит защитить и обработать при помощи обезжиривателя. Важно, что перед установкой отверстие в патроне проверяется еще раз на наличие остатков лампы, которые могут навредить будущей системе освещения, и желательно провести дополнительную обработку при помощи ацетона или спирта.

Крепление патрона к резистору и транзистору

Далее дело идет за паяльными работами. Посредством паяльника проводится установка крошечного выпрямителя, причем материалы должны быть заранее подготовлены и находиться под рукой. Поверхность обрабатывается в обязательном режиме, а сами действия должны быть максимально точны и аккуратны, для того чтобы исключить повреждения уже установленных деталей.

Для того чтобы провести термоусадку, применяют любой вид монтажного клея, так как материал должен быть предназначен для проведения подобных действий, и ни в коем случае не канцелярского назначения.

Установка светодиодных ламп считается самым важным и интересным моментом во всей сборке светильника. Основой будет служить заранее купленная или же приготовленная от старых приборов доска. Если она принадлежала старым конструкциям, то, соответственно, доска должна быть очищена от деталей и различных заусенцев.

Проводя и подключая каждый контакт, их стоит проверять и очищать, если сигнал не поступает. Остается совсем немного — и светильник сможет радовать своего создателя. Для того чтобы завершить работу, нужно попросту собрать все детали, которые имеются. Если быть точнее, то каждая деталь припаивается к планшетке и к устройству резистора. Далее все изолируется при помощи клея, проверяются соединения между диодами для правильного распространения света.

Экономные лампы освещения уже есть практически в каждом доме. Предлагаем рассмотреть, как сделать светодиодный светильник своими руками, какие материалы для этого потребуются, а так же советы о том, по каким критериям их необходимо выбирать.

Пошаговая разработка светодиодного светильника

Первоначально, перед нами стоит задача – проверить работоспособность светодиодов и измерить питающее напряжение сети. При настройке данного устройства для предотвращения поражения электрическим током мы предлагаем использовать разделительный трансформатор 220/220 В. Это так же обеспечит более безопасное проведение измерений при настройке нашего будущего светодиодного светильника.

Нужно учесть, что если какие-либо элементы схемы будут подключены неправильно, возможен взрыв, так что строго следуйте инструкции, приведенной ниже.

Чаще всего проблемы неправильной сборки заключается именно в некачественной спайке компонентов.

При расчетах для измерения падения напряжения тока потребления светодиодов нужно использовать универсальный измерительный мультиметр. В основном такие самодельные светодиодные светильники используются на напряжении 12 В, но наша конструкция будет рассчитана на сетевое напряжение 220 В переменного тока.

Видео: Светодиодный светильник в домашних условиях

Высокая светоотдача достигается на диодах при токе 20-25 мА. Но дешевые светодиоды могут давать неприятное голубоватое свечение, которое еще и очень вредно для глаз, поэтому мы советуем разбавлять самодельный светодиодный светильник небольшим количеством красных светодиодов. На 10 дешевых белых будет достаточно 4 светодиода красного свечение.

Схема довольно проста и разработана для питания светодиодов непосредственно от сети, без дополнительного блока питания. Единственным недостатком такой схемы является то, что все ее компоненты не изолированы от питающей сети и светодиодный светильник не обеспечит защиту от возможного удара током. Так что будьте осторожны при сборке и установке данного светильника. Хотя в дальнейшем схему можно будет модернизировать и изолировать от сети.

Упрощённая схема светильника
  1. Резистор на 100 ОМ при включении защищает схему от бросков напряжения, если его нет, нужно использовать выпрямительный диодный мост большей мощности.
  2. Конденсатор 400 нФ ограничивает силу тока, которая необходима для нормального свечения светодиодов. При необходимости можно добавить еще светодиодов, если их суммарное потребление тока не превышает предела, установленного конденсатором.
  3. Убедитесь в том, что используемый конденсатор рассчитан на рабочее напряжение не менее 350 В, оно должно в полтора раза превышать напряжение сети.
  4. Конденсатор 10 мкФ необходим, чтобы обеспечить стабильный источник света, без мерцаний. Его номинальное напряжение должно быть в два раза больше того, что измеряется на всех последовательно соединенных светодиодах во время работы.

На фото вы видите сгоревшую лампу, которая скоро будет разобрана для светодиодного светильника своими руками.


Лампу разбираем, но очень осторожно, чтобы не повредить цоколь, после этого очищаем его и обезжириваем спиртом или ацетоном. Особое внимание уделяем отверстию. Его очищаем от лишнего припоя и еще раз обрабатываем. Это необходимо для качественной пайки компонентов в цоколе.


Фото: патрон лампы
Фото: резисторы и транзистор

Теперь нужно впаять крошечный выпрямитель, мы используем для этих целей обычный паяльник и уже заранее приготовлены диодный мост и обрабатываем поверхность, работаем очень аккуратно, чтобы не повредить ранее установленные детали.


Фото: пайка выпрямителя

В качестве изоляционного слоя модно использовать клей простого монтажного термопистолета. Подойдет так же ПВХ трубка, но желательно воспользоваться специально предназначенным для этого материалом, заполняющим все пространство между деталями и одновременно фиксируя их. У нас получилась готовая основа для будущего светильника.


Фото: клей и патрон

После этих манипуляций приступаем к самому интересному: установки светодиодов. Используем как основу специальную монтажную плату, её можно купить в любом магазине электронных компонентов или даже извлечь из какой-нибудь старой и ненужной техники, предварительно очистив плату от ненужных деталей.


Фото: светодиоды на доске

Очень важно проверить каждую из наших плат на работоспособность, ведь иначе весь труд зря. Особенное внимание уделяем контактам светодиодов, при необходимости их дополнительно очищаем и зауживаем.

Теперь собираем конструктор, нужно припаять все платы, у нас их четыре, к конденсатору. После этой операции снова все изолируем клеем, проверяем соединения диодов между собой. Располагаем платы на одинаковом расстоянии друг от друга, чтобы свет распространялся равномерно.


Соединение светодиодов

Также без дополнительных проводов подпаиваем конденсатор 10 мкФ, это хороший опыт пайки для будущих электриков.


Готовая мини лампа Резистор и лампа

Все готово. Мы советуем накрыть нашу лампу абажуром, т.к. светодиоды излучают чрезвычайно яркий свет, который очень бьет по глазам. Если поместить наш самодельный светильник в «огранку» из бумаги, к примеру, или ткани, то получится очень мягкий свет, романтичный ночник или бра в детскую. Поменяв мягкий абажур на стандартный стеклянный, мы получим достаточно яркое свечение, не раздражающее глаз. Это хороший и очень красивый вариант для дома или дачи.

Если вы хотите сделать питание лампы на батарейках или от USB, нужно исключить из схемы конденсатор на 400 нФ и выпрямитель, подключив схему непосредственно к источнику постоянного тока напряжением 5-12 В.

Это неплохой прибор для подсветки аквариума, но нужно подобрать специальную влагозащищенную лампу, ее можно найти посетив любой магазин электромеханических приборов, такие существуют в любом городе, будь-то Челябинск или Москва.


Фото: лампа в действии

Светильник в офис

Можно сделать креативный настенный, настольный светильник или напольный торшер в рабочий кабинет из нескольких десятков светодиодов. Но для этого будет поток света будет недостаточен для чтения, здесь нужен достаточный уровень освещенности рабочего места.

Для начала нужно определить количество светодиодов и номинальную мощность.

После выяснить нагрузочную способность выпрямительного диодного моста и конденсатора. Подключаем группу светодиодов на отрицательный контакт диодного моста. Подключаем все светодиоды, как показано на рисунке.


Схема: подключение ламп

Паяем все 60 светодиодов вместе. Если нужно подсоединять дополнительные светодиоды, просто продолжайте последовательную их спайку плюса к минус. Используйте провода, чтобы соединить минус одной группы светодиодов с последующей, пока не завершится весь процесс сборки. Теперь добавьте диодный мост. Подключите его, как показано на рисунке ниже. Положительный вывод к положительному проводу первый группы светодиодов, соедините отрицательный вывод к общему проводу последнего светодиода в группе.


Короткие провода светодиодов

Дальше нужно подготовить цоколь старой лампочки, отрезав провода от платы и припаять их к входам переменного напряжения на диодном мосте, отмеченные знаком ~. Вы можете использовать пластиковые крепления, винты и гайки для соединения двух плат вместе, если все диоды размещены на отдельных платах. Не забываем залить платы клеем, изолируя их от короткого замыкание. Это достаточно мощный сетевой светодиодный светильник, который прослужит до 100 000 часов непрерывной работы.

Добавляем конденсатор

Если увеличить напряжение питание на светодиодах, для того, чтобы свет был ярче, то светодиоды начнут нагреваться, из-за чего значительно понижается их долговечность. Для того чтобы этого избежать, нужно соединить встраиваемый или настольный светильник на 10 Вт с дополнительным конденсатором. Просто подключите одну сторону цоколя к минусовому выходу мостового выпрямителя а положительный, через дополнительный конденсатор, к плюсовому выводу выпрямителя. Вы можете использовать 40 светодиодов вместо предложенных 60, увеличив тем самым общую яркость лампы.

Видео: как правильно сделать светодиодный светильник своими руками

При желании аналогичный светильник можно сделать и на мощном светодиоде, просто тогда понадобится уже конденсаторы другого номинала.

Как видите, особой сложности сборка или ремонт обычного светодиодного светильника, сделанного своими руками, не представляет. И это не займет много времени и сил. Такая лампа подойдет и как дачный вариант, например для теплицы, ее свет абсолютно безвреден для растений.

Диммируемые светодиодные лампы: схема диммирования светодиодных ламп

Очередным открытием светодиодных технологий стали диммируемые светодиодные лампы. Установить их можно куда угодно: светильники, люстры, торшеры, которые подключены к диммируемой цепи.  Процесс регулирования очень прост и ничем не отличается от всем нам привычного использования ламп со спиралью.

Диммирование светодиодных ламп

Покупатели светильников с возможностью диммирования, в первую очередь, хотят добиться качественного и удобного освещения. С помощью такой функции как регулировка источника света можно затемнить комнату, создав идеальное освещение для уюта, а также обеспечить максимально освещаемое рабочие место. Если снизить световой поток LED-лампы можно значительно уменьшить употребление энергии.

 

Вы узнаете, как использовать диммируемые светодиодные приборы и все тонкости их использование. Постараемся максимально помочь покупателям что бы не ошибиться в выборе.»dimmable»

Предназначение диммера

Диммер – (с англ. – утемняющий механизм) используется для плавной смены ярости свечения лампы. Одним из основных параметров диммера является его мощность. От мощности диммера зависит максимальное количество подключаемых к нему светильников.

Зачастую такие приборы изготовляют по форме выключателя для размещения в обычной монтажной коробке. Для регулировки работы диммируемых светодиодных ламп используется регулировочная ручка переменного резистора. Начальный уровень регулировки задает схема диммера и, как правило, ровно 20-30% от напряжения сети.

Наличие диммируемых ламп решает две основные задачи:

  • Позволит подобрать оптимальный уровень освещенности, в зависимости от времени суток.
  • Снизит энергопотребление.

Различие диммируемой светодиодной лампы

Особенности светодиодных диммируемых источников света заключаются в наличии электронной схемы, которая рассчитана на импульсное энергопитание. Простой осветительный прибор на базе светодиодов (без функции диммирования) или же лампы с обычными энергосберегающими свойствами (так называемые энергосберегайки) не приспособлены для такого режима регулирования светового потока. При их подключении через диммер возможно возникновение внутреннего электрического треска. Пострадает возможность корректирования светового потока светодиодной лампы. В исключительных случаях возможен несвоевременный выход из строя самого диммера.

Различные вариации технического решения

Выпускаются различные диммеры для светодиодных ламп напряжение которых 220В. Для того что бы упростить себе выбор нужно обращать внимание на преимущество и недостатки данных приборов. Они разделяются на группы в зависимости от вида управления:

  • Механические
  • Кнопочные
  • Дистанционные

В механических диммерах регулировка производится с помощью вращающиеся рукоятки. Это упрощает процесс выбора корректного режима. Приборы данного вида относительно не дорогостоящие в местах реализации.

Использование кнопочных выглядит весьма современней. Оснащение сенсорных диммеров экраном, на котором отображаются различные параметры, такие как уровень освещенности, придают месту их использования некий модернизм.

Очень удобной вариацией обладают диммеры, оснащенные средством дистанционного управления.

Связанные по радиоканалу светодиодная лампа и диммер намного упростят использование. Регулятор данного вида прост в эксплуатации. Инфракрасный аналог придется специально направлять в сторону приемника осветительного прибора.

Выбор драйвера

Для определения с драйвером и типом димминирования нужно учитывать множество факторов, например, мощность ламп. Самыми подходящими являются встраиваемые светильники, их драйвер расположен за пределами корпуса. В случае с навесными и поверхностными тут есть очень много нюансов. Однако все в этой жизни решаемо, заручившись поддержкой высококвалифицированного персонала можно задиммировать даже то, что для этого и не предназначалось.

Диммируемая светодиодная LED-лампа е14 хорошо подходит для комплектации автоматизированных систем. Справляется с исполнением хорошего источника света. Они являются весьма востребованными у потребителей. 14 – этот параметр указывает диаметр цоколя лампы, выраженный в миллиметрах. Так как именно такими цоколями оснащены множество различных торшеров, настольных ламп и бра. Свечения лампочки подчеркнет ваш интерьер. Сегодня эти лампочки выпускаются в различных формах: шар, капля, свеча, гриб.

Рекомендации по установке диммера

Легче всего подключать диммеры у которых уже встроен блок электроники и имеется пульт дистанционного управления. Такими приборами можно заменить уже имеющиеся источники света не нанося вред электрической схеме. Так как потребление энергии светодиодными источниками весьма небольшое, замена проводки или защитные автоматы не потребуются.

Сложнее в случае применения низковольтного питания 12В. Тут уже понадобится уложить отдельный кабель. Упростить работу могут подвесные разборные потолки, ведь за ними можно спрятать блок питания и многие другие компоненты прибора.

Хорошим решением станет монтаж специализированных диммеров вместо обычных выключателей. При выполнении подключения своими руки предоставляем некие каноны использования.

  • Данное приспособление устанавливают в разрыв фазового шнура, определить который, нужно с помощью вспомогательных приборов, например, индикатора напряжения (отвертка, в ручке которой, расположен световой индикатор).
  • При выполнении монтажных работ нужно соблюдать правила электробезопасности. Обязательно отключить питание и обеспечить условия ограничивающие случайную подачу тока.
  • Питание нужно присоединить в специальной клемме, маркирована буквой L.
  • Нулевой и заземляющий провода зажать в соответствующих клеммах.
  • Проверка роботы прибора осуществляется только после того как декоративная крышка закрыта.

Если есть достаточное количество диммеров можно регулировать уровень освящения из двух или большего количества мест. В больших помещениях для этого можно создать схему.

Пульсации светильников, оснащенных диммером

Диодная лампа с качественным ШИМ драйвером производит пульсацию максимум 10-20%. Если же оснащение на порядок ниже по стоимости, то такие приборы могут выдавать куда большее процентное соотношение пульсации (т.е. миганий). Это происходит при снижении яркости освещения и негативно влияет на здоровье человека.

Самому определить качество установленных драйверов невозможно, обычно такие характеристики проверяются с помощью специальных приборов – люксметр пульсиметр. Иногда превышение этого показателя можно наблюдать и у хорошо прорекламированного продукта, поэтому не стоит доверять интенсивно за рекламированному продукту. Советуем ориентироваться по показателях измерительного прибора, а не на цену прибора или же марку.

Выводы и предложения

Учитывая перечисленные выше характеристики следует точно определить такие параметры будущего проекта:

  • Нужная мощность и напряжение питания.
  • Какой вид управления источниками света вам необходим (местного или же дистанционного).
  • Места размещения источников света: светильники и блоков электроники.

Остерегайтесь чрезмерной нагрузки диммера. Приобретайте такие источники света как светильники только в специализированых магазинах. Освещение в помещении должно гармонично сочетаться с его непосредственным предназначением. Особое внимание уделяйте мощности ламп. У квалифицированных консультантов можно получить информацию о подборе идеального освещения в помещении.

Итоги

Диммерs замечательный выбор что бы усовершенствовать ваш дом и сделать его более функциональным. Создайте как рабочую, так и релаксирующую обстановку, благодаря настройки интенсивности освещения. Простота в монтаже, экономия электроэнергии и весьма не «кусающая» цена станут точными аргументами в выборе покупки регуляторах светового потока – диммеров.

Как выбрать диммируемую лампу смотрите видео

Светодиодная лампа Эра A60-10w-827-E27. Продолжение.: stone_guest — LiveJournal

Каменный гость (stone_guest) wrote,
Каменный гость
stone_guest
Category:    Предыдущий пост об этой лампе довольно сильно разросся, поэтому решил не дописывать его, а начать следующий.
Теперь уже полностью разобрал лампу. Драйвер оказался собран на микросхеме JW1792, которая на первый взгляд выглядит, как транзистор (корпус TO92). Как ни удивительно, это – микросхема понижающего квазирезонансного неизолированного преобразователя. Справочный листок (datasheet) на неё с отметкой «Конфиденциально» нашёлся в Сети довольно просто, в нём приведена типовая схема включения этой микросхемы.

   В лампе схема упрощена – удалены “лишние” детали, такие, как V1, L1, C5, а ёмкость конденсатора C4 увеличена до 2,2 мкФ. В остальном всё то же самое, даже ток сохранён “типовой” – 120 мА.
   Если бы меня спросили, можно ли сделать в корпусе с тремя выводами полноценный импульсный драйвер светодиодов со стабилизацией тока, я бы, скорей всего, ответил, что нельзя. Я и сейчас, глядя на схему, всё ещё не понимаю, как она может работать. Ведь для стабилизации тока нужен токоизмерительный резистор в цепи нагрузки, напряжение с которого будет подаваться в цепь обратной связи. Токоизмерительный резистор здесь есть, но напряжение с него вроде бы никуда не поступает. Резистор подключен к выводу истока внутреннего ключевого транзистора, и можно было бы сказать, что вот с этого вывода внутри микросхемы и снимают напряжение, пропорциональное току через выходной транзистор. Но вот беда, чтобы измерить разность потенциалов, нужны два провода, второй конец резистора подключен к общему проводу, а у микросхемы никакие выводы (которых, напомню, всего три) с общим проводом вообще не связаны. Тем не менее, она работает, я проверял – отлично стабилизирует ток.
   Такую задачу можно было бы дать школьникам на какой-нибудь олимпиаде – задать вопрос, возможно ли в корпусе о трёх выводах сделать импульсный преобразователь со стабилизацией выходного тока и, если возможно, нарисовать структурную схему. (Структурная схема, приведённая в даташите, ничего мне не смогла объяснить – возникло впечатление, что она относится не к этой микросхеме.) Но непонятно, что заставило китайцев упражняться с созданием такой микросхемы? Конечно, заменить трёхвыводную микросхему существенно проще, чем, например, восьмивыводную, но кто сейчас думает о лёгкости замены?
   Но вернёмся к вопросу, почему в лампе Эра две цепи светодиодов стоят параллельно, и почему бы все их не соединить последовательно. В справочном листке на микросхему JW1792 есть график, обозначающий область безопасной работы микросхемы (SOA).

Отсюда видно, что тот режим, который был выбран в лампе (80 В, 120 мА) находится у самой границы области безопасной работы, причём к этой точке наиболее близко проходит именно граница области для микросхемы в корпусе TO92. Если же все светодиоды включить последовательно, а ток драйвера вдвое снизить, то напряжение возрастёт до 160 В, а ток будет 60 мА, и до границы области безопасной работы будет далеко. В общем, вроде бы ничто не мешает соединить все светодиоды последовательно. Вообще, казалось бы, чем правее выберем точку на этом графике, тем большую мощность можем получить от этого драйвера, не вылезая за границу области безопасной работы. Тем не менее, сам производитель микросхемы (фирма JoulWatt) в типовой схеме почему-то рекомендует ток 120 мА.
  • О работе автогенератора энергосберегающей лампы на активную нагрузку

    Почти семь лет назад (как быстро летит время!) я уже писал о том, как можно использовать электронный балласт от неисправной энергосберегающей…

  • Об электромагнитах и электромагнитных реле

    Решил, как обычно, поделиться с самим собой любопытным фактом. 🙂 У многих типов электромагнитных реле имеются два варианта: стандартные и…

  • Инверторы КМОП – странная история

    Перелистывая страницы журнала «Юный техник» №4 за 2020 год, неожиданно узнал много нового. Привлекла меня там статья «Рисуем……

Photo

Hint http://pics.livejournal.com/igrick/pic/000r1edq

Цепь светодиодной лампы 230 В

Знаете ли вы, что белые светодиоды с низким энергопотреблением также можно использовать в качестве привлекательной лампы для вашего туалета? В этом проекте мы продемонстрируем схему светодиодной лампы с белыми светодиодами для использования в качестве комнатной лампы. В настоящее время большой популярностью пользуются светодиодные лампы из-за их низкого энергопотребления, высокой яркости и невысокой цены. Кроме того, срок службы светодиодных ламп намного больше, чем у люминесцентных ламп. Светодиодная лампа выглядит так же, как стандартные галогенные лампы, и ее можно установить в стандартный светильник на 230 В.

В этом проекте мостовые выпрямители используются вместо трансформаторов большой мощности для преобразования переменного тока в постоянный. Использование конденсатора помогает снизить напряжение с 230 В до напряжения, подходящего для светодиодов.

Компоненты оборудования

Принципиальная схема

Работа цепи

Вышеупомянутая схема работает следующим образом: Конденсатор 220n 400V действует как резистор, понижающий напряжение, и обеспечивает протекание тока не более 12 мА.Мостовой выпрямитель на диодах 1N4007 преобразует переменное напряжение в постоянное, т.е. светодиоды могут работать только от постоянного напряжения. Эти светодиоды повреждаются / выходят из строя, когда напряжение постоянного тока превышает 5 В. Электролитический конденсатор 4u7 63 В выполняет двойную функцию, во-первых, он обеспечивает достаточное напряжение для питания светодиодов, когда основное напряжение меньше прямого напряжения светодиодов и он заботится о пике пускового тока, который возникает при включении сети. В противном случае этот импульс тока может повредить светодиоды.

Затем есть резистор 560 Ом, он обеспечивает постоянный и равномерный ток и световой поток через светодиод.

Приложения и способы использования
  • Они доказывают свою эффективность во многих специфических задачах по освещению жилых и деловых помещений, например, в настольных лампах.
  • Светодиодные лампы используются как для общего, так и для специального освещения.
  • Их часто используют как индикаторные лампы, заменяя маленькие лампы накаливания.

Аварийные светодиодные фонари.Мощный и дешевый LED-716 Circuit

Аварийные светодиодные фонари. Схема Powerful & Cheep Схема аварийного освещения LED-716

LED-716 – одна из самых мощных и очень дешевых схем. Вы можете попробовать сделать его дома.

Рекомендуется для начинающих:

Щелкните изображение, чтобы увеличить.

Аварийный светодиодный светильник. Схема аварийного освещения Powerful & Cheep LED-716

ДАННЫЕ для аварийного светодиодного освещения:

  • D1 – D5 = IN4007
  • Q1 = C945 NPN
  • Q2 = D965 NPN
  • C1 = CL-155J, 250 В .
  • C2 = 100 мкФ, 16 В.
  • C3 = 1 мкФ, 50 В.
  • R1 = 1 Ом
  • R2 = 3 Ом
  • R4 = 5,1 Ом
  • R3 и R5 = 1 кОм
  • R6 = 390 кОм.
  • Аккумулятор = 1300-1600 мАч.
  • Светодиод = 30 цифр, цвет = белый.

ВХОД для аварийных светодиодных индикаторов:

Зарядка аккумулятора

  • 90–240 В переменного тока.
  • 50-60 Гц
  • Кабель = 3А, 250В.

ВЫХОД аварийных светодиодных индикаторов:

  • Ток = 0.1 А.
  • Мощность = 1 Вт.

Переключатель с 3 вариантами или изменение шаблона

  • Вариант 1 = полный свет
  • Вариант 2 = ВЫКЛ
  • Вариант 3 = нормальный свет

Время автономной работы лампы аварийного освещения.

Время автономной работы цепи аварийного светодиодного освещения

При варианте 1 (полный свет) = 4-6 часов
При варианте 2 (нормальный свет) 10 часов

Вот полная история того, как я это сделал публиковать и делиться с вами, ребята.

Вообще-то кто-то принес мне аварийную светодиодную лампу DP-716. Вот и взял лампу (на проверку / ремонт).

Здесь вы можете увидеть всю историю в картинках.

Вот открыли в ремонт. (Вы также можете примерить такую ​​бытовую технику, но имейте в виду, что безопасность важнее…)

(щелкните изображения, чтобы увеличить)

Внутренние аварийные светодиодные фонари. Аварийный свет LED-716.

Теперь ясно, в чем настоящая проблема на рис (два резистора вышли из строя), поэтому теперь мы хотим исправить это.

Рекомендуется: Как найти номинал сгоревшего резистора. По трем методам

другой вид. проверьте схему, в чем проблема.

Здесь вы можете увидеть, что я сделал в этой схеме. потому что резистор на задней стороне (который я припаял) перегорел. Итак, корень проблемы был в том конкретном резисторе. Мы сделали свою работу. Теперь переключатель смены шаблона находится на Варианте 1 i.е. на полном свете. время поддержки составит 4-6 часов. В этом случае переключатель смены шаблона находится в положении 3, то есть на полном свету. время поддержки составит 8-10 часов. также обратите внимание, что вариант 2 предназначен для выключения лампы накаливания.

  • Автор: Electrical Technology
  • Обновлено: Уважаемый Жан ДЭВИД

Светоизлучающий диод < Что такое светодиоды и как они работают? > | Основы электроники

Что такое светодиоды?

Светодиоды

– это полупроводники, называемые «светоизлучающими диодами».Белые светодиоды, которые получили практическую реализацию благодаря использованию синих светодиодов высокой яркости, разработанных в 1993 году на основе нитрида галлия, привлекают повышенное внимание как 4-й тип источника света.

Как светодиоды излучают свет?

Светодиоды

(светоизлучающие диоды) представляют собой полупроводниковые источники света, которые объединяют полупроводник P-типа (большая концентрация дырок) с полупроводником N-типа (большая концентрация электронов). Приложение достаточного прямого напряжения заставит электроны и дырки рекомбинировать в P-N переходе, высвобождая энергию в виде света.

По сравнению с обычными источниками света, которые сначала преобразуют электрическую энергию в тепло, а затем в свет, светодиоды (светоизлучающие диоды) преобразуют электрическую энергию непосредственно в свет, обеспечивая эффективное производство света с небольшими потерями электроэнергии.

Типы светодиодов

Доступны светодиоды двух типов: ламповые (с выводами) и микросхемы (для поверхностного монтажа). Пользователи могут выбрать идеальный тип на основе установленных требований.

Длина волны и цвет

Цвет светодиода (длина волны излучения) будет меняться в зависимости от используемых материалов.Это позволяет настроить цвет в соответствии с определенными спецификациями длины волны, необходимыми для приложений, которые используют традиционные лампы в качестве источников света (для которых существуют стандарты), таких как светофоры и автомобильные лампы.

Для обозначения цвета используются две спецификации длины волны: λP (пиковая длина волны) и λD (доминирующая длина волны), при этом λD соответствует цвету, фактически наблюдаемому человеческим глазом.

Как создается белый свет?

Есть несколько методов получения белого света с помощью светодиодов.Ниже приведены 2 типичных метода эмиссии.

Синий светодиод + Желтый люминофор

Комбинация синего светодиода с желтым люминофором, который является дополнительным цветом, дает белый свет. Этот метод проще других решений и обеспечивает высокую эффективность, что делает его наиболее популярным выбором на рынке.

Красный светодиод + Зеленый светодиод + Синий светодиод

Сочетание трех основных цветов приведет к белому свету. Обычно этот метод используется не для освещения, а для полноцветных светодиодных устройств.

Светоизлучающий диод
LED К странице продукта

Линейка светоизлучающих диодов

ROHM включает в себя светоизлучающие диоды с боковым излучением, с задним креплением и тип лампы в дополнение к стандартным типам SMD.

Как работают светоизлучающие диоды

Диод – это простейший полупроводниковый прибор. Вообще говоря, полупроводник – это материал с различной способностью проводить электрический ток. Большинство полупроводников сделано из плохого проводника, в который были добавлены примеси (атомы другого материала).Процесс добавления примесей называется легированием .

В случае светодиодов материалом проводника обычно является арсенид алюминия-галлия (AlGaAs). В чистом арсениде алюминия-галлия все атомы идеально связаны со своими соседями, не оставляя свободных электронов (отрицательно заряженных частиц) для проведения электрического тока. В легированном материале дополнительные атомы изменяют баланс, либо добавляя свободные электроны, либо создавая дыры, по которым электроны могут уходить. Любое из этих изменений делает материал более проводящим.

Полупроводник с дополнительными электронами называется материалом N-типа , поскольку в нем есть дополнительные отрицательно заряженные частицы. В материале N-типа свободные электроны перемещаются из отрицательно заряженной области в положительно заряженную.

Полупроводник с дополнительными дырками называется материалом P-типа , так как он фактически содержит дополнительные положительно заряженные частицы. Электроны могут прыгать из отверстия в отверстие, перемещаясь из отрицательно заряженной области в положительно заряженную. В результате кажется, что сами отверстия перемещаются из положительно заряженной области в отрицательно заряженную.

Диод состоит из секции материала N-типа, прикрепленной к секции материала P-типа, с электродами на каждом конце. Это устройство проводит электричество только в одном направлении. Когда на диод не подается напряжение, электроны из материала N-типа заполняют отверстия в материале P-типа вдоль стыка между слоями, образуя зону обеднения. В зоне истощения полупроводниковый материал возвращается в свое исходное изолирующее состояние – все дырки заполнены, поэтому нет свободных электронов или пустых пространств для электронов, и электричество не может течь.

Чтобы избавиться от зоны истощения, вы должны заставить электроны двигаться из области N-типа в область P-типа, а дырки – в обратном направлении. Для этого вы подключаете сторону N-типа диода к отрицательному концу цепи, а сторону P-типа – к положительному концу. Свободные электроны в материале N-типа отталкиваются отрицательным электродом и притягиваются к положительному электроду. Отверстия в материале P-типа перемещаются в другую сторону. Когда разность напряжений между электродами достаточно высока, электроны в зоне истощения выталкиваются из своих отверстий и снова начинают свободно перемещаться.Зона обеднения исчезает, и заряд перемещается по диоду.

Если вы попытаетесь пропустить ток другим путем, когда сторона P-типа подключена к отрицательному концу цепи, а сторона N-типа подключена к положительному концу, ток не будет течь. Отрицательные электроны в материале N-типа притягиваются к положительному электроду. Положительные отверстия в материале P-типа притягиваются к отрицательному электроду. Через переход не протекает ток, потому что дырки и электроны движутся в неправильном направлении.Зона истощения увеличивается. (См. «Как работают полупроводники» для получения дополнительной информации обо всем процессе.)

Взаимодействие между электронами и дырками в этой установке имеет интересный побочный эффект – оно генерирует свет!

Можно ли остановить мигание светодиода с помощью “фиктивной нагрузки” или нагрузочного резистора?

Регулировка яркости светодиодов может быть сложной по разным причинам. Иногда бывает сложно определить источник конкретной проблемы, с которой вы сталкиваетесь, например, мерцания.

В этом блоге мы говорили о потенциальных проблемах, возникающих при попытке запустить светодиодные лампы или светильники с регуляторами яркости.Мы создали этот контрольный список, чтобы следовать ему, если у вас возникли проблемы:

  1. Действительно ли эти лампы регулируются?
  2. Регулируются ли драйверы в моих светильниках?
  3. Совместимы ли они с элементами управления, с которыми они связаны?
  4. И эти элементы управления все еще в рабочем состоянии, или они достигли предела своего срока службы?

Если проблема не исчезнет, ​​продолжайте читать. Мы сосредоточились на одной конкретной проблеме: недостаточном сопротивлении нагрузке.

Регулировка яркости светодиода и сопротивление нагрузке

Обычные диммерные переключатели (TRIAC) – те, которые предназначены для работы с лампами накаливания и галогенными лампами – требуют определенного количества «удерживающего тока» или мощности для правильной работы. В паре с лампой накаливания лампа потребляет достаточно напряжения для работы диммера и снижает его. Устройство управления снижает напряжение, подавая меньшее напряжение на лампу или колбу, что приводит к снижению светоотдачи (тусклое освещение).

Вот проблема с попыткой затемнения светодиодов с помощью тех же диммеров TRIAC: светодиоды потребляют значительно меньший ток – недостаточное количество для правильной работы диммера или правильного снижения напряжения, поступающего на лампу.У диммера настолько малый ток, чтобы работать с ним, что какое бы напряжение он ни уменьшал, он в конечном итоге проявляется в светодиодной лампе как прерывистый, что приводит к мерцанию, стробированию или другой ошибке затемнения.

Ключ в том, чтобы подавать на коммутатор достаточную нагрузку или ток. Некоторые электрики экспериментировали с добавлением лампы накаливания большей мощности в ту же схему, где светодиоды управлялись диммером. Это потребляет достаточный ток к диммеру TRIAC, позволяя ему лучше снижать напряжение, подаваемое на лампы.

Можно ли исправить мерцание светодиода и другие проблемы с затемнением, добавив в цепь лампу накаливания?

Короткий ответ на этот вопрос – да, в общем. Более высокое напряжение, потребляемое лампой накаливания, часто является достаточным током для правильной работы диммера. Но это не всегда так, и Regency не рекомендует это в качестве долгосрочного решения ваших проблем с затемнением. Это скорее «пластырь», чем лекарство.

Вот некоторые недостатки, о которых следует помнить, рассматривая это решение:

  • Для наглядности мы никогда не рекомендуем смешивать лампы разных типов в одной комнате или одной части здания.Вы хотите, чтобы одинокая лампа накаливания в цепи находилась в незаметном месте.
  • Вы, скорее всего, сожжете четыре или пять (или много больше) ламп накаливания к тому времени, когда вам понадобится заменить один светодиод. У вас может быть довольно частый случай, когда одна лампа перегорает. И когда одинокая лампа накаливания перегорит, она перестанет подавать ток в цепь, что может привести к тому, что ваши светодиоды снова начнут мигать.
  • В целом, хотя это решение доступно и кажется простым с точки зрения внешнего управления, оно может потребовать значительных затрат на обслуживание в долгосрочной перспективе.

У наших клиентов разные результаты при использовании этой тактики, и мы не рекомендуем ее.

Еще одно немного лучшее решение для добавления сопротивления в схему – это купить «нагрузочный резистор» или «фиктивную нагрузку». Нагрузочный резистор, по сути, служит той же цели, что и лампа накаливания в описанном выше решении – он имитирует электрическую нагрузку, потребляя достаточный ток к диммерному переключателю.

Между добавлением лампы накаливания в схему и использованием нагрузочного резистора, резистор, вероятно, является предпочтительным решением, так как он, вероятно, потребует меньше обслуживания в долгосрочной перспективе.

Долгосрочные решения для уменьшения яркости светодиодов без мерцания

Хотя добавление лампы накаливания в схему и использование нагрузочного резистора – это нормальные решения для затемнения светодиодов, они являются лишь краткосрочными решениями и не затрагивают суть проблемы – несоответствие пары.

Необходимо рассмотреть два решения:

  1. Обновить электрические компоненты
  2. Проверьте проводку
  3. Беспроводное управление освещением

1. Обновите электрические компоненты

Если вы не используете светодиоды с регулируемой яркостью и совместимым со светодиодами регулятором затемнения, всегда потребуется некоторый уровень скручивания и модификации, чтобы заставить их взаимодействовать должным образом и уменьшить яркость освещения.

Если ваша электрическая система не обновлялась в течение последних трех-пяти лет, диммерные переключатели на вашей стене, скорее всего, являются переключателями TRIAC, предназначенными для работы только с лампами накаливания. И вот тут-то и возникают проблемы.

Неожиданно модернизация светодиодов, которую вы запланировали и получили конкурентное предложение, стала более сложной и более дорогой. Это уже не просто замена лампы, теперь вам нужно выполнить электромонтажные работы и купить новые диммеры для работы с новыми лампами.

Мы понимаем это. Вы можете потратить больше денег заранее, но вы получите более плавное решение, которое в целом прослужит дольше.

Подробнее: Вот обзор распространенных проблем с затемнением светодиодов и способы их устранения

2. Проверьте проводку

Если у вас есть совместимое освещение и диммеры, возможно, вам понадобится электрик для проверки физической проводки. Эту работу всегда должен выполнять лицензированный электрик, который разбирается в действующих строительных нормах и правилах в вашем районе.

Электрик может помочь выявить и заземлить проблемы, короткие замыкания или другие проблемы, которые могут повлиять на работу вашей системы затемнения.

3. Светодиодные элементы управления беспроводным освещением

Другой вариант – попробовать светодиодные элементы управления беспроводным освещением. Акцент здесь делается на «совместимость со светодиодами».

Тот факт, что элементы управления являются беспроводными, напрямую не влияет на затемнение, но беспроводной элемент означает, что любая проводка, связанная с установкой новых элементов управления, должна быть проще и дешевле.

Вы должны проверить совместимость, прежде чем выбирать какие-либо элементы управления, но большинство новых параметров беспроводного управления предназначены для работы со светодиодами.

При любом решении затраты на переоборудование в устойчивое светодиодное решение с регулируемой яркостью могут быть болезненными с первого взгляда, но это стоит сбережений и уменьшения головной боли при техническом обслуживании в будущем.

(PDF) Дизайн монтажной платы светодиодов для внедорожного фонаря

1300 C. Z İL AND B.YAKIŞIR / IU-JEEE Vol.11 (1), (2011), 1293-1299

значения и распределения интенсивности и светового потока.

Световой поток составляет 422 люмен в диапазоне сканирования

. Это меньшее, чем ожидалось, значение светового потока

светодиодной лампы в основном связано с нагревом

светодиодов при уровне прямого тока

.

Когда светодиоды нагреваются, их световая отдача и эффективность

уменьшаются [3, 4 и 15]. В этом случае мы

можем либо использовать радиатор и снизить температуру перехода

светодиодов и дополнительно увеличить прямой ток

, либо использовать более качественные светодиоды с более ярким выходом

для того же прямого тока (выше

эффективность и действенность).Естественно второе решение

лучше. Радиатор тяжелее, из-за чего лампа

становится неуклюжей и дорогой.

К счастью, улучшения в светодиодах происходят быстро.

и светодиоды с более высокой эффективностью производятся и выпускаются на рынок ежедневно

[18]. Если бы на рынке

были доступны мощные светодиоды с более высокой эффективностью, мы могли бы достичь требуемых характеристик освещения

для лампы, оставаясь в рамках бюджета.В результате понятно, что за очень короткое время

желаемая светоотдача лампы

и характеристики распределения освещения могут быть

, достигнутые с достижениями в светодиодной технологии

и производстве. Следовательно, коммерческую галогенную лампу

вскоре можно будет заменить на светодиодную лампу

, имеющую лучшую характеристику освещения при более низкой стоимости на

. Учитывая темпы улучшения

в технологиях светодиодов и драйверов и

в производстве, если мы также добавим разработку в

методов проектирования оптики и отражателя, почти в

все автомобильные и светотехнические приложения LED

лампы наверняка скоро будет доминировать на рынке.

5. Выводы

В данной работе для замены менее эффективных и коротких галогенных рабочих ламп

, используемых на внедорожных машинах и транспортных средствах

, разработана более энергоэффективная и долговечная лампа

. за счет использования мощных светодиодов

. Есть много способов реализации конструкции

для светильника на светодиодах. В этой работе мы формируем массив светодиодов

из 15 светодиодов холодного белого цвета мощностью 1 Вт на алюминиевой печатной плате

путем соединения 3 светодиодов последовательно

с 5 параллельными линиями.Этот массив светодиодов управляется

с помощью схемы драйвера светодиодов понижающего типа, образованной

, с использованием HV 9910 IC с n-канальным МОП-транзистором

. Измеряются значения светового потока и силы света

и их распределения в определенном объеме

перед лампой. Эти

измеренных значений и их распределения для лампы LED

сравниваются с таковыми для коммерческой галогенной лампы

.Видно, что результаты измерений

для двух ламп очень близки. Мы также отмечаем, что выравнивание светодиодов в правильной геометрии

и использование правильных комбинаций

отражателей и линз также важны для достижения желаемого светового потока

. Делаем вывод, что

наиболее важным параметром в конструкции лампы

со светодиодами является светоотдача и КПД

светодиодов.Использование светодиодов вместо

ламп накаливания, галогенных и люминесцентных ламп составляет

с каждым днем ​​становится все шире. Повышение световой отдачи

и эффективности в новой технологии и производстве мощных светодиодов

, несомненно, сделает

более подходящими для многих световых приложений.

6. Список литературы

[1] Э. Мусаев, «Методы подключения и смещения полупроводниковых источников света

», Университет Улудаг

, Журнал инженерии и архитектуры,

Vol.10, № 2, стр. 63-78, 2005.

[2] Э. Мусаев, «Исследование однородности светодиодного света

, освещение», Электроника, автоматизация,

Energy, Journal of Machine and Control Systems,

№ 118, 190–195, 2004.

[3] С. Виндер, «Источники питания для управления светодиодами»,

Elsevier Science, Бостон, Массачусетс, США, 2008 г.

[4] BEA Салех, М. Тейч, «Основы фотоники

», Wiley-Interscience, Хобокен, Нью-Джерси, США,

2007.

[5] Edixeon Dx, светодиоды серии Ex, «Замечания по применению»,

Edison Opto Corporation, США, 2008.

[6] М. Хансен, «Светодиодное освещение: более энергоэффективное

, чем CFL», Energy жизненный цикл эффективного освещения – белый

, бумага

, Cree Inc., США, 2009.

[7] Б. Вейр, «Тенденции и компромиссы в питании светодиодов

Luminaire», LED Journal, стр. 8-11, ноябрь- Декабрь 2008 г.

[8] Э. Хойт, «Управление светодиодами в автомобильном мире»,

LED Journal, стр.15-17, ноябрь-декабрь 2008 г.

[9] Э. Уига, Прентис Холл, «Оптоэлектроника», Нью-

Джерси Коломбус, Огайо, США, 1995.

[10] М. Калверт, «Приложения для светодиодных драйверов. для портативных продуктов

», AN-23 Microsemi Integrated Products,

USA, 2000.

[11] К. Кертис,« Драйвер Buck Configuration High-Power LED

Driver », AN874, Microchip Technology Inc, США,

2003.

[12] Постоянные, временные, понижающие драйверы светодиодов с использованием

HV9910B, Примечание по применению, AN-H50, 2009.

[13] Luxeon Star, Базовые схемы драйверов для оценки

светодиодов Luxeon. Примечания по применению, Электрический привод

Информация Luxeon Emitter, App. Примечания AB11L,

2004.

[14] А. Медник, «Для автомобильного светодиодного освещения требуется специальный драйвер

», Supertex Inc. Саннивейл, Калифорния, США,

2005.

[15] Г. Хелд, « Введение в технологию и приложения светоизлучающих диодов

», CRC Press, Boca

Raton, FL, USA, 2009.

[16] Заявление CIE по энергосбережению и освещению,

Публикация CIE, № 29, 1975.

[17] A.K. ТЮРКОГЛУ, Ф. САМАДОВ, М. ДУРАК, U.

KÜÇÜK, «Otomotiv Sektöründe Optik Test ve

Ölçümün Yeri», III. Ölçüm Bilim Kongresi Bildiri

Kitapçığı, Eskişehir, 1999, s. 140-145.

[18] Спецификация Cree Products Xlamp «XP-G», Приложение

Примечания, 2010 г.

Практические схемы светодиодных индикаторов и мигалок


Наиболее широко используемым из всех оптоэлектронных устройств является простой светодиод (светоизлучающий диод), который излучает довольно узкую полосу пропускания видимого (обычно красного, оранжевого, желтого или зеленого) или невидимого (инфракрасного) света, когда его внутренний диодный переход стимулируется прямым электрическим током.

Светодиоды

имеют типичную эффективность преобразования энергии в световую энергию в 10-100 раз больше, чем у простой лампы накаливания с вольфрамовой нитью, и имеют очень быстрое время отклика (менее 0,1 мкСм по сравнению с 10 или 100 секундами миллисекунд для вольфрамовой лампы), и таким образом, широко используются в качестве визуальных индикаторов и простых «проблесковых огней». В этой статье показано множество таких схем.

ОСНОВНЫЕ СВЕТОДИОДЫ

ВВЕДЕНИЕ

На рис. 1 показан стандартный символ, который используется для обозначения светодиода в этой статье, вместе с обозначениями его базового анода (a) и катода (k) .

РИСУНОК 1. Стандартный светодиодный символ вместе с обозначениями его клемм.


Светодиоды представляют собой диоды с pn-переходом, обычно изготовленные из полупроводниковых материалов типа арсенида галлия (GaAs) или арсенида алюминия-галлия (AlGaAs), которые излучают свет при воздействии прямого тока.

При прохождении полезного прямого тока через них вырабатывается примерно 2 В; На рис. 2 приведены типичные падения напряжения в прямом направлении (Vf) для светодиодов стандартного диаметра 5 мм разного цвета при прямом токе 20 мА.

ЦВЕТ Красный оранжевый желтый зеленый Синий
V f (типовой) 2,1 В 2,2 В 3,3 В

РИСУНОК 2. Типичные значения прямого напряжения стандартных светодиодов при ограниченном токе 20 мА.


Если светодиод смещен в обратном направлении, он начинает пропускать значительный ток при довольно низком значении напряжения (обычно от 3 В до 5 В) и в конечном итоге сходит в лавину (стабилитрон) при более высоких напряжениях.

Светодиоды

доступны в различных стилях, наиболее популярным из которых является «круглый» тип, который имеет базовую форму, показанную на рис. 3 , и который легко доступен в стандартных диаметрах 3 мм, 5 мм, 8 мм или 10 мм. В круглых светодиодах используется прозрачный или цветной пластиковый корпус с линзой, отлитой в его купол, и они предназначены для просмотра с торца в сторону купола, как показано на схеме.

РИСУНОК 3. Типичные физические детали «круглых» светодиодов и методы определения их полярности.


Корпус светодиода имеет идентифицирующую полярность «плоскую», сформованную на стороне его основания рядом с катодным выводом, который обычно короче анодного вывода, когда он не обрезан. Доступны специальные приспособления для крепления светодиодов большинства размеров к лицевым панелям и т. Д.

Одним из важных, но нечетко названных параметров светодиода является его «угол обзора», при крайних значениях которого оптическая выходная интенсивность светодиода падает до половины его максимального осевого значения. Некоторые светодиоды дают рассеянный световой поток, при котором интенсивность света постепенно спадает за пределами угла обзора и, таким образом, четко различима в широком диапазоне углов; другие (особенно типы «сверхяркие») имеют четко сфокусированный выходной сигнал, при котором интенсивность света очень резко падает за пределы указанного угла обзора.

Светодиоды

доступны в пяти различных категориях «яркости», которые обычно известны как стандартная, высокая яркость, сверхяркая, сверхяркая и сверхяркая. Уровень яркости обычно указывается в милликанделах (мкд), при этом светодиод пропускает рабочий ток 20 мА. В таблице , рис. 4 представлены типичные значения выходной оптической мощности и угла обзора для пяти типов круглых светодиодов диаметром 5 мм. Обратите внимание на столбец «красный» светодиод, что устройства Ultrabright и Hyperbright (в которых используются прозрачные линзы) в 143 и 500 раз ярче, соответственно, чем стандартный красный светодиод.

Светодиод Тип Угол обзора Красный зеленый оранжевый
Стандартный 60 ° 7 мкд 5.2 мкд 8 мкд
Высокая яркость 40 ° 30 мкд 25 мкд 50 мкд
Супер яркий 30 ° 125 мкд 120 мкд 140 мкд
Сверхяркий 25 ° 1000 мкд
Сверхъяркость 25 ° 3500 мкд

РИСУНОК 4. Типичные значения выходной оптической мощности – в милликанделах – пяти основных типов 5-миллиметровых круглых красных, желтых и зеленых светодиодов.


При использовании светодиод должен быть подключен последовательно с устройством ограничения тока, например резистором. Рисунок 5 показывает, как вычислить значение сопротивления (R), необходимое для получения определенного тока от определенного напряжения питания постоянного тока. Таким образом, если требуется, чтобы красный светодиод работал при 20 мА от источника питания 10 В, R необходимо значение (10 В – 2 В) / 0,02 A = 400R. На практике R может быть подключен либо к аноду, либо к катоду светодиода.

РИСУНОК 5. Метод нахождения значения R для заданных VS и If.


Светодиод можно использовать в качестве индикатора в цепи переменного тока, подключив его обратно параллельно кремниевому диоду IN4148 (или аналогичному), как показано на рис. 6 , чтобы предотвратить обратное смещение светодиода; в этом режиме светодиод питается полуволновым током, поэтому – для заданной яркости – значение «R» должно быть уменьшено вдвое относительно значения, указанного на схеме , рис. 5, постоянного тока.

РИСУНОК 6. Использование светодиода в качестве индикатора в цепи переменного тока.


СПЕЦИАЛЬНЫЕ светодиоды

Светодиоды

доступны в различных формах специального назначения, наиболее известными из которых являются светодиоды «прямого подключения», «мигающие» и многоцветные.

Светодиоды прямого подключения предназначены для прямого подключения к источнику постоянного или переменного напряжения с фиксированным значением. Типы постоянного напряжения имеют базовую форму, показанную на рис. 7 (а) , и включают в себя токоограничивающий резистор, который размещен в корпусе светодиода для типов 5 В и 12 В или в одном из выводов светодиода для типов с более высоким напряжением.Типы переменного напряжения (обычно предназначенные для использования с источниками питания 110 В или 240 В) имеют базовую форму, показанную на рис. 6 , но обычно размещаются в изолированном сборном узле для монтажа на панели.

РИСУНОК 7. Базовая форма прямого подключения светодиода постоянного тока (a) и мигающего светодиода (b) .


Мигающие светодиоды имеют базовую форму, показанную на рис. 7 (b) , и имеют встроенную интегральную схему, которая дает эффект мигания. Они доступны в красном, зеленом и желтом цветах, имеют типичную частоту мигания 2 Гц и могут (обычно) использовать источники постоянного тока от 6 до 12 В.

Многоцветные светодиоды – это на самом деле устройства с двумя светодиодами. Рисунок 8 показывает «двухцветное» устройство, которое состоит из красного и зеленого светодиодов, подключенных обратно параллельно, так что зеленый цвет генерируется, когда устройство подключено с одной полярностью, а красный цвет генерируется, когда оно подключается в обратная полярность. Это устройство можно использовать в качестве индикатора полярности или нуля.

РИСУНОК 8. Двухцветный светодиод фактически содержит два светодиода, соединенных обратно параллельно.


На рисунке 9 показан другой тип многоцветного светодиода, который иногда называют «трехцветным». Он состоит из зеленого и красного светодиода, установленных в трехконтактном корпусе с общим катодом. Это устройство может генерировать зеленый или красный цвета, включая только один светодиод за раз, желтый, включая оба светодиода на равное количество, или любой цвет между зеленым и красным, включая оба светодиода в соответствующих соотношениях.

РИСУНОК 9. Многоцветный светодиод, дающий три цвета от двух переходов.


МУЛЬТИ-СВЕТОДИОДНЫЕ ЦЕПИ

Если необходимо управлять несколькими светодиодами от одного источника питания, это можно сделать, подключив все светодиоды последовательно, как показано на рис. , рис. 10 , при условии, что напряжение питания значительно превышает сумму прямых напряжений отдельных светодиодов. .

РИСУНОК 10. светодиодов, подключенных последовательно и управляемых одним токоограничивающим резистором.


Таким образом, эта схема потребляет минимальный общий ток, но ограничено количеством светодиодов, которые она может управлять.Однако любое количество этих базовых схем может быть подключено параллельно, так что любое количество светодиодов может управляться от одного источника, как показано в схеме с шестью светодиодами на , рис. 11, .

РИСУНОК 11. Любое количество цепей, показанных на Рисунке 10, может быть подключено параллельно для управления любым количеством светодиодов.


Альтернативный способ одновременного питания нескольких светодиодов – просто подключить несколько цепей , рисунок 5, параллельно, как показано на рисунке , рисунок 12, .Обратите внимание, однако, что эта схема очень расточительна по току питания (который равен сумме отдельных токов светодиодов).

РИСУНОК 12. Эта схема может управлять любым количеством светодиодов, но за счет высокого тока.


На рисунке 13 показана схема управления светодиодами, «чего нельзя делать», в которой все светодиоды подключены напрямую параллельно. Часто эта схема не работает правильно, потому что неизбежные различия в прямых характеристиках светодиодов приводят к тому, что один светодиод потребляет большую часть или весь доступный ток, оставляя мало или совсем ничего для остальных светодиодов.

РИСУНОК 13. Эта схема управления светодиодами может не работать; один светодиод может потреблять большую часть тока.


ЦЕПИ СВЕТОДИОДНОЙ ПРОМЫВКИ

ПРОСТОЙ ДИЗАЙН

Одним из простейших типов схемы светодиодного дисплея является светодиодный мигающий индикатор, в котором один светодиод многократно включается и выключается, обычно со скоростью одно или два мигания в секунду. Мигалка с двумя светодиодами является простой модификацией этой схемы, но устроена так, что один светодиод загорается, когда другой выключается, или наоборот.

Рисунок 14 показывает практическую схему транзисторного двухсветового мигающего устройства, которое можно преобразовать в работу с одним светодиодом, просто заменив ненужный светодиод с помощью короткого замыкания.

РИСУНОК 14. Схема транзисторного двухсветового мигающего устройства работает на частоте около 1 Гц.


Здесь Q1 и Q2 подключены как простой нестабильный мультивибратор с частотой 1 Гц, в котором Q1 и LED1 включаются, когда Q2 и LED2 выключаются, и наоборот, и в котором нестабильные скорости переключения контролируются значениями C1-R3. и C2-R4.

Рисунок 15 показывает версию ИС двухсветового мигающего устройства, основанную на ИС таймера 555 или 7555, которая подключена в нестабильном режиме, с ее основными постоянными времени, определяемыми значениями C1 и R4 и дающими частоту цикла около 1 Гц (одна вспышка в секунду). Действие схемы таково, что выходной контакт 3 ИС поочередно переключается между заземлением и положительным уровнем напряжения питания, поочередно включая LED1 через R1 или LED2 через R2. Схема может быть преобразована в режим работы с одним светодиодом, исключив светодиоды 2 и R2.

РИСУНОК 15. Схема с двумя светодиодами IC работает на частоте около 1 Гц.


На рисунке 16 показана полезная модификация вышеупомянутой схемы, в которой частота мигания изменяется через RV1, а две пары последовательно соединенных светодиодов соединены в форме креста, так что визуальный дисплей попеременно переключается между горизонтальная полоса (LED1 и LED2 включены) и вертикальная полоса (LED3 и LED4 включены), таким образом формируя визуально интересный дисплей.Частота цикла варьируется от 0,3 до 3 вспышек в секунду.

РИСУНОК 16. Частота мигания с двумя полосами с четырьмя светодиодами может изменяться от 3 до 0,3 вспышек в секунду.


СВЕТОДИОДНЫЕ МИКРОЭНЕРГИИ

Простые схемы светодиодных мигалок типов, показанных на рисунках 14 16 , потребляют средние рабочие токи в несколько миллиампер. С другой стороны, светодиодные мигалки Micropower потребляют средние рабочие токи, которые измеряются в микроамперах (обычно в диапазоне от 2 мкА до 150 мкА), и предназначены в основном для использования в “аварийном индикаторе”, “состоянии батареи” и “взломе” с питанием от батареи. сдерживающие »приложения.

В приложениях с аварийными индикаторами микромощные светодиодные мигалки могут использоваться для обозначения положения аварийных выходов, фонарей, фонарей, кнопок аварийной сигнализации или оборудования безопасности и т. Д. В темноте (возможно, вызванной отказом основной системы освещения). При использовании в качестве индикаторов состояния батареи они часто устанавливаются в дымовые извещатели и другие слаботочные устройства с длительным сроком службы, которые питаются от батарей от 4,5 В до 12 В. Когда они используются в качестве средств защиты от взлома, они хорошо подходят для реальной или фиктивной системы охранной сигнализации, сигнальных ящиков / сирен, камер видеонаблюдения и т. Д.

Чтобы понять основные принципы, лежащие в основе светодиодных мигалок с микромощностью, вы должны сначала изучить некоторые основные факты, касающиеся визуального восприятия, а именно:

  1. Комбинацию человеческого глаза и мозга резко привлекают внезапные изменения в визуальных образах или уровнях освещенности; он особенно чувствителен к некоторым типам мигающего света. Рисунок 17 показывает типичную «световую вспышку» комбинации человеческого глаза / мозга, когда она представлена ​​ярким импульсом света, генерируемым светодиодом.
  2. Примечание от Рис. 17 , что вспышка должна присутствовать, чтобы было видно (восприниматься) с полной яркостью не менее 10 мс, и что – когда вспышка прекращается – эффект «постоянства зрения» вызывает довольно медленное затухание воспринимаемой яркости. , обычно требуется 20 мс, чтобы упасть до 50% от максимального (до выключения) значения. Следовательно, глаз может видеть мигающие огни как отдельные вспышки, только если они разделены периодом не менее 20 мс; если расстояние между ними меньше 20 мс, они видны (из-за эффекта «постоянства зрения») как непрерывный свет.
  3. Также обратите внимание на Рисунок 17 , что – если вспышки разделены как минимум на 20 мс – мозг «видит» отдельные вспышки с полной яркостью, если они имеют продолжительность 10 мс или больше, но видит их с уменьшающейся яркостью при меньшей продолжительности. 10 мс (вспышка 2 мс появляется примерно при 1/5 истинной яркости; воспринимаемая яркость быстро спадает при длительности менее 1 мс). Воспринимаемая длительность вспышки 20 мс (30 мс) всего на 50% больше, чем продолжительность вспышки 10 мс (20 мс).
  4. Комбинацию человеческого глаза и мозга очень сильно привлекают мигающие огни, периоды повторения которых составляют приблизительно от 0,5 до 5 секунд, но меньше привлекают мигающие огни, у которых периоды повторения выше или ниже этого диапазона.
  5. Современные недорогие сверхяркие светодиоды при генерации светового импульса 10 мс или более обеспечивают уровень яркости, который достаточно привлекателен для большинства практических целей при импульсном токе 2 мА.

РИСУНОК 17. Типичная реакция на “световую вспышку” комбинации человеческого глаза и мозга.


Когда приведенные выше факты сопоставлены, выясняется, что «идеальный» микромощный светодиодный мигатель – при использовании сверхяркого светодиода – должен генерировать импульс длительностью (d) 10 мс при токе (I) 2 мА. , при периоде повторения (p) 2 секунды (= 2000 мс). Обратите внимание, что в этих условиях средний ток (I означает ) светодиода равен

I среднее = I x d / p

и составляет всего 10 мкА в этом конкретном примере (при 30-секундном периоде повторения I означает, что – это 0 минут.67 мкА).

На практике фактический средний ток, потребляемый схемой микромощного светодиодного мигающего сигнала, равен сумме токов светодиода и драйвера и неизбежно превышает минимальное значение, указанное выше. На рисунках 18, и 19, , например, показаны две альтернативные схемы микромощных светодиодных мигалок, которые при питании от источников питания 6 В потребляют суммарные токи 86 мкА и 12 мкА соответственно.

Схема Figure 18 разработана на основе ИС «таймера» CMOS 7555, которая используется в нестабильном режиме и обычно потребляет незагруженный рабочий ток 75 мкА при 6В.В этом режиме C1 поочередно заряжается через R1-R2 и разряжается только через R2, тем самым генерируя сильно асимметричный выходной сигнал на контакте 3, который включает светодиод через токоограничивающий резистор R3 во время кратковременной части “ разрядки ” каждого рабочего цикла. цикл.

РИСУНОК 18. Подробная информация о схемах и характеристиках микромощного светодиодного мигающего модуля на базе 7555.


В таблице , рис. 18, приведены подробные сведения о характеристиках схемы, оптимизированной для работы при различных точечных напряжениях в диапазоне от 3 В до 12 В.

Схема Рис. 19 Схема разработана на основе ИС CMOS 4007UB, которая содержит две пары комплементарных полевых МОП-транзисторов плюс один инвертор КМОП, все они размещены в 14-выводном корпусе DIL.

РИСУНОК 19. Эта микромощная светодиодная схема мигания на основе 4007UB потребляет средний ток 12 мкА при напряжении 6 В.


В этом приложении ИС соединена как микромощное кольцо из трех асимметричных нестабильных мультивибраторов, которое – при питании от источника питания 6 В – включает светодиод на 10 мс с двухсекундными интервалами повторения; время включения контролируется C1-R1, время выключения – C1-R2, а ток светодиода (номинальный 2 мА) регулируется R4.Схема потребляет рабочий ток без нагрузки 2 мкА и ток нагрузки (при возбуждении светодиода импульсами 2 мА) 12 мкА.

Обратите внимание, что базовая схема , рис. 19 может использоваться при любых напряжениях питания в диапазоне от 4,5 В до 12 В, но фактические значения компонентов должны выбираться в соответствии с конкретным используемым напряжением питания. Также обратите внимание, что – при напряжении питания 6 В или выше – схема может управлять двумя или более последовательно соединенными светодиодами без увеличения общего потребления тока, при условии, что значение R4 изменено, чтобы установить ток включения светодиода на 2 мА.

В таблице , рис. 20, показан номинальный срок службы различных типов щелочных элементов / батарей при непрерывном возбуждении различных типов микросхем микромощных светодиодных мигалок.

12 мкА Нагрузка 86 мкА Нагрузка 320 мкА Нагрузка
Щелочные
Тип элемента / батареи
Емкость
(на элемент или батарею)
Ежемесячный расход емкости и прогнозируемый срок службы элемента / батареи
Слив Жизнь Слив Жизнь Слив Жизнь
AAA 1 Ач 0.88% 3,3 года 6,28% 1,0 года 23,4% 0,3 года
AA (1,5 В) 2 Ач 0,44% 4,0 года 3,14% 1,7 года 11,7% 0,6 года
C (1,5 В) 6,5 Ач 0,135% 4,6 года 0,97% 3,2 года 3,6% 1,6 года
D (1.5 В) 13 Ач 0,07% 4,8 года 0,48% 3,9 года 1,8% 2,4 года
PP3 (9 В) 0,55 Ач 1,59% 2,6 года 11,4% 0,6 года 42,5% 0,2 года

РИСУНОК 20. Таблица, показывающая ожидаемый срок службы различных типов щелочных элементов / батарей при включении микросхем микромощных светодиодных мигалок.


Данные относятся к схемам в Рисунок 18 (рисунок 86 мкА при 6 В) и Рисунок 19 (рисунок 12 мкА при 6 В), а также к некогда популярной, но теперь устаревшей ИС «светодиодной мигалки» LM3909 (снята с производства National Semiconductor), который потребляет минимальный рабочий ток 320 мкА.

Обратите внимание на Рисунок 20 , что «прогнозируемый срок службы элемента / батареи» относится к элементам / батареям, первоначальный (неиспользованный) ожидаемый срок службы которых составляет пять лет, т.е.е., в которой их заряды утекают с постоянной скоростью 1,67% в месяц. Общий ежемесячный расход используемой мощности равен сумме значений утечки и утечки нагрузки и составляет основу прогнозируемых значений срока службы, показанных в таблице.

НИЗКОВОЛЬТНЫЕ СВЕТОДИОДНЫЕ МИКРОЭНЕРГИИ

Базовая схема микромощного светодиодного мигающего сигнала на рис. 19 Рисунок 19 может – если значения его компонентов правильно выбраны – надежно использоваться при абсолютном минимальном напряжении питания 4,5 В. Если у вас есть приложение, в котором вам нужно управлять этой базовой схемой флешера от батареи 3 В, вы можете сделать это, используя батарею 3 В для непосредственного управления сверхэффективной схемой удвоения напряжения на основе популярной ICL7660 IC, и используйте 6 В. выход удвоителя (подключен непосредственно к C2 в , рис. 19, ) для питания 6-вольтовой версии схемы , рис. 19, , которая в этом случае будет потреблять средний ток 24 мкА от батареи 3 В.

В качестве альтернативы, если вам нужно управлять базовой схемой мигающего сигнала от ячейки 1,5 В, вы можете сделать это, используя ячейку для управления каскадной парой цепей удвоителя напряжения ICL7660 и используя их выход 6 В (подключенный непосредственно к C2 в . Рисунок 19 ) для питания 6-вольтовой версии . NV


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *