Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Как определить мощность резистора. | Для дома, для семьи

Здравствуйте, уважаемые читатели сайта sesaga.ru. Резистор является самым используемым радиокомпонентом, без которого не обходится ни одна электронная схема. Основными параметрами резистора являются электрическое сопротивление, мощность и допуск.

Если с сопротивлением и допуском все понятно, то определение мощности малогабаритных резисторов вызывает некоторые трудности, особенно на первых порах занятием радиолюбительством. В статье о цветовой и цифровой маркировке резисторов я уже рассказывал о мощности резисторов, но судя по Вашим комментариям, этот параметр был раскрыт не полностью. В этой статье я постараюсь устранить этот пробел.

Итак. Резисторы бывают разного устройства и конструкции, но в большинстве случаев они представляют собой небольшой цилиндр из фарфора или какого-нибудь другого изолятора, на который нанесен токопроводящий слой, обладающий определенным электрическим сопротивлением.

В других конструкция на цилиндр наматывается требуемое количество витков тонкой проволоки из сплавов, обладающих большим сопротивлением.

Резисторы применяют согласно мощности, на которую он рассчитан, и которую может выдержать без риска быть испорченным при прохождении через него электрического тока. Поэтому на схемах внутри прямоугольника прописывают условные обозначения, указывающие мощность резистора в ваттах (Вт): двойной косой чертой обозначают резистор мощностью 0,125 Вт; прямой чертой, расположенной вдоль значка резистора, обозначают мощность 0,5 Вт; римской цифрой обозначается мощность от 1 Вт и выше.

Как правило, резисторы разной мощности отличаются размерами и чем больше мощность резистора, тем размер его больше. На крупногабаритных резисторах величина мощности указывается на корпусе в виде цифрового значения, а вот малогабаритные резисторы приходится определять на «глаз».

Но все же определить мощность того или иного резистора не так уж и трудно, так как габаритные размеры соответствуют стандарту, которого стараются придерживаться все производители электронных компонентов. В Советском Союзе даже выпускались таблицы для определения мощности резисторов по их размерам: диаметру и длине.

На отечественных резисторах типа МЛТ и некоторых зарубежных мощностью 1Вт и выше величина мощности указывается на корпусе цифровым значением. На остальных импортных резисторах рядом с цифрой дополнительно ставят латинскую букву W.

Правда, встречаются некоторые зарубежные экземпляры, где после цифрового значения может стоять другая буква. Как правило, подобную маркировку ставит производитель, который сам изготавливает некоторые компоненты для своей аппаратуры, не придерживаясь стандартов.

Однако с размерами есть небольшой нюанс, который надо знать: габариты отечественных и импортных резисторов одинаковой мощности немного отличаются друг от друга — отечественные резисторы чуть больше своих зарубежных собратьев.

Это объясняется тем, что отечественные радиокомпоненты выпускаются с некоторым запасом по мощности, тогда как у зарубежных аналогов такого запаса нет. Поэтому при замене отечественных резисторов зарубежными, зарубежный аналог следует брать на порядок мощнее.

Есть еще один тип резисторов, выпускаемые как зарубежными, так и отечественными производителями, габариты которых не подходят под стандартные размеры. Как правило, это низкоомные высокоточные резисторы, имеющие допуск по номинальному сопротивлению от 1% и ниже. Такие резисторы применяются в измерительных приборах, медицинском, военном или высокоточном оборудовании.

Если с крупногабаритными резисторами все понятно, то малогабаритные резисторы мощностью 0,5 Вт и ниже приходится различать только исходя из их размеров. Но и в этом случае сложного ничего нет, так как на первое время достаточно в качестве образца иметь по одному резистору с мощностями от 0,125Вт до 0,5Вт, чтобы сравнивать их с искомыми резисторами.

А в дальнейшем, когда придет опыт, Вы сможете без труда определять мощность резисторов по их габаритам.

Ну и в довершении статьи картинка с резисторами отечественного и зарубежного производства в порядке возрастания их мощности. А чтобы легче было ориентироваться в габаритах, на каждой картинке предоставлена спичка, относительно которой можно судить о размерах того или иного резистора.

И еще надо сказать о замене: резистор мощностью 0,125Вт можно заменить резистором мощностью 0,125Вт и выше. Лишь бы позволял размер платы. А вот резистор мощностью 0,5Вт нельзя заменить резисторами 0,125Вт и 0,25Вт, так как их мощность меньше и в процессе работы они могут перегреться и выйти из строя.

И по традиции видеоролик, где показывается еще один вариант определения мощности резисторов.

Удачи!

Маркировка сопротивлений по мощности. Основные параметры резисторов

Постоянные резисторы — это такой элемент, который присутствует практически во всей электронной аппаратуре. Резисторы обладают свойствами активного сопротивления. С их помощью можно ограничить или уменьшить ток в цепи, разделить определенное напряжение на две о более части, для отвода остаточных зарядов.

Состоит постоянный резистор из фарфоровой трубки или палочки, на которую напыленно железо или углерод. От толщины напыления зависит сопротивление резистора и от объема — мощность.

Маркировка резисторов

Буквенно-цифровая маркировка резисторов

Общий вид резисторов отечественного производства и обозначение их на схеме (рис1).

Большинство резисторов в своей радиолюбительской практике брал из старых радиоустройств. Как правило, эти устройства были старыми и в них были установлены отечественные резисторы с буквенно-цифровой маркировкой. В маркировке таких резисторов обычно присутствовали три буквы МЛТ, что означает, металлизированный лакированный теплостойкий. Цифра после этого словосочетания обозначает мощность.

Основная единица измерения сопротивления — Ом. В одном Оме 1000 кОм и 1 000 000 мОм. Буквы в маркировке служат в роли разделителей, как запятая в обычном наборе цифр. Например, сопротивление у резистора 5к3 будет 5,3 кОм, а 5м3 — 5,3 мОм. Все остальные буквы английского алфавита и обозначают Ом. Например, 8R0 — это 8,0 Ом. Отсутствие буквы вовсе означает, что цифра обозначает сопротивление в Ом. Например, 100 — это 100 Ом.

Приведу еще несколько примеров с буквой перед цифрами. К250 = 0.250 кОм и это равно 250 Ом. М100 = 0,100 мОм и это равно 100 кОм.

Цветовая маркировка резисторов

Современные изготовители радиодеталей уже практически ушли от буквенно-цифровой маркировки резисторов. На смену ей пришла цветовая маркировка резисторов.

Смысл данной маркировки в нанесении на корпус разноцветных колец, цвет которого несет свою цифру или множитель. Рассказывать и изучать, что означает каждый цвет, мы здесь не будем, я сам этого на память не знаю, и запоминать не хочется. Для определения номинала резисторов с цветовой маркировкой существует множество программ в интернете, скачать одну из них можно . Я начал использование программы больше пяти лет назад и пользуюсь до сих пор.

Так же цветовую маркировку резистора можно определить из шаблона резисторов с уже проставленными номиналами, во всяком случае на столе не помешают:



Универсальный способ определения номинала

И не забываем самый основной способ определения номинала резистора методом измерения. Правда, для определения сопротивления данным способом, необходим довольно точный прибор, китайский цифровой мультиметр вполне сойдет, а вот стрелочные тестеры врятли. При измерении не прикасайтесь к щупам мультиметра, что бы не учитывать сопротивление тела, и при измерении небольших сопротивлений отнимайте сопротивление проводов, показывается если щупы замкнуть накоротко (на большем пределе покажет нуль и сопротивление проводов не учитывается).

Мощность резистора

Резисторы различаются как по сопротивлению, так и по мощности. Основные номиналы мощности показаны на рисунке 1. На том же рисунке показано условно графическое изображение резистора на схеме.

Если при сборке, какой либо схемы на ней указан резистор мощностью 1 Вт, то при сборке схемы он должен быть аналогичной или большей мощности.

Хорошо если на схемах такие обозначения есть, а что делать, если схема проектируется самостоятельно. К примеру, нужно подключить светодиод 3 Вольта и 30 миллиАмпер к источнику питания 12 В. Для ограничения тока в цепь светодиода врезается резистор. Что бы рассчитать рассеиваемую мощность резистора необходимо знать напряжение падения на резисторе, ток цепи и найти их произведение. (12-3)х0,03= 0,27 Вт. Принимаем ближайшее, большее значение мощности 0,5 Вт.

Привет. Сегодня статья будет посвящена такому радиоэлементу как резистор, или как было принято называть его ранее сопротивление.

Основной задачей резисторов является создание сопротивления электрическому току. Для более наглядной визуализации, давайте представим электрический ток, как воду, которая течет по трубе. В конце этой трубы установлен кран, который полностью откручен, и он просто пропускает через себя водный поток.

Стоит нам немного начать закрывать кран, как мы сразу увидим, что поток стает слабее вплоть до того момента, когда течь воды полностью остановится.

По такому принципу и работают резисторы, только вместо трубы у нас электрический проводник, вместо воды ток, а вместо крана наш резистор. Чем больше номинал резистора, тем больше он делает сопротивление электрическому току. Сопротивление резистора измеряется такой единицей измерения как Ом.

Так как в схемах могут использоваться очень большие резисторы, номинал которых может составлять порядка 1000 -1000000 Ом, то для облегчения вычислений используют производные единицы, такие как кОм , мОм и гОм .

Для большего понимания этих единиц измерения, привожу следующую расшифровку:

1кОм = 1000 Ом;

1 мОм = 1000 кОм;

1гОм = 1000 мОм;

На практике все очень просто. Если нам попался резистор с надписью 1,8 кОм, то проведя не сложные вычисления, увидим, что номинал в Омах будет соответствовать 1800 Ом.

По принципу работы, резисторы делятся на постоянные и переменные .

Из самих названий можно догадаться, что постоянные резисторы в процессе работы никогда не меняют своего номинала. Переменные же резисторы, могут менять свой номинал в процессе работы, и используются для выполнения какой-то настройки. Примером для использования переменных резисторов может быть ручки управления громкостью, тембром на магнитофонах.

Постоянные резисторы

Поговорим более детально о постоянных резисторах. На практике, обозначение номинала резисторов наносится на корпусе. Это может быть буквенно–цифровой код или обозначение цветными полосками (). Как узнать номинал резистора по цветовой маркировке, можем узнать из этой .

Что касается буквенно-цифрового обозначения, то его принято обозначать такими способами:

  1. Буква R Омах . Очень важным является позиция этой буквы. Если на резисторе надпить типа 12 R то номинал резистора будет 12Ом . Если же буква будет в начале R 12 , то сопротивление будет 0,12Ом . Также возможно обозначение типа 12 R1 , что будет означать 12,1 Ом.
  2. Буква K – означает, что номинал резистора будет измеряться в к Омах . Действуют теже правила что и для предыдущего примера. 12 K = 12кОм, K 12 = 0,12 кОм и 12К1 = 12,1кОм.
  3. Буква М – означает, что номинал резистора будет измеряться в м Омах . 12 М = 12мОм, М 12 = 0,12 мОм и 12М1 = 12,1мОм.

Так же на корпусе резистора обозначают такую величину как отклонение от номинала . При массовом производстве сопротивлений, в виду не совершенства технологий производства, сопротивления могут иметь некоторые отклонения от заявленного номинала. Это возможное отклонение обозначается на корпусе резистора в виде ±0,7% или ±5%. Цифры могут быть разные, в зависимости от метода производства.

В процессе работы, при больших нагрузках резистор выделяет тепло. Если в схему, где идут большие нагрузки поставить резистор маленькой мощности, то он быстро разогреется и сгорит. Чем больше по размерам резистор, тем больше его мощность. На рисунке ниже видно обозначение мощности резисторов на схемах.

Обозначение мощности резисторов на схеме

Переменные резисторы

Как говорилось ранее, переменные резисторы используются для плавной регулировки силы тока и напряжения в пределах номинала резистора. Переменные резисторы бывают построечные и регулировочные . С помощью регулировочных резисторов проводятся постоянные пользовательские регулировки аппаратуры (регулировка звука, яркости тембра и др.), а построечные используются для настройки аппаратуры в режиме наладки во время сборки техники. Для регулировочных резисторов приемлемо наличия удобной ручки, построечные же обычно регулируются отверткой.



Если на переменном резисторе написано что он имеет номинал 10кОм , то это означает, что он производит регулировку в пределах от 0 до 10 кОм . В среднем положении ручки его номинал будет приблизительно около 5 кОм , в крайнем или 0 или 10 кОм .

Каждый, кто работает с электроникой, или когда-нибудь видел электронную схему, знает, что практически ни одно электронное устройство не обходится без резисторов.

Функция резистора в схеме может быть совершенно разной: ограничение тока, деление напряжения, рассеивание мощности, ограничение времени зарядки или разрядки конденсатора в RC-цепочке и т. д. Так или иначе, каждая из этих функций резистора осуществима благодаря главному свойству резистора – его активному сопротивлению.

Само же слово «резистор» – это русскоязычное прочтение английского слова «resistor» , которое в свою очередь происходит от латинского «resisto» – сопротивляюсь. В электрических цепях применяют постоянные и переменные резисторы, и предметом данной статьи будет обзор основных видов постоянных резисторов, так или иначе встречающихся в современных электронных устройствах и на их схемах.

В первую очередь постоянные резисторы классифицируются по максимальной рассеиваемой компонентом мощности: 0,062 Вт, 0,125 Вт, 0,25 Вт, 0,5 Вт, 1 Вт, 2 Вт, 3 Вт, 4 Вт, 5 Вт, 7 Вт, 10 Вт, 15 Вт, 20 Вт, 25 Вт, 50 Вт, 100 Вт и даже больше, вплоть до 1 кВт (резисторы для особых применений).

Данная классификация не случайна, ведь в зависимости от назначения резистора в схеме и от условий, в которых должен работать резистор, рассеиваемая на нем мощность не должна привести к разрушению самого компонента и компонентов расположенных поблизости, то есть в крайнем случае резистор должен разогреться от прохождения по нему тока, и суметь рассеять тепло.

Например, керамический резистор с цементным заполнением SQP-5 (5 ватт) номиналом 100 Ом уже при 22 вольтах постоянного напряжения, длительно приложенных к его выводам, разогреется более чем до 200°C, и это необходимо учитывать.

Так, лучше выбрать резистор необходимого номинала, допустим на те же 100 Ом, но с запасом по максимальной рассеиваемой мощности, скажем, на 10 ватт, который в условиях нормального охлаждения не разогреется выше 100°C – это будет менее опасно для электронного устройства.

SMD резисторы для поверхностного монтажа с максимальной рассеиваемой мощностью от 0,062 до 1 ватта – также можно встретить сегодня на печатных платах. Такие резисторы так же как и выводные всегда берутся с запасом по мощности. Например в 12 вольтовой схеме для подтягивания потенциала к минусовой шине можно использовать SMD резистор на 100 кОм типоразмера 0402. Или выводной на 0,125 Вт, поскольку рассеиваемая мощность будет в десятки раз дальше от максимально допустимой.

Проволочные и непроволочные резисторы, точность резисторов

Резисторы для различных целей используют разные. Не желательно, например, проволочный резистор ставить в высокочастотную цепь, а для промышленной частоты 50 Гц или для цепи постоянного напряжения достаточно и проволочного.

Проволочные резисторы изготавливают путем намотки проволоки из манганина, нихрома или константана на керамический или порошковый каркас.

Изготавливают не из проволоки, а из проводящих пленок и смесей на основе связующего диэлектрика. Так, выделяют тонкослойные (на основе металлов, сплавов, оксидов, металлодиэлектриков, углерода и боруглерода) и композиционные (пленочные с неорганическим диэлектриком, объемные и пленочные с органическим диэлектриком).

Непроволочные резисторы – это зачастую резисторы повышенной точности, которые отличаются высокой стабильностью параметров, способны работать при высоких частотах, в высоковольтных цепях и внутри микросхем.

Резисторы в принципе подразделяются на резисторы общего назначения и специального назначения. Резисторы общего назначения выпускаются номиналами от долей ома до десяти мегаом. Резисторы специального назначения могут быть номиналом от десятков мегаом до единиц тераом, и способны работать под напряжением 600 и более вольт.

Специальные высоковольтные резисторы способны работать в высоковольтных цепях с напряжением в десятки киловольт. Высокочастотные способны работать с частотами до нескольких мегагерц, поскольку обладают исключительно малыми собственными емкостями и индуктивностями. Прецизионные и сверхпрецизионные отличаются точностью номиналов от 0,001% до 1%.

Номиналы резисторов и их маркировка

Резисторы выпускаются на различные номиналы, и есть так называемые ряды резисторов, например широко распространенный ряд Е24. Вообще, стандартизированных рядов у резисторов шесть: Е6, Е12, Е24, Е48, Е96 и Е192. Число после буквы «Е» в названии ряда отражает количество значений номиналов на десятичный интервал, и в Е24 этих значений 24.

Номинал резистора обозначается числом из ряда, умноженным на 10 в степени n, где n – целое отрицательное или положительное число. Каждый ряд характеризуется своим допустимым отклонением.

Цветовая маркировка выводных резисторов в виде четырех или пяти полос давно стала традиционной. Чем больше полос – тем выше точность. На рисунке приведен принцип цветовой маркировки резисторов с четырьмя и пятью полосами.

Резисторы для поверхностного монтажа (SMD – резисторы) с допуском в 2%, 5% и 10% маркируются цифрами. Первые две цифры из трех образуют число, которое необходимо умножить на 10 в степени третьего числа. Для обозначения точки в десятичной дроби, на ее месте ставят букву R. Маркировка 473 обозначает 47 умножить на 10 в степени 3, то есть 47х1000 = 47 кОм.

SMD резисторы начиная с типоразмера 0805, с допуском в 1%, имеют четырехзначную маркировку, где первые три – мантисса (число, которое следует умножить), а четвертая – степень числа 10, на которое следует умножить мантиссу, чтобы получить значение номинала. Так, 4701 обозначает 470х10 = 4,7 кОм. Для обозначения точки в десятичной дроби, на ее место ставят букву R.


Две цифры и одна буква применяются в маркировке SMD резисторов типоразмера 0603. Цифры – это код определения мантиссы, а буквы – код показателя степени числа 10 – второго множителя. 12D обозначает 130х1000 = 130 кОм.

На схемах резисторы обозначаются белым прямоугольником с надписью, и в надписи иногда содержится как информация о номинале резистора, так и информация о его максимальной рассеиваемой мощности (если она критична для данного электронного устройства). Вместо точки в десятичной дроби обычно ставят букву R, K, M – если имеются ввиду Ом, кОм и МОм соответственно. 1R0 – 1 Ом; 4K7 – 4,7 кОм; 2M2 – 2,2 МОм и т. д.

Чаще в схемах и на платах резисторы просто нумеруются R1, R2 и т. д., а в сопроводительной документации к схеме или плате дается список компонентов по этими номерами.

Относительно мощности резистора, на схеме она может быть указана надписью буквально, например 470/5W – значит – 470 Ом, 5 ваттный резистор? или символом в прямоугольнике. Если прямоугольник пустой, то резистор берется не очень мощный, то есть 0,125 – 0,25 ватт, если речь о выводном резисторе или максимум типоразмера 1210, если выбран резистор SMD.

Новая деталь – резистор.

Резистор – это элемент, обладающий определенным электрическим сопротивлением. Вообще, справедливости ради, скажу так – сопротивлением обладают не только резисторы, но и все остальные элементы: лампы, двигатели, диоды, транзисторы и даже простые провода. Однако у всех остальных элементов сопротивление – это не главная характеристика, а так скажем – побочная. На самом деле, лампочка – светит, двигатель – вращается, диод – выпрямляет, транзистор – усиливает, а провод – проводит. А вот у резистора нет иной “профессии”, кроме как оказывать сопротивление идущему через него току. Ну, правда, он нагревается, и его можно использовать вместо обогревателя долгими зимними вечерами. Однако – это несколько из области нестандартных применений…

На картинке изображены различные резисторы. Маленькая черненькая фичка в нижней части – это тоже резистор, только без ножек. Такие детали используются для поверхностного монтажа и носят имя SMD. Здесь мы имеем счастье наблюдать SMD-резистор.

А на схеме его в любом случае обозначают только так:

Рядом с изображением обычно указывают его порядковый номер в схеме и номинальное сопротивление (то, на которое он рассчитан). В нашем примере он 12-й по счету и его сопротивление – 15 килоом (т.е., 15 000 Ом). Буква R перед порядковым номером говорит нам о том, что это – резистор. (Для каждого вида деталей в схеме ведется свой счет.)

Итак, резистор обладает сопротивлением. Сопротивление измеряется в Омах (см. главу 2 – Закон Ома). Каждый резистор рассчитан на какое-то определенное сопротивление. Чтобы узнать это определенное сопротивление – достаточно посмотреть на корпус резистора. Оно должно быть там написано. Однако не ищите надписей вроде 215 Ом. Так уже давно никто не обозначает, потому как – длинно получается. Сейчас весь мир перешел к трехзначной маркировке. Поэтому, на резисторе можно встретить, например, такие обозначения: 1К5, К20, 10Е, М36. Или такие: 152, 201, 100, 364. Или вообще не найти никаких букв, а только странные цветные полоски. В последнем случае – не отчаивайтесь – это цветовая маркировка. Ее довольно легко читать (если знать как =)). Сейчас мы начнем разгребать все способы маркировки. Но до этого, немного вспомним кратные приставки.

Кратные приставки мы постоянно используем в повседневной жизни. Например, покупая леску толщиной 0,25 миллиметра, или отправляясь на дачу на 54-й километр, или оценивая, сколько мегабайт занимает файл и влезет ли он на винчестер объемом 10 гигабайт. Или, на худой конец, объясняя соседу, что болевой порог человеческого уха – 120 децибелл и ваш усилок никак не обеспечит такой мощи, даже если очень захочет… “Миллиметр”, “километр”, “мегабайт”, “гигабайт”, “децибелл” – все эти слова образованы из слов “метр”, “байт” и “Белл” при помощи кратных приставок: “милли-“, “кило-“, “Мега-“, “Гиго-“, “деци-“. Все прекрасно знают, что в 1-м километре – 1000 метров, а в 1-м грамме – 1000 миллиграмм, а в одном гигабайте – где-то 1000 000 000 байт. И можно, в принципе, говорить не “3 километра” а “3 тысячи метров”, не “40 милиграмм” а “0,04 грамма”. Однако – это долго и неудобно. Для того, собственно, и служат эти приставки – чтоб облегчить нам с вами жизнь. Они образуют из некоторой базовой виличины (метр, грамм, байт и т.д.) новую величину, которая больше или меньше базовой во сколько-то раз. -12) (триллионная)

Для обозначения сопротивления тоже используют кратные приставки. Чаще всего в схемах можно найти резисторы от нескольких десятков Ом до нескольких сотен килоом. Встречаются резисторы и по нескольку мегаом, но – редко. Итак:

1 кОм = 1000 Ом
1 МОм = 1000 кОм = 1 000 000 Ом

Несколько примеров:

1,5 кОм = 1,5*1000 = 1500 Ом
0,2 кОм = 0,2*1000 = 200 Ом
и т.д.

Теперь поехали лопатить обозначения на корпусе!

Маркировка резисторов

Маркировка – это условные обозначения, наносимые на корпус детали, по которым мы можем узнать о некоторых её свойствах. Маркировка резистора может сказать нам о самом главном его свойстве – сопротивлении.

Существует несколько различных способов маркировки резисторов.

Способ 1-й, совдеповский.

1К5, 68К, М16, 20Е, К39 и т.д.

Расшифруем:
1К5 = 1,5 кОм
68К = 68 кОм
М16 = 0,16 МОм = 160 кОм
20Е = 20 (единиц) Ом
К39 = 0,39 кОм = 390 Ом

Маркировка всегда состоит из двух цифр и одной буквы, обозначающей кратную приставку. Причем, буква ставится вместо десятичной запятой. Например, чтобы записать 1,5 кОм, надо написать 1К5. Если число 3-значное, скажем – 390 Ом, то надо выразить его с помощью 2-х знаков: 0,39 кОм. Ноль не пишем. Получается К39. Если число целое, то есть, после запятой нет знаков, буква ставится в самом конце: 68 К = 68,0 кОм

Способ 2-й, буржуазный

152, 683, 164, 200, 391.

Расшифруем:
152 = 15 00 Ом = 1,5 кОм
683 = 68 000 Ом = 68 кОм
164 = 16 0000 Ом = 160 кОм
200 = 20 Ом
391 = 39 0 Ом.

Я не случайно писал нули через пробел. Усекли фишку? Правильно! Первые две цифры – это некоторое число. Последняя – количество нулей, дописываемых после этого числа. Проще некуда!

Способ 3-й, цветовой

Не подходит для дальтоников и ленивых.
Идеалогия – как в предыдущем способе, но вместо цифр – цветные полоски. Каждой цифре соответствует свой цвет. Вот таблица соответствия (ее лучше выучить наизусть, или распечатать на цветном принтере и везде носить с собой =)):


Как читать?
Берем резистор с цветовой маркировкой. На корпусе – 4 полоски. Три находятся рядом, одна – чуть в стороне. Переворачиваем резистор так, чтобы эта одиночная полоска была справа. Далее берем таблицу и переводим цвета трех левых линий в цифры. Получается трехзначное число. Далее – см. предыдущий способ.


Вот и все! Оказывается, это так легко!!! =) Однако, если все же по каким-то причинам не удается прочесть маркировку резистора – сопротивление всегда можно померить измерительными приборами. О них мы еще поговорим.


ID: 641

Как вам эта статья?

Заработало ли это устройство у вас?

определение мощности и сопротивления по цветовой маркировке

Наиболее популярной деталью для электронных схем является резистор – пассивный элемент, основным параметром которого является сопротивление протекающему току. Единица измерения – Ом.

Промаркированные резисторы

Резисторы могут быть фиксированными и регулируемыми (потенциометры). В эту группу включаются также фоторезисторы, варисторы и термисторы, в которых сопротивление определяется освещением, напряжением или температурой.

Фиксированные резисторы изготавливаются по разным технологиям. Наиболее популярные:

  • слоистые;
  • объемные;
  • проволочные.

Определение сопротивления

Производители дают только самые важные параметры в определении резистивных элементов:

  • номинальное сопротивление;
  • допуск, выраженный в процентах, соответствующих классу точности;
  • номинальная мощность.

Как определить сопротивление резистора, зависит от системы кодирования. В случае небольших элементов, где нет места, используется кодовая маркировка резисторов: символы из чисел и букв или цветные полосы. Отметки цветом применяются еще потому, что цифры легко стираются, такую надпись часто труднее разобрать.

Маркировка из букв и цифр

Буквенное кодирование предусматривает два стандарта:

  1. Обозначение резисторов в системе IEK. Для множителя используют букву: R = 1, K = 1000, M = 1000000;
  2. В стандарте MIL третья цифра обозначает коэффициент, на который умножаются два первых числа.

Примеры, как узнать сопротивление резистора в разных системах:

  1. R47 – IEK, R47 –MIL, номинал резистора – 0,47 Ом;
  2. 6R8 – IEK, 6R8 – MIL, R = 6,8 Ом;
  3. 27R – IEK, 270 – MIL, говорит о значении номинального сопротивления 27 Ом;
  4. 820R, K82 – IEK, 821 – MIL, R = 820 Ом;
  5. 47K – IEK, 473 – MIL, R = 47 кОм;
  6. 100R – IEK, 101 – MIL, R = 100 Ом;
  7. 2M7 – IEK, 275 – MIL, R = 2,7 мОм;
  8. 56М – IEK, 566 – MIL, R = 56 мОм.

Цветовое кодирование

Более распространенным способом кодирования является цветовая маркировка резисторов. Все расшифровки содержатся в публикуемых таблицах.

Международную систему цветных кодов приняли много лет назад, как простой и максимально быстрый способ определения омического значения резистора вне зависимости от его размера.

Схема чтения кода резистора

Важно! Маркировка всегда читается по одной полосе поочередно, начиная от левого конца детали. Каждый цвет ассоциируется с числом, соответствующим ему в таблице.

Элемент идентифицируется цветными полосками: от 3-х до 6-ти. Определение номинала резистора по цветовой маркировке зависит от числа полос:

  1. Три полоски. Первые две – значения сопротивления резистора, третья – коэффициент, на который умножаются цифры, определяемые двумя кольцами. Допуск для таких деталей имеет общую величину 20%;
  2. Четырехполосный код. Номинал резистора считывается по цветам аналогично, четвертая полоса означает допуск. Четырехдиапазонный вариант является самым распространенным. Если четвертой отметки нет, он превращается в трехдиапазонный, где сопротивление неизменное, но погрешность 20%;
  3. Резистор с пятью полосами. Относится к точным элементам. Первые три столбца – сопротивление, четвертый – множительный коэффициент, 5-й – допуск. К примеру, красный, желтый, зеленый, синий – R = 24 x 10 = 240 Ом, ± 0,25%;
  4. Шестиполосный код используется для высокоточных деталей. Пять полос расшифровываются, как и ранее, шестая указывает температурный коэффициент (ppm/° C). Этот показатель важен для некоторых схем. Коэффициент сообщает, на сколько процентов варьируется сопротивление при температурных изменениях в 1° C. Значение ТКС может указываться в ppm/К.

По цветной маркировке нельзя узнать о мощности, которую будет рассеивать элемент. Можно классифицировать резисторы по мощности, исходя из размера детали. Коммерческие резисторы рассеивают 1/4 Вт, 1/2 Вт, 1 Вт, 2 Вт и т. д. Больший размер элемента говорит о большей рассеиваемой мощности.

Для чего служат допуски

Чем меньше значение допуска, тем ближе сопротивление к желаемому значению.

Иногда схема содержит резисторы, сопротивления которых не очень распространены, и их сложно найти на рынке. С допуском можно приблизиться к нужной величине.

Образец определения параметров резистора по цветовой маркировке

На рисунке представлен образец сопротивления. Он содержит цветовую кодировку. Если расшифровать символы, получаются следующие цифры:

  1. Данное сопротивление составляет 590 Ом с допуском 5%;
  2. Значит, можно определить максимальную и минимальную величину. Таким образом, резистор обладает любым сопротивлением между 619,5 Ом и 560, 5 Ом.

Важно! У проволочных деталей существуют некоторые различия в цветовом коде. Тип такого резистора можно узнать по первоначальному расширенному белому кольцу. Остальные кольца по цвету соответствуют стандартным обозначениям, но заключительное может указывать на повышенную сопротивляемость теплу.

Для таких деталей имеется отдельная таблица данных, в которой можно заметить другие цвета и для погрешностей.

Таблица для проволочных резисторных элементов

Отклонения от стандарта

  1. Надежность. Этот показатель встречается в виде исключения в кодах, где 5 полос, и показывает процент отказов за тысячечасовой временной промежуток;

Таблица, включающая процент отказов и допуски

  1. Одно черное кольцо. Резистор, имеющий нулевое сопротивление. Такие элементы используются для соединения трасс на печатной плате;
  2. Замена цветов. Резисторные элементы, рассчитанные на высокое напряжение, маркируются желтым на месте золотого и серым на месте серебряного. Это делают из соображений безопасности, чтобы на внешнем покрове не присутствовало частиц металла.

SMD-резисторы

Для резисторов поверхностного монтажа не используют систему цветового маркирования из-за их микроскопических размеров, но иногда кодируют цифрами. Обычно три числа соответствуют:

  • первые два – сообщают о величине сопротивления;
  • третье – коэффициент, на который она умножается.

Никаких дополнительных данных не приводится, так как невозможно вместить больше цифр.

Декодер цветовой маркировки резисторов можно найти в удобном режиме, чтобы не заниматься поиском по таблицам. Существует онлайн калькулятор, куда заносится цветная маркировка резисторов с обозначением колец, и в результате вычисляется величина сопротивления. Причем можно рассчитать, как номинал резистора, так и произвести обратную операцию: узнать по сопротивлению цветовой код.

Перед чтением кодов желательно проверить документацию производителя, если есть возможность, чтобы не было сомнений в используемом стандарте. Для контрольной проверки сопротивления служит мультиметр.

Видео

Оцените статью:

Мощность резистора, что это, как подобрать, как узнать

Резисторы есть в любой электрической схеме. Но в разных схемах протекают различной величины ток. Не могут же одни и те же элементы работать при 0,1 А и при 100 А. Ведь при прохождении тока сопротивление греется. Чем выше ток, тем более интенсивный нагрев. Значит, и резисторы должны быть на разную величину тока. Так и есть. Отображает их способность работать при различных токах такой параметр, как мощность резистора. На деталях покрупнее она указывается прямо на корпусе. Для мелких корпусов есть другой метод определения (см. ниже).

Содержание статьи

Что такое мощность резистора

Мощность определяется как произведение силы тока на сопротивление: P = I * R и измеряется в ваттах (закон Ома). Рассеиваемая мощность резистора — это максимальный ток, который сопротивление может выдерживать длительное время без ущерба для работоспособности. То есть, этот параметр надо выбирать для каждой схемы отдельно — по максимальному рабочему току.

Как определить мощность резистора по внешнему виду: надо знать соответствие размеров и мощностей

Физически рассеиваемая мощность резистора — это то количество тепла, которое его корпус может «отдать» в окружающую среду и не перегреться при этом до фатальных последствий. При этом, нагрев не должен слишком сильно влиять на сопротивление резистора.

Стандартный ряд мощностей резисторов и их обозначение на схемах

Обратите внимание, что резисторы одного номинала могут быть с разной мощностью рассеивания. Этот параметр зависит от технологии изготовления, материала корпуса. Есть определенный ряд мощностей и их графическое обозначение по ГОСТу.

ВтУсловное обозначение не схемах
мощность резистора 0,05 Вт

Как обозначается на схеме мощность рассеивания резистора 0,05 Вт

мощность резистора 0,125 Вт

Мощность резистора 0,125 Вт на схеме

мощность резистора 0,025 Вт

Как на схеме выглядит резистор мощностью 0,25 Вт

мощность резистора 0,5 Вт

Так на схеме обозначается резистор мощностью 0,5 Вт

мощность резистора 1 Вт

Мощность резистора 1 Вт схематически обозначается так

мощность резистора 2 Вт

Рассеиваемая на резисторе мощность 2 Вт

мощность резистора 5 Вт

Обозначение на схеме мощности резистора 5 Вт

Графическое обозначение мощности резисторов на схеме — черточки и римские цифры, нанесенные на поверхность сопротивления. Самое малое стандартное значение 0,05 Вт, самое большое — 25 Вт, но есть и более мощные. Но это уже специальная элементная база и в бытовой аппаратуре не встречается.

Как обозначаются мощность маломощных резисторов надо просто запомнить. Это косые линии на прямоугольниках, которыми обозначают сопротивления на схемах. Количество косых черточек обозначает количество четвертей дюйма. При номиналах сопротивлений от 1 Вт на изображении ставятся римские цифры: I, II, III, V, VI и т.д. Цифра эта и обозначает мощность резистора в ваттах. Тут немного проще, так как соответствие прямое.

Как определить по внешнему виду

На принципиальной схеме указана нужная мощность резистора — тут все понятно. Но как определить мощность сопротивления по внешнему виду на печатной плате? Вообще, чем больше размер корпуса, тем больше тепла он рассеивает. На достаточно крупных по размеру сопротивлениях указывается номинальное сопротивление и его мощность в ваттах.

Тут есть некоторая путаница, но не все так страшно. На отечественных сопротивлениях рядом с цифрой ставят букву В. В зарубежных ставят W. Но эти буквы есть не всегда. В импортных может стоять V или SW перед цифрой. Еще в импортных может тоже стоять буква B, а в отечественных МЛТ может не стоять ничего или буква W. Запутанная история, конечно. Но с опытом появляется хоть какая-то ясность.

Как определить мощность резистора: стоит в маркировке

А ведь есть маленькие резисторы, на которых и номинал-то с трудом помещается. В импортных он нанесен цветными полосками. Как у них узнать мощность рассеивания?

В старом ГОСТе была таблица соответствий размеров и мощностей. Резисторы отечественного производства по прежнему делают в соответствии с этой таблицей. Импортные, кстати, тоже, но они по размерам чуть меньше отечественных. Тем не менее их также можно идентифицировать. Если сомневаетесь, к какой группе отнести конкретный экземпляр, лучше считать что он имеет более низкую способность рассеивать тепло. Меньше шансов, что деталь скоро перегорит.

Тип резистораДиаметр, ммДлинна, ммРассеиваемая мощность, Вт
ВС2,57,00,125
УЛМ, ВС5,516,50,25
ВС5,526,50,5
7,630,51
9,848,52
25755
3012010
КИМ1,83,80,05
2,580,125
МЛТ260,125
370,125
4,210,80,5
6,6131
8,618,52

С размерами сопротивлений и их мощностью вроде понятно. Не все так однозначно. Есть резисторы большого размера с малой рассеивающей способностью и наоборот. Но в таких случаях, проставляют этот параметр в маркировке.

Мощность SMD-резисторов

SMD-компоненты предназначены для поверхностного монтажа и имеют миниатюрные размеры. Мощность резисторов SMD определяется по размерам. Также она есть в характеристиках, но необходимо знать серию и производителя. Таблица мощности СМД резисторов содержит наиболее часто встречающиеся номиналы.

Размеры SMD-резисторов — вот по какому признаку можно определить мощность этих элементов

Код imperialКод metrikДлинна inch/mmШирина inch/mmВысота inch/mmМощность, Вт
020106030,024/0,60,012/0,30,01/0,251/20 (0,05)
040210050,04/1,00,02/0,50,014/0,351/16 (0,062)
060316080,06/1,550,03/0,850,018/0,451/10 (0,10)
080521120,08/2,00,05/1,20,018/0,451/8 (0,125)
120632160,12/3,20,06/1,60,022/0,551/4 (0,25)
121032250,12/3,20,10/2,50,022/0,551/2 (0,50)
121832460,12/3,20,18/4,60,022/0,551,0
201050250,20/2,00,10/2,50,024/0,63/4 (0,75)
251263320,25/6,30,12/3,20,024/0,61,0

В общем-то, у этого типа радиоэлементов нет другого оперативного способа определения тока, при котором они могут работать, кроме как по размерам. Можно узнать по характеристикам, но их найти не всегда просто.

Как рассчитать мощность резистора в схеме

Чтобы рассчитать мощность резисторов в схеме, кроме сопротивления (R) необходимо знать силу тока (I). На основании этих данных можно рассчитать мощность. Формула обычная: P = I² * R. Квадрат силы тока умножить на сопротивление. Силу тока подставляем в Амперах, сопротивление — в Омах.

Если номинал написан в килоомах (кОм) или мегаомах (мОм),  его переводим в Омы. Это важно, иначе будет неправильная цифра.

Схема последовательного соединения резисторов

Для примера рассмотрим схему на рисунке выше. Последовательное соединение сопротивлений характерно тем, что через каждый отдельный резистор цепи протекает одинаковый ток. Значит мощность сопротивлений будет одинаковой. Последовательно соединенные сопротивления просто суммируется: 200 Ом + 100 Ом + 51 Ом + 39 Ом = 390 Ом. Ток рассчитаем по формуле: I = U/R. Подставляем данные: I = 100 В / 390 Ом = 0,256 А.

По расчетным данным определяем суммарную мощность сопротивлений: P = 0,256² * 390 Ом = 25,549 Вт.  Аналогично рассчитывается мощность каждого из резисторов. Например, рассчитаем мощность резистора R2 на схеме. Ток мы знаем, его номинал тоже. Получаем: 0,256А² * 100 Ом = 6,55 Вт. То есть, мощность этого резистора должна быть не ниже 7 Вт. Брать с более низкой мощностью точно не стоит — быстро перегорит. Если позволяет конструктив прибора, то можно поставить резистор большей мощности, например, на 10 Вт.

Есть резисторы серии МЛТ, в которых мощность рассеивания тепла указана сразу после названия серии без каких-либо букв. В данном случае — МЛТ-2 означает, что мощность этого экземпляра 2 Вт, а номинал 6,8 кОм.

При параллельном подключении расчет аналогичен. Нужно только правильно рассчитать ток, но это тема другой статьи. А формула расчета мощности резистора от типа соединения не зависит.

Как подобрать резистор на замену

Если вам необходимо поменять резистор, брать надо либо той же мощности, либо выше. Ни в коем случае не ниже — ведь резистор и без того вышел из строя. Происходит это обычно из-за перегрева. Так что установка резистора меньшей мощности исключена. Вернее, вы его поставить можете. Но будьте готовы к тому, что скоро его снова придется менять.

Примерно определить мощность резистора можно по размерам

Если место на плате позволяет, лучше поставить деталь с большей мощностью рассеивания, чем была у заменяемой детали. Или поднять резистор той же мощности повыше (можно вообще не подрезать выводы) — чтобы охлаждение было лучше. В общем, при замене резистора, мощность берем либо ту же, либо выше на шаг.

Маркировка резисторов по цветам (номинальное сопротивление и мощность)

 Если вы заглядывали в “чрево” аппаратуры, то пожалуй уже не раз видели сколько там радиодеталек. Особо опытные радиолюбители уже наверное знают название той или иной детали и даже о том, что на маркировку иногда полезно подсмотреть, чтобы приобрести или поставить аналогичную деталь, взамен испорченной. Ну что же, порой на радиодетали так и написано, что это за деталь и какой у нее номинал. А вот иногда маркировку, в том числе и цветовую, приходится расшифровывать, обращаясь к справочным материалам. Примерно такая же ситуация с резисторами (сопротивлениями), которые имеют цветовую маркировку, обозначающую номинальные характеристики радиодетали.
 В данной статье как раз и приведена информация о буквенной и цветовой маркировке резисторов применяемых в радиоаппаратуре. Теперь авы без труда сможете определить какое сопротивление у резистора и на какую мощность он расчитан.

Маркировка современных резисторов (цветные полосы на корпусе)

 На настоящий момент в связи с засильем импортной техники и с несостоятельностью нашей, пришли и западные стандарты. Так сегодня актуален стандарт EIA (по англ. Electronics Industries Alliance) — Альянс отраслей  электронной промышленности, этот стандарт разработанный в США подразумевает цветовую маркировку сопротивлений. По данному стандарту резисторы маркируются цветными полосками. Каждая из полосок подразумевает определенный смысл. Маркировка полосок читается слева направо, начиная с полоски расположенной ближе к краю, как правило на одной из боковых гильз. Остальные полоски промаркированы непосредственно на теле резистора.

Первая полоска означает цифру от 0 до 9;

Вторая также цифра от 0 до 9;

Третья также цифра от 0 до 9;

Четвертая на 10 в какой степени надо умножить чтобы получился номинал резистора;

Пятая допуск, погрешность относительно номинала в процентах;

Шестая полоска чаще всего не маркируется. Она означает температурный коэффициент при котором способен работать резистор

Взгляните на поясняющую картинку ниже и вам сразу все станет понятно

Так используя данную информацию для определения сопротивления по маркировке на корпусе резистора, вы сможете без труда узнать его номинал и погрешность

Маркировка старых резисторов (символьное обозначение на корпусе)

В советское время (СССР) резисторы маркировались довольно просто. Фактически на корпусе можно было прочитать номинал резистора

Так например:

 – если обозначение было R47, то сопротивление составляет 47 Ом;
– 47К, сопротивление 47 Ком;
– 4 М 7 или 4,7 М, составляет 4,7 Мом.

Маркировка резисторов в схемах в зависимости от их мощности в том числе

Также резисторы маркируются и в зависимости от мощности. Так как мощность резистора зависит напрямую от возможности рассеять тепло, то и корпус резистора будет напрямую зависеть от мощности. Ниже на фото приведены размеры резисторов в зависимости от их мощности. Кроме того, здесь приведено и обозначение резисторов в схемах, с линиями.

В зависимости от обозначения применяемого резистора, необходимо применять строго соотвествующее по мощности сопротивление или большего значения. Иначе оно просто перегорит, в первые минуты работы устройства, в котором было заменено.

Мощность резистора по размеру

Внезапно, возникла проблема: на резисторах мощностью до 2 Вт не указана их мощность. А всё потому, что их мощность определяется размером:

Таблица размер-мощность аксиальных (цилиндрических) резисторов. Начиная с 1 Вт и выше мощность резистора на схемах обозначается римскими цифрами (I, II, III, V и т. д.)

Но, всё не так однозначно. Бывают резисторы одинаковой мощности разного размера и разной мощности одинакового размера:

Аксиальные (с осевыми выводами) резисторы с внезапной маркировкой на них мощности ваттах (W)

Мощность чип-резисторов тоже связана с их размером:

Правая часть второй колонки (код типоразмера, состоящий из 4-х цифр) — кодирует длину (первые две цифры) и ширину (вторые две цифры) детали в 1/100 долях дюйма (точнее в 1/1000, а между двумя цифрами подразумевается десятичная точка)

Значения мощности в третьей колонке указаны при температуре 70°С и это некие «стандартные» значения, которые являются «круглыми» долями одного ватта: 0.031 — это 1/32 ватта, 0.05 — 1/20, 0.063 — 1/16 и т. д. Также у разных производителей существуют резисторы такого же размера повышенной мощности [Panasonic High Power SMD Resistors] и пониженной [зато плоские; Thick Film Chip Resistors].

Что такое мощность резистора?

Вообще, мощность (измеряемая в ваттах) — это энергия (измеряемая в джоулях), передаваемая (или потребляемая, или отдаваемая) в секунду. Энергия электрического тока в проводнике состоит из кинетической энергии скорости электронов и их количества (сила тока, I), и потенциальной энергии сжатости электронного газа (напряжение, U). Мощность электрического тока, проходящего через резистор, определяется по формуле  P=U·I=R·I2, где U — падение напряжения на выводах резистора, R — заявленное сопротивление резистора.

Электроны врезаются в молекулы полупроводника-резистора и нагревают их (увеличивают амплитуду колебаний), энергия электронного тока частично переходит в тепловую энергию нагрева резистора. Резистор рассеивает это тепло в окружающую среду (воздух), спасаясь от перегрева, и чем быстрее он это делает (чем больше джоулей тепла в секунду отдаёт во вне) тем больше его мощность [рассеивания] и тем более мощный ток он может через себя пропустить. Соответственно, резистор тем мощнее, чем больше поверхность его тушки (или радиатора, к которому он привинчен), чем холоднее и плотнее окружающая среда (воздух, вода, масло), чем большую температуру разогрева себя, любимого, может выдержать резистор.

Так вот, мощность резистора — это максимальная мощность тока, проходящего через резистор, которую резистор выдерживает бесконечно долго, не ломаясь от перегрева и не меняя слишком сильно своего исходного (номинального; при 25°С) сопротивления.

Как же может сломаться резистор, если он сделан из таких материалов как графит (температура плавления >3800°С), керамика (>2800°С), сплава «константан» (=1260°С), нихрома, … ?  Ломаются резисторы обычно путём трескания напополам их тщедушного тельца или отваливания (отгорания) от тела колпачков-выводов на концах. Обугливание краски

Мощный резистор, целый, но обуглилась краска на нём, так что пропала маркировка

поломкой не считается. Но чтобы не терять маркировку, в последнее время стало модно запихивать  резистор мощностью ≥ 3 Вт в керамический параллелепипед, который снаружи выглядит как новый даже после многих лет напряжённой работы-разогрева резистора.

Т.к. мощный резистор сильно греется, по сути печка, нагревательный элемент, то его обычно на платах подвешивают в пространстве на длинных ножках,

Дистанцирование мощного резистора от платы

чтобы удалить от деталей на плате, особенно от и без того бодро иссыхающих со временем электролитических конденсаторов.

Полезные ссылки:

  1. Параметры чип-резисторов — даташит от Panasonic
  2. Мощность-размер советских резисторов (МЛТ, ВС, КИМ, УЛМ) — картинка-скан таблицы

Обозначение резисторов на схемах – Основы электроники

Из предыдущих статей мы с вами узнали, что такое резистор, какие виды и типы реристоров выпускаются современной промышленностью. Как выглядят резисторы, вы тоже увидели, теперь рассмотрим обозначение резисторов на схемах или условно-графическое обозначение резисторов (УГО).

Условно-графическое обозначение резисторов на схемах отображается согласно ГОСТа 2.728-74.

На рисунке 1. показано общее обозначение постоянного резистора и приведены размеры, согласно которых резистор наносится на принципиальные схемы.

Рисунок 1. Общее обозначение резистора на схеме.

Над УГО резистора наносится его порядковый номер, латинская буква R показывает на принадлежность к классу резисторов. Под УГО наносится номинальное сопротивление резистора.

Все резисторы имеют значение номинальной мощности рассеяния. Это значение мощности тока на резисторе, при которой он может работать длительное время и не перегреваться (обычно берут в расчет комнатную температуру ?23°).

Обозначение мощности резисторов на схемах показано на рисунке 2.

Рисунок 2. Обозначение мощности резисторов на схеме. а)0,125 Вт; б)0,25 Вт; в)0,5 Вт; г)1 Вт; д)2 Вт; е)5 Вт.

Обозначение переменных резисторов на схемах показано на рисунке 3.

Рисунок 3. Обозначение переменных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)при неленейном регулировании.

Обозначение педстроечных резисторов на схемах показано на рисунке 4.

Рисунок 4. Обозначение подстроечных резисторов на схеме. а)общее обозначение; б)при реостатном включении; в)переменный с подстройкой.

Приведенные обозначения резисторов на схемах, как уже было сказано соответствуют ГОСТу, однако в настоящее время в летературе (особенно в зарубежной) можно встретить другие обозначения резисторов.

Эти обозначения приведены на рисунке 5.

Рисунок 5. Обозначение резисторов используемое в зарубежной литературе. а)постоянный резистор; б)переменный резистор.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Похожие материалы:

Добавить комментарий
Резисторы

– learn.sparkfun.com

Добавлено в избранное Любимый 50

Примите стойку, стойкость сопротивления

Резисторы

– самые распространенные электронные компоненты. Они являются важной частью практически каждой цепи. И они играют важную роль в нашем любимом уравнении – законе Ома.

В этом разделе résistance мы рассмотрим:

  • Что такое резистор ?!
  • Блоки резисторы
  • Обозначение цепи резистора
  • Последовательные и параллельные резисторы
  • Различные варианты резисторов
  • Цветовое кодирование декодирование
  • Расшифровка резистора поверхностного монтажа
  • Примеры применения резистора

Считайте чтение…

Некоторые концепции в этом руководстве основаны на предыдущих знаниях в области электроники. Прежде чем переходить к этому руководству, подумайте о том, чтобы сначала прочитать (хотя бы бегло просмотр) эти:


Хотите попробовать резисторы?

и nbsp

и nbsp

Основы резистора

Резисторы – это электронные компоненты, которые обладают постоянным постоянным электрическим сопротивлением. Сопротивление резистора ограничивает поток электронов через цепь.

Это пассивных компонента , то есть они только потребляют энергию (и не могут ее генерировать). Резисторы обычно добавляются в схемы, где они дополняют активных компонентов , таких как операционные усилители, микроконтроллеры и другие интегральные схемы. Обычно резисторы используются для ограничения тока, деления напряжений и подтягивания линий ввода / вывода.

Резисторные блоки

Электрическое сопротивление резистора измеряется в Ом . Символ ома – греческая заглавная буква омега: & ohm ;.(Несколько окольным) определение 1 & ohm; – это сопротивление между двумя точками, где 1 вольт (1 В) приложенной потенциальной энергии будет подталкивать 1 ампер (1 А) тока.

В единицах СИ большие или меньшие значения Ом могут быть сопоставлены с префиксом, например, кило-, мега- или гига-, для облегчения чтения больших значений. Очень часто можно увидеть резисторы в диапазоне килоомов (кОм;) и мегаомов (МОм;) (гораздо реже можно увидеть резисторы в миллиомах (м & Ом;)). Например, 4,700 Ом; резистор эквивалентен 4.7к & Ом; резистор и 5,600,000 Ом; резистор можно записать как 5,600 кОм; или (чаще) 5.6M & ohm ;.

Условное обозначение

Все резисторы имеют две клеммы , по одной клемме на каждом конце резистора. При моделировании на схеме резистор отображается как один из этих двух символов:

Два общих условных обозначения резистора. R1 – это 1 кОм в американском стиле; резистор, а R2 – международный 47кОм; резистор.

Выводы резистора – это каждая линия, идущая от волнистой линии (или прямоугольника). Это то, что подключается к остальной части схемы.

Обозначения схемы резистора обычно дополняются значением сопротивления и именем. Значение, отображаемое в омах, очевидно, имеет решающее значение как для оценки, так и для фактического построения схемы. Название резистора обычно – R перед числом. Каждый резистор в цепи должен иметь уникальное имя / номер.Например, вот несколько резисторов в цепи таймера 555:

В этой схеме резисторы играют ключевую роль в установке частоты на выходе таймера 555. Другой резистор (R3) ограничивает ток через светодиод.


Типы резисторов

Резисторы

бывают разных форм и размеров. Они могут быть сквозными или поверхностными. Это может быть стандартный статический резистор, набор резисторов или специальный переменный резистор.

Прерывание и монтаж

Резисторы

будут иметь один из двух типов оконечной нагрузки: сквозное отверстие или поверхностный монтаж. Эти типы резисторов обычно обозначаются аббревиатурой PTH (сквозное отверстие с гальваническим покрытием) или SMD / SMT (технология или устройство для поверхностного монтажа).

Резисторы со сквозным отверстием поставляются с длинными гибкими выводами, которые можно вставить в макетную плату или вручную припаять к макетной плате или печатной плате (PCB). Эти резисторы обычно более полезны при макетировании, прототипировании или в любом другом случае, когда вы не хотите паять крошечные, маленькие 0.Резисторы SMD длиной 6 мм. Длинные выводы обычно требуют обрезки, и эти резисторы неизбежно занимают гораздо больше места, чем их аналоги для поверхностного монтажа.

Наиболее распространенные сквозные резисторы поставляются в аксиальном корпусе. Размер осевого резистора зависит от его номинальной мощности. Обычный резистор ½ Вт имеет диаметр около 9,2 мм, тогда как резистор меньшей Вт имеет длину около 6,3 мм.

Резистор мощностью полуватта (½ Вт) (вверху) мощностью до четверти ватта (Вт).

Резисторы для поверхностного монтажа обычно представляют собой крошечные черные прямоугольники, окаймленные с обеих сторон еще меньшими, блестящими, серебряными проводящими краями.Эти резисторы предназначены для установки на печатных платах, где они припаяны к ответным посадочным площадкам. Поскольку эти резисторы настолько малы, их обычно устанавливает робот и отправляет через печь, где припой плавится и удерживает их на месте.

Крошечный 0603 330 & Ом; резистор, парящий над блестящим носом Джорджа Вашингтона на вершине [США квартал] (http://en.wikipedia.org/wiki/Quarter_ (United_States_coin).

Резисторы SMD

бывают стандартных размеров; обычно либо 0805 (0.08 “в длину на 0,05” в ширину), 0603 или 0402. Они отлично подходят для массового производства печатных плат или в конструкциях, где пространство является драгоценным товаром. Однако для ручной пайки им нужна твердая и точная рука!

Состав резистора

Резисторы

могут быть изготовлены из различных материалов. Чаще всего современные резисторы изготавливаются из углеродной, металлической или металлооксидной пленки . В этих резисторах тонкая пленка проводящего (но все же резистивного) материала намотана спиралью вокруг и покрыта изоляционным материалом.Большинство стандартных простых сквозных резисторов имеют углеродную или металлическую пленку.

Загляните внутрь нескольких резисторов из углеродной пленки. Значения сопротивления сверху вниз: 27 Ом, 330 Ом; и 3,3 МОм. Внутри резистора углеродная пленка обернута вокруг изолятора. Чем больше обертываний, тем выше сопротивление. Довольно аккуратно!

Другие сквозные резисторы могут быть намотаны проволокой или изготовлены из сверхтонкой металлической фольги.Эти резисторы обычно являются более дорогими, более дорогими компонентами, специально выбранными из-за их уникальных характеристик, таких как более высокая номинальная мощность или максимальный температурный диапазон.

Резисторы для поверхностного монтажа обычно бывают толстыми или тонкопленочными . Толстая пленка обычно дешевле, но менее точна, чем тонкая. В обоих типах резисторов небольшая пленка из резистивного металлического сплава помещается между керамической основой и стеклом / эпоксидным покрытием, а затем соединяется с концевыми токопроводящими краями.

Пакеты специальных резисторов

Существует множество других резисторов специального назначения. Резисторы могут поставляться в предварительно смонтированных пакетах из пяти или около того резисторных матриц. Резисторы в этих массивах могут иметь общий вывод или быть настроены как делители напряжения.

Массив из пяти 330 Ом; резисторы, соединенные вместе на одном конце.

Переменные резисторы (например, потенциометры)

Резисторы

также не обязательно должны быть статическими. Переменные резисторы, известные как реостаты , представляют собой резисторы, которые можно регулировать в пределах определенного диапазона значений.Аналогичен реостату потенциометр . Горшки соединяют два резистора внутри последовательно, и регулируют центральный отвод между ними, создавая регулируемый делитель напряжения. Эти переменные резисторы часто используются для входов, например регуляторов громкости, которые необходимо регулировать.


Маркировка декодирующего резистора

Хотя они могут не отображать свое значение сразу, большинство резисторов имеют маркировку, показывающую их сопротивление. Резисторы PTH используют систему цветовой кодировки (которая действительно добавляет немного изящества схемам), а резисторы SMD имеют свою собственную систему маркировки значений.

Расшифровка цветных полос

Осевые резисторы со сквозным отверстием обычно используют систему цветных полос для отображения своего значения. Большинство этих резисторов будут иметь четыре цветных полосы, окружающие резистор, хотя вы также найдете пять полосных и шесть полосных резисторов.

Четырехполосный резистор

В стандартных четырехполосных резисторах первые две полосы обозначают две старшие цифры номинала резистора. Третья полоса – это весовое значение, при котором умножает две значащие цифры на десять.

Последняя полоса указывает допуск резистора. Допуск объясняет, насколько более или менее фактическое сопротивление резистора можно сравнить с его номинальным значением. Ни один резистор не может быть доведен до совершенства, и различные производственные процессы приведут к лучшим или худшим допускам. Например, 1 кОм; резистор с допуском 5% на самом деле может быть где-то между 0,95 кОм; и 1.05кОм ;.

Как определить, какая группа первая и последняя? Последний диапазон допусков часто четко отделен от диапазонов значений, и обычно это либо серебро, либо золото.

Пяти- и шестиполосные резисторы

Пятиполосные резисторы имеют третью полосу значащих цифр между первыми двумя полосами и полосой умножителя . Пятиполосные резисторы также имеют более широкий диапазон допусков.

Шестиполосные резисторы – это, по сути, пятиполосные резисторы с дополнительной полосой на конце, которая указывает температурный коэффициент. Это указывает на ожидаемое изменение номинала резистора при изменении температуры в градусах Цельсия. Обычно эти значения температурного коэффициента чрезвычайно малы, в диапазоне ppm.

Декодирующий резистор Цветовые полосы

При расшифровке цветовых полос резисторов обратитесь к таблице цветовых кодов резисторов, подобной приведенной ниже. Для первых двух полос найдите соответствующее цифровое значение этого цвета. 4,7 кОм; Резистор, показанный здесь, имеет в начале цветные полосы желтого и фиолетового цветов, которые имеют числовые значения 4 и 7 (47). Третья полоса 4,7 кОм; красный, что означает, что 47 следует умножить на 10 2 (или 100). 47 умножить на 100 – это 4700!

4.7к & Ом; резистор с четырьмя цветными полосами

Если вы пытаетесь сохранить код цветовой полосы в памяти, может помочь мнемоническое устройство. Существует несколько (иногда сомнительных) мнемоник, которые помогают запомнить цветовую кодировку резистора. Хороший, подчеркивающий разницу между b и b rown:

B ig b rown r abbits o ften y ield g reat b ig v ocal g roans inger napped

Или, если вы помните “ROY G. BIV”, вычтите индиго (бедный индиго, никто не помнит индиго) и добавьте черный и коричневый к передней части и серый и белый к задней части классической цветовой схемы радуги. .

Таблица кодов цветов резистора

Проблемы со зрением? Щелкните изображение для лучшего просмотра!

Калькулятор цветового кода резистора

Если вы предпочитаете пропустить математику (мы не будем судить!) И просто воспользуетесь удобным калькулятором, попробуйте один из них!

Четырехполосные резисторы
Диапазон 1 Диапазон 2 Диапазон 3 Диапазон 4
Значение 1 (MSV) Значение 2 Вес Допуск
Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%)

Сопротивление: 1 кОм; ± 5%

Пяти- и шестиполосные резисторы
Примечание: Рассчитайте здесь свой шестиполосный резистор, но не забудьте добавить температурный коэффициент к окончательному значению резистора.33
Диапазон 1 Диапазон 2 Диапазон 3 Диапазон 4 Диапазон 5
Значение 1 (MSV) Значение 2 Значение 3 Вес Допуск
Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (0) Коричневый (1) Красный (2) Оранжевый (3) Желтый (4) Зеленый (5) Синий (6) Фиолетовый (7) Серый (8) Белый (9) Черный (1) Коричневый (10) Красный (100) Оранжевый (1k) Желтый (10k) Зеленый (100k) Синий (1M) Фиолетовый (10M) Серый (100M) Белый (1G) Золото (± 5%) Серебро (± 10%) Коричневый (± 1%) Красный (± 2%) Зеленый (± 0.5%) Синий (± 0,25%) Фиолетовый (± 0,1%) Серый (± 0,05%)

Сопротивление: 1 кОм; ± 5%

Расшифровка маркировки для поверхностного монтажа

Резисторы SMD

, как и в корпусах 0603 или 0805, имеют собственный способ отображения своего значения. Есть несколько распространенных методов маркировки этих резисторов. Обычно на корпусе печатается от трех до четырех символов – цифр или букв.

Если три символа, которые вы видите, это , все числа , вы, вероятно, смотрите на резистор с маркировкой E24 .Эти маркировки на самом деле имеют некоторое сходство с системой цветных полос, используемой на резисторах PTH. Первые два числа представляют собой первые две наиболее значимые цифры значения, последнее число представляет величину.

В приведенном выше примере резисторы обозначены 104 , 105 , 205 , 751 и 754 . Резистор с маркировкой 104 должен быть 100 кОм; (10×10 4 ), 105 будет 1M & ohm; (10×10 5 ) и 205 составляет 2M & Ом; (20×10 5 ). 751 – 750 Ом; (75×10 1 ) и 754 составляет 750 кОм; (75×10 4 ).

Еще одна распространенная система кодирования – E96 , и она самая загадочная из всех. Резисторы E96 будут обозначены тремя символами – двумя цифрами в начале и буквой в конце. Два числа сообщают вам первые , три цифры значения, соответствующие одному из не столь очевидных значений в этой поисковой таблице.

Код 9033 9033 9034 903 903 903 903 903 9034 903 903 903 903 89 590 9023 3 205 96233
902

Буква в конце представляет множитель, соответствующий чему-то в этой таблице:

Код Значение
Код Значение Код значения Значение Код значения Значение
Код Значение
Код Значение
01 100
17 49 316
65 464
81 681
02 102

102

50 324
66 475
82 698
03 105
19 154 154 154 332
67 487
83 715
04 107 9033 9033 903 20 9034 902 903 902 902 903 902 903 902 34 902 52 340
68 499
84 732
05
53 348
69 511 90 234
85 750
06 113
22 165
38 243 243 243 243 523
86 768
07 115
23 169 9034 39234 39234 902 71 536
87 787
08 118
24 174
174
174

72 549
88 8 06
09 121
25 178
41 261
57 383 902 57 383 902 825
10 124
26 182
42 267
902 902 902 902 902 902
90 845
11 127
27 187
43 2742 902 902 902
91 866
12130
28 191
44 280
60 412 9033 902 902 902 902 902 133
29 196
45 287
61 422 902 902
902 77
14 137
30 200
46 294
62 432 9033 9033 432 9033 432 9034 931
15 140
31
47 301
63 442
79 649
95 903 14234
95 903 1432 902
95 903 1432 902 32 210
48 309
64 453
80 665 665
3001
Letter Множитель Letter Множитель Letter Множитель
A 1 D 1000
Y или R 0,01 B или H 10 E 902 902 902 902 902 0,1 C 100 F 100000

Итак, резистор 01C – наш хороший друг, 10 кОм; (100×100), 01B – 1 кОм; (100×10), а 01D – 100 кОм. Это просто, другие коды могут быть не такими. 85A на картинке выше – 750 Ом; (750×1) и 30C на самом деле составляет 20 кОм.


Номинальная мощность

Номинальная мощность резистора – одна из наиболее скрытых величин. Тем не менее это может быть важно, и это тема, которая возникает при выборе типа резистора.

Мощность – это скорость, с которой энергия преобразуется во что-то другое. Он рассчитывается путем умножения разности напряжений в двух точках на ток, протекающий между ними, и измеряется в ваттах (Вт).Лампочки, например, превращают электричество в свет. Но резистор может превратить только электрическую энергию, проходящую через него, в тепла . Хит обычно не лучший товарищ по играм с электроникой; слишком много тепла приводит к дыму, искрам и пожару!

Каждый резистор имеет определенную максимальную номинальную мощность. Чтобы резистор не перегревался слишком сильно, важно убедиться, что мощность на резисторе не превышает его максимального значения. Номинальная мощность резистора измеряется в ваттах и ​​обычно находится между & frac18; Вт (0.125 Вт) и 1 Вт. Резисторы с номинальной мощностью более 1 Вт обычно называют силовыми резисторами и используются специально из-за их способности рассеивать мощность.

Определение номинальной мощности резистора

Номинальная мощность резистора обычно определяется по размеру его корпуса. Стандартные сквозные резисторы обычно имеют номинальную мощность ¼ или ½ Вт. Силовые резисторы более специального назначения могут указывать свою номинальную мощность на резисторе.

Эти силовые резисторы могут выдерживать гораздо большую мощность, прежде чем они сработают.Сверху справа в нижний левый приведены примеры резисторов 25 Вт, 5 Вт и 3 Вт со значениями 2 Ом, 3 Ом; 0,1 & Ом; и 22к & Ом. Меньшие силовые резисторы часто используются для измерения тока.

О номинальной мощности резисторов для поверхностного монтажа обычно можно судить также по их размеру. Резисторы типоразмера 0402 и 0603 обычно рассчитаны на 1/16 Вт, а резисторы 0805 могут потреблять 1/10 Вт.

Измерение мощности на резисторе

Мощность обычно рассчитывается путем умножения напряжения на ток (P = IV).Но, применяя закон Ома, мы также можем использовать значение сопротивления при расчете мощности. Если нам известен ток, протекающий через резистор, мы можем рассчитать мощность как:

Или, если мы знаем напряжение на резисторе, мощность можно рассчитать как:


Серия

и параллельные резисторы

Резисторы постоянно соединяются вместе в электронике, обычно в последовательной или параллельной схеме. Когда резисторы объединяются последовательно или параллельно, они создают общее сопротивление , которое можно рассчитать с помощью одного из двух уравнений.Знание того, как сочетаются значения резисторов, пригодится, если вам нужно создать конкретное значение резистора.

Резисторы серии

При последовательном соединении значения резисторов просто складываются.

резисторов Н. Общее сопротивление – это сумма всех последовательных резисторов.

Так, например, если у вас всего , у вас должно быть , 12,33 кОм; резистор, найдите некоторые из наиболее распространенных номиналов резисторов 12 кОм; и 330 Ом, и соединить их последовательно.

Параллельные резисторы

Определить сопротивление параллельно включенных резисторов не так-то просто. Общее сопротивление резисторов Н и , включенных параллельно, является обратной суммой всех обратных сопротивлений. Это уравнение может иметь больше смысла, чем последнее предложение:

резисторов Н, включенных параллельно. Чтобы найти общее сопротивление, инвертируйте каждое значение сопротивления, сложите их, а затем инвертируйте.

(Сопротивление, обратное сопротивлению, на самом деле называется проводимостью , поэтому короче: проводимость параллельных резисторов – это сумма каждой из их проводимостей).

В качестве частного случая этого уравнения: если у вас только два резистора , подключенных параллельно, их полное сопротивление можно рассчитать с помощью этого чуть менее инвертированного уравнения:

В качестве даже , более особого случая этого уравнения, если у вас есть два параллельных резистора с равным значением , общее сопротивление составляет половину их значения. Например, если два 10k & ohm; резисторы включены параллельно, их полное сопротивление 5кОм.

Сокращенно сказать, что два резистора подключены параллельно, можно с помощью оператора параллельности: || .Например, если R 1 находится параллельно с R 2 , концептуальное уравнение может быть записано как R 1 || R 2 . Намного чище и скрывает все эти неприятные фракции!

Резисторные сети

В качестве специального введения в вычисление общего сопротивления, учителя электроники любят , когда они знакомят своих учеников с сумасшедшими, запутанными цепями резисторов.

Приручить резисторный сетевой вопрос может быть что-то вроде: “какое сопротивление между выводами A и B в этой цепи?”

Чтобы решить такую ​​проблему, начните с задней части схемы и упростите ее к двум клеммам.В этом случае 7 , 8 и 9 идут последовательно и могут складываться. Эти три резистора включены параллельно с R 6 , поэтому эти четыре резистора можно превратить в один с сопротивлением R 6 || (R 7 + R 8 + R 9 ). Делаем нашу схему:

Теперь четыре крайних правых резистора можно упростить еще больше. R 4 , R 5 и наш конгломерат R 6 – R 9 все последовательно и могут быть добавлены.Тогда все эти последовательные резисторы подключены параллельно R 3 .

И это всего лишь три последовательных резистора между клеммами A и B . Добавьте их! Таким образом, общее сопротивление этой цепи составляет: R 1 + R 2 + R 3 || (R 4 + R 5 + R 6 || ( 7 + R ) 8 + Р 9 )).


Примеры приложений

Резисторы

присутствуют практически во всех электронных схемах.Вот несколько примеров схем, которые сильно зависят от наших друзей-резисторов.

Резисторы

– это ключ к тому, чтобы светодиоды не взорвались при подаче питания. Посредством соединения резистора последовательно со светодиодом ток, протекающий через два компонента, может быть ограничен до безопасного значения.

При выборе токоограничивающего резистора обратите внимание на два характерных значения светодиода: типичное прямое напряжение и максимальный прямой ток .Типичное прямое напряжение – это напряжение, которое требуется для включения светодиода, и оно варьируется (обычно где-то между 1,7 В и 3,4 В) в зависимости от цвета светодиода. Максимальный прямой ток обычно составляет около 20 мА для основных светодиодов; непрерывный ток через светодиод всегда должен быть равен или меньше этого номинального тока.

После того, как вы получили эти два значения, вы можете подобрать токоограничивающий резистор с помощью следующего уравнения:

В S – это напряжение источника – обычно напряжение батареи или источника питания.V F и I F – это прямое напряжение светодиода и желаемый ток, который проходит через него.

Например, предположим, что у вас есть батарея на 9 В для питания светодиода. Если ваш светодиод красный, то прямое напряжение может быть около 1,8 В. Если вы хотите ограничить ток до 10 мА, используйте последовательный резистор примерно 720 Ом.

Делители напряжения

Делитель напряжения представляет собой схему резистора, которая преобразует большое напряжение в меньшее. Используя всего два последовательно подключенных резистора, можно создать выходное напряжение, составляющее часть входного напряжения.

Вот схема делителя напряжения:

Два резистора, R 1 и R 2 , соединены последовательно, и источник напряжения (V в ) подключен через них. Напряжение от В на выходе до GND можно рассчитать как:

Например, если R 1 было 1,7 кОм; и R 2 составлял 3,3 кОм, входное напряжение 5 В можно было преобразовать в 3,3 В на выводе V out .

Делители напряжения

очень удобны для считывания показаний резистивных датчиков, таких как фотоэлементы, гибкие датчики и силочувствительные резисторы.Одна половина делителя напряжения – это датчик, а часть – статический резистор. Выходное напряжение между двумя компонентами подается на аналого-цифровой преобразователь на микроконтроллере (MCU) для считывания значения датчика.

Здесь резистор R 1 и фотоэлемент создают делитель напряжения для создания переменного выходного напряжения.

Подтягивающие резисторы

Подтягивающий резистор используется, когда вам нужно смещать входной вывод микроконтроллера в известное состояние.Один конец резистора подключен к выводу MCU, а другой конец подключен к высокому напряжению (обычно 5 В или 3,3 В).

Без подтягивающего резистора входы на MCU можно было бы оставить плавающими . Нет гарантии, что на плавающем контакте высокий (5 В) или низкий (0 В) вывод.

Подтягивающие резисторы часто используются при взаимодействии с входом кнопки или переключателя. Подтягивающий резистор может смещать входной контакт, когда переключатель разомкнут. И это защитит цепь от короткого замыкания при замкнутом переключателе.

В приведенной выше схеме, когда переключатель разомкнут, входной вывод MCU подключен через резистор к 5 В. Когда переключатель замыкается, входной контакт подключается непосредственно к GND.

Обычно значение подтягивающего резистора не обязательно должно быть каким-либо конкретным. Но он должен быть достаточно высоким, чтобы не терять слишком много мощности, если к нему приложить 5 В или около того. Обычно значения около 10 кОм; работать хорошо.


Покупка резисторов

Не ограничивайте количество резисторов. У нас есть наборы, пакеты, отдельные детали и инструменты, которым вы просто не сможете противостоять против .

Наши рекомендации:

Щелкните здесь, чтобы просмотреть больше резисторов в каталоге
инструментов:

Цифровой мультиметр – базовый

В наличии TOL-12966

Цифровой мультиметр (DMM) – незаменимый инструмент в арсенале каждого энтузиаста электроники.Цифровой мультиметр SparkFun, h…

21 год

Ресурсы и дальнейшее развитие

Теперь, когда вы начинающий эксперт по резисторам, как насчет изучения некоторых более фундаментальных концепций электроники! Резисторы, конечно, не единственный базовый компонент, который мы используем в электронике, есть еще:

Или, может быть, вы хотите подробнее изучить применение резисторов?

ВСЕ О РЕЗИСТОРАХ – символы с низким энергопотреблением, маркировка, цветные полосы, коды, допуск множителя, цилиндрические, плоские потенциометры сопротивления, триммер, переменный резистор, нелинейная мощность, температура, фотографии, фотоэффект, положительный, отрицательный, NTC, LDR, VDR, напряжение, светозависимый, SMD, R K E M, Вт, ток, теплоотвод, размеры

1. Резисторы

Резисторы есть наиболее часто используемый компонент в электронике, и их цель – создать заданные значения тока и напряжения в цепи. А количество различных резисторов показано на фотографиях. (Резисторы на миллиметровой бумаге с интервалом 1 см, чтобы представление о габаритах). На фото 1.1a показаны резисторы малой мощности, а на фото 1.1b – некоторые высокая мощность резисторы. Резисторы с рассеиваемой мощностью менее 5 Вт (большинство обычно используемые типы) имеют цилиндрическую форму с выступающей из каждый конец для подключения к цепи (фото 1.1-а). Резисторы с рассеиваемой мощностью более 5 Вт являются показано ниже (фото 1.1-б).

Символ резистора показан на следующая диаграмма (верхний: американский символ, нижний: европейский символ.)

Блок для Измерение сопротивления – Ом . (греческая буква Ω – называется Омега). Более высокие значения сопротивления обозначаются буквой «k». (килоом) и М (мегом). Для Например, 120000 Ом представлен как 120 кОм, а 1 200 000 Ом – как 1M2.Точка обычно опускается, так как его легко потерять в процессе печати. В какой-то цепи На диаграммах такое значение, как 8 или 120, представляет сопротивление в Ом. Другой распространенной практикой является использование буквы E для обозначения сопротивления в омах. В буква R. также может использоваться. Для Например, 120E (120R) обозначает 120 Ом, 1E2 обозначает 1R2 и т. д.

Рис. 1.2: б. Четырехполосный резистор, c. Пятиполосный резистор, d. Цилиндрический резистор SMD, эл.Резистор SMD плоский




ПРИМЕЧАНИЯ:
Вышеуказанные резисторы имеют “общее значение” 5%. типы.
Четвертая полоса называется полосой «допуска». Золото = 5%
(полоса допуска Серебро = 10%, но современные резисторы не 10% !!)
«общие резисторы» имеют номиналы от 10 Ом до 22 МОм.

РЕЗИСТОРЫ МЕНЬШЕ 10 ОМ
Когда третий диапазон золото, это означает, что значение «цветов» необходимо разделить на 10.
Gold = “разделите на 10”, чтобы получить значения 1R0 на 8R2
Примеры см. в 1-м столбце выше.

Когда третий полоса серебряная, это означает, что значение «цветов» необходимо разделить на 100.
(Помните: в слове «серебро» больше букв, значит, делитель “больше”)
Silver = “разделить на 100”, чтобы получить значения 0R1 (одна десятая ома) от

до 0R82
например: 0R1 = 0,1 Ом 0R22 = Точка 22 Ом
См. 4-й столбец выше для Примеры.

Буквы “R, k и M” заменяют десятичную дробь. точка. Буква «Е» также используется для обозначения слова «ом».
например: 1 R 0 = 1 Ом 2 R 2 = 2 точка 2 Ом 22 R = 22 Ом
2 k 2 = 2200 Ом 100 к = 100000 Ом
2 M 2 = 2200000 Ом

Общие резисторы имеют 4 группы. Они показаны выше. Первый две полосы указывают первые две цифры сопротивления, третья полоса – это множитель (количество нулей, которые должны быть добавлены к полученному числу от первых двух полос), а четвертая представляет собой допуск.

Маркировка сопротивления с помощью пять полос используются для резисторов с допуском 2%, 1% и др. резисторы высокой точности. Первые три полосы определяют первые три цифр, четвертая – множитель, пятая – допуск.

Для SMD (поверхностный монтаж Device) на резисторе очень мало свободного места. Резисторы 5% используйте трехзначный код, в то время как 1% резисторов используют четырехзначный код.

Некоторые резисторы SMD изготавливаются в форма небольшого цилиндра, в то время как наиболее распространенный тип – плоский.Цилиндрические резисторы SMD помечены шестью полосами – первые пять «читаются» как с обычными пятиполосными резисторами, а шестая полоса определяет температурный коэффициент (TC), который дает нам значение сопротивления изменение при изменении температуры на 1 градус.

Сопротивление Плоские резисторы SMD маркируются цифрами на их верхней стороне. Первые две цифры – это значение сопротивления, а третья цифра представляет количество нулей.Например, напечатанное число 683 стоит для 68000Вт, то есть 68к.

Само собой разумеется, что существует массовое производство всех типы резисторов. Чаще всего используются резисторы E12. серии и имеют значение допуска 5%. Общие значения для первых двух цифры: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82.
E24 серия включает все значения, указанные выше, а также: 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75 и 91.Что означают эти числа? Это означает, что резисторы со значениями для цифр «39»: 0,39 Вт, 3,9 Вт, 39 Вт, 390 Вт, 3,9 кВт, 39 кВт и т. д. (0R39, 3R9, 39R, 390R, 3к9, 39к)

Для некоторых электрических цепей допуск резистора не важен и не указывается. В этом в корпусе можно использовать резисторы с допуском 5%. Однако устройства, которые требуется, чтобы резисторы имели определенную точность, требуется указанная толерантность.

1,2 Резистор Рассеивание

Если поток ток через резистор увеличивается, он нагревается, а если температура превышает определенное критическое значение, он может выйти из строя. В номинальная мощность резистора – это мощность, которую он может рассеивать в течение длительного времени. промежуток времени.

Номинальная мощность резисторов малой мощности не указана. На следующих диаграммах показаны размер и номинальная мощность:


Чаще всего используется резисторы в электронных схемах имеют номинальную мощность 1/2 Вт или 1/4 Вт.Существуют резисторы меньшего размера (1/8 Вт и 1/16 Вт) и выше (1 Вт, 2 Вт, 5 Вт, так далее).

Вместо одиночного резистора с заданной рассеиваемой мощностью, можно использовать другой с таким же сопротивлением и более высоким рейтингом, но его большие размеры увеличивают занимаемое место на печатной плате а также добавленная стоимость.

Мощность (в ваттах) можно рассчитать по одному из следующие формулы, где U – символ напряжения на резистор (в вольтах), I – ток в амперах, а R – сопротивление в Ом:

Например, если напряжение на 820 Вт резистор 12В, мощность, рассеиваемая резисторами это:

Резистор 1/4 Вт может использоваться.

Во многих случаях это Непросто определить ток или напряжение на резисторе. В этом в случае, когда мощность, рассеиваемая резистором, определяется для «худшего» кейс. Мы должны принять максимально возможное напряжение на резисторе, т.е. полное напряжение источника питания (аккумулятор и т. д.).

Если мы отметим это напряжение как В В , максимальное рассеивание это:

Например, если В В = 9 В, рассеиваемая мощность 220 Вт резистор есть:

А 0.Резистор мощностью 5 Вт или выше должен использоваться

1,3 Резисторы нелинейные

Значения сопротивления указанные выше являются постоянными и не изменяются, если напряжение или ток меняется. Но есть схемы, требующие резисторов для изменить значение с изменением умеренного или светлого. Эта функция не может быть линейный, отсюда и название НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ.

Есть несколько типы нелинейных резисторов, но наиболее часто используемые включают: Резисторы NTC (рисунок а) (отрицательный температурный коэффициент) – их сопротивление снижается с повышением температуры. PTC резисторы (рисунок б) (положительный температурный коэффициент) – их сопротивление увеличивается с повышением температуры. LDR резисторы (рисунок в) (Light Dependent Resistors) – их сопротивление уменьшается с увеличением свет. Резисторы VDR (резисторы, зависящие от напряжения) – их сопротивление критически снижается, когда напряжение превышает определенное значение. Символы, представляющие эти резисторы, показаны ниже.


1.4 Практические примеры с резисторами

На рисунке 1.5 показаны два практических примеры с нелинейными и обычными резисторами в качестве подстроечных потенциометров, элементы, которые будут рассмотрены в следующей главе.

На рисунке 1.5a представлен RC-усилитель напряжения, который можно использовать для усиления низкочастотные аудиосигналы с малой амплитудой, например сигналы микрофона. Усиливаемый сигнал передается между узлом 1. (вход усилителя) и земля, а результирующий усиленный сигнал появляется между узлом 2 (выход усилителя) и заземление.Чтобы получить оптимальную производительность (высокая усиление, низкий уровень искажений, низкий уровень шума и т. д.) необходимо “установить” рабочая точка транзистора. Подробная информация о рабочей точке будет приведено в главе 4; а пока давайте просто скажем, что напряжение постоянного тока между узел C и gnd должны составлять примерно половину батареи (источника питания) Напряжение. Так как напряжение аккумулятора равно 6В, необходимо установить напряжение в узле C. до 3В. Регулировка осуществляется через резистор R1.

Подключить вольтметр между узел C и земля.Если напряжение превышает 3 В, замените резистор. R1 = 1,2 МВт с меньшим резистором, скажем R1 = 1 МВт. Если напряжение по-прежнему превышает 3 В, оставьте понижая сопротивление, пока оно не достигнет примерно 3 В. Если напряжение в узле C изначально ниже 3В, увеличьте сопротивление R1.

Степень усиления каскада зависит от сопротивления R2: большее сопротивление – большее усиление , меньшее сопротивление – нижнее усиление . Если значение R2 изменяется, напряжение в узле C следует проверить и отрегулировать (через R1).

Резистор R3 и конденсатор 100 мкФ сформировать фильтр, чтобы предотвратить возникновение обратной связи. Эта обратная связь называется «Моторная лодка», как это звучит как шум моторной лодки. Этот шум возникает только при использовании более чем одной ступени.

По мере добавления каскадов в схему вероятность обратной связи в цепи форма нестабильности или катания на лодке.

Этот шум появляется на выходе усилителя даже при отсутствии сигнала доставляется к усилителю.

Нестабильность возникает следующим образом:

Даже если на вход не поступает сигнал, выходной каскад производит очень слабый фоновый шум, называемый “шипением”. Это происходит из-за ток, протекающий через транзисторы и другие компоненты.

Это помещает очень маленькую форму волны на шины питания. Эта форма волны поступил на вход первого транзистора и, таким образом, мы получили петля для «генерации шума». Скорость прохождения сигнала вокруг цепи определяет частоту нестабильности.К добавление резистора и электролита к каждому каскаду, фильтр низких частот производится, и это «убивает» или снижает амплитуду нарушения сигнал. При необходимости значение R3 можно увеличить.

Практические примеры с резисторами будет рассмотрено в следующих главах, поскольку почти все схемы требуют резисторы.

Практическое применение нелинейных резисторов показано на простом сигнальном устройстве, показанном на рисунок 1.5b. Без подстроечного TP и нелинейного резистора NTC это аудио осциллятор.Частоту звука можно рассчитать по следующей формуле:

В нашем случае R = 47кВт и C = 47nF, а частота равна: Когда по рисунку обрезать горшок и резистор NTC добавляются, частота генератора увеличивается. Если горшок обрезки установлен на минимальное сопротивление, осциллятор останавливается. При желаемой температуре сопротивление обшивки Pot следует увеличивать до тех пор, пока осциллятор снова не заработает. Для Например, если эти настройки были сделаны при 2 ° C, осциллятор остается замороженным на более высоких температур, поскольку сопротивление резистора NTC ниже, чем номинальный.Если температура падает, сопротивление увеличивается и при 2 ° C осциллятор активирован.

Если в автомобиле установлен резистор NTC, близко к поверхности дороги, осциллятор может предупредить водителя, если дорога покрытый льдом. Естественно резистор и два соединяющих его медных провода к контуру следует беречь от грязи и воды.

Если вместо резистора NTC используется резистор PTC используется, осциллятор будет активирован, когда температура поднимется выше определенный обозначенное значение.Например, резистор PTC может использоваться для индикации состояние холодильника: настроить осциллятор на работу при температурах выше 6 ° C через подстроечный резистор TP, и цепь сообщит, если что-то не так с холодильником.

Вместо NTC мы могли бы использовать резистор LDR. – осциллятор будет заблокирован, пока есть определенное количество света настоящее время. Таким образом, мы могли бы сделать простую сигнализацию для помещений, где свет должен быть всегда включен.

LDR может быть соединен с резистором R. в этом случае осциллятор работает, когда присутствует свет, в противном случае он заблокирован. Это может быть интересный будильник для охотников и рыбаков, которые хотели бы встать на рассвете, но только если погода ясная. Рано утром в нужный момент обрезайте горшок должен быть установлен в самое верхнее положение. Затем сопротивление следует тщательно уменьшается, пока не запустится осциллятор.Ночью осциллятор будет заблокирован, так как есть нет света и сопротивление LDR очень высокое. По мере увеличения количества света в утром сопротивление LDR падает и осциллятор активируется, когда LDR освещается необходимым количеством света.

Подрезной горшок с рисунка 1.5b используется. для точной настройки. Таким образом, TP с рисунка 1.5b можно использовать для установки осциллятор для активации при разных условиях (выше или ниже температура или количество света).

1,5 Потенциометры

Потенциометры (также называемые горшками ) переменные резисторы, используемые в качестве регуляторов напряжения или тока в электронные схемы. По конструкции их можно разделить на 2 группы: мелованные и проволочные.

С потенциометрами с покрытием (рисунок 1.6a), Корпус изолятора покрыт резистивным материалом. Существует проводящий ползунок перемещается по резистивному слою, увеличивая сопротивление между ползунком и одним концом горшка, уменьшая сопротивление между ползунком и другим концом горшка.

с проволочной обмоткой потенциометры изготовлены из токопроводящий провод намотан на корпус изолятора. По проводу движется ползунок, увеличивающий сопротивление. между ползунком и одним концом горшка, уменьшая сопротивление между слайдер и другой конец горшка.

Гораздо чаще встречаются горшки с покрытием. С их помощью сопротивление может быть линейным, логарифмическим, обратным логарифмическим или обратным логарифмическим. другое, в зависимости от угла или положения ползунка. Самый распространены линейные и логарифмические потенциометры, а наиболее распространенными являются приложения – радиоприемники, усилители звука и аналогичные устройства где горшки используются для регулировки громкости, тона, баланса, и т.п.

Потенциометры с проволочной обмоткой используются в приборах. которые требуют большей точности управления. В них есть более высокое рассеивание, чем у горшков с покрытием, и поэтому токовые цепи.

Сопротивление потенциометра обычно равно E6 ряд, включающий значения: 1, 2.2 и 4.7. Стандартные значения допуска включают 30%, 20%, 10% (и 5% для проволочной обмотки). горшки).

Потенциометры

бывают разных формы и размеры, с мощностью от 1/4 Вт (горшки с покрытием для объема управление в амперах и т. д.) до десятков ватт (для регулирования больших токов).Несколько разных горшков показаны на фото 1.6b вместе с символом потенциометр.


Верхняя модель представляет собой стерео потенциометр. На самом деле это две кастрюли в одном корпусе, с ползунки установлены на общей оси, поэтому они перемещаются одновременно. Эти используется в стереофонических усилителях для одновременного регулирования как левого, так и правильные каналы, пр.

Слева внизу находится так называемый ползунок потенциометр.

Внизу справа – горшок с проволочной обмоткой мощностью 20 Вт, обычно используется как реостат (для регулирования тока во время зарядки аккумулятор и т. д.).
Для схем, требующих очень точной значения напряжения и тока, подстроечные потенциометры (или просто горшков для обрезки ). Это небольшие потенциометры с ползунком, который регулируется отверткой.

Кастрюли также бывают различных форм и размеров, с мощностью от 0,1 Вт до 0,5 Вт. Изображение 1.7 показаны несколько различных горшков для обрезки вместе с символом.

Корректировки сопротивления сделано отверткой.Исключение составляет обрезной горшок в правом нижнем углу, который можно отрегулировать с помощью пластикового вала. Особенно точная регулировка достигается при помощи декоративного кожуха в пластиковом прямоугольном корпусе (нижний середина). Его ползунок перемещается винтом, так что можно сделать несколько полных оборотов. требуется для перемещения ползунка из одного конца в другой.

1,6 Практический примеры с потенциометрами

Как было сказано ранее, потенциометры чаще всего используются в усилителях, радио- и ТВ-приемниках, кассетные плееры и аналогичные устройства.Они используются для регулировки громкости, тон, баланс и т. д.

В качестве примера разберем общая схема регулировки тембра в аудиоусилителе. В нем два горшка и показан на рисунке 1.8a.

Потенциометр с маркировкой BASS регулирует усиление низких частот. Когда ползунок находится в самом нижнем положения, усиление сигналов очень низкой частоты (десятки Гц) примерно в десять раз больше, чем усиление сигналов средней частоты (~ кГц).Если ползунок находится в крайнем верхнем положении, усиление очень низкое. частота сигналов примерно в десять раз ниже, чем усиление средних частотные сигналы. Усиление низких частот полезно при прослушивании музыки с битом (диско, джаз, R&B …), в то время как усиление низких частот должно быть снижается при прослушивании речи или классической музыки.

Аналогично, потенциометр с маркировкой TREBLE регулирует усиление высоких частот. Усиление высоких частот полезно, когда музыка состоит из высоких тонов. например, колокольчики, в то время как, например, усиление высоких частот должно быть уменьшено, когда прослушивание старой записи для уменьшения фонового шума.

На диаграмме 1.8b показана функция усиления в зависимости от частоты сигнала. Если оба ползунка в крайнем верхнем положении результат показан кривой 1-2. Если оба находятся в среднем положении, функция описывается строкой 3-4, а оба ползунка в самом нижнем положении, результат отображается с помощью кривая 5-6. Установка пары ползунков на любые другие возможные результаты приводит к кривым между кривыми 1-2 и 5-6.

Потенциометры BASS и TREBLE имеют покрытие по конструкции и линейные по сопротивлению.

Третий банк на диаграмме – регулятор громкости. Покрытый и логарифмический по сопротивлению (отсюда и марка log )

Резисторы | Electronics Club

Резисторы | Клуб электроники

Цветовой код | Толерантность | Серия E6 / E12 | Номинальная мощность

См. Также: Сопротивление | Закон Ома | Переменные резисторы

Резисторы ограничивают прохождение электрического тока, например, резистор включен последовательно с светодиод (LED) для ограничения тока, проходящего через светодиод.

Резисторы можно подключать любым способом, и они не повреждаются от нагрева при пайке.

Сопротивление измеряется в омах, символ (омега). 1 довольно мала, поэтому номиналы резисторов также приведены в к и М:

1k = 1000
1M = 1000k = 1000000.

Большинство резисторов слишком малы, чтобы отображать их сопротивление в виде числа. Вместо этого используется цветовой код.

Для получения информации о резисторах, подключенных последовательно и параллельно, см. страница сопротивления.

Rapid Electronics: резисторы

Сокращение резистора

Значения резисторов часто записываются на принципиальных схемах с использованием кодовой системы, исключающей использование десятичной точки. потому что очень легко пропустить маленькую точку. Вместо десятичной точки используются буквы R, K и M.

Чтобы прочитать код: замените букву десятичной точкой, затем умножьте значение на 1000, если буква K, или 1000000, если это была буква М. Буква R означает умножение на 1.


Код цвета резистора

Значения резистора

обычно отображаются с помощью цветных полос, каждый цвет представляет собой число, как показано в таблице. Большинство резисторов имеют 4 полосы:

  • Первая полоса дает первую цифру .
  • Вторая полоса дает вторую цифру .
  • Третья полоса указывает количество нулей .
  • Четвертая полоса показывает допуск (точность) резистора. но это можно игнорировать почти для всех схем.
Пример

Этот резистор имеет красную (2), фиолетовую (7), желтую (4 нуля) и золотую полосы, поэтому его значение составляет 270000 = 270 тыс. (обычно отображается на принципиальных схемах как 270K ).

Сделайте свой собственный калькулятор цветового кода.

Электроника
Цветовой код
Цвет Номер
Черный 0
Коричневый 1
Оранжевый 3
Желтый 4
Зеленый 5
Синий 6
Серый 8
Белый 9
Резисторы малой стоимости (
<10 Ом)

Стандартный цветовой код не может отображать значения меньше 10.Для отображения меньших значений используются два специальных цвета для третьей полосы :

  • золота, что означает × 0,1
  • серебра, что означает × 0,01

Первый и второй диапазоны представляют цифры обычным образом.

Например:

красные, фиолетовые, золотые полосы представляют 27 × 0,1 = 2,7.

зеленые, синие, серебряные полосы представляют 56 × 0,01 = 0,56.



Калькулятор цветовой кодировки резистора

Этот калькулятор можно использовать для определения номиналов резисторов.Он состоит из трех карточных дисков, показывающих цвета и значения, они скреплены вместе, чтобы вы могли просто поверните диски, чтобы выбрать требуемое значение или цветовой код. Простой, но эффективный!

Есть две версии для загрузки и печати на белой карточке формата А4 (два калькулятора на листе):

Чтобы сделать калькулятор: вырежьте три диска и скрепите их вместе латунной застежкой для бумаги. Черно-белую версию необходимо раскрасить вручную, и это проще всего сделать перед вырезанием .


Допуск резисторов

Допуск резистора показан четвертой полосой цветового кода. Допуск – это , точность резистора, и он указан в процентах.

Например, 390 резистор с допуском ± 10% будет иметь значение в пределах 10% от 390, г. между 390 – 39 = 351 и 390 + 39 = 429 (39 составляет 10% от 390).

Для четвертой полосы используется специальный цветовой код Допуск :

  • серебро ± 10%
  • золото ± 5%
  • красный ± 2%
  • коричневый ± 1%
  • Если четвертая полоса не отображается, допуск составляет ± 20%

Допуском можно пренебречь почти для всех цепей, поскольку точное значение резистора требуется редко. и там, где это переменный резистор, обычно будет использоваться.


Реальные значения резисторов (серии E6 и E12)

Вы могли заметить, что резисторы доступны не со всеми возможными значениями, например 22k и 47k есть в наличии, но 25к а 50к нет!

Почему это? Представьте, что вы решили делать резисторы каждые 10 дает 10, 20, 30, 40, 50 и так далее. Кажется, это нормально, но что произойдет, когда вы достигнете 1000? Делать 1000, 1010, 1020, 1030 и так далее было бы бессмысленно, потому что для этих значений 10 – очень маленькая разница, слишком мала, чтобы быть заметной в большинстве схем.

Для получения разумного диапазона значений резистора вам необходимо увеличить размер «шага». по мере увеличения значения. Стандартные номиналы резисторов основаны на этой идее и образуют серия, которая следует одному и тому же образцу для каждого числа, кратного десяти.

Деньги используют аналогичную систему

Аналогичное расположение используется для денег: размер шага монет и банкнот увеличивается с увеличением стоимости.
Например, валюта Великобритании (1 фунт = 100 пенсов) содержит монеты 1, 2, 5, 10, 20, 50, 1 и 2 фунта стерлингов. (плюс банкноты 5, 10, 20 и 50 фунтов стерлингов).

Серия E6

Серия E6 имеет 6 значений для каждого кратного десяти, она используется для резисторов с допуском 20%. Значения: 10, 15, 22, 33, 47, 68, … затем продолжается 100, 150, 220, 330, 470, 680, 1000 и т. Д. Обратите внимание, как размер шага увеличивается с увеличением значения. Для этой серии шаг (к следующее значение) примерно вдвое меньше.

Серия E12

Серия E12 имеет 12 значений для каждого кратного десяти, она используется для резисторов с допуском 10%.Значения: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, … затем продолжается 100, 120, 150 и т. Д. Обратите внимание, как это серия E6 с дополнительным значением в промежутках.

Серия E12 наиболее часто используется для резисторов.

Позволяет выбрать значение в пределах 10% от точного значения, которое вам нужно. Это достаточно точно для почти все проекты и это разумно, потому что большинство резисторов имеют допуск ± 10%.



Номинальная мощность резисторов

Электрическая энергия преобразуется в тепло, когда через резистор протекает ток.Обычно эффект незначителен, но если сопротивление низкое или напряжение на резисторе высокое, может пройти большой ток, в результате чего резистор заметно нагреется. Резистор должен выдерживать эффект нагрева и резисторы имеют номинальную мощность, чтобы показать это.

Номинальная мощность резисторов редко указывается в списках деталей, потому что для большинства цепей стандартная мощность Подходят мощность 0,25 Вт или 0,5 Вт. В редких случаях, когда требуется более высокая мощность, она должна быть четко обозначена. указанных в перечне деталей, это будут схемы, использующие резисторы низкого сопротивления (менее около 300) или высокого напряжения (более 15В).

Rapid Electronics: силовые резисторы

Мощность P, развиваемая в резисторе, может быть определена с помощью следующих уравнений:

P = V² / R или P = I² × R

P = развиваемая мощность в ваттах (Вт)
I = ток через резистор в амперах (A)
R = сопротивление резистора в Ом ()
В = напряжение на резисторе в вольтах (В)

Примеры:
  • Резистор 470 А с 10 В на нем требуется номинальная мощность P = V² / R = 10² / 470 = 0.21Вт.
    В этом случае подойдет стандартный резистор 0,25 Вт.
  • Резистор 27 А с напряжением 10 В на нем требуется номинальная мощность P = V² / R = 10² / 27 = 3,7 Вт.
    Требуется резистор большой мощности с номинальной мощностью 5 Вт (или более).

Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент резисторов и других компонентов для электроники, и я рад рекомендую их как поставщика.


Книги по комплектующим:


Политика конфиденциальности и файлы cookie

Этот веб-сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

SMT Поверхностный монтаж »Примечания по электронике

Резисторы для поверхностного монтажа часто имеют небольшие коды для обозначения их номинала – можно увидеть несколько различных схем кодирования.


Resistor Tutorial:

Обзор резисторов Углеродный состав Карбоновая пленка Металлооксидная пленка Металлическая пленка Проволочная обмотка SMD резистор MELF резистор Переменные резисторы Светозависимый резистор Термистор Варистор Цветовые коды резисторов Маркировка и коды SMD резисторов Характеристики резистора Где и как купить резисторы Стандартные номиналы резисторов и серия E


Хотя не все резисторы SMD или резисторы SMT имеют маркировку со своими номиналами, некоторые из них имеют маркировку, и ввиду нехватки места системы кодирования резисторов SMD не всегда могут обеспечить очевидную индикацию номинала резистора.

Системы кодирования резисторов для поверхностного монтажа в основном используются для обслуживания, ремонта и поиска неисправностей. Во время производства резисторы хранятся либо в намотанных лентах, либо в бункерах, используемых в машинах для поверхностного монтажа. Маркировку резистора SMD можно использовать в качестве проверки, чтобы убедиться, что установлены правильные значения, но обычно катушки или бункеры имеют соответствующую маркировку и код.

Резисторы SMD на печатной плате вместе с другими компонентами
Резисторы SMD представляют собой небольшие компоненты с цифрами на темном фоне

Схемы кодирования резисторов SMD

На многих резисторах SMD нет маркировки, указывающей их номинал.Для этих устройств, когда они распакованы и извлечены из упаковки, очень трудно определить их стоимость. Соответственно, резисторы SMD обычно используются в барабанах или других корпусах, где нет возможности смешивания разных значений.

На многих резисторах есть маркировка. Используются три системы:

  • Трехзначная система кодирования резисторов SMD
  • Четырехзначная система кодирования резисторов SMD
  • Система кодирования резистора EIA96 SMD

3-значная система кодирования резистора SMD

Трехзначная система кодирования резисторов SMT обычно используется для резисторов со стандартным допуском.

Как видно из названия, в этой системе маркировки резисторов SMD используются три цифры. Первые две цифры в коде обозначают значащие цифры, а третья – множитель. Это то же самое, что и цветные кольца, используемые для проводных резисторов, за исключением того, что вместо цветов используются реальные числа.

Следовательно, резистор SMD с цифрой 472 будет иметь сопротивление 47 x 10 2 Ом, или 4,7 кОм. Однако остерегайтесь резисторов, помеченных цифрами, например 100. Это не 100 Ом, но оно точно соответствует схеме и составляет 10 x 10 0 или 10 x 1 = 10 Ом.

Трехзначный код маркировки резистора SMD

Если используются значения сопротивления менее десяти Ом, буква «R» используется для обозначения положения десятичной точки. Например, резистор номиналом 4R7 будет 4,7 Ом.

4-значная система кодирования резистора SMD

Четырехзначная или четырехзначная схема маркировки резисторов SMT используется для маркировки резисторов SMD с высокими допусками. Его формат очень похож на трехзначную схему изготовления резисторов SMT, но расширен, чтобы дать большее количество значащих цифр, необходимых для резисторов с более высокими допусками.

В этой схеме кодирования первые три числа обозначают значащие цифры, а четвертое – множитель.

Следовательно, резистор SMD с цифрой 4702 будет иметь сопротивление 470 x 10 2 Ом, или 47 кОм.

Четырехзначный код маркировки резистора SMD

. Резисторы с номиналом менее 100 Ом обозначаются буквой «R», как и раньше, для обозначения положения десятичной точки.

Система кодирования резистора SMD EIA96

Начали использоваться еще одна схема кодирования резистора для поверхностного монтажа или схема кодирования резистора SMD, и она нацелена на резисторы SMD с допуском 1%, т.е.е. те, которые используют резисторы серии EIA96 или E-96. Поскольку используются резисторы с более высокими допусками, требуются дополнительные значения. Однако небольшой размер резисторов SMT затрудняет чтение цифр. Соответственно, новая система стремится решить эту проблему. Используя только три цифры, фактические символы можно сделать больше, чем символы четырехзначной системы, которые в противном случае потребовались бы.

В схеме кодирования резистора EIA SMD используется трехзначный код: первые 2 цифры обозначают 3 значащие цифры номинала резистора.Третий символ – это буква, обозначающая множитель. Таким образом, эту схему маркировки резисторов SMD не следует путать со схемой маркировки из трех цифр, поскольку буквы будут различать ее, хотя буква R может использоваться в обеих системах.

Для создания системы была взята серия резисторов E-96, и каждое значение или набор значащих цифр были последовательно пронумерованы. Поскольку в серии E-96 всего 96 значений, для нумерации каждого значения нужны только две цифры, и в результате это разумный способ уменьшить количество требуемых символов.

Подробная информация о кодовой схеме резистора EIA SMD представлена ​​в таблице ниже:


Кодовая схема резистора EIA SMD
Код Множитель
Z 0,001
Y или R 0,01
X или S 0,1
А 1
B или H 10
С 100
Д 1 000
E 10 000
ф 100 000

Множители схемы кода резистора EIA SMD
Код Сиг Инжир Код Сиг Инжир Код Сиг Инжир Код Сиг Инжир
01 100 25 178 49 316 73 562
02 102 26 182 50 324 74 576
03 105 27 187 51 332 75 590
04 107 28 191 52 340 76 604
05 110 29 196 53 348 77 619
06 113 30 200 54 357 78 634
07 115 31 205 55 365 79 649
08 118 32 210 56 374 80 665
09 121 33 215 57 383 81 681
10 124 34 221 58 392 82 698
11 127 35 226 59 402 83 715
12 130 36 232 60 412 84 732
13 133 37 237 61 422 85 750
14 137 38 243 62 432 86 768
15 140 39 249 63 442 87 787
16 143 40 255 64 453 88 806
17 147 41 261 65 464 89 825
18 150 42 267 66 475 90 845
19 154 43 274 67 487 91 866
20 158 44 280 68 499 92 887
21 162 45 287 69 511 93 909
22 165 46 294 70 523 94 931
23 169 47 301 71 536 95 953
24 174 48 309 72 549 96 976

Например, резистор с маркировкой 68X можно разделить на два элемента.68 относится к значащим цифрам 499, а X относится к множителю 0,1. Следовательно, указанное значение составляет 499 x 0,1 = 49,9 Ом.

Иногда может показаться, что бывает трудно различить разные коды маркировки резисторов SMD. К счастью, они достаточно разные, чтобы их можно было отличить друг от друга, и путаница не изменилась.

Если на резисторах SMD указано их номинальное значение, это, безусловно, помогает при поиске неисправностей – обращение к списку деталей может быть более трудным, поскольку его может не оказаться под рукой.Соответственно, знание того, как читать различные коды маркировки резисторов SMD, может быть очень полезным.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор Полевой транзистор Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Знаки для пассивных компонентов

Знаки для пассивных компонентов – это широко известный способ обозначения полярности для напряжений и токов.Он определяет, что мы подразумеваем под положительным и отрицательным напряжением и током.

Когда вы маркируете напряжение и ток элемента схемы, согласно соглашению, стрелку тока следует направлять на клемму с положительной полярностью напряжения.


Содержание


Куда мы направляемся

Знаковое соглашение для пассивных компонентов – произвольное, но широко распространенное правило, которое гласит:

Направьте стрелку тока на клемму положительного напряжения элемента.


Эта статья основана на традиционном направлении тока, а не на направлении электронного тока , а не .

Ветераны: в некоторых программах обучения военной электронике (например, в программе NEETS ВМС США 1960-х годов) используется знак противоположного знака, определяющий, что ток течет в направлении движения электронов. Мы не используем это соглашение здесь, в Spinning Numbers. Мы следуем соглашению SI для текущего направления.


Символические таблички для тока и напряжения

Вот резистор,

А пока он просто сидит здесь сам по себе.Единственное, о чем мы знаем, это его сопротивление, $ \ text R = 100 \, \ Omega $. Еще мы знаем закон Ома, $ v = i \, \ text R $. Мы не знаем конкретных значений для $ i $ или $ v $, потому что их еще нет в цепи.

Первое, что мы можем сделать, – это добавить на резистор символические метки для обозначения напряжения и тока. Это позволит нам говорить о них и включать их в уравнения.

Есть два возможных направления, в которых вы можете указать стрелку тока, и два возможных направления для знаков полярности напряжения $ + $ и $ – $.

Если вы смешаете и сопоставите все варианты, есть возможные способы маркировать резистор за 4 доллара,

Убедитесь, что я правильно нарисовал все варианты.

Обратите внимание, что на самом деле существует только две разные версии. Видите, как $ a. $ И $ d. $ – это одно и то же, просто зеркала друг друга? Стрелка тока указывает на полярность напряжения $ + $.

$ b. $ И $ c. $ Также являются близнецами, потому что стрелка тока указывает на полярность $ – $ напряжения.

Итак, есть всего два способа нанести символические метки на резистор,

НО , один способ лучше, чем другой. По возможности, вы должны направить стрелку тока на знак напряжения $ + $. Почему? Потому что это означает, что мы используем обычную версию закона Ома, $ v = i \, \ text R $. Если мы используем другой метод маркировки (стрелка, указывающая на знак минуса), мы должны не забыть включить знак минус в закон Ома, $ v = -i \, \ text R $.

Резистор экспериментальный

Давайте подадим ток на наш резистор.Пусть ток будет $ i = 10 \, \ text {mA} $ только для обсуждения.

Закон Ома равен $ v = i \, \ text R $. Мы знаем, что значение $ \ text R $ всегда положительно.

Есть ли отрицательные резисторы?

Каждый резистор в этом ряду имеет положительное сопротивление. Есть некоторые экзотические устройства, называемые туннельными диодами, которые кажутся имеющими отрицательное сопротивление. Туннельные диоды встречаются довольно редко. Как говорят инженеры-электрики Borg: «Сопротивление положительное».

Предположим, мы подключили настоящую батарею к реальному резистору и прикоснулись щупами вольтметра к резистору.Красный щуп вольтметра определяет, какой вывод резистора мы считаем полярностью $ + $. Черный щуп определяет полярность $ – $ напряжения.

На следующей диаграмме показаны две версии эксперимента. Красный щуп касается верхнего вывода резистора в обеих версиях. Это означает, что полярность напряжения $ + $ является верхней клеммой в обоих случаях. Отличается текущее направление. Некоторая внешняя цепь вызывает протекание через резистор тока $ 10 \, \ text {mA} $,

$ \ text {а.} $ Ток течет сверху вниз.
$ \ text {b.} $ Ток течет снизу вверх.

$ \ text {a.} $ Измеритель показывает $ + 1.0 \, \ text V $, поэтому красный датчик находится в $ 1.0 \, \ text V $ над черным датчиком. $ \ goldD v = +1 \, \ text V $.
$ \ text {b.} $ Измеритель показывает $ -1.0 \, \ text V $, поэтому красный датчик находится на $ 1.0 \, \ text V $ ниже черного датчика. $ \ goldD v = -1 \, \ text V $.

Ток меняется между $ \ text {a.} $ И $ \ text {b.} $, Поэтому напряжение, отображаемое на измерителе, изменяется с $ + $ на $ – $.В этом есть смысл.

Схема вольтметра

$ \ text {b.} $ Может быть настоящей головоломкой. Отрицательный знак на дисплее вольтметра говорит нам, что черный датчик находится под более высоким напряжением, чем красный датчик.

На наших схемах вольтметров представлены два альтернативных обозначения резисторов. Слева стрелка тока переходит в знак полярности напряжения $ + $. Справа текущая стрелка переходит в знак $ – $. Вольтметры показывают одинаковую величину напряжения, но тот, что справа, имеет знак минус.

Маркировка резисторов, упрощающих закон Ома

Давайте посмотрим, соответствует ли закон Ома тому, что говорят наши измерители.

Сначала наведите текущую стрелку на знак $ + $,

Пусть $ \ text R = 100 \, \ Omega $ и $ i = +10 \, \ text {mA} $.

Найдите $ v $ с помощью закона Ома.

Подставьте значения в закон Ома: $ v = i \, \ text R = +10 \, \ text {mA} \ times 100 \, \ Omega = +1 \, \ text V $.

Это здорово. Это то, что сказал вольтметр.Теория соответствует эксперименту!

Теперь сделайте это еще раз, указав текущую стрелку на знак $ – $.

Мы используем ту же постановку задачи. Посмотрим, что произойдет, если мы слепо применим обычную версию закона Ома.

Пусть $ \ text R = 100 \ Omega $ и $ i = +10 \, \ text {mA} $.

Найдите $ v $ с помощью закона Ома.

$ v = i \, \ text R = +10 \, \ text {mA} \ cdot 100 \, \ Omega = +1 \, \ text V $

Но вольтметр не об этом! Вольтметр показывает $ -1 \, \ text V $.

Это соглашение о маркировке заставляет нас узнать, что делать, когда текущая стрелка указывает в этом направлении. Мы адаптируем закон Ома, добавляя знак минус, $ v = -i \, \ text R $.

Каждый раз, когда стрелка тока попадает в отрицательную сторону резистора, мы должны использовать эту версию закона Ома,

$ v = -i \, \ text R = -10 \, \ text {mA} \ times 100 \, \ Omega = -1 \, \ text V $

Теперь ответ выходит совпадающий с вольтметром.

Вот в чем проблема. Этот маленький знак минус – источник множества глупых ошибок при анализе цепей.Так что же делают инженеры? Мы стараемся не маркировать компоненты таким образом. Мы приучаем себя указывать текущую стрелку на знак плюса, когда это возможно. Многие потенциальные ошибки просто исчезают.

Направьте стрелку тока на положительную полярность напряжения,

Причудливое название этой идеи – условное обозначение для пассивных компонентов .

Знаки для пассивных компонентов

Мы применяем соглашение ко всем подобным пассивным компонентам,

Соглашение о маркировке помогает получить правильный ответ при анализе цепи.

Что это за стрелка напряжения?

На приведенных выше изображениях напряжение показано в двух обозначениях: знаками $ + $ и $ – $, а также оранжевой стрелкой напряжения. Стрелка напряжения указывает от $ – $ до $ + $. Знаки полярности и стрелка лишние, они означают одно и то же. Вы можете использовать один или оба в своих схемах.

Пример 1

Полярность напряжения для этого резистора $ 250 \, \ Omega $ назначена знаком $ + $ вверху. Это направление полярности было выбрано произвольно.Что-то (не показано) в окружающей цепи вызывает появление $ 2 \, \ text V $ на резисторе.

Теперь мы добавляем текущую стрелку, используя знаковое соглашение для пассивных компонентов,

Направляем стрелку тока в положительную клемму. Это был , а не произвольный выбор. Соглашение о знаках для пассивных компонентов предписывает нам указывать текущую стрелку на знак $ + $.

Сколько сейчас $ i $?

Чтобы найти ток, примените закон Ома,

$ i = \ dfrac {v} {\ text R}

$

$ i = \ dfrac {+2 \, \ text V} {250 \, \ Omega}

долларов США

$ i = +8 \, \ text {mA}

$

Полярность напряжения говорит нам, что верх резистора находится на $ 2 \, \ text V $ выше низа резистора.Закон Ома гласит, что ток равен $ + 8 \, \ text {mA} $. Знак $ + $ на значке тока означает, что ток течет в направлении стрелки сверху вниз. (Обычный ток, а не электронный ток.) ​​

Пример 1x – другое соглашение о знаках

Что произойдет, если мы обозначим резистор другим условным обозначением? На схеме ниже показан тот же резистор с той же полярностью напряжения, но стрелка тока указывает на из положительного вывода, поэтому знаковое соглашение для пассивных компонентов не используется.

Применить закон Ома, точно так же, как в примере 1,

$ i = \ dfrac {+2 \, \ text V} {250 \, \ Omega} = +8 \, \ text {mA}

$

Это говорит нам, что ток равен $ + 8 \, \ text {mA} $. Знак $ + $ означает, что он течет в направлении стрелки. Какие? Этого не может быть. В реальном резисторе ток течет наоборот. Мы получили неправильный ответ. Ой, погоди! Чтобы получить правильный ответ, мы должны не забыть включить знак $ – $ в закон Ома.

$ i = -i \, \ text R = – \ dfrac {+2 \, \ text V} {250 \, \ Omega} = -8 \, \ text {mA} $

Урок: Вы делаете меньше ошибок, если используете соглашение о знаках для пассивных компонентов.

Пример 2

Этот резистор $ 10 \, \ text k \ Omega $ помечен знаковым соглашением для пассивных компонентов, как в примере 1: полярность напряжения имеет $ + $ вверху, а синяя стрелка тока указывает на положительный знак. На этот раз вместо напряжения указан ток. Значение тока $ -20 \, \ mu \ text A $. Это может показаться немного странным, если показать $ -20 \, \ mu \ text A $, текущий в направлении стрелки, но давайте посмотрим, что произойдет.{-3}

долларов США

$ v = -0.2 \, \ text V $

Напряжение вышло со знаком минус, что означает, что клемма с полярностью напряжения $ + $ равна $ 0,2 \, \ text V $ под клемма со знаком $ – $. Мы использовали знаковое соглашение и позволяли математике определять правильный знак даже при отрицательном токе.

Исключения

Время от времени вы будете сталкиваться с случаями, когда вы не можете или не хотите использовать соглашение о знаках для пассивных компонентов. В этих случаях текущая стрелка будет указывать на отрицательную клемму элемента.Когда это происходит, вам не нужно волноваться, но ваше паучье чутье должно покалывать. Вы справляетесь с этим так же, как и в примере 1x, где мы добавили знак $ – $ в закон Ома.

Эта ситуация возникла, когда я написал формальный вывод естественного отклика RC.

паучье чутье

«Так называемое« паучье чутье »или« паучье чутье »обычно относится к необыкновенной способности ощущать надвигающуюся опасность, приписываемую супергерою из комиксов Человеку-пауку».

Мощность

Мощность в резисторе,

$ P = i \, v $

Мощность – это энергия, передаваемая за период времени, измеряемая в джоулях в секунду.

Знаковое соглашение влияет на то, как мы думаем о власти. Мощность может генерироваться или рассеиваться. Когда мы используем знаковое соглашение, рассеиваемая мощность заканчивается положительным знаком, а мощность поколения заканчивается отрицательным знаком. Найдем мощность, рассеиваемую резистором $ 250 \, \ Omega $,

Сначала найдите ток,

$ i = \ dfrac {v} {\ text R} = \ dfrac {2 \ text V} {250 \, \ Omega} = 8 \, \ text {mA}

$

Затем найдите мощность,

$ P_ \ text {резистор} = i \, v = 8 \, \ text {mA} \ cdot 2 \, \ text V = +16 \, \ text {mW} $

Мощность рассеивание имеет положительный знак.

Что произойдет, если мы применим знаковое соглашение пассивного к источнику напряжения?

Мы знаем, что источник напряжения обеспечивает выход $ 8 \, \ text {mA} $ из своего верхнего вывода (об этом говорит закон Ома для резистора). Если текущая стрелка указывает в указанном направлении, ток равен $ i = -8 \, \ text {mA} $.

Что-то интересное происходит, когда мы вычисляем мощность источника напряжения.

$ P_ \ text {источник напряжения} = i \, v = -8 \, \ text {mA} \ cdot 2 \, \ text V = -16 \, \ text {mW} $

Источник напряжения – электрогенератор.Мощность поколения имеет отрицательный знак.

Отрицательный знак – это побочный эффект использования соглашения о знаках для пассивных компонентов на элементах, генерирующих энергию, таких как источник напряжения.

Существует ли такая вещь, как отрицательная сила?

Мощность никогда не бывает отрицательной. Знак минус происходит от использования соглашения о знаках для пассивных компонентов. Если вы говорите с кем-то о мощности, понятнее будет использовать слова , рассеивать, и , генерировать , а не числовые знаки $ + $ и $ – $.

Если вы инженер в электроэнергетике, возможно, вам не захочется хвастаться, что вы построили установку солнечных панелей за $ -100 \, \ text {Megawatt} $, поэтому вас простят, если вы не упомянули $ – знак $.

Чем хороша отрицательная сила?

Идея отрицательной силы – неплохая вещь. Если вы создаете бюджет мощности для сложной системы, вы вычисляете всю положительную мощность, рассеиваемую пассивными элементами, и уравновешиваете ее со всей отрицательной мощностью от элементов, генерирующих энергию.Все должно быть равно нулю.


Сводка

Знаковое соглашение для пассивных компонентов говорит:

Стрелка тока указывает на клемму положительного напряжения элемента.

В соответствии с этим соглашением о знаках мы напрямую применяем закон Ома $ (v = i \, \ text R) $ к резисторам.

Если вы когда-нибудь увидите, что соглашение о знаках нарушается, это должно привлечь ваше внимание и напомнить вам о необходимости включить знак минус в закон Ома.

Когда вы используете знаковое соглашение для пассивных элементов $ (\ text R, \ text L, \ text C) $, степень $ P = i \, v $ имеет положительный знак.Положительная мощность связана с мощностью рассеяния .

Если вы примените соглашение о пассивном знаке к элементу, вырабатывающему энергию, мощность будет иметь отрицательный знак. Отрицательная мощность связана с мощностью поколения .

Что такое карандашный резистор и как он работает?

Резистор

Пассивные электрические компоненты с двумя выводами, которые сопротивляются прохождению электрического тока в электрической сети, можно назвать резистором.Резисторы могут использоваться для управления или снижения уровней напряжения в цепи, а напряжение на элементе в цепи может определяться падением напряжения на резисторе, параллельном этому элементу. Резисторы бывают постоянного или переменного сопротивления, а именно. фоторезисторы, гумисторы, варисторы, подстроечные резисторы, термисторы и потенциометры. Резисторы подразделяются на разные типы в зависимости от различных свойств.

Мы знаем, что существуют разные типы резисторов. Однако знаете ли вы о чем-то таком удивительном: карандаш, который мы используем в нашей повседневной деятельности, связанной с маркировкой и чертежами, может также использоваться в качестве резистора в электрических сетях?

Что такое карандашный резистор?

Резистор карандашный

Да, карандаш, который мы используем в повседневной деятельности, можно использовать в качестве резистора в электрических сетях.По сравнению с другими типами резисторов этот резистор также оказывает сопротивление прохождению через него электрического тока. Фактически, грифель внутри карандаша состоит из электрического резистора и, таким образом, действует как резистор. Его можно рассматривать как переменный резистор. Следующее описание в этой статье дает лучшее представление об этих типах резисторов. Его можно назвать самодельным резистором или самодельным резистором.

Резисторы карандашные

Карандаши изготовлены из дерева, клея, металла, резины и чистого графита.В каждом карандаше есть грифель, который является основной частью карандаша, используемого для письма / маркировки. Грифель, используемый внутри карандаша, сделан из материала, а именно графита – аллотропа углерода.

Карандаши

Graphite имеет несколько очень полезных функций, например:

  • Графит – полуметалл и является проводником электричества.
  • Он неиндуктивный и имеет отрицательный температурный коэффициент.
  • Графит легко получить, и он может быть переработан для повторного использования.
  • В стандартных условиях графит находится в наиболее стабильной форме углерода.
  • Стойкость графита зависит от марки, используемой при производстве свинца, марки карандаша или грифеля показаны на рисунке ниже.

Классы карандашей

Удельное сопротивление карандашного резистора

Удельное сопротивление чистого графита равно 0,0000138 Ом / метр – и, как обсуждалось выше, для изготовления карандашей используются графитовые стержни разных марок, а сопротивление графитовых стержней этих разных марок можно определить следующим образом: H = 25 Ом, 2H = 20 Ом, B = 7 Ом, 2B = 6 Ом и HB = 19 Ом.

Резисторы карандашные рабочие

Сопротивление резисторов этого типа можно изменять, варьируя марку графитового стержня карандаша. Даже линия или отметка, нарисованная карандашом на бумаге, состоит из сопротивления; и, перетаскивая провода через эту линию или отметку, можно наблюдать изменение сопротивления.

Рассмотрим пример ниже, показывающий, в котором этот резистор используется в качестве переменного резистора.

Переменный карандашный резистор

Возьмите лист белой бумаги и нарисуйте на нем прямую линию.Точно так же нарисуйте еще одну изогнутую линию, у каждой линии есть два конца. Измерьте сопротивление прямой и изогнутой линий, поместив клеммы мультиметра в обе конечные точки каждой линии. Запишите показания, пока клеммы мультиметра находятся в конечных точках каждой линии. Затем перетащите одну клемму мультиметра к другой клемме, закрепленной в одной конечной точке линии, и отметьте значения сопротивления в разных точках линии с разной длиной.

Тестирование переменного резистора карандашом

На приведенном выше рисунке, если мы наблюдаем, что мультиметр установлен на Ом и показывает некоторое значение сопротивления в качестве примера, при измерении полной длины прямой линии, отмеченной карандашом.

Проверка сопротивления карандашного резистора

Аналогичным образом нарисуйте жирную или более темную линию с большей шириной, чем указанные выше линии, как показано на рисунке выше, а затем измерьте сопротивление линии, поместив клеммы мультиметра в конечные точки, запишите показания. И еще раз отметьте показания в разных точках с разной длиной линии.

Если мы наблюдаем рисунок выше, мультиметр настроен на считывание сопротивления в кОм, а измеренное сопротивление отображается в некоторых кОм, в то время как нарисованная линия темнее с большей шириной.

Таким образом, можно сказать, что карандаш можно использовать как переменный резистор.

Резистор карандашный пр.

Рассмотрим карандашный резистор своими руками спроектируем схему как показано на рисунке ниже. Он состоит из карандаша, закрепленного на картоне, свободного конца провода, который скользит по грифельному графиту карандаша, электрической лампочки, батареи и медных проводов – все они используются для подключения схемы, как показано на рисунке ниже.

Принципиальная схема карандашного резистора

После подключения схемы стержневого резистора, как показано выше, подайте питание на схему от батареи 9 В, а затем наблюдайте за силой света лампы, подключенной к цепи через регулируемый медный провод со свободным концом, подключенный к противоположному концу (относительно к зеленому проводу) графита карандаша так, чтобы графит по всей длине должен был быть подключен или принимать активное участие в сети.В этом состоянии, если мы наблюдаем яркость лампы накаливания, как показано на рисунке, она очень мала, что означает, что лампа светится очень тускло. Это происходит из-за того, что весь графит резистора карандаша включен в цепь или в цепи подается полное сопротивление графита, что снижает ток, протекающий через лампочку.

Аналогичным образом перетащите скользящую проволоку (красный провод), соединенную с графитом карандаша, к концу зеленого провода и наблюдайте за изменением силы света лампочки в различных положениях скользящей проволоки по сравнению с графитом карандаша.Мы можем обнаружить, что интенсивность лампы увеличивается по мере уменьшения длины графитовой части, включенной в цепь. Это связано с тем, что по мере уменьшения длины стержневого резистора (графита) сопротивление в цепи также уменьшается, в результате чего в цепи протекает больший ток, что делает лампочку ярче.

Таким образом, изменение сопротивления с изменением длины резистора карандаша (графита) заставляет лампу схемы светиться ярче и соответственно тускнеть.Даже отметка или линия, нанесенная карандашом на белой бумаге, также может использоваться в качестве резистора для карандашей, в котором длина и толщина отметки или линии изменяют порядок значений сопротивления.

Знаете ли вы какие-либо конкретные приложения, в которых используются резисторы Pencil, и имеют ли эти резисторы такие же свойства, как и другие резисторы, когда они соединены последовательно и параллельно? Публикуйте свои идеи в комментариях ниже, чтобы другие читатели узнали об этом больше.

Фото:

Просмотры сообщений: 11 849

открытых учебников | Сиявула

Математика

Наука

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 7A

        • Марка 7Б

        • Оценка 7 (вместе A и B)

      • Африкаанс

        • Граад 7А

        • Граад 7Б

        • Граад 7 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • класс 8A

        • класс 8Б

        • Оценка 8 (вместе A и B)

      • Африкаанс

        • Граад 8А

        • Граад 8Б

        • Граад 8 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 9А

        • Марка 9Б

        • 9 класс (A и B вместе)

      • Африкаанс

        • Граад 9А

        • Граад 9Б

        • Граад 9 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 4A

        • Класс 4Б

        • Класс 4 (вместе A и B)

      • Африкаанс

        • Граад 4А

        • Граад 4Б

        • Граад 4 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Марка 5А

        • Марка 5Б

        • Оценка 5 (вместе A и B)

      • Африкаанс

        • Граад 5А

        • Граад 5Б

        • Граад 5 (A en B saam)

    • Пособия для учителя

    • Читать онлайн
    • Учебники

      • Английский

        • Класс 6A

        • класс 6Б

        • 6 класс (A и B вместе)

      • Африкаанс

        • Граад 6А

        • Граад 6Б

        • Граад 6 (A en B saam)

    • Пособия для учителя

Наша книга лицензионная

Эти книги не просто бесплатные, они также имеют открытую лицензию! Один и тот же контент, но разные версии (брендированные или нет) имеют разные лицензии, как объяснено:

CC-BY-ND (фирменные версии)

Вам разрешается и поощряется свободное копирование этих версий.Вы можете делать ксерокопии, распечатывать и распространять их сколько угодно раз. Вы можете скачать их на свой мобильный телефон, iPad, ПК или флешку. Вы можете записать их на компакт-диск, отправить по электронной почте или загрузить на свой веб-сайт. Единственным ограничением является то, что вы не можете адаптировать или изменять эти версии учебников, их содержание или обложки каким-либо образом, поскольку они содержат соответствующие бренды Siyavula, спонсорские логотипы и одобрены Департаментом базового образования. Для получения дополнительной информации посетите Creative Commons Attribution-NoDerivs 3.0 Непортированный.

Узнайте больше о спонсорстве и партнерстве с другими, которые сделали возможным выпуск каждого из открытых учебников.

CC-BY (безымянные версии)

Эти небрендированные версии одного и того же контента доступны для вас, чтобы вы могли делиться ими, адаптировать, трансформировать, модифицировать или дополнять их любым способом, с единственным требованием – дать соответствующую оценку Siyavula.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *