Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Микросхема ne555n распиновка и параметры

Теория и практика. Кейсы, схемы, примеры и технические решения, обзоры интересных электротехнических новинок. Уроки, книги, видео. Профессиональное обучение и развитие.


Поиск данных по Вашему запросу:

Схемы, справочники, даташиты:

Прайс-листы, цены:

Обсуждения, статьи, мануалы:

Дождитесь окончания поиска во всех базах.

По завершению появится ссылка для доступа к найденным материалам.

Содержание:

  • Описание таймера NE555
  • Микросхема NE555
  • Мультивибратор на 555 таймере
  • Разнообразие простых схем на NE555
  • Генератор на NE555 с регулировкой частоты
  • Русский datasheet на микросхему ne555, схема включения
  • NE555-Прецизионный таймер
  • Легендарный таймер NE555 – описание и применение микросхемы
  • Таймер на микросхеме NE555 (включения и выключения)📹

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: ⚒ Простой МЕТАЛЛОИСКАТЕЛЬ на микросхеме CD4011 своими руками ⚒

Таймер NE является, пожалуй, самой популярной интегральной микросхемой своего времени. В этой статье, постараемся подробно осветить вопросы описания и применения таймера NE Умные соединения компаратора, сбрасываемый триггер и инвертирующий усилитель в одной монолитной интегральной микросхеме, наряду с несколькими другими элементами породили почти бессмертные схемы устройств, которые сегодня используется многими радиолюбителями. Два года спустя той же компании был разработана микросхема с обозначением , которая объединила в себе два отдельных таймера NE имеющих только общие выводы по питанию. Еще позже были разработаны микросхемы , и с применением до четырех таймеров NE в одном корпусе.

Примером создания электронной схемы, небольшой, но достаточно полезной во многих случаях, является придумка еще в е годы микрочипа универсального таймера

Таймер на микросхеме NE555 (включения и выключения)📹

Она не дорогая и широко используется в различных радиолюбительских схемах. Микросхема работает с напряжением питания от 5 В до 15 В. При напряжении питания 5 В уровни напряжения на выходах совместимы с ТТЛ-уровнями. Схема простая и предназначена рекомендована начинающим радиолюбителям. При включении питания начинает работать генератор на всего несколько минут, затем выключается. При этом ток потребления падает — батареек хватит на долго. Время выставляется переменным резистором кОм.

В настоящее время в интернете море схем с бегущими огнями. Будем собирать вот по этой схеме для увеличения кликните по ней :. Схема не очень сложная, как кажется на первый взгляд.


Микросхема NE555

В этой статье мы расскажем вам об одной неприметной интегральной схеме, которая изменила мир электроники. Разнообразие ее применений настолько велико, что о ней написано огромное количество статей и напечатано множество книг!

В чем причина популярности микросхемы NE555? Ответ на этот вопрос станет ясен, когда расскажем о конструкции и применении этой схемы.

Основная цель этой статьи — общий обзор конструкции NE555. Мы также будем использовать эту популярную ИС (интегральная схема) для создания очень простого первого проекта. А потом, в следующей статье мы сможем построить более сложные схемы — датчик препятствий и сервоконтроллер.

Краткая история NE555

Микросхема NE555 была разработана в 1970 году и запущена в серийное производство 12 месяцев спустя. Ее создатели не ожидали, что она будет производиться более 40 лет. Более того, сегодня никто даже не думает о прекращении производства этого чипа.

В каталогах производителей NE555 описана как универсальная машина времени, то есть схема, которая может генерировать импульсы заданной длительности.
Один из вариантов микросхемы NE555

Универсальность данной микросхемы является результатом простоты. В структуре этой схемы выделяется всего пять блоков, которые можно настраивать по-разному. С помощью нее можно изготавливать множество устройств: от простого мигающего светодиода, через сервоприводы и звуковые сигналы, до регуляторов мощности двигателя. Каждая из этих схем требует времени, и именно для этого был разработан NE555 .

NE555 продается в 8-контактных корпусах. Также существует вариант, содержащий две такие схемы таймера в одном корпусе — он известен как NE556 (такая схема замкнута в куб с 14 выводами). Однако эта версия не так популярна.

У NE555 есть множество модификаций, не меняющих ее принцип работы. По этой причине в продаже имеются LF555, CD555, LM555 и др.

Когда вы начинаете работать с новой интегральной схемой, у вас должна быть под рукой ее каталожная запись — ее стоит просмотреть даже просто из любопытства. Однако на данный момент, нам нужна только распиновка, т.е. описание пинов.

Описание выводов (ножек) микросхемы NE555

Внутренняя структура NE555

Каждая интегральная схема состоит из таких компонентов, как транзисторы и резисторы. Конечно, их можно сгруппировать в функциональные блоки. Мы уже анализировали такие блоки при обсуждении интегрированного инфракрасного приемника (TSOP) — на этот раз наш анализ работы схемы будет намного точнее.

На блок-схеме NE555 ниже показано соединение блоков, показывающих суть ее работы. Это значительно упрощает анализ компоновки. Благодаря этому очень легко увидеть, за что «изнутри» отвечает каждый вывод (ножка).

На рисунке ниже, номера ножек отмечены синим цветом. Конечно, ни их порядок, ни расположение, не такие, как в реальной раскладке. Представлять ее в другой форме на схеме — совершенно нормально — и производители делают то же самое.
Блок-схема микросхемы NE555

Важно отметить, что на таких блок-схемах не рисуются дорожки, по которым проходит ток, между блоками, чтобы изображение было более понятным. Изначально предполагается, что на каждый блок подается питание и заземление. В противном случае, автор схемы должен это четко указать.

Чтобы у всех было одинаковое понимание того, как работает NE555, мы подробно обсудим отдельные блоки, показанные на схеме. Вам не нужно делать этот анализ при изучении каждой новой интегральной схемы.

Однако NE555 — настолько культовый чип, что им стоит заняться — хотя бы для удовлетворения собственного любопытства.

Для справки: элементы, которые мы сейчас обсуждаем, находятся внутри ИС!

Блок 1: Делитель напряжения

Три резистора одинакового номинала (обычно 5 кОм) образуют делитель напряжения, уже хорошо известный нам, внутри схемы. Они делят напряжение питания, приложенное между контактом 8 (VCC) и контактом 1 (GND), на три равные части, то есть 1/4 этого напряжения отдается каждому резистору. Например, напряжение питания системы 6 В, нижний узел имеет потенциал 2 V, а верхняя 4 V.

NE555, Блок 1: Делитель напряжения

Блок 2: Компараторы напряжения

Треугольники с двумя входами и одним выходом — это, конечно, компараторы напряжения. Их работа уже подробно описывалась ранее, поэтому нам больше не нужно здесь обсуждать этот вопрос. Однако их конкретная задача, конечно же, будет представлена ​​в следующих статьях.

NE555 Блок 2: Компараторы напряжения

Блок 3: RS-триггер

Прямоугольник с пятью отведениями называется RS-триггером. Это цифровой компонент, который запоминает состояния выходов компаратора напряжения. Напряжение, близкое к положительной силовой шине на выходе компаратора, обозначается логической 1, а напряжение, близкое к отрицательной силовой шине (земля, 0 В), — логическим 0.

Триггер поддерживает заданное состояние выходов до тех пор, пока не будет получен сигнал, принудительно изменяющий их.
NE555, Блок 3: триггер RS

Функции его выводов следующие:

  • S (set) — при высоком уровне выход Q устанавливается на высокий уровень,
  • R (сброс) — когда статус высокий, выход Q устанавливается на низкий,
  • RES с кружком, обозначающий отрицание — передача низкого состояния этому входу сбрасывает схему, т.е. устанавливает 0 на выходе Q, независимо от состояния двух других входов,
  • Q — выход триггера,
  • Q с чертой, обозначающей отрицание — перевернутый выход триггера (напротив Q).

Триггер — это тема, связанная с цифровыми технологиями. Вам не нужно сейчас слишком углубляться в это. Самое главное — это общее понимание того, как работает этот элемент, то есть на практике:

  • Предоставление на мгновение высокого состояния входу S триггера приведет к тому, что выход Q будет постоянно высоким. Изменение состояния входа больше не повлияет на выход — он все время будет оставаться на высоком уровне.
Работа триггера RS: а) начальное состояние (состояние 0 на выходе), б) состояние 1 на входе SET (состояние 1 на выходе), в) отключение сигнала 1 на входе SET (устойчивое состояние)
  • Применение высокого состояния к входу R приведет к сбросу триггера, то есть установит выход Q в низкое состояние.
Работа триггера RS: г) начальное состояние (состояние 1 на выходе), д) состояние 1 на входе RESET (состояние 0 на выходе, после затухания сигнала состояние будет сохраняться)
Второй выход (инвертированный Q) — это просто инвертированное значение выхода Q. Что касается Q, если здесь 1, то для инвертированного Q это 0; и наоборот — если для Q это 0, то для Q с отрицанием равно 1.

Блок 4: выходной буфер

Есть так называемый выходной буфер, задача которого увеличить текущий КПД этого выхода. Благодаря ему, например, диоды или реле можно подключать напрямую к выходу NE555.

Выход триггера не справился бы с этой задачей, потому что логическая структура не предназначена для передачи больших токов. Буфер «сам по себе» не влияет на логическое состояние на выходе — он только следует за тем, что он получает на своем входе, то есть за выходом триггера.

NE555 Блок 4: выходной буфер

Блок 5: Транзистор

Как упоминалось ранее, интегральная схема (ИС) в основном состоит из транзисторов. Так почему же здесь он выделен как особенный? У него особая функция: он разряжает внешний конденсатор, который мы позже подключим к NE555.

Этот транзистор управляется с выхода инвертированного триггера, то есть он открывается, когда выход Q низкий, и тогда инвертированный Q высокий. Это, конечно, транзистор с достаточно высокой токовой емкостью, чтобы он не повредился при открытии — его роль заключается в быстрой разрядке конденсатора.

NE555 Блок 5: Транзистор

Как работает NE555?

Сам NE555 не может делать ничего конструктивного — он должен быть огражден внешними элементами. Их значения и схема подключения определяют функции схемы.

В этом случае две наиболее важные функции, которые может выполнять NE555:

  1. нестабильный генератор,
  2. моностабильный генератор.

Нестабильный генератор — это схема, которая начинает работать сразу после включения питания и изменяет выходное состояние с высокого на низкое и наоборот. Каждое состояние длится определенное время. Такие изменения создают прямоугольную волну, потому что в ней всего два уровня напряжения. Одно из простых применений такого генератора — мигание светодиода.

Моностабильный генератор выдает только один импульс. Сигнал для его генерации исходит извне и представляет собой напряжение с определенным логическим уровнем. Как только импульс закончится, он готовится и ждет следующего триггера. Этот тип генератора полезен, когда мы хотим построить временные цепи или, например, делители частоты.

Работа нестабильного генератора

Легче всего разобрать нестабильную схему, хотя в ней больше элементов, чем в моностабильной. Его принципиальная схема представлена ​​ниже. Резисторы RA, RB и конденсатор C1 используются для отсчета времени. Конденсатор C2 не является обязательным (его роль будет рассмотрена позже).

NE555 в нестабильном режиме

Если приведенное ниже описание слишком сложно для вас, не беспокойтесь об этом. Продолжайте, выполняйте практические упражнения и только потом возвращайтесь к этому описанию. Однако помните, что это сложная тема, и вам не обязательно в ней разбираться. Если понять, как эта схема работает изнутри, это будет здорово, но это не обязательно — вряд ли кто-то в начале своих экспериментов с электроникой так тщательно разбирался в этой теме.

Самое главное, что после этой статьи вы сможете использовать NE555 на практике. Хорошее знание внутреннего устройства этой микросхемы не является обязательным.

Теперь используйте свое воображение и следите за текстом. Мы предполагаем, что вся система питается от 6 В (т.е. от четырех батареек АА). Конденсатор С1 разряжается после включения питания. Компаратор нижнего уровня реагирует на это отображением высокого состояния на своем выходе, и потенциал на неинвертирующем входе (+) намного выше, чем потенциал на инвертирующем входе (-), подключенном к конденсатору.

Это вызывает установку в логическом триггере 1, т.к. этот компаратор управляет входом S. Напряжение на выходе схемы близко к напряжению питания.

Разрядный транзистор, управляемый инвертированным выходом, забит и не проводит электричество. На входе R низкий уровень, т.к. инвертирующий вход компаратора высокого уровня (-) находится под потенциалом ⅔ напряжения питания, то есть 4 В.

Конденсатор медленно заряжается через последовательно включенные резисторы RA и RB.

Через некоторое время, когда конденсатор заряжается до напряжения, превышающего порог переключения нижнего компаратора (т.е. выше 2 В), компаратор перейдет в низкое состояние на своем выходе. Однако это ничего не меняет в работе триггера — он запомнил состояние high с входа S до и ждет. Конденсатор продолжает заряжаться.

Анимированная работа NE555

После того, как конденсатор зарядится выше 4 В, верхний компаратор меняет свой выход на высокий и сбрасывает выход триггера. На выходе Q установлен низкий уровень, а разрядный транзистор «включен» и насыщен.

Ток через транзистор протекает от 2 источников: через резистор RA (от источника питания) и RB (от конденсатора, заряженного до напряжения 4 В). Первое не имеет значения, второе очень важно. Когда конденсатор разряжается, на выходе OUT низкий уровень, и он длится до тех пор, пока напряжение на конденсаторе не превышает 2 В.

Стоит отметить, что верхний компаратор активен только на мгновение: разряд начинается, как только обнаруживается порог переключения, поэтому его выход быстро возвращается в низкое состояние.

Разряд заканчивается, когда нижний компаратор сигнализирует, что напряжение на конденсаторе упало ниже 2 В. Он устанавливает вход S триггера, выход схемы становится высоким и разрядный транзистор забивается. Цикл закрывается и начинается заново.

Описание дополняется схемой хронологии наиболее важных напряжений в цепи: на конденсаторе, на выходе схемы и на входах триггера. Зарядка и разрядка конденсатора происходит дугой, поскольку конденсатор, питаемый резистором, изменяет свое напряжение экспоненциально.

Ход наиболее важных напряжений внутри NE555

Какую роль играет второй конденсатор?

На принципиальных схемах многих NE555 есть небольшой конденсатор (порядка 10 нФ), подключенный между контактом 5 и землей. Он фильтрует напряжение, генерируемое в верхнем узле резистивного делителя. Некоторые говорят, что этот конденсатор является избыточным, потому что вся схема, в любом случае, питается от постоянного напряжения, поэтому потенциал этого узла не может измениться.

Вышеприведенные рассуждения верны до тех пор, пока не произойдет переключение триггера RS. Однако этот короткий момент, в течение которого в схеме происходит много всего, должен находиться под постоянным контролем компараторов. Эталонные напряжения, выдаваемые резисторами делителя, не должны изменяться, потому что это повлияет на длительность импульсов.

По этой причине рекомендуется добавить керамический конденсатор емкостью 10–100 нФ, который легко блокирует резкие изменения этого напряжения — создается RC-фильтр. Долгосрочные изменения, такие как медленная разрядка аккумулятора, не будут заблокированы им и не нарушат работу схемы.

Первый проект на NE555

Пришло время самого интересного в этой статье, то есть практического примера. На этот раз мы построим простую схему, которая будет мигать светодиодами. Вам понадобятся следующие компоненты:

  • 1 × микросхема NE555,
  • Резистор 4 × 1 кОм,
  • Конденсатор 2 × 100 нФ,
  • 1 × 220 мкФ конденсатор,
  • 1 × зеленый светодиод,
  • 1 × красный светодиод,
  • Батарея 4 × AA,
  • 1 × корзина для 4 батареек АА,
  • 1 × макетная плата,
  • комплект соединительных проводов.

Принципиальная схема существенно не отличается от рассмотренной здесь. Был добавлен только дополнительный конденсатор 100 нФ, который фильтрует напряжение питания всей схемы — это хорошая практика при создании чего-либо большего. Будет лучше, если этот элемент будет физически установлен рядом с микросхемой NE555, в частности с ее контактами 1 и 8, то есть теми, которые питают его. С другой стороны, выход системы соединен с диодами, которые показывают логическое состояние: зеленый низкий и красный высокий.

Схема мигания светодиодов на NE555

Светодиод LED1, светящийся зеленым светом, был подключен анодом к положительной батарее. Это означает, что он загорится только тогда, когда на выходе NE555 низкий уровень (потенциал близок к 0 В). Ток сможет протекать через него и достигать входа микросхемы NE555. Резистор R1 будет стоять на пути этого тока и ограничит его интенсивность до безопасного для диода значения.

Красный диод LED2 подключен катодом к минусу блока питания. Вам нужно дать его аноду положительный потенциал, чтобы через него протекал ток. Это также можно сделать с помощью NE555, когда его выход высокий (потенциал около 6 В). Ток через этот диод, в свою очередь, ограничивает резистор R2.

Диоды LED1 и LED2 горят поочередно, потому что микросхема NE555 может находиться в одном из двух состояний в данный момент (низкое или высокое).

Одновременно будет гореть только один светодиод. Когда светодиод LED1 горит, на выходе NE555 низкий уровень (около 0 В) и на LED2 больше нет напряжения, оба вывода имеют почти одинаковый потенциал. Такая же ситуация возникает при включении LED2 — тогда LED1 «не хватает» напряжения, т.к. выход NE555 имеет потенциал почти такой же, как и его анод (6В).

Поначалу создание такой схемы может показаться довольно запутанным. Однако, конечно же, в рамках этой статьи мы также подготовили подробную инструкцию.

Вы должны помнить, что с интегральными схемами вам нужно обращать внимание на номера контактов — они часто расположены на схеме в другом порядке, чем на физическом корпусе.

Начнем с размещения микросхемы NE555 на плате (обязательно обратите внимание на выемку в корпусе).

Шаг 1. Подключаем:

  • контакт 4 для положительной шины питания,
  • конденсатор C2 между землей и контактом 5,
  • вывод №1 к массе,
  • контакт 8 к положительной силовой шине,
  • конденсатор С1 в ЛЭП.

Шаг 2. Подключите одну ножку конденсатора C3 к земле, а вторую пока подключите к макетной плате, а затем подключите к ней другие элементы.

Шаг 1: основные подключения и конденсаторы Шаг 2: конденсатор C3

Шаг 3. Соедините элементы R3, R4, то есть:

  • соединяем три элемента последовательно в порядке R3, R4, C3,
  • свободная ножка резистора R3 идет к плюсовой шине питания,
  • подключаем вывод 7 микросхемы NE555 между резисторами R3 и R4,
  • соедините контакты 2 и 6 микросхемы NE555, а затем подключите их между R4 и C3.

Шаг 4. Соедините два диода с резисторами R1 и R2.

Шаг 3: резисторы R3 и R4 Шаг 4: светодиоды и их резисторы

На практике все это может выглядеть так (здесь уже есть небольшой клубок проводов, но так должно быть при построении больших схем):

Вся схема на макете Пример реализации

Пришло время подключить питание к соответствующим точкам на макетной плате. Красный диод должен загореться первым. Через несколько секунд он погаснет и на короткое время станет зеленым.

Горит зеленый светодиод Красный светодиод горит

Конечно, как вы, наверное, уже догадались, параметры конденсатора и резисторов влияют на время свечения каждого диода. С этим стоит поэкспериментировать самостоятельно. Например, можно добавить в схему потенциометр и плавно регулировать сопротивление. Также можно заменить конденсатор на меньший.

От чего зависит длительность импульсов?

За длительность низкого и высокого состояния на выходе схемы отвечают три элемента: R3, R4 и C3. В частности, резистор R4 и конденсатор C3 отвечают за продолжительность низкого состояния (т.е. когда горит зеленый светодиод). Чем выше сопротивление R4, тем дольше LED1 будет гореть.

Продолжительность горения красного диода, сигнализирующего о наличии высокого состояния, определяется суммарным сопротивлением R3 и R4 и емкостью C3. Таким образом, увеличение R3 продлит длительность высокого состояния, а увеличение R4 — и то, и другое. Поэтому красный диод горит дольше зеленого — сумма сопротивлений R3 и R4 всегда будет больше, чем сам резистор R4.

Не допускается ставить «закоротку» на место резистора R3, т.е. заменять его, например, проводом. Никакое сопротивление в этот момент не разрушит ИС.

Конденсатор C3 в равной степени влияет на оба этих состояния. Чем больше его емкость, тем реже будут переключаться диоды, и чем она меньше, тем чаще будут происходить изменения.

Моностабильная конфигурация микросхемы NE555

Первая конфигурация NE555 позади. Теперь пора кратко описать, как она ведет себя во второй роли — как моностабильный генератор. Напоминаем: это означает, что как только будет подан сигнал триггера, схема сгенерирует определенный импульс (изменение состояния на своем выходе). Схема такой конфигурации проста, все дело ограничивается одним резистором и двумя конденсаторами.

Схема моностабильной конфигурации NE555

Для правильной работы этой схемы, после включения питания, напряжение на входе запуска (контакт 2) должно быть выше ⅓ напряжения питания. Схема, вероятно, сгенерирует один импульс (поскольку внутреннее состояние триггера неизвестно) и вернется в устойчивое состояние, при котором разрядный транзистор открыт, а на выходе низкий уровень.

Мгновенное падение напряжения на контакте 2 рассматривается как сигнал запуска: нижний компаратор переключает триггер на высокий уровень, транзистор забивается и конденсатор C1 заряжается через резистор RA.

После того, как конденсатор C1 заряжен до напряжения, соответствующего верхнему порогу компаратора (напряжения питания), активация входа R триггера вызывает отключение выхода и разряд конденсатора транзистором — тогда система переходит в режим покоя и ждет следующего срабатывающего импульса.

Импульс запуска должен быть короче генерируемого, поскольку может возникнуть ситуация, в которой оба компаратора передадут логическую 1 (высокое состояние) на входы запуска. Чтобы не растягивать эту часть статьи без надобности, мы не будем рассматривать эту конфигурацию более подробно.

Плюсы и минусы NE555?

Разработчики микросхемы NE555 создали незамысловатую компоновку, имеющую ряд преимуществ. Помимо прочего, ее можно легко настроить по-разному — все, что вам нужно, это несколько пассивных элементов. Более того, сама схема очень дешева в производстве.

Важно отметить, что время генерируемых импульсов не зависит от напряжения питания, поэтому схема может питаться от батареи, аккумулятора или источника питания.

К сожалению, такая простая структура имеет множество минусов. Первый минус — это относительно высокое потребление тока, которое является результатом использования делителя напряжения из резисторов с относительно низким сопротивлением.

Встроенный делитель напряжения позволяет схеме потреблять относительно большой ток

Второй минус NE555 — удлинение первого импульса по отношению к следующему. Если вы внимательно прочитаете описание нестабильной схемы, вы увидите, что состояние высокого уровня сразу после включения питания длится примерно в два раза дольше, чем следующие. Это связано с тем, что конденсатор нужно заряжать с нуля, а в дальнейшем он разряжается только до напряжения питания.

Такое удлинение первого импульса — настоящая беда для многих схем таймера!

Эта схема не подходит для точного измерения очень долгого времени. Причина этого — потребление тока входами компаратора. Они устроены так, что потребляемый ток близок к нулю, но идеальных элементов нет — они все равно потребляют ток, поэтому могут нарушить процесс счета. Однако это явление незаметно, когда мы хотим измерить короткие периоды.

Эта схема тоже не очень быстрая (исходя из реалий электронных схем). Ограничения скорости уже можно найти на блок-схеме. Управляющие сигналы генерируются компараторами (которые обычно не являются быстрыми схемами) — они проходят ток через триггер (это также требует времени), а затем распространяются дальше. Засорение разрядного транзистора — тоже довольно длительный процесс (в реалиях электроники).

Еще в начале 1970-х считалось, что 555 должна была быть простой и дешевой схемой. Помните, что интегральные схемы тогда только начинали появляться!

Однако эти недостатки позволяют производителям получать от этого чипа только 500 кГц или немного больше.

Вывод

Вот мы и рассказали вам основную информацию о микросхеме NE555. Мы также проверили, как с ее помощью можно построить простой проект с мигающими светодиодами. Однако это только начало, потому что у этой схемы гораздо больше возможностей.

В следующей статье мы будем использовать NE555 для создания настоящего датчика препятствий! Здесь пригодятся знания об инфракрасных передатчиках и приемниках. Кроме того, на базе NE555 мы также создадим моделирующий сервопривод.

С Уважением, МониторБанк

взгляд внутрь микросхемы таймера раннего выпуска 555

интегральная схема таймера 555,1 считается самой продаваемой интегральной схемой в мире с проданными миллиардами. Разработанный волшебником аналоговых ИС Гансом Камензиндом2, 555 был назван одним из лучшие фишки всех времен.

8-контактный таймер 555 с логотипом Signetics. На нем нет метки 555, вместо этого он помечен как «52B 01003» с кодом даты 7304, что указывает на 4-ю неделю из 19. 73. Фото предоставлено Эриком Шлепфером.

Эрик Шлепфер (@TubeTimeUS) недавно наткнулся на указанный выше чип с загадочным номером детали. Он утомительно отшлифовал эпоксидную смолу, чтобы открыть кристалл (ниже), и определил, что чип представляет собой таймер 555. Signetics выпустила таймер 555 в середине 1972 г. 4 , а приведенный ниже чип имеет код даты января 1973 г. (7304), поэтому он должен быть одним из первых таймеров 555. Любопытно, что он не имеет маркировки 555, так что, возможно, это прототип или внутренняя версия.3 Я сделал подробные фотографии штампов, которые я обсуждаю в этом сообщении в блоге.

Таймер 555 с отшлифованной упаковкой, чтобы обнажить кремниевый кристалл, крошечный квадратик посередине.

Краткое описание таймера 555

Таймер 555 имеет сотни приложений, работающих как таймер или защелка, как генератор или модулятор, управляемый напряжением. На приведенной ниже диаграмме показано, как таймер 555 работает как простой генератор. Внутри микросхемы 555 три резистора образуют делитель, формирующий опорные напряжения 1/3 и 2/3 от напряжения питания. Внешний конденсатор будет заряжаться и разряжаться между этими пределами, создавая колебания. Более подробно, конденсатор будет медленно заряжаться (А) через внешние резисторы, пока его напряжение не достигнет опорного значения 2/3. В этот момент (B) верхний (пороговый) компаратор отключает триггер и выход. Это включает разрядный транзистор, медленно разряжая конденсатор (С). Когда напряжение на конденсаторе достигает опорного значения 1/3 (D), включается нижний (триггерный) компаратор, устанавливая триггер и выход, и цикл повторяется. Значения резисторов и конденсатора определяют время от микросекунд до часов.5

Схема, показывающая, как таймер 555 может работать как осциллятор. Внешний конденсатор заряжается и разряжается через внешние резисторы под управлением таймера 555.

Подводя итог, ключевыми компонентами таймера 555 являются компараторы для определения верхнего и нижнего пределов напряжения, делитель с тремя резисторами для установки этих пределов и триггер для отслеживания того, заряжается или разряжается цепь. Таймер 555 имеет два других вывода (сброс и управляющее напряжение), которые я не рассмотрел выше; их можно использовать для более сложных схем.

Структура интегральной схемы

Фото ниже я создал из компоновки изображений микроскопа. Поверх кремния тонкий слой металла соединяет разные части чипа. Этот металл хорошо виден на фото в виде светлых следов. Под металлом тонкий стеклообразный слой диоксида кремния обеспечивает изоляцию между металлом и кремнием, за исключением случаев, когда контактные отверстия в диоксиде кремния позволяют металлу соединяться с кремнием. На краю чипа тонкие провода соединяют металлические площадки с внешними контактами чипа.

Штамп фото таймера 555. Нажмите на это изображение (или любое другое), чтобы увеличить его.

Различные типы кремния на чипе труднее увидеть. Области чипа обрабатываются (легируются) примесями для изменения электрических свойств кремния. Кремний N-типа имеет избыток электронов (отрицательный), в то время как кремний P-типа не имеет электронов (положительный). На фотографии эти области показаны немного другим цветом, окруженным тонкой черной рамкой. Эти области являются строительными блоками микросхемы, формируя транзисторы и резисторы.

Транзисторы NPN внутри микросхемы

Транзисторы являются ключевыми компонентами микросхемы. В таймере 555 используются биполярные транзисторы NPN и PNP. Если вы изучали электронику, вы, вероятно, видели схему NPN-транзистора, подобную приведенной ниже, на которой показаны коллектор (C), база (B) и эмиттер (E) транзистора. сэндвич из кремния P между двумя симметричными слоями кремния N; слои N-P-N составляют NPN-транзистор. Оказывается, транзисторы на микросхеме выглядят совсем не так, а база зачастую даже не посередине!

Схематическое обозначение транзистора NPN вместе с упрощенной схемой его внутренней структуры.

На фотографии ниже крупным планом показан один из транзисторов 555, как он выглядит на микросхеме. Немного отличающиеся оттенки в кремнии указывают на области, которые были легированы с образованием областей N и P. Беловатые области — это металлический слой чипа поверх кремния — они образуют провода, соединяющиеся с коллектором, эмиттером и базой.

Структура транзистора NPN на кристалле.

Под фотографией находится поперечный разрез, иллюстрирующий конструкцию транзистора. Там гораздо больше, чем просто бутерброд N-P-N, который вы видите в книгах, но если вы внимательно посмотрите на вертикальное сечение под буквой «E», вы можете найти N-P-N, который образует транзистор. Провод эмиттера (E) подключен к кремнию N+. Ниже находится P-слой, соединенный с базовым контактом (B). А под ним находится слой N+, связанный (косвенно) с коллектором (C)6. Транзистор окружен кольцом P+, которое изолирует его от соседних компонентов.

PNP-транзисторы внутри микросхемы

Можно было ожидать, что PNP-транзисторы будут аналогичны NPN-транзисторам, только поменяв местами N- и P-кремний. Но по разным причинам PNP-транзисторы имеют совершенно другую конструкцию. Они состоят из небольшого круглого эмиттера (P), окруженного кольцеобразным основанием (N), которое окружено коллектором (P). Это образует сэндвич PNP по горизонтали (сбоку), в отличие от вертикальной структуры транзисторов NPN.

На приведенной ниже диаграмме показан один из PNP-транзисторов в модели 555, а также поперечное сечение кремниевой структуры. Обратите внимание, что хотя металлический контакт для базы находится на краю транзистора, он электрически соединен через области N и N+ с его активным кольцом между коллектором и эмиттером.

Транзистор PNP в микросхеме таймера 555. Соединения для коллектора (C), эмиттера (E) и базы (B) помечены вместе с кремнием, легированным N и P. База образует кольцо вокруг эмиттера, а коллектор образует кольцо вокруг базы.

Выходные транзисторы модели 555 намного больше, чем другие транзисторы, и имеют другую структуру, обеспечивающую сильноточный выходной сигнал. На фото ниже показан один из выходных транзисторов. Обратите внимание на многочисленные сцепленные «пальцы» эмиттера и базы, окруженные большим коллектором.

Большой сильноточный выходной транзистор NPN в микросхеме таймера 555. Коллектор (C), база (B) и эмиттер (E) помечены.

Как резисторы реализованы в кремнии

Резисторы являются ключевым компонентом аналоговых микросхем. К сожалению, резисторы в ИС большие и неточные; сопротивление может варьироваться на 50% от чипа к чипу. Таким образом, аналоговые ИС спроектированы таким образом, что имеет значение только отношение резисторов, а не абсолютные значения, поскольку отношения остаются почти постоянными.

Резистор внутри таймера 555. Резистор представляет собой полоску кремния P между двумя металлическими контактами.

На фото выше показан 10 кОм; Резистор в 555, образованный полоской кремния P (розовато-серого цвета), контактирующей с металлическими проводами на обоих концах. Другие металлические провода пересекаются резистор. Резистор имеет спиралевидную форму, чтобы его длина соответствовала доступному пространству. Ниже резистор на 100 кОм. пережимной резистор . Слой кремния N поверх пережимного резистора делает проводящую область намного тоньше (то есть сжимает ее), формируя гораздо более высокое, но менее точное сопротивление.

Пережимной резистор внутри таймера 555. Резистор представляет собой полоску кремния P между двумя металлическими контактами. Слой N сверху зажимает резистор и увеличивает сопротивление. Этот резистор пересекает вертикальная металлическая линия.

Компонент ИС: Текущее зеркало

Есть некоторые подсхемы, которые очень распространены в аналоговых ИС, но на первый взгляд могут показаться загадочными. Текущее зеркало является одним из них. Если вы смотрели на блок-схемы аналоговых интегральных схем, вы, возможно, видели приведенные ниже символы, указывающие на источник тока, и задавались вопросом, что такое источник тока и почему вы должны его использовать. Идея состоит в том, что вы начинаете с одного известного тока, а затем можете «клонировать» несколько копий тока с помощью простой транзисторной схемы, токового зеркала.

Схематические символы для источника тока.

На следующей схеме показано, как реализовано токовое зеркало с двумя идентичными транзисторами. 7 Опорный ток проходит через правый транзистор. (В этом случае ток задается резистором.) Поскольку оба транзистора имеют одинаковое напряжение эмиттера и напряжение базы, они вырабатывают одинаковый ток, поэтому ток справа соответствует эталонному току слева.8

Текущая схема зеркала. Ток справа копирует ток слева.

Токовое зеркало обычно используется для замены резисторов. Как объяснялось ранее, резисторы внутри ИС имеют неудобные размеры и неточны. По возможности, использование токового зеркала вместо резистора экономит место. Кроме того, токи, создаваемые токовым зеркалом, почти идентичны, в отличие от токов, создаваемых двумя резисторами.

Три транзистора образуют токовое зеркало в микросхеме таймера 555. Все они имеют одну базу, а два транзистора имеют общие эмиттеры.

Три приведенных выше транзистора образуют токовое зеркало с двумя выходами. Обратите внимание, что три транзистора имеют общее соединение базы, подключенное к коллектору справа, а эмиттеры справа соединены вместе. На схеме два транзистора справа изображены как один транзистор Q19 с двумя коллекторами.

Компонент интегральной схемы: дифференциальная пара

Второй важной схемой для понимания является дифференциальная пара, наиболее распространенная двухтранзисторная подсхема, используемая в аналоговых ИС. 9Вы, возможно, задавались вопросом, как компаратор сравнивает два напряжения или операционный усилитель вычитает два напряжения. Это работа дифференциальной пары.

Схема простой цепи дифференциальной пары. Источник тока посылает фиксированный ток I через дифференциальную пару. Если два входа равны, ток делится поровну.

На приведенной выше схеме показана простая дифференциальная пара. Источник тока в нижней части обеспечивает фиксированный ток I, который распределяется между двумя входными транзисторами. Если входные напряжения равны, ток будет разделен поровну на две ветви (I1 и I2). Если одно из входных напряжений немного выше другого, соответствующий транзистор будет проводить экспоненциально больший ток, поэтому одна ветвь получает больше тока, а другая ветвь — меньше. Небольшой входной разницы достаточно, чтобы направить большую часть тока в «выигрышную» ветвь, включая или выключая компаратор. Микросхема 555 использует одну дифференциальную пару для порогового компаратора, а другую — для триггерного компаратора.10

Схематический интерактивный проводник 555

Фото и схема кристалла 55511 ниже интерактивны. Щелкните компонент на кристалле или схеме, и отобразится краткое описание компонента. (Подробное обсуждение того, как работает таймер 555, см. 555 Принципы работы.)

Для краткого обзора см. большие выходные транзисторы и разрядный транзистор являются наиболее очевидными особенностями кристалла. Пороговый компаратор состоит из транзисторов с Q1 по Q8. Компаратор триггера состоит из транзисторов Q10–Q13 и токового зеркала Q9.. Q16 и Q17 образуют триггер. Три 5кОм; резисторы, образующие делитель напряжения, находятся в середине микросхемы.12 Городская легенда гласит, что 555 назван в честь этих трех резисторов 5K, но по словам его дизайнера 555 — это просто произвольное число в серии 500 чипов.

Нажмите на кристалл или схему для получения подробной информации…

Заключение

Я надеюсь, что вы нашли этот взгляд внутри чипа таймера 555 интересным. В следующий раз, когда вы будете создавать проект 555, вы точно будете знать, что находится внутри чипа. Я уже писал о таймере 555 раньше; этот пост почти такой же, как тот, но с другим кубиком. Я также писал о версии CMOS. Спасибо Эрику Шлепферу13 за предоставление штампа; см. его ветку в Твиттере, чтобы узнать об этом чипе.

Я сообщаю о своих последних сообщениях в Твиттере, поэтому подписывайтесь на @kenshirriff, и вы не пропустите ни одной статьи! У меня также есть RSS-канал.

Примечания и ссылки

  1. Таймер 555 достаточно символичен, чтобы его можно было включить. кружки, сумки, кепки и футболки. Целые книги посвящены 555 таймер схемы. ↩

  2. Книга Designing Analog Chips , написанная изобретателем 555 Гансом Камензиндом, действительно интересна, и я рекомендую ее, если вы хотите узнать, как работают аналоговые микросхемы. В главе 11 подробно обсуждается история и работа модели 555. На странице 11-3 утверждается, что 555 была самой продаваемой микросхемой каждый год, хотя я не знаю, так ли это до сих пор. Бесплатный PDF здесь или получить книга. ↩

  3. Матрица имеет номер детали 1000 и версию “C”, так что это, вероятно, соответствует номеру 01003 на упаковке. Я подозреваю, что эта микросхема является третьей ревизией маски оригинальной 555.

    .

    Первый штамп 555 с выделенным номером детали “1000” и увеличенной версией “A”.

    Кристалл первой версии таймера 555 (выше) отмечен номером «1000» и ревизией «А». Я сравнил это изображение с фотографией кристалла, которую сделал, и не увидел никаких отличий, за исключением того, что ревизия изменилась на «C». Изменения маски, должно быть, были довольно тонкими. (Это изображение есть в Википедии и IEEE Спектр. Изображение подписано как штамп первой микросхемы таймера 555, произведенной в 1971.) ↩

  4. Чип 555 был представлен в середине 1972 года, согласно Signetics Analog Applications, стр. 149. ↩

  5. Отличительной особенностью таймера 555 является то, что частота колебаний зависит только от внешних резисторов и конденсатора и нечувствительна к напряжению питания. Если напряжение питания падает, эталоны 1/3 и 2/3 также падают, поэтому можно ожидать, что колебания будут быстрее. Но более низкое напряжение заряжает конденсатор медленнее, компенсируя это и поддерживая постоянную частоту.

    Эта нечувствительность к напряжению настолько коварна, что разработчик микросхемы не понял этого до самого конца конструкции 555, но это имело большое значение. Первоначальная конструкция была более сложной и требовала девяти выводов, что является ужасным размером для микросхемы. так как нет пакетов между 8 и 14 пинами. Окончательная, более простая конструкция 555 работала с 8 контактами, что делало упаковку чипа намного дешевле. (Полную информацию см. на стр. 11–3 документа «Проектирование аналоговых микросхем ».) ↩

  6. Вы, наверное, задавались вопросом, почему существует различие между коллектором и эмиттером транзистора, когда типичная схема транзистора симметрична. Как видно из фото кристалла, в реальном транзисторе коллектор и эмиттер сильно отличаются. Помимо очень большой разницы в размерах, легирование кремния отличается. В результате транзистор будет иметь плохой коэффициент усиления, если коллектор и эмиттер поменять местами. ↩

  7. Для получения дополнительной информации о текущих зеркалах проверьте Википедию, любую книгу по аналоговым ИС или главу 3 Проектирование аналоговых микросхем. ↩

  8. На схеме внизу изображен необычный символ, обозначающий транзистор с двумя коллекторами. База нарисована с той же стороны, что и эмиттер и коллекторы, что добавляет путаницы. На кристалле этот транзистор реализован двумя отдельными транзисторами с эмиттерами и базами, соединенными вместе. В других схемах иногда используется один транзистор с двумя физическими коллекторами.

    Этот символ указывает на транзистор с двумя коллекторами.

  9. Дифференциальные пары также называются парами с длинными хвостами. Согласно с Анализ и проектирование аналоговых интегральных схем дифференциальная пара – это, пожалуй, наиболее широко применяемые двухтранзисторные подсхемы в монолитных аналоговые схемы.” (стр.214) Для получения дополнительной информации о дифференциальных парах см. Википедию, любую книгу по аналоговым микросхемам или главу 4 книги Designing Analog Chips . ↩

  10. В модели 555 пороговый компаратор использует NPN-транзисторы, а триггерный компаратор — PNP-транзисторы. Это позволяет пороговому компаратору работать вблизи напряжения питания, а триггерному компаратору работать вблизи земли. Компараторы 555 также используют два транзистора на каждом входе (пара Дарлингтона) для буферизации входов. ↩

  11. Схема 555, используемая в этой статье, взята из Техническое описание Филипс. Он идентичен схеме Signetics p150. ↩

  12. Обратите внимание, что три резистора делителя напряжения расположены параллельно и рядом друг с другом. Это помогает гарантировать, что они имеют одинаковое сопротивление, даже если в кремнии есть электрические колебания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *