Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Navigator nb etl 236 ea3 схема электрическая. Устройство электронного балласта для люминесцентных ламп

Занятий, с достаточным световым потоком и в тоже время экономичного, подвигло, можно даже сказать, на некоторые искания и пробу вариантов. Сначала использовал обычную небольшую лампу прищепку, поменял её на маленький настольный люминесцентный светильник, затем был 18 ваттный люминесцентный светильник «потолочно – настенного» варианта китайского производства. Последнее понравилось более всего, но крепление непосредственно самой лампы в арматуре было несколько занижено, буквально на два – три сантиметра, однако «для полного счастья» их и не хватало. Выход нашёл в том, чтобы сделать тоже самое, но по своему. Так как работа имевшегося ЭПРА нареканий не вызывала логично было схему повторить.

Схема принципиальная

Это большая часть данного ЭПРА, дроссель и конденсатор у китайцев сюда не вошли.

Собственно добросовестно срисованная с печатной платы схема.

Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и при помощи замеров, с предварительным выпаиванием компонентов из платы. На схеме номинал резисторов указан в соответствии с цветовой маркировкой. Только в отношении дросселя позволил себе не разматывать имеющийся для определения количества витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) – сработало.

Первая сборка на монтажной плате. Номиналы компонентов подбирал скрупулёзно, невзирая на габариты и количество, и был вознаграждён – лампочка зажглась с первого раза. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки, его магнитная проницаемость неизвестна, диаметр провода катушек на него намотанных 0,3 мм (без изоляции). Первый пуск в обязательнейшем порядке через лампочку накаливания в 25 Вт. Если она горит а люминесцентная первоначально мигает и тухнет – увеличивайте (постепенно) номинал С4, когда всё заработало и ничего подозрительного обнаружено не было, и убрал лампу накаливания, то уменьшил его номинал до первоначального значения.

В какой-то мере ориентируясь на печатную плату первоисточника, нарисовал печатку под имеющийся подходящий корпус и электронные компоненты.

Протравил платку и собрал схему. Уже предвкушал момент, когда буду доволен собой и рад бытию. Но, схема, собранная на печатной плате отказалась работать. Пришлось вникать и заниматься подбором резисторов и конденсаторов. На момент установки ЭПРА по месту эксплуатации С4 имел ёмкость 3n5, С5 – 7n5, R4 сопротивление 6 Ом, R5 – 8 Ом, R7 – 13 Ом.

Светильник «вписался» не только в дизайн, лампа, поднятая до упора вверх, дала возможность комфортно пользоваться полочкой внутри ниши секретера. Уют в «помещении» наводил Babay.

Люминесцентная лампа (ЛЛ) представляет собой стеклянную трубку, заполненную инертным газом (Ar, Ne, Kr) с добавлением небольшого количества ртути. На концах трубки имеются металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи.

Свечение газового разряда бледно-голубого оттенка, в видимом световом диапазоне очень слабое.

Но в результате электрического разряда большая часть энергии переходит в невидимый, ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия) вызывают свечение в видимой области спектра. Меняя химический состав люминофора, получают различные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампы иного цвета. Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с малоэффективными лампами накаливания.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Схемы электронных балластов для люминесцентных ламп

ЭПРА – это электронная плата, начиненная электронными компонентами. Принципиальная схема включения (Рис. 1) и один из вариантов схемы балласта (Рис. 2) приведены на рисунках.


Люминесцентная лампа, С1 и С2 – конденсаторы

Электронные балласты могут иметь разное схемотехническое решение в зависимости от примененных комплектующих. Выпрямление напряжения производится диодами VD4–VD7 и далее фильтруется конденсатором C1. После подачи напряжения начинается зарядка конденсатора С4. При уровне 30 В пробивается динистор CD1 и открывается транзистор T2, затем включается в работу автогенератор на транзисторах T1, T2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близки по величине (45–50 кГц). Режим резонанса необходим для устойчивой работы схемы. Когда напряжение на конденсаторе С3 достигнет величины пуска, лампа зажигается. При этом снижается регулирующая частота генератора и напряжения, а дроссель ограничивает ток.



Ремонт ЭПРА


В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.


Люминесцентные лампы T8

Лампы T8 имеют диаметр стеклянной колбы 26 мм. Широко используемые лампы T10 и T12 имеют диаметры 31,7 и 38 мм соответственно. Для светильников обычно применяют ЛДС мощностью 18 Вт. Лампы T8 не теряют работоспособности при скачках питающего напряжения, но при понижении напряжения более чем на 10% зажигание лампы не гарантируется.

Температура окружающего воздуха также влияет на надежность работы ЛДС T8. При минусовых температурах снижается световой поток, и могут происходить сбои в зажигании ламп. Лампы T8 имеют срок службы от 9 000 до 12 000 часов.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Балласт для газоразрядной лампы (люминесцентные источники света) применяется с целью обеспечения нормальных условий работы. Другое название – пускорегулирующий аппарат (ПРА). Существует два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шум, эффект мерцания люминесцентной лампы.

Второй вид балласта исключает многие минусы в работе источника света данной группы, поэтому и более популярен. Но поломки в таких приборах тоже случаются. Прежде чем выбрасывать, рекомендуется проверить элементы схемы балласта на наличие неисправностей. Вполне реально самостоятельно выполнить ремонт ЭПРА.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Схема подключения, запуск

Пускорегулирующий аппарат подключается с одной стороны к источнику питания, с другой – к осветительному элементу. Нужно предусмотреть возможность установки и крепления ЭПРА. Подключение производится в соответствии с полярностью проводов. Если планируется установить две лампы через ПРА, используется вариант параллельного соединения.

Схема будет выглядеть следующим образом:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускорегулирующего аппарата. Его электронный вариант конструкции обеспечивает мягкий, но одновременно с тем и практически мгновенный запуск источника света, что дополнительно продлевает срок его службы.

Поджиг и поддержание функционирования лампы осуществляется в три этапа: прогрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянной подачи напряжения небольшой величины.

Определение поломки и ремонтные работы

Если наблюдаются проблемы в работе газоразрядных ламп (мерцание, отсутствие свечения), можно самостоятельно сделать ремонт. Но сначала необходимо понять, в чем заключается проблема: в балласте или осветительном элементе. Чтобы проверить работоспособность ЭПРА, из светильников удаляется линейная лампочка, электроды замыкаются, и подсоединяется обычная лампа накаливания. Если она загорелась, проблема не в пускорегулирующем аппарате.

В противном же случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных светильников, необходимо «прозвонить» все элементы по очереди. Начинать следует с предохранителя. Если один из узлов схемы вышел из строя, необходимо заменить его аналогом. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков владения паяльником.

Если с предохранителем все в порядке, далее следует проверить на исправность конденсатор и диоды, которые установлены в непосредственной близости к нему. Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов эта величина разнится). Если все элементы ПРА в рабочем состоянии, без видимых повреждений и прозвон также ничего не дал, осталось проверить обмотку дросселя.

В некоторых случаях проще купить новую лампу. Это целесообразно сделать в случае, когда стоимость отдельных элементов выше ожидаемого предела или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп выполняется по сходному принципу: сначала разбирается корпус; проверяются нити накала, определяется причина поломки на плате ПРА. Часто встречаются ситуации, когда балласт полностью исправен, а нити накаливания перегорели. Починку лампы в этом случае произвести сложно. Если в доме имеется еще один сломанный источник света сходной модели, но с неповрежденным телом накала, можно совместить два изделия в одно.

Таким образом, ЭПРА представляет группу усовершенствованных аппаратов, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он и вовсе не включается, проверка балласта и его последующий ремонт позволят продлить срок службы лампочки.

Как выбрать балласт для люминесцентных ламп: устройство, как работает и виды

Особенности подключения ЛЛ к сети

Люминесцентная лампа – практичный и экономный модуль, предназначенный для организации осветительных систем в бытовых, промышленных и технических помещениях.

Единственная сложность состоит в том, что напрямую подключить прибор к централизованным электроподающим коммуникациям не представляется возможным.


Электромагнитный балласт потребляет около 25% мощности осветительного прибора, таким образом на четверть снижая его эффективность и уровень КПД

Это обусловлено тем, что создание стойкого активирующего разряда в лампах люминесцентного типа и последующее ограничение возрастающего тока требуют организации некоторых специфических физических условий. Именно эти проблемы решает установка балластного прибора.

Что такое ЭПРА и для чего он нужен

Применение электронной пуско-регулирующей аппаратуры или аппарата (сокращенно ЭПРА) дает существенную прибавку к сроку полезной эксплуатации осветительного оборудования этого вида.

ЭПРА – это очередной виток развития систем зажигания лампы. Электронный баласт выпускается в виде отдельного модуля с контактами для подачи напряжения питания и контактами для подключения одного или нескольких источников света. Такой блок пришел на замену простой, но морально устаревшей схемы с дросселем и стартером. Такой конструкцией обычно оснащаются все современные светильники.

Общий принцип работы элемента

По сути, балласт для люминесцентных ламп представляет собой дроссель. Он регулирует силу подачи тока, ограничивая или разделяя разночастотные электрические сигналы. Ликвидирует пульсации постоянного тока. Происходит нагрев катодов люминесцентных ламп.

Далее, на них производится подача необходимого количества напряжения, которое активирует работу осветительного прибора. Напряжение корректируется с помощью особого регулятора, который впаян в инверторную схему. Именно он отлаживает диапазон напряжений. За счет вышеперечисленных особенностей работы балласта мерцание в источнике света полностью исключается.

В схему встроен и стартер. Его функции – трансляция напряжения и зажигание. При включении лампы, на микросхеме балласта происходит снижение силы тока. Данная особенность позволяет выстроить необходимый режим работы осветительного прибора.

Для чего нужен балласт?

Ток в газовом разряде растет лавинообразно, что приводит к резкому падению сопротивления. Для того чтобы электроды люминесцентной лампы не вышли из строя от перегрева, последовательно включается дополнительная нагрузка, ограничивающая величину тока, так называемый балластник. Иногда для его обозначения употребляют термин дроссель.

Используются два вида балластников: электромагнитный и электронный. Электромагнитный балласт имеет классическую, трансформаторную комплектацию: медный провод, металлические пластины. В электронных балластниках (electronic ballast) применяются электронные компоненты: диоды, динисторы, транзисторы, микросхемы.


Лампы накаливания

Для первоначального поджига (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется пусковое устройство – стартер. В электронном варианте балластника эта функция реализована в рамках единой электрической схемы. Устройство получается легким, компактным и объединяется единым термином – электронный пускорегулирующий аппарат (ЭПРА). Массовое применение ЭПРА для люминесцентных ламп обусловлено следующими достоинствами:

  • эти аппараты компактны, имеют небольшой вес;
  • лампы включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, поскольку ЭПРА работает на высокой частоте (десятки кГц) в отличие от электромагнитных, работающих от сетевого напряжения с частотой 50 Гц;
  • снижением тепловых потерь;
  • электронный балласт для люминесцентных ламп имеет значение коэффициента мощности до 0,95;
  • наличие нескольких, проверенных видов защиты, которые повышают безопасность использования и продлевают срок службы.

Разновидности и принцип функционирования

Главная функция ЭПРА заключается в преобразовании переменного тока в постоянный. По-другому электронный балласт для газоразрядных ламп называется еще и высокочастотным инвертором. Один из плюсов таких приборов – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света. А еще ЭПРА не создает шум при работе.

Балласт электронного типа после подключения к источнику питания обеспечивает выпрямление тока и подогрев электродов. Чтобы люминесцентная лампа зажглась, подается напряжение определенной величины. Настройка тока происходит в автоматическом режиме, что реализуется посредством специального регулятора.

Такая возможность исключает вероятность появления мерцания. Последний этап – происходит высоковольтный импульс. Поджиг люминесцентной лампы осуществляется за 1,7 с. Если при запуске источника света имеет место сбой, тело накала моментально выходит из строя (перегорает). Тогда можно попытаться сделать ремонт своими руками, для чего требуется вскрыть корпус. Схема электронного балласта выглядит так:

Основные элементы ЭПРА люминесцентной лампы: фильтры; непосредственно сам выпрямитель; преобразователь; дроссель. Схема обеспечивает еще и защиту от скачков напряжения питающего источника, что исключает необходимость ремонта по данной причине. А, кроме того, балласт для газоразрядных ламп реализует функцию коррекции коэффициента мощности.

По целевому назначению встречаются следующие виды ЭПРА:

  • для линейных ламп;
  • балласт, встроенный в конструкцию компактных люминесцентных источников света.

ЭПРА для люминесцентных ламп подразделяются на группы, отличные по функциональности: аналоговые; цифровые; стандартные.

Электромагнитная реализация

В этом варианте работа основывается на индуктивном сопротивлении дросселя (он подключается последовательно лампе).  Вторым необходимым элементом  является стартер, регулирующий процесс, необходимый для «зажигания». Этот элемент представляет собой компактных размеров лампу, относящуюся к категории газоразрядных. Внутри ее колбы имеются электроды, изготовленные из биметалла (допускается один из них делать биметаллическим). Подключают стартер в параллель к лампе. Ниже показаны два варианта ПРА.

Работа осуществляется по следующему принципу:

  • при поступлении напряжения внутри лампы стартера производится разряд, что приводит к разогреву биметаллических электродов, в следствие чего они замыкаются;
  • замыкание электродов стартера приводит к возрастанию рабочего тока в несколько раз, поскольку его ограничивает лишь внутренне сопротивление катушки дросселя;
  • в следствие повышения уровня рабочего тока лампы, разогреваются ее электроды;
  • стартер остывает, и его электроды из биметалла размыкаются;
  • размыкание цепи стартером приводит к возникновению в катушке индуктивности импульса высокого напряжения, благодаря которому происходит разряд внутри колбы источника, что приводит к его «зажиганию».

После перехода  осветительного прибора в штатный режим работы, напряжение на нем и стартере будет меньше сетевого примерно в половину, что недостаточно для срабатывания последнего. То есть он будет находиться в разомкнутом состоянии и не оказывать влияние на дальнейшую работу осветительного устройства.

Такой тип балласта отличается простотой реализацией и низкой стоимостью. Но не следует забывать о том, что данный вариант пускорегулирующих устройств обладает рядом недостатков, таких как:

  • на «зажигание» уходит от одной до трех секунд, причем, в ходе эксплуатации это время будет неуклонно расти;
  • источники с электромагнитным балластом мерцают в процессе работы, что вызывает усталость глаз и может стать причиной головной боли;
  • расход электроэнергии у электромагнитных устройств значительно выше, чем у электронных аналогов;
  • в процессе работы дросселем издается характерный шум.

Эти и другие недостатки электромагнитных пусковых устройств для ЛДС привели к тому, что в настоящее время такие ПРА практически не применяются. Им на смену пришли «цифровые» и аналоговые ЭПРА.

Электронная реализация

Электронные устройства представляют собой преобразователи напряжения, с помощью которых обеспечивается питание люминесцентных ламп. Хотя создано много вариантов электронного балласта, в большинстве случаев используется единая блок-схема. При этом производители могут вносить в нее определенные изменения, например, добавить схему управления яркостью осветительного прибора.

Перевод люминесцентного светильника лампы в штатный режим работы с помощью электронного ПРА чаще всего осуществляется одним из двух способов:

  1. До момента подачи на катоды лампы зажигающего напряжения они предварительно нагреваются. Это позволяет избавиться от мерцания, а также увеличить КПД осветительного прибора.
  2. В конструкцию светильника установлен колебательный контур, который входит в резонанс до того, как в колбе лампы появится разряд.

При использовании второго способа схема электронного балласта реализована так, что нить накала лампочки является частью контура. Как только в газовой среде появляется разряд, изменяются параметры колебательного контура, после чего он выходит из резонанса. В результате напряжение снижается до рабочего.

Схема пускорегулирующего аппарата для ламп 36w.

Сегодня большое распространение получили компактные люминесцентные устройства с цоколем Е14 и Е27. В них балласт устанавливается непосредственно в конструкцию прибора. Пример схемы электронного балласта для люминесцентных ламп 18w приведен ниже.

Электронный балласт для люминесцентных ламп

Электронные пускорегулирующие аппараты (ЭПРА) появились около 30 лет назад и активно вытесняют с рынка ЭмПРА. Устройство создано на современных электронных устройствах – диодах, микросхемах, транзисторах. Несмотря на то, что в ЭПРА уже включены: стартер, фильтры и другие устройства, балласт легкий и компактный. Принцип его работы устройства может – от предварительного разогрева катода лампы, до комбинированного метода запуска за счет резонанса в контуре балласта.

Основные преимущества ЭПРА:

  • Повышение световой отдачи от лампы.
  • Простота схемы подключения – в балласте уже встроены все необходимые элементы.
  • Компактность блока.
  • Нет мерцания лампы.
  • Отсутствует гул, характерный для ЭмПРА.
  • Продление срока эксплуатации осветительного прибора.
  • Уменьшение расходов на электроэнергию до 30%.
  • Возможность управлять мощностью лампы (диммирование).

Основной недостаток ЭПРА – сравнительно высокая стоимость, особенно если речь о качественном оборудовании известных производителей.

Для компактных люминесцентных ламп

Компактные типы ламп дневного света представлены приборами, аналогичным лампой накаливания типов Е27, Е40 и Е14. В таких схемах электронные балласты встраиваются вовнутрь патрона. В данной конструкции исключён ремонт в случае поломки. Дешевле и практичнее будет приобрести новую лампу.

Из чего состоит приспособление?

Главными составляющими элементами схемы электронного модуля являются:

  • выпрямительное устройство;
  • фильтр электромагнитного излучения;
  • корректор коэффициента мощности;
  • фильтр сглаживания напряжения;
  • инверторная схема;
  • дроссельный элемент.

Схемное построение предусматривает одну из двух вариаций – мостовая либо полумостовая. Конструкции, где используется мостовая схема, как правило, поддерживают работу с лампами высокой мощности.


Примерно на такие приборы света (мощностью от 100 ватт) рассчитаны пускорегулирующие модули, выполненные по мостовой схеме. Которая, кроме поддержки мощности, оказывает положительное влияние на характеристики питающего напряжения

Между тем, преимущественно в составе люминесцентных светильников эксплуатируются модули, построенные на базе полумостовой схемы.

Такие приборы на рынке встречаются чаще по сравнению с мостовыми, т. к. для традиционного применения достаточно светильников мощностью до 50 Вт.

ЭПРА для компактных ЛДС

Сравнительно недавно стали широко использоваться в быту люминесцентные энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПРА теоретически возможен, но на практике проще купить новую лампу.

На фото показан пример такой лампы марки OSRAM, мощностью 21 ватт. Следует заметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковая технология, непрерывно совершенствуясь, позволяет быстрыми темпами достигнуть цены на ЛДС, стоимость которых остается практически неизменной.

Особенности работы аппарата

Условно функционирование электроники можно разделить на три рабочих этапа. Первым делом включается функция предварительного прогрева нитей накала, что является важным моментом в плане долговечности газовых приборов света.

Особенно необходимой эта функция видится в условиях низкотемпературной окружающей среды.


Вид рабочей электронной платы одной из моделей пускорегулирующего модуля на полупроводниковых элементах. Эта небольшая легкая плата полностью заменяет функционал массивного дросселя и добавляет ряд улучшенных свойств

Затем схемой модуля запускается функция генерации импульса высоковольтного импеданса – уровень напряжения около 1,5 кВ.

Присутствие напряжения такой величины между электродами неизбежно сопровождается пробоем газовой среды баллона люминесцентной лампы – зажиганием лампы.

Наконец, подключается третий этап работы схемы модуля, основная функция которого заключается в создании стабилизированного напряжения горения газа внутри баллона.

Уровень напряжения в этом случае относительно невысок, чем обеспечивается малое потребление энергии.

Принципиальная схема пускорегулятора

Как уже отмечалось, часто используемой конструкцией является модуль ЭПРА, собранный по двухтактной полумостовой схеме.


Принципиальная схема полумостового устройства запуска и регулировки параметров люминесцентных светильников. Однако это далеко не единственное схемное решение, какие применяются для изготовления ЭПРА

Работает такая схема в следующей последовательности:

  1. Сетевое напряжение в 220В поступает на диодный мост и фильтр.
  2. На выходе фильтра образуется постоянное напряжение в 300-310В.
  3. Инверторным модулем наращивается частота напряжения.
  4. От инвертора напряжение проходит на симметричный трансформатор.
  5. На трансформаторе за счет управляющих ключей формируется необходимый рабочий потенциал для люминесцентной лампы.

Ключи управления, установленные в цепи двух секций первичной и на вторичной обмотке, регулируют требуемую мощность.

Поэтому на вторичной обмотке формируется свой потенциал для каждого этапа работы лампы. Например, при разогреве нитей накала один, в режиме текущей работы другой.

Рассмотрим принципиальную схему полумостового ЭПРА для ламп мощностью до 30 Вт. Здесь сетевое напряжение выпрямляется сборкой из четырех диодов.

Выпрямленное напряжение от диодного моста попадает на конденсатор, где сглаживается по амплитуде, фильтруется от гармоник.


На качество работы схемы оказывает влияние правильный подбор электронных элементов. Нормальная работа характеризуется параметром тока на плюсовом выводе конденсатора С1. Длительность импульса розжига светильника определяется конденсатором С4

Далее посредством инвертирующей части схемы, собранной на двух ключевых транзисторах (полумост), напряжение, поступившее из сети с частотой 50 Гц, преобразуется в потенциал с более высокой частотой – от 20 кГц.

Он подается уже на клеммы люминесцентной лампы для обеспечения рабочего режима.

Примерно по такому же принципу действует мостовая схема. Разница состоит лишь в том, что в ней используются не два инвертора, а четыре ключевых транзистора. Соответственно, схема несколько усложняется, добавляются дополнительные элементы.


Узел схемы инвертора, собранный по мостовой схеме. Здесь в работе узла участвуют не два, а четыре ключевых транзистора. Причем зачастую предпочтение отдается полупроводниковым элементам полевой структуры. На схеме: VT1…VT4 – транзисторы; Tp – трансформатор тока; Uп, Uн – преобразователи

Между тем именно мостовой вариант сборки обеспечивает подключение большого количества ламп (более двух) на одном балласте. Как правило, устройства, собранные по мостовой схеме, рассчитаны на мощность нагрузки от 100 Вт и выше.

Как подключить люминесцентную лампу к сети — варианты и схемы


Популярность применения люминесцентных ламп обусловлена несколькими факторами. Важнейшими из них являются их экономичность, эффективность работы, а также равномерный свет, испускаемый с достаточно большой площади поверхности. Но помимо этих качеств необходимо знать правила подключения люминесцентных ламп. Для этого применяется несколько типов схем и дополнительных устройств.

С дросселем и без него

Люминесцентную установку нельзя просто зажечь — ей необходимо наличие зажигателя и токоотвод. В небольших изделиях фабрики все эти нюансы учитывают и встраивают в корпус и покупателю нужно только лишь вкрутить лампочку в подходящий плафон светильника/торшера и нажать выключатель.

А для более крупных лампочек необходима пускорегулирующая установка, которая может быть как электромеханическая, так и электронная.

Для правильного подсоединения и бесперебойной работы лампочки нужно знать схему.

Здесь рассматривается поэтапное подключение двух трубчатых люминесцентных ламп к сети с применением стартерной установки. Для работы необходимо иметь два стартера, дроссель, вид которого должен непременно соответствовать виду лампы.

А также необходимо помнить о суммарной мощности пускового аппарата, она не должна быть выше, чем у дросселя.

При включении питающего кабеля к лампочке необходимо помнить, что в роли ограничителя тока будет дроссель.

Поэтому, фазную жилу нужно подключать через него, а на изделие подключить нулевой кабель.

Данная схема подключения подходит для крупных осветительных ламп. А более меньшие модели оснащены вмонтированным устройством запуска и регулировки — портативным ЭПРА, который расположен в корпусе.

С помощью стартёра и дросселя

При такой схеме включения нити накала соединяются последовательно со стартёром и баластником. Другое название электромагнитного баластника – дроссель. Это катушка индуктивности, ограничивающая ток через светильник.

При включении светильника стартёр подключает вольфрамовые спирали последовательно с дросселем. При их нагреве происходит эмиссия электронов, что облегчает появление между электродами разряда. Периодически стартёр разрывает цепь и, если в это время происходит запуск лампочки, то напряжение между электродами падает, и он больше не включается. Если же разряд не возникает, то стартёр снова замыкает цепь, и процесс зажигания повторяется.

Недостатки этой схемы:

  • длительное время запуска, особенно зимой в неотапливаемых помещениях;
  • дроссель гудит при работе;
  • свет мерцает с частотой 100Гц, что незаметно глазу, но может вызвать головную боль.

Интересно. Для уменьшения мерцания в светильниках из двух ламп одна из них включается через конденсатор. При этом колебания света в них не совпадают, что благоприятно влияет на освещённость в помещении.

Особенности функционирования люминесцентных приборов

В основу работы этих источников света заложен эффект формирования ИК излучения парами ртути под воздействием электрического разряда. На практике для этого в стеклянную колбу помещают спиральную пару катод-анод, внутреннюю поверхность лампы обрабатывают люминофорным раствором. Затем происходит наполнение конструкции сложной смесью, основным компонентом которой являются пары ртути.

При подаче электротока возникает разряд, который и приводит к свечению лампы. Но в отличие от аналогичных моделей накаливания величина разряда должна быть четко нормированной. Только при соблюдении этого условия возможен равномерный процесс формирования света.

Для осуществления этого применяют два типа приборов:

  1. ЭмПРА – пускорегулирующий аппарат. Он более известен как дроссель. Может использоваться в паре со стартером.
  2. ЭПРА. Более надежный и технологичный способ контроля работы люминесцентной лампы. Его применение практически полностью исключает характерное мигание лампы.

В настоящее время большее распространение получили схемы с установкой ЭмПРА. Это связано с их дешевизной и возможность реализации подключения нескольких ламп.

Специфика применения ЭмПРА

Для применения электромагнитного запуска понадобятся компенсационный конденсатор, дроссель и стартер. В целях обеспечения надежности функционирования схемы вся внутренняя проводка должна быть выполнена проводами ПУГВ.

Для лучшего понимания необходимо рассмотреть все этапы включения:

  • После замыкания контакта К происходит подача электрического тока на стартер. Он представляет собой небольшую газоразрядную лампу. При этом в ней начинает формироваться тлеющий разряд, значение напряжения которого меньше чем в сети, но больше нормированного для основного прибора освещения.
  • Затем происходит тепловое расширение электродов, в результате которого они соединяются, образуя электрическую цепь. Величина тока, протекающего по ней, напрямую зависит от параметров дросселя. Он должен превышать номерованный для лампы в 1,5-2 раза.
  • В это время происходит предварительный разогрев пары катод-анод в лампе для формирования разряда в газовой среде. После размыкания электродов дросселя появляется высокий ток самоиндукции. Конденсатор снижает эту величину до нужного уровня.
  • Резкий рост напряжения провоцирует появление в колбе большого количества заряженных частиц, которые и приводят к формированию плазмы и как следствие – газового разряда.

По такому же принципу можно сделать соединение двух люминесцентных ламп. Процессы, протекающие в этой цепи, практически полностью аналогичны вышеописанным.

К недостаткам такого способа подключения относят небольшой срок службы дросселей и стартеров. Это связано со спецификой процессов, которые происходят в них.

Подключение с помощью ЭПРА

Намного эффективнее использовать ЭПРА – электронный пускорегулирующий аппарат. Его принцип работы отличается от ЭмПРА. Это устройство подает на контакты лампы высокочастотное напряжение, величина которого может варьироваться от 25 до 130 Гц.

Для правильного подключения прибора достаточно предварительно ознакомиться с инструкцией. В большинстве случаев схема подсоединения состоит из следующих этапов.

  1. Подключение контактов к электросети.
  2. Соединение проводов с клеммами нитей накалов. Для каждой из них потребуется два контакта.

Преимущества применения этого пускового устройства заключаются в существенной экономии электроэнергии, увеличении срока службы, а также полного отсутствия мерцания и характерного для люминесцентных осветительных приборов шума.

С электронным балластом

Провести работу по подключению с применением ЭПРА для люминесцентных изделий легко произвести, если человек имеет базовые навыки работы с электрикой. Фактически, в изделии будет находиться сам блок, элемент проводов и лампы дневного освещения.

Для начала необходимо выбрать в корпусе лампы удобное место для подключения электронного блока управления, полагаясь на практичную расстановку клемм, которые находятся на корпусе.

Зафиксировать его с корпусом с помощью саморезов простым шуруповёртом. Соединить блок управления с изделием и клеммой подключения.

Умножитель напряжения

Для работы таких светильников раньше использовались самодельные умножители напряжения. Роль токоограничивающего баласта в этой схеме играют конденсаторы С3 и С4, а С1 и С2 создают высокое напряжение, необходимое для появления внутри трубки разряда.

Высоковольтный разряд зажигает ЛДС сразу, но мерцание такого светильника сильнее, чем в схеме со стартёром и дросселем.

Интересно. Умножитель напряжения позволяет использовать колбы с перегоревшими вольфрамовыми спиралями.

Со стартером

Схему подключения люминесцентной лампы со стартером будет выполнить проще всего. Здесь для примера будет взята лампочка на 40 Вт. Дроссель должен быть с такой же мощностью, а для стартера будет достаточно 60 Вт.

Пошаговое подключение по схеме:

  • параллельно установить стартер к выступающим боковым контактам на краях люминесцентной лампочки. Эти контакты похожи на куски нитей накаливания вакуумной колбы;
  • теперь на контакты необходимо начать подсоединять дроссель;
  • к этим контактам подсоединить конденсатор, непоследовательно, а параллельно. Из-за этого конденсатору будет возмещаться реактивная мощность и уменьшаться помехи в электросети.

Такую простую схему может осуществить любой человек, но перед тем, как включаться лампочку, нужно замерить напряжение в сети. Включать светильник только после теста мультиметром.

Схемы подключения

Разработка такого электронного устройства  велась для минимизации конструкции светильника и замещения крупногабаритного дросселя и стартера одним единственным модулем, который подключается к сети питания переменного тока и к электродам люминесцентного источника света.

ЭПРА лишены всех минусов классических схем подключения.

Существуют модули, предназначенные для одновременного подключения четырех ламп.

Подключение ЭПРА к четырем лампам

Как в случае с одной или двумя лампами, схема не требует никаких дополнительных элементов. Модуль ЭПРА соединяется напрямую с лл.

Схема подключения ЭПРА 4х18 Вт (Пример:Navigator NB-ETL-418-EA3)

Схема подключения ЭПРА 2х36 Вт (Пример:ELECTRONIC BALLAST ETL-236)

Схема подключения ЭПРА 2х18 Вт (Пример:Navigator NB-ETL-218-EA3)

Во всех случаях выключатель рекомендовано ставить именно на фазовый провод. При наличии нуля потенциал может сохраняться. Об этом будет говорить слабое мерцание ламп в выключенном положении. С рабочими, но дешевыми ЭПРА иногда тоже наблюдается такое явление. Возможно, что причина в том, что с электролитического конденсатора не ушел полностью заряд. В этом случая поможет простая доработка: достаточно зашунтировать электролитический конденсатор резистором на сотню килоом.

Стандартная схема устройства

Схемы электронных балластов люминесцентных ламп включают в себя набор трансиверов. Контакты у моделей применяются коммутируемого типа. Обычное устройство состоит из конденсаторов емкостью до 25 пФ. Регуляторы в устройствах могут применяться операционного либо проводникового типа. Стабилизаторы в балластах устанавливаются через обкладку. Для поддержания рабочей частоты в устройстве имеется тетрод. Дроссель в данном случае крепится через выпрямитель.

Классическая схема c использованием электромагнитного балласта

Совокупность дросселя и стартера также называют электромагнитным балластом. Схематически такой вид подключения можно представить в виде нижерасположенного рисунка.

Для увеличения коэффициента полезного действия,a также уменьшения реактивных нагрузок в схему вводятся два конденсатора – они обозначены С1 и С2.

  • Обозначение LL1- дроссель, иногда его называют балластником.
  • Обозначение Е1 – стартер, как правило он представляет собой небольшую лампочку тлеющего разряда c одним подвижным биметаллическим электродом.

Изначально, до подачи тока эти контакты разомкнуты, поэтому ток в схеме напрямую на лампочку не подается, а нагревает биметаллическую пластину, которая нагреваясь выгибается и замыкает контакт. В результате возрастает ток, нагревающий нити нагрева в люминесцентной лампе, а самом стартере ток уменьшается и электроды размыкаются. В балласте начинается процесс самоиндукции, приводящий к созданию высокого импульса напряжения, обеспечивающего образование заряженных частиц, которые взаимодействуя с люминофором покрытия, обеспечивают возникновение светового излучения.

Такие схемы с использованием балласта имеют ряд достоинств:

  • небольшая стоимость требуемого оборудования;
  • простота в использовании.

К недостаткам таких схем можно отнести:

  • «мерцающий» характер светового излучения;
  • значительный вес и крупные габариты дросселя;
  • долгое зажигание люминесцентной лампы;
  • гудение работающего дросселя;
  • почти 15% потерь энергии.
  • невозможно использовать совместно с устройствами, которые плавно регулируют яркость освещения;
  • на холоде включение значительно замедляется.

Дроссель выбирают строго в соответствии c инструкцией к конкретному виду люминесцентных ламп. Это обеспечит полноценное выполнение им своих функций:

  • ограничивать в требуемых значениях величину тока при замыкании электродов;
  • генерировать достаточное для пробоя газовой среды в колбе лампы напряжение;
  • обеспечивать поддержку горения разряда на стабильном постоянном уровне.

Несоответствие выбора приведет к преждевременному износу ламп. Как правило, дроссели имеют ту же мощность, что и лампа.

Среди наиболее распространенных неисправностей светильников, в которых используют люминесцентные лампы, можно выделить такие:

  • отказ дроселля, внешне это появляется в почернении обмотки, в оплавлении контактов: проверить его работоспособность можно самостоятельно, для этого понадобится омметр – сопротивление исправного балласта составляет порядка сорока Ом, если омметр показывает менее тридцати Ом – дроссель подлежит замене;
  • отказ стартера – в этом случае лампа начинает светиться только по краям, начинается мигание, иногда лампочка стартера светится, нол сам светильник не зажигается, устранить неисправность можно только заменой стартера;
  • иногда все детали схемы исправны, но светильник не включается, как правило, причиной является потеря контактов в ламподержателях: в некачественных светильниках они изготавливаются из некачественных материалов и поэтому плавятся – устранить такую неисправность можно только заменой гнезд ламподержателей;
  • лампа мигает по типу стробоскопа, по краям колбы наблюдается почернение, свечение очень слабое – устранение неисправности замена лампы.

Схема ЭПРА для ламп дневного света с мощностью 36 Вт

В зависимости от применяемых электронных деталей по типу и техническим показателям у балластников электрическая схема может существенно отличаться, однако выполняемые ими функции будут такими же.

На приведенном выше рисунке в схеме используются такие элементы:

  • диоды VD4–VD7 предназначены для выпрямления тока;
  • конденсатор С1 предназначен для фильтрации тока, проходящего через систему диодов 4-7;
  • конденсатор С4 начинает зарядку после подачи напряжения;
  • динистор CD1 пробивается в момент достижения напряжением показателя 30 В;
  • транзистор T2 открывается после пробития 1 динистора;
  • трансформатор TR1 и транзисторы T1, T2 запускаются в результате активации на них автогенератора;
  • генератор, дроссель L1 и последовательные конденсаторы С2, С3 на частоте примерно 45–50 кГц начинают резонировать;
  • конденсатор С3 включает лампу после достижения на нем пусковой величины заряда.

Мнение экспертаВиктор ГольштейнЭксперт по медицинскому оборудованию. Начинающий блогер.Задать вопрос экспертуСПРАВКА: Резонанс нужен для стабильного функционирования схемы, а в результате пуска дросселем ограничивается ток при снижении в генераторе напряжения и регулирующей частоты.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 36 Вт

В приведенной схеме есть одна особенность – колебательный контур встраивается в конструкцию самого осветительного прибора, что обеспечивает резонанс прибора до момента появления в колбе разряда.

Таким образом, частью контура будет выступать нить накала лампы, что в момент появления разряда в газовой среде сопровождается изменением в колебательном контуре соответствующих параметров. Это выводит его с резонанса, что сопровождается снижением до рабочего уровня напряжения.

Схема балласта «Эпра» 18 Вт

Данная схема электронного балласта для люминесцентной лампы включает в себя понижающий трансформатор, а также две пары конденсаторов. Транзистор для модели предусмотрен лишь один. Отрицательное сопротивление он максимум способен выдерживать на уровне 33 Ом. Для устройств данного типа это считается нормальным. Также схема электронного балласта 18 Вт включает в себя дроссель, который расположен над трансформатором. Динистор для преобразования тока применяется модульного типа. Понижение тактовой частоты происходит при помощи тетрода. Находится данный элемент возле дросселя.

Балласт «Эпра» 2х18 Вт

Указанный электронный балласт 2х18 (схема показана ниже) состоит из выходных триодов, а также понижающего трансформатора. Если говорить про транзистор, то он в данном случае предусмотрен открытого типа. Всего конденсаторов в цепи имеется два. Еще у схемы электронных балластов «Эпра» 18 Вт есть дроссель, который располагается под трансформатором.

Конденсаторы при этом стандартно устанавливаются возле каналов. Процесс преобразования осуществляется через понижение тактовой частоты устройства. Стабильность напряжения в данном случае обеспечивается благодаря качественному динистору. Всего каналов у модели имеется два.

Схема ЭПРА на базе диодного моста для ЛДС с мощностью 18 Вт

Необходимо учитывать особенность строения автогенератора, в основу которого входит пара транзисторов.

Из повышающей обмотки, обозначенной на схеме 1-1 трансформатора Тр, поступает питание. Частями последовательного колебательного контура выступает дроссель L1 и конденсатор С2, резонансная частота которого от генерируемой автогенератором существенно отличается. Приведенная выше схема используется для настольных осветительных приборов бюджетного класса.

Устройство на 15 Вт

Балласт электронный (схема 2х36) для ламп на 15 Вт собирается с интегральными трансиверами. Тиристоры в данном случае крепятся через дроссель. Также стоит отметить, что есть модификации на открытых переходниках. Они выделяются высокой проводимостью, но работают при низкой частоте. Конденсаторы используются только с компараторами. Номинальное напряжение при работе доходит до 200 В. Изоляторы используются только в начале цепи. Стабилизаторы применятся с переменным регулятором. Проводимость элемента составляет не менее 5 мк.

Схема ЭПРА в более дорогих устройствах для ЛДС с мощностью 21 Вт

Необходимо отметить, что более простые схемы балласта, которые применяются для осветительных приборов типа ЛДС, не смогут гарантировать длительную эксплуатацию лампы, поскольку подвергаются большим нагрузкам.

У дорогих изделий такой контур обеспечивает стабильное функционирование на протяжении всего эксплуатационного срока, поскольку все используемые элементы соответствуют более серьезным техническим требованиям.

Схема электронного балласта на транзисторах EN13003A

Схема электронного балласта для люминесцентной лампы с транзисторами EN13003A является на сегодняшний день довольно сильно распространенной. Выпускаются модели, как правило, без регуляторов и относятся к классу бюджетных приборов. Однако прослужить устройства способны долго, и предохранители у них имеются. Если говорить про трансформаторы, то они подходят только понижающего типа.

Устанавливается транзистор в цепи возле дросселя. Система защиты у таких моделей в основном используется стандартная. Контакты приборов защищены динисторами. Также схема электронного балласта на 13003 включает в себя конденсаторы, которые часто устанавливаются с емкостью около 5 пФ.

Использование транзисторов N13003A

Балласты с данными транзисторами ценятся за хорошую проводимость. У них малый коэффициент тепловых потерь. Стандартная схема устройства включает проводной преобразователь. Дроссель в данном случае используется с обкладкой. У многих моделей низкая проводимость, но рабочая частота равняется 30 Гц. Компараторы для модификаций подбираются на волновом конденсаторе. Регуляторы подходят только операционного типа. Всего в устройстве имеется два реле, а контакторы устанавливаются за дросселем.

Использование транзисторов КТ8170А1

Балласт на транзисторе КТ8170А1 состоит из двух трансиверов. У моделей имеется три фильтра для импульсных помех. За включение трансивера отвечает выпрямитель, который работает при частоте 45 Гц. У моделей используются преобразователи только переменного типа. Они работают при пороговом напряжении 200 В. Данные устройства замечательно подходят для ламп на 15 Вт. Триоды в контроллерах используются выходного типа. Показатель перегрузки может меняться, и это в первую очередь связано с пропускной способностью реле. Также надо помнить о емкости конденсаторов. Если рассматривать проводные модели, то вышеуказанный параметр у элементов не должен превышать 70 пФ.

Использование транзисторов КТ872А

Принципиальная схема электронного балласта на транзисторах КТ872А предполагает использование только переменных преобразователей. Пропускная способность составляет около 5 мк, но рабочая частота может меняться. Трансивер для балласта подбирается с расширителем. У многих моделей используется несколько конденсаторов разной емкости. В начале цепи применяются элементы с обкладками. Также стоит отметить, что триод разрешается устанавливать перед дросселем. Проводимость в таком случае составит 6 мк, а рабочая частота не будет выше 20 Гц. При напряжении 200 В перегрузка у балласта составит около 2 А. Для решения проблем с пониженной чувствительностью используются стабилизаторы на расширителях.

Применение низкочастотных триггеров

Триггер на электронный балласт для люминесцентных ламп устанавливается в том случае, когда отрицательное сопротивление в цепи превышает 60 Ом. Нагрузку с трансформатора он снимает очень хорошо. Предохранители при этом устанавливаются очень редко. Трансформаторы для моделей этого типа используются лишь векторные. В данном случае понижающие аналоги неспособны справляться с резкими скачками предельной тактовой частоты.

Непосредственно динисторы в моделях устанавливаются возле дросселей. По компактности электронные балласты довольно сильно отличаются. В данном случае многое зависит от используемых компонентов устройства. Если говорить про модели с регуляторами, то места они требуют очень много. Также они способны работать в электронных балластах только на два конденсатора.

Модели без регуляторов очень компактны, однако транзисторы для них могут использоваться лишь ортогонального типа. Отличаются они хорошей проводимостью. Однако следует учитывать, что данные электронные балласты на рынке покупателю обойдутся недешево.

Как проверить балласт люминесцентной лампы

Как убедиться в исправности балласта, если лампа перестала работать? Один из характерных признаков – фальстарт. После включения лампа начинает светить не сразу, а 3-4 раза мигает, и лишь потом загорается.

Проверить электрический балласт люминесцентных ламп можно и простым экспериментом – на обесточенном светильнике снять трубку лампы, закоротить нити накала и подключить между ними лампу накаливания. Если при подаче напряжения лампа светится – балласт исправен. Нет – меняем на новое устройство с аналогичными характеристиками работы.

Обрыв

Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.

Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.

При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.

Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.

Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:

Замыкание обмоток


Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.

Но изоляция может высохнуть или нарушиться.

Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.

Межвитковое замыкание

Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.


Найти такое повреждение очень трудно, даже при помощи мультиметра.

Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.

Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.

Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:

  • мощностью на 20Вт — сопротивление от 55 до 60 Ом
  • мощностью на 40Вт – сопротивление от 24 до 30 Ом
  • мощностью на 80Вт – сопротивление от 15 до 20 Ом

Магнитопровод

Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.

При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.


Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.

Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.

Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.

Пробой на корпус

О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.

Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.

Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.

На что смотреть при выборе

Выбирая балласт для люминесцентной лампы, первоочередно необходимо обращать внимание на такой параметр, как мощность модуля.

Она должна полностью совпадать с мощностью осветительного прибора, иначе лампа просто не сможет полноценно функционировать и выдавать светопоток в требуемом режиме.


Включать балласт в сеть без нагрузки категорически запрещено. Устройство может сразу же перегореть и придется его ремонтировать либо покупать новое

Далее нужно определить, какой именно балласт требуется приобрести. По цене более выгодны электромагнитные элементы. Их стоимость невелика и с установкой обычно не бывает сложностей.

Правда, такие приборы считаются устаревшим, имеют громоздкие габариты и потребляют дополнительный энергоресурс. Это заметно снижает их привлекательность, даже несмотря на доступную изначальную цену.


Чтобы проверить исправность электронного балласта, пригодится специальный измерительный прибор – карманный осциллограф

Электронные устройства стоят значительно дороже. Особенно этот пункт касается изделий, выпущенных крутыми брендовыми производителями. Но их цена с лихвой компенсируется энергоэкономичностью, практичностью, безупречной сборкой и высоким уровнем общего качества приборов.

Лучшие производители электромагнитных аппаратов

По статистике лучшее электромагнитное устройств у известного бренда E.Next. Это неудивительно, данная компания выпускает высококлассные модули, отличающиеся своей надежностью и долговечностью. Продукция выполнена в соответствии со строгими требованиями, которые причисляются к товарам данного класса. На всю линейку товаров компания E.Next предоставляет гарантию, а также предлагает своим клиентам качественное обслуживание. Клиент может обратиться в один из множества call-центров и задать вопрос сотрудникам технической поддержки.

Европейская компания Philips не уступает своим коллегам по производству электромагнитных балластов. Изделия данной торговой марки считаются одними из самых надежных и эффективных на рынке. Поэтому выбрать необходимую модель для лампы накаливания не составит труда.

Мнение экспертаВиктор ГольштейнЭксперт по медицинскому оборудованию. Начинающий блогер.Задать вопрос экспертуВажно! Балласты фирмы Philips значительно сокращают нагрузку на осветительные приборы и экономят энергопотребление.

Подбор балласта по производителю

Завод-производитель – это еще один значимый критерий при покупке. Не стоит ориентироваться исключительно на цену и приобретать самую дешевую модель из всех, что предлагаются в магазине.

Особенности брендовых балластов

Безымянное изделие китайского изготовления может очень быстро выйти из строя и повлечь за собой последующие проблемы с работой самой лампочки и даже светильника.


Брендовые производители комплектуют балласты качественными, устойчивыми к износу деталями, которые обеспечивают корректную работу модуля в течение всего эксплуатационного периода

Лучше отдать предпочтение торговым маркам с надежной репутацией, отлично зарекомендовавшим себя длительной работой на рынке осветительного оборудования и сопутствующих элементов.

Такие устройства надежно отработают весь положенный срок, обеспечив полноценное функционирование люминесцента в любом осветительном приборе.

Балластные изделия, выпущенные на предприятиях популярных торговых марок, специализирующихся на изготовлении электрооборудования и сопутствующих элементов, имеют крепкий и прочный внешний корпус из термостойкого, несклонного к деформации пластикового состава.

Стоящая на изделиях маркировка степень защиты IP2 показывает, что прибор имеет хороший уровень общей защищенности и предохраняется от попадания внутрь коробки посторонних деталей размером более 12,5 мм.

Эксплуатация устройства комфортна и абсолютно безопасна. Конструкция полностью исключает возможность контакта пользователя с токопроводящими элементами.


Балластные модули с маркировкой IP2 надежны, практичны и удобны в бытовом применении, однако, уязвимы к проникновению внутрь пыли. Из-за этого небольшого минуса ставить их в лампы, освещающие запыленные рабочие помещения, нецелесообразно

Нормальный температурный диапазон для эффективной и продолжительной работы устройства довольно широк.

Брендовые балласты качественно справляются с поставленными задачами при морозах, доходящих до -20°C и отлично чувствуют себя в жаркие дни, когда воздух раскаляется до +40°C.

Лучшие производители электромагнитных аппаратов

Большой популярностью у клиентов пользуются электромагнитные балластные устройства, изготовленные под брендом E. Next.

Это обусловлено тем, что компания предлагает по-настоящему качественные, надежные и прогрессивные модули, выполненные на самом высоком уровне в четком соответствии с требованиями, предъявляемыми к оборудованию такого класса.


Помимо гарантий и обслуживания, фирма E.Next предлагает клиентам пользовательскую техподдержку через call-центры. Позвонив туда, потребитель может задать оператору вопрос любой сложности и в течение нескольких минут получить профессиональный, понятный ответ

На все товары компания дает фирменную гарантию и предлагает покупателям высококачественный сервис на всех этапах сотрудничества.

Не меньшим спросом пользуются электромагнитные балласты, созданные известным и уважаемым европейским производителем электротехнического оборудования и сопутствующих элементов – компанией Philips.

Товары этого бренда считаются одними из самых качественных, надежных и эффективных.


Электромагнитные модули от Филипс представлены на рынке в самом широком ассортименте. Подобрать нужный вариант для лампы любой конфигурации не составит никакого труда

Балласты Филипс помогают экономить энергоресурс и нейтрализуют нагрузку, возникающую в процессе эксплуатации люминесцентных ламп.

Актуальные электронные модули

Изделия электронного типа относятся к современному виду оборудования и, помимо традиционных, имеют еще и дополнительные функции. В этом сегменте лидерские позиции занимают товары от немецкой компании Osram.

Их стоимость несколько выше, чем у китайских или отечественных аналогов, но значительно ниже по сравнению с таким конкурентами, как Philips и Vossloh-Schwabe.


У электронных балластов Osram есть целый ряд преимуществ. Они имеют аккуратную форму и скромные габариты, могут работать в температурном режиме -15…+50 °C и надежно служат в течение 100 000 часов

Среди бюджетных брендовых модулей ярко выделяются на фоне конкурентов электронные балласты Horos.

Несмотря на лояльную стоимость, эти предметы демонстрируют высокую рабочую эффективность и хороший уровень КПД, устраняют задержку при розжиге, снижают до минимума потребление энергии и повышают светоотдачу самой лампы.

С помощью этих средств можно устранить раздражающее мерцание в люминесцентных лампах и сделать осветительные приборы максимально удобными и эксплуатационно-комфортными.

Не отстает от маститых старожилов рынка и молодая, перспективно развивающаяся фирма Feron. Она предлагает пользователям продукцию европейского уровня по очень небольшой, разумной цене.


Балласты Feron сделаны аккуратно. Все детали имеют сертификаты соответствия. Внешний корпус, изготовленный из пластика, представляет собой удлиненный плоский прямоугольник. Изделие мало весит и легко монтируется в люминесцентные источники света любой конфигурации

Устройства балластного типа от Ферон предохраняют лампы от неожиданных электромеханических помех и перепадов напряжения, устраняют раздражающее глаза мерцание и помогают сэкономить более 30% электрической энергии.

Управляемый балластом от Feron люминесцент включается/выключается мгновенно. Фоновой звуковой эффект в процессе работы не наблюдается. Освещение получается мягким, равномерным и создает вокруг приятную, спокойную атмосферу.

Ремонт ЭПРА

В случае отсутствия возможности быстрой замены вышедшего из строя ЭПРА можно попытаться отремонтировать балластник самостоятельно. Для этого выбираем следующую последовательность действий для устранения неисправности:

  • для начала проверяется целостность предохранителя. Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее производится визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • в случае обнаружения характерного почернения детали или платы ремонт производится с помощью замены на исправный элемент. Как проверить своими руками неисправный диод или транзистор, имея в наличии обычный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость деталей для замены будет выше или сопоставима со стоимостью нового ЭПРА. В таком случае лучше не тратить время на ремонт, а подобрать близкую по параметрам замену.

Распространённые принципиальные схемы

Прежде чем перейти к ремонту, рассмотрим несколько распространённых схем электронных балластов для люминесцентных ламп. Начнём с самой простой. Она используется в светильниках небольшой мощности, включая компактные люминесцентные лампы (КЛЛ).

Схема простого балласта люминесцентной лампы

Сетевое напряжение выпрямляется диодным мостом D3-D6 и сглаживается высоковольтным конденсатором С4. Пройдя через фильтр L2, С7, питает блокинг-генератор, собранный на транзисторах Q1, Q2 и трансформаторе Т1. Рабочая частота генератора обычно составляет 10-20 кГц. Импульсное напряжение, снятое с обмотки Т1, через дроссель L1 поступает на выводы катодов люминесцентной трубки LMP1. Вторые выводы катодов соединены через конденсатор С5.

После подачи на схему питания генератор запускается. Напряжение с частотой преобразования подается на катоды лампы. Пока разряда в колбе нет, напряжение проходит через спирали и С5. Емкость С5 подобрана такой, что она вместе со спиралями LMP1, дросселем L1 и обмоткой Т1 образует колебательный контур, настроенный на частоту работы генератора. В результате резонанса напряжение на катодах возрастает до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

За счёт низкого сопротивления разряда в колбе конденсатор C5 шунтируется, резонанс срывается, и на электроды поступает рабочее напряжение, необходимое для ЛЛ. Ток через колбу LMP1 ограничивается дросселем L1.

Поскольку рабочая частота дросселя высока, он имеет скромные размеры по сравнению с электромагнитным балластом, функционирующим на частоте 50 Гц.

Эта схема обеспечивает холодный пуск лампы. То есть она зажигается без предварительного подогрева катодов и практически мгновенно. Это не оптимальный режим, поскольку резко сокращает срок службы ЛЛ. А теперь посмотрим на следующую схему.

В целом схема та же с аналогичным принципом работы. Сетевое напряжение выпрямляется, сглаживается и питает генератор, питающий, в свою очередь, ЛЛ. Но обратите внимание на терморезистор, подключённый параллельно пусковому конденсатору С3. Терморезистор имеет положительный ТКС (такой прибор еще называют позистором). Пока холодный, он обладает низким сопротивлением. При подаче питания на светильник позистор шунтирует С3 и резонанса не происходит – нити накала подогреваются рабочим напряжением, недостаточным для образования разряда в колбе LMP1.

Через некоторое время позистор разогревается протекающим через него током. Его сопротивление возрастает. Конденсатор С3 перестает шунтироваться, возникает резонанс. Напряжение на электродах увеличивается до 1 кВ. Происходит пробой газового промежутка в колбе – лампа запускается.

В дальнейшем при работе лампы часть тока протекает и через позистор, поддерживая его в разогретом состоянии, чтобы он не мешал работе ЛЛ. Это снижает КПД конструкции (на разогрев позистора тратится энергия), но расходы эти незначительны – сопротивление нагретого терморезистора велико, а ток через него мал. Кроме того, они оправданы многократно увеличенным сроком службы люминесцентной лампы за счёт ее «правильного» запуска.

В завершение рассмотрим более сложную и «умную» схему ЭПРА, собранную на специализированной микросхеме. Примерно о таком балласте шла речь в разделе «Варианты схем подключения». Там он позиционировался как универсальный и мог работать с произвольным количеством ЛЛ разной мощности (от 1 до 4).

Для понимания принципа его работы нам понадобятся схемы вариантов подключения ламп к этому балласту.

Работа такого балласта с ЛЛ делится на три этапа:

  1. Предварительный разогрев катодов.
  2. Пуск.
  3. Рабочий режим.

После включения питания генератор, собранный на микросхеме D1, запускается на частоте около 65 кГц. Сигнал генератора через силовой ключ, собранный по полумостовой схеме на транзисторах VT2, VT3, подаётся на трансформатор Т2 и далее на спирали катодов ЛЛ, предварительно их разогревая.

Через опредёленное время (регулируется резистором R13) частота генератора начинает понижаться. Как только она снизится до резонансной частоты, на которую настроен контур L2С16, напряжение на катодах лампы возрастёт до 800 В. В колбе произойдёт разряд – ЛЛ запустилась. При этом на выводе 13 D1 появится напряжение, запускающее третий этап – рабочий.

Если напряжение на выводе 13 микросхемы не появилось, а на выводе 1 упало ниже 0.8 В, процесс розжига повторяется. При нескольких неудачных попытках розжига ЭПРА прекращает свою работу и отключает неисправную лампу. То же самое произойдёт при попытке запустить ЭПРА без лампы.

При удачном пуске частота генератора понижается до рабочей (устанавливается резистором R12). Ток через лампу стабилизируется и поддерживается на заданном уровне даже при значительных колебаниях величины питающего напряжения (для этой схемы – от 110 до 250 В). На элементах T1 и VT1 собран корректор активной мощности, снижающий реактивную составляющую.

Причины неполадок в люминесцентных лампах

Основные неполадки в работе люминесцентных ламп связаны с состоянием пускорегулирующей аппаратуры, называемой балластом. В электромагнитных устройствах чаще всего выходят из строя стартер и дроссель, а в электронных – перегорают различные полупроводниковые и другие элементы. Эту особенность следует учесть, выполняя ремонт светильников с люминесцентными лампами.

Кроме неполадок в аппаратуре запуска и управления, могут возникнуть неисправности и в самом источнике освещения. Чаще всего это происходит в результате износа, старения или перегорания отдельных деталей и компонентов. Поэтому, зная устройство, можно легко установить причину, почему не запускается и не загорается лампа.

Одним из основных признаков неисправности является мигание прибора во время запуска. Этим они отличаются от обычных лампочек, которые перегорают мгновенно. Процесс моргания указывает на возможные изменения химического состава газовой среды в процессе эксплуатации. В таких случаях снижается содержание ртутных паров из-за их постепенного вырождения. Иногда причиной моргания становятся выгоревшие электроды, на которых уменьшается количество нанесенного активного вещества.

Когда люминесцентные лампы начинают мигать, становится хорошо заметно почернение с торцов стеклянной трубки. Именно появление нагара указывает на выгоревшую спираль и необратимые химические процессы. В таких случаях ремонт уже не проводится, возможно лишь продление срока эксплуатации на короткое время. Для этого используется несложная схема или электронный прибор с функцией холодного пуска, подключаемая к выводам контактов.

В некоторых случаях возможно моргание при включении даже полностью исправного светильника. Это происходит под влиянием неблагоприятных факторов. Например, цепь стартера может разорваться, когда синусоида проходит нулевую отметку, и тогда индукционного импульса оказывается недостаточно, чтобы ионизировать внутреннюю газовую среду.

Эта же причина вызывает мигание при запуске из-за низкого сетевого напряжения. В дальнейшем, в процессе работы, при отсутствии скачков напряжения, исправный светильник работает ровно и устойчиво, поскольку пускорегулирующая аппаратура поддерживает определенный уровень тока в газовой смеси.

Самые распространенные причины неисправностей ЛЛ с электромагнитным балластом

Выделяют следующие проблемы:

  1. Отказ стартера. Признаки: светильник не включается, колба светится только по краям, светится стартер, но лампа не запускается, ЛЛ мигает стробоскопом. Решение: замена. На заметку! Проверить стартер на работоспособность можно с помощью обыкновенной лампы накаливания с патроном. Подключите один провод от патрона в розетку, а другой через стартер. С исправным стартером лампа «Ильича» должна работать. См. рисунок ниже.
  2. Отказ ЛЛ. Признаки: черные края колбы, мигание ЛЛ стробоскопом, слабое свечение, светильник не работает. Решение: замена. Совет! Часто дешевые светильники не включаются из-за потери контакта в ламподержателях. Из-за высокой температуры они плавятся. Поэтому можно отделаться лишь заменой гнезда или восстановлением контакта с лампой/стартером.
  3. Отказ дросселя. Признаки: сразу бросаются в глаза почернение обмотки и расплавленные клеммы. Проверить состояние дросселя своими руками можно с помощью мультиметра в режиме измерения сопротивления. У исправного оно составляет 30-40 Ом. Если мультиметр показывает меньше, дроссель закорочен, и его лучше заменить.

Как изготовить светильник своими руками?

Сделать простейший светильник из двух ламп можно следующим образом:

  • выбираем подходящие по цветовой температуре (оттенку белого цвета) лампы по 36 Вт;
  • изготавливаем корпус из материала, который не воспламенится. Можно задействовать корпус от старого светильника. Подбираем ЭПРА под данную мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами составляет 13 мм), монтажный провод и саморезы;
  • патроны необходимо закрепить на корпусе;
  • место установки ЭПРА выбирают из соображения минимизации нагрева от работающих ламп;
  • патроны подключаются к цоколям ЛДС;
  • для предохранения ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закрепляется на потолке и подключается к сети питания 220 В.

Плюсы и минусы.

Подводя итоги, можно сказать, что, как и любое электронное изделие, электронный пускатель обладает достоинствами и недостатками.

Плюсы

  • Больший срок эксплуатации лл.
  • Больший КПД, меньшие потери (как минимум, отсутствует постоянное перемагничивание сердечника дросселя). Экономия до 30 процентов.
  • Нет реактивных выбросов в сеть питания. Не создают помехи другой аппаратуре.
  • Отсутствие мерцания при пуске и эффекта стробирования при работе.
  • Автоматика отключается при выходе лампы из строя.
  • Плавный прогрев электродов.
  • Стабильный световой поток при скачках напряжения.
  • Возможность работы и на постоянном токе (не все модели).
  • Имеют защиту от короткого замыкания.
  • Отсутствие характерного шума.
  • Возможен запуск ламп при низких температурах окружающей среды.

Минусы

  • Некачественные, дешевые электронные балласты – недолговечны.
  • Главный недостаток – цена (они окупаются со временем).
  • Часть моделей не совместимы со светодиодными аналогами люминесцентных ламп.

Источники

  • https://sovet-ingenera.com/elektrika/svetylnik/ballast-dlya-lyuminescentnyx-lamp.html
  • https://int43.ru/novosti/remont-epra.html
  • https://OsvescheniePro.com/lampy/lyuminestsentnye/ballast.html
  • https://LampaGid.ru/vidy/lyuminestsentnye/elektronnyj-ballast
  • https://e-usadba.ru/inzhenernoe-obespechenie/elektronnyj-ballast-t8.html
  • https://www.asutpp.ru/elektronnyj-ballast-dlya-lyuminescentnyx-lamp.html
  • https://www.electrodus.ru/article/ballast-dlya-lyuminestsentnykh-lamp/
  • https://kachestvolife.club/elektrika/zachem-nuzhen-ballast-dlya-lyuminescentnyh-lamp
  • https://sovet-ingenera.com/elektrika/svetylnik/epra-dlya-lyuminescentnyx-lamp.html
  • https://oboiman.ru/ingeneer/cto-takoe-epra-dla-luminescentnyh-lamp-kak-rabotaet-shemy-podklucenia.html
  • https://odstroy.ru/elektronnyj-ballast-dla-luminescentnyh-lamp-cto-eto-takoe-i-shemy-podklucenia/
  • https://vamfaza.ru/epra/
  • https://rentps3.ru/elektrootoplenie/shema-podklyucheniya-epra.html
  • https://bulze.ru/otoplenie-drugoe/shema-elektronnogo-ballasta-2h46.html
  • https://plusmillion.ru/shema-ballasta-luminescentnoj-lampy
  • https://PermEhnergosbyt-lichnyj-kabinet.ru/praktika/ps240t811-shema.html
  • https://LampaExpert.ru/vidy-i-tipy-lamp/lyuminestsentnaya/ballast-dlya-lamp

[свернуть]

Опубликовано: 23.08.2021

Проводка для модернизации ЛВО 4Х18 и ЛПО 4Х18 под УНИПРО-60 (G13)

Весь товар находится в наличии на складе, на производстве или будет изготовлен под заказ. По Вашему запросу по телефону или на электронную почту.

Вы также можете разместить заказ на изготовление необходимой Вам продукции под ваши технические, светотехнические, электротехнические требования и условия, в этом случае сроки оговариваются в зависимости от сложности задачи, необходимости разработки проектной документации, согласования технических условий ТУ и иных параметров.

Стандартно мы предлагаем на изготовление изделий с вольтажом от 6 до 600 вольт, мощностью от 0,1 до 5000 W, постоянного или переменного напряжения, различной цветовой температуры (в том числе в строго заданном диапазоне), яркости, угла рассеивания, цвета корпуса изделия, его материала и веса, параметров виброзащиты, пожаробезопасности, пылестойкости, влагостойкости, ветровой нагрузки, работы в сложных и экстремальных погодных и температурных режимах, ситуациях допускающие механические повреждения, ускоренного износа, химическое или радиактивное воздействие, установку на высоких объектах, дополнительные опции по защите упаковки, изготовление изделий под ваши размеры, в том числе сверхбольшие габариты до 5 метров.

Наша компания в поставках не ограничена географическими границами Москвы, или рамками Московской области и осуществляет доставку во все уголки и регионы РФ транспортными и экспедиционными компаниями и курьерскими службами. У нас большой опыт доставки в Беларусь, Казахстан, Украину и другие страны СНГ и в любую страну мира, благодаря отработанной процедуре таможенного оформления и знаниям к требованиям, которые предъявляются к светодиодным лампам, светильникам, прожекторам и панелях, в том числе в комплектах автономных систем освещения на солнечных батареях или ветровых генераторах. Мы доставим Ваш заказ в любой регион и город России. Доставка до склада – места приема или пункта забора транспортной компании за счет компания, а для клиентов бесплатно! Наши стандартные партнеры – это ведущие транспортные компании России, которые имеют многолетний опыт и положительные рекомендации и отзывы, осуществляют отправку заказов всеми видами транспорта. На ваш выбор мы предлагаем «Деловые Линии», «ЖелДорЭкспедиция», «Байкал Сервис», EMS, DHL, TNT, UPS, FEDEX, Pony-express. Если у Вас есть предпочтения в выборе перевозчика, то Мы после согласования сроков и условий страхования груза осуществим отправку указанной Вами компанией.

Стандартная доставка при наличии товара на складе осуществляется в течение 1-2 дней, после оформления заказа, а в случае производства нестандартной продукции – сроки могут быть увеличены до 25-30 дней.

Мы сотрудничаем с наиболее эффективными, выгодными и быстрыми курьерскими фирмами и службами, которые обеспечивают оперативную, недорогую и надежную доставку в разумные сроки, обычно в течение 24 часов, в пределах городской черты города Москвы.

В случае если отправка осуществляется в выходные дни, по предварительной договоренности, мы согласуем дату заранее с транспортной компанией.

ЭПРА Navigator 94 426 NB-ETL-218-EA3

ЭПРА 2х18 для ЛЛ Navigator NB

ЭПРА Navigator 94 426 NB-ETL-218-EA3 арт: 4607136944268 закупить в интернет – магазине Электро ОМ


Характеристики

Для 2D-образных люмин. ламп с цокол. GR8, G10q (TC-DD)

Для U-образных люмин. ламп с цоколем 2G13 (T-U)

Для кольцевых люмин. ламп с цоколем 2GX13 (T16-R)

Для кольцевых люмин. ламп с цоколем G10q (T-R)

Для компакт. люмин. ламп с цоколем 2G10 (TC-F)

Для компакт. люмин. ламп с цоколем 2G11 (TC-L)

Для компакт. люмин. ламп с цоколем 2G7 (TC-SEL)

Для компакт. люмин. ламп с цоколем G23 (TC-S)

Для компакт. люмин. ламп с цоколем G24d (TC-D)

Для компакт. люмин. ламп с цоколем G24q (TC-DEL)

Для компакт. люмин. ламп с цоколем G8 (TC-QEL)

Для компакт. люмин. ламп с цоколем GX24d (TC-T)

Для компакт. люмин. ламп с цоколем GX24q (TC-TEL)

Для линейных люмин. ламп c колбой Т2 (T7)

Для линейных люмин. ламп c колбой Т5 (T16)

Для линейных люмин. ламп с колбой Т12 (T38)

Для линейных люмин. ламп с колбой Т8 (T26)

Для металлогалогенных ламп (HI, ДРИ, МГЛ)

Для натриевых ламп высокого давления (HS, ДНаТ, НЛВД)

Для натриевых ламп низкого давления (LS, НЛНД)

Для ртутных ламп (HM, ДРЛ)

Модель/исполнение

Мультиваттный

Номин. напряжение

Подходит для 2 ламп мощностью:

С зажимом для разгрузки провода от натяжения

Тип диммирования

Нет отзывов о данном товаре.

Написать отзыв

Ваш отзыв:

Примечание: HTML разметка не поддерживается! Используйте обычный текст.

Отправить отзыв

Заказать товар:

Через форму заказа на сайте

По телефонам:

Отправить на заявку на электронную почту:

Мы осуществляем отправку по РФ – СДЭК, Деловые линии, КИТ, Собственным транспортом (2 и 5 тн) 

Бесплатная доставка по Екатеринбургу при сумме от 3000 руб – карта в разделе оплата и доставка

Epra для лампы своими руками. Электронный балласт для люминесцентных ламп Электронный балласт NB ETL 236 EA3 Схема

Люминесцентная лампа (LL) представляет собой стеклянную трубку, заполненную инертным газом (AR, NE, KR) с добавлением небольшого количества ртути. На концах трубки расположены металлические электроды для подачи напряжения, электрическое поле которого приводит к пробою газа, возникновению тлеющего разряда и появлению электрического тока в цепи.Газоразрядный тлеющий разряд бледно-голубого оттенка, в видимом диапазоне света очень слабый.

Но в результате электрического разряда большая часть энергии переходит в невидимый ультрафиолетовый диапазон, кванты которого, попадая в фосфорсодержащие составы (люминофорные покрытия), вызывают свечение в видимой области спектра. Изменяя химический состав люминофора, получают разные цвета свечения: для ламп дневного света (ЛДС) разработаны различные оттенки белого цвета, а для освещения в декоративных целях можно выбрать лампу другого цвета.Изобретение и массовый выпуск люминесцентных ламп – это шаг вперед по сравнению с неэффективными лампами накаливания.

Зачем нужен балласт?

Ток в газовом разряде нарастает лавинообразно, что приводит к резкому падению сопротивления. Что касается электродов люминесцентных ламп, то дополнительная нагрузка, ограничивающая ток, так называемый баллаборатор, последовательно включает перегрев. Иногда для его обозначения используется термин «дроссель».

Используются два типа досок для мячей: электромагнитные и электронные.Электромагнитный балласт имеет классическую, трансформаторную конфигурацию: медный провод, металлические пластины. В электронных балластерах (Electronic Ballast) используются электронные компоненты: диодистраторы, динтораторы, транзисторы, микросхемы.

Для первоначального зажигания (пуска) разряда в лампе в электромагнитных устройствах дополнительно используется стартер – стартер. В электронном варианте балластного блока эта функция реализована в рамках Единой электрической схемы. Устройство получается легким, компактным и совмещено с одним термином – электронно-регулирующим автоматом (ЭПР).Массовое использование ЭПР для люминесцентных ламп обусловлено следующими преимуществами:

  • эти устройства компактны, имеют небольшой вес;
  • Лампы
  • включаются быстро, но при этом плавно;
  • отсутствие мерцания и шума от вибрации, так как ЭПР работает на высокой частоте (десятки кГц), в отличие от электромагнитного, работающего от сетевого напряжения с частотой 50 Гц;
  • уменьшенные тепловые потери;
  • Электронный балласт
  • для люминесцентных ламп имеет значение коэффициента мощности равное 0.95;
  • наличие нескольких проверенных типов защиты, повышающих безопасность использования и продлевающих срок службы.

Схемы ЭПРА для люминесцентных ламп

EPR – это электронная плата, стилизованная под электронные компоненты. Принципиальная схема включения (рис. 1) и один из вариантов схемы балласта (рис. 2) показаны на рисунках.


Люминесцентная лампа, С1 и С2 – Конденсаторы

Электронные пускорегулирующие аппараты могут иметь различную схему реализации решения в зависимости от применяемых компонентов.Выпрямление напряжения производится диодами VD4-VD7 и далее фильтруется конденсатором C1. После подачи напряжения включается конденсатор С4. На уровне 30 пробивается динистор CD1 и открывается транзистор Т2, затем включается автогенератор на транзисторе Т1, Т2 и трансформаторе TR1. Резонансная частота последовательного контура из конденсаторов С2, С3, дросселя L1 и генератора близка по размерам (45-50 кГц). Для устойчивой работы схемы необходим резонансный режим.Когда напряжение на конденсаторе С3 достигает пускового значения, загорается лампа. В этом случае частота регулирования генератора и напряжения снижается, а дроссель ограничивает ток.



Ремонт ЭПР.


При отсутствии возможности быстрой замены эры можно попробовать отремонтировать баллаборатор своими силами. Для этого выберите следующую последовательность действий для устранения неполадок:

  • Для начала проверяется целостность предохранителя.Эта поломка часто встречается из-за перегрузки (перенапряжения) в сети 220 вольт;
  • далее выполняется визуальный осмотр электронных компонентов: диодов, резисторов, транзисторов, конденсаторов, трансформаторов, дросселей;
  • при обнаружении характеристического обозначения детали или платы ремонт производится заменой исправного элемента. Как проверить своими руками неисправный диод или транзистор, имея в наличии обыкновенный мультиметр, хорошо известно любому пользователю с техническим образованием;
  • может оказаться, что стоимость запасных частей будет выше или сопоставима со стоимостью нового EPR.В этом случае лучше не тратить время на ремонт, а подобрать замену близкую по параметрам.

EPRA для компактных LD

Сравнительно недавно стали широко применяться люминесцентные в быту энергосберегающие лампы, адаптированные под стандартные патроны для простых ламп накаливания – Е27, Е14, Е40. В этих устройствах электронные балласты находятся внутри патрона, поэтому ремонт этих ЭПР теоретически возможен, но на практике легче купить новую лампу.

На фото пример такой лампы марки OSRAM, мощностью 21 Вт.Следует отметить, что в настоящее время позиции этой инновационной технологии постепенно занимают аналогичные лампы со светодиодными источниками. Полупроводниковые технологии, которые постоянно совершенствуются, позволяют быстрыми темпами достигать цены на LDS, стоимость которой остается практически неизменной.


Люминесцентные лампы Т8.

Лампы

Т8 имеют стеклянную колбу диаметром 26 мм. Широко используемые лампы Т10 и Т12 имеют диаметр 31,7 и 38 мм соответственно. Для ламп обычно используются участки мощностью 18 Вт.Лампы Т8 не теряют работоспособности при скачках напряжения питания, но при снижении напряжения более 10% зажигание лампы не гарантируется. Температура окружающей среды также влияет на надежность T8 LDS. При минусовых температурах световой поток уменьшается, и возможны неисправности. Лампы Т8 имеют срок службы от 9000 до 12000 часов.

Как сделать светильник своими руками?

Сделайте самый простой светильник из двух ламп так:

  • выбрать подходящую по цветовой температуре (белый оттенок) лампы 36 Вт;
  • делаем корпус из материала, который не оставит без внимания.Можно использовать корпус от старой лампы. Подбираем ЭПР на эту мощность. На маркировке должно быть обозначение 2 х 36;
  • подбираем к лампам 4 патрона с маркировкой G13 (зазор между электродами 13 мм), монтажный провод и саморез;
  • Патроны
  • необходимо закрепить на корпусе;
  • место установки ЭПР выбрано из соображений минимизации нагрева от рабочих ламп;
  • К корпусам ЛДС подключено
  • патронов;
  • для защиты ламп от механического воздействия желательно установить прозрачный или матовый защитный колпак;
  • светильник закреплен на потолке и подключается к сети 220 В.

ПРА для газоразрядных ламп (люминесцентных источников света) применяется для обеспечения нормальных условий работы. Другое название – пусковое устройство (ПРА). Есть два варианта: электромагнитный и электронный. Первый из них отличается рядом недостатков, например, шумом, эффектом мерцания люминесцентной лампы.

Второй тип балласта устраняет многие минусы в работе источников света этой группы, поэтому более популярен. Но поломки в таких устройствах тоже случаются.Перед выбросом рекомендуется проверить элементы цепи балласта на наличие неисправностей. Самостоятельно выполнить ремонт ЭПР вполне реально.

Разновидности и принцип работы

Основная особенность РОП – преобразование переменного тока в постоянный. Другой электронный балласт для газоразрядных ламп еще называют высокочастотным инвертором. Одно из преимуществ таких устройств – компактность и, соответственно, небольшой вес, что дополнительно упрощает работу люминесцентных источников света.И ЭПР при работе не создает шума.

ПРА электронного типа. После подключения к источнику питания он обеспечивает выпрямительный ток и нагревает электроды. Для того, чтобы люминесцентная лампа загорелась, подается напряжение определенного значения. Настройка тока происходит в автоматическом режиме, который реализуется специальным регулятором.

Такая возможность исключает вероятность мерцания. Последний этап – возникает высоковольтный импульс. Люминесцентная лампа настроена на 1.7 с. Если при запуске источника света происходит сбой, тлеющее тело моментально выходит из строя (сгорает). Тогда вы можете попробовать сделать ремонт своими руками, для чего хотите вскрыть корпус. Схема ЭПРА выглядит так:

Основные элементы люминесцентной лампы ЭПР: фильтры; непосредственно сам выпрямитель; конвертер; дроссель. Схема также обеспечивает защиту от скачков напряжения источника питания, что исключает необходимость ремонта по этой причине. И, кроме того, в балласте для газоразрядных ламп реализована функция коррекции мощности.

По назначению различают следующие виды РОП:

  • для линейных ламп;
  • ПРА
  • встроен в конструкцию компактных люминесцентных источников света.

ЭПР для люминесцентных ламп делятся на отличные по функциональным возможностям: аналоговые; цифровой; Стандарт.

Схема подключения

, запуск

Пусковое устройство одной стороной подключается к источнику питания, другой – к осветительному элементу. Необходимо предусмотреть возможность установки и крепления ЭПР.Подключение выполняется в соответствии с полярностью проводов. Если планируется установка двух светильников справа, используется вариант параллельного подключения.

Схема будет выглядеть так:

Группа газоразрядных люминесцентных ламп не может нормально работать без пускового устройства. Его электронная конструкция обеспечивает мягкий, но в то же время практически мгновенный запуск источника света, что еще больше продлевает срок его службы.

Пенжиг и поддержание функционирования лампы осуществляется в три этапа: нагрев электродов, появление излучения в результате высоковольтного импульса, поддержание горения осуществляется посредством постоянного напряжения питания небольшой величины.

Определение поломки и ремонтные работы

Если в работе газоразрядных ламп наблюдаются проблемы (мерцание, отсутствие свечения), можно самостоятельно произвести ремонт. Но для начала необходимо понять, в чем проблема: в балласте или элементе освещения. Для проверки работоспособности ЭПР с ламп снимают линейный свет, закрывают электроды и подключают обычную лампу накаливания. Если она загорелась, проблема не в пускорегулирующем устройстве.

В противном случае нужно искать причину поломки внутри балласта. Чтобы определить неисправность люминесцентных ламп, нужно по очереди «прозвонить» все элементы. Начиная с предохранителя. Если вышел из строя один из узлов схемы, необходимо заменить его на аналог. Параметры можно увидеть на сгоревшем элементе. Ремонт балласта для газоразрядных ламп предполагает необходимость использования навыков паяльника.

Если с предохранителем все в порядке, то следует проверить конденсатор и диоды, которые установлены в непосредственной близости от него.Напряжение конденсатора не должно быть ниже определенного порога (для разных элементов это значение различается). Если все элементы правые в рабочем состоянии, без видимых повреждений и трансклон ничего не дал, остается проверить обмотку дроссельной заслонки.

В некоторых случаях проще купить новую лампу. Это целесообразно делать в том случае, когда стоимость отдельных элементов превышает ожидаемый предел или при отсутствии достаточных навыков в процессе пайки.

Ремонт компактных люминесцентных ламп производится по аналогичному принципу: сначала размер корпуса; Проверяется нить накала, выясняется причина поломки на плате. Нередки ситуации, когда балласт полностью исправен, а нить накаливания перегружена. Лампа на коленях в этом случае сложно изготовить. Если в доме есть еще один неработающий источник света аналогичной модели, но с не демпфирующим газовым корпусом, можно совместить два изделия в одном.

Таким образом, ЭПР представляет собой группу усовершенствованных устройств, обеспечивающих эффективную работу люминесцентных ламп. Если было замечено мерцание источника света или он не включается вообще, проверка балласта и последующий его ремонт продлят срок службы лампочки.

классов, с достаточным световым потоком и в то же время экономичными, раскручены, можно даже сказать, на некоторые квестовые и пробные варианты. Сначала я использовал обыкновенный фонарик прищепки, поменял на настольную люминесцентную лампу, потом люминесцентную лампу мощностью 18 ватт китайского производства «Потолочная – Настенная».Последний понравился больше всего, но крепление непосредственно к самой лампе в арматуре было несколько занижено, буквально два-три сантиметра, но «для полного счастья» их и не хватало. В результате получилось сделать то же самое, но по-своему. Так как к работе эпрантеновской эпохи претензий не вызывало логичного повторения схемы.

Принципиальная схема

Это большая часть этого ЭПР, дроссель и конденсатор у китайцев сюда не входили.

На самом деле добросовестно нарисован монтажной платой.Номинал электронных компонентов, позволяющих это сделать, определялся не только «по внешнему виду», но и с помощью замеров, с предварительной обвязкой компонентов с платы. Схема номиналов резисторов указана в соответствии с цветовой маркировкой. Только в отношении дроссельной заслонки позволил себе не раскручивать имеющееся количество, определил количество витков, а замерил сопротивление намотанного провода (1,5 Ом при диаметре 0,4 мм) – заработало.

Первая сборка на печатной плате.Штатные комплектующие скрупулезно подобрали, несмотря на габариты и количество, и были вознаграждены – лампочка зажглась впервые. Ферритовое кольцо (10 х 6 х 4,5 мм) от энергосберегающей лампочки Его магнитная проницаемость неизвестна, диаметр проводов катушки на нем намотан 0,3 мм (без изоляции). Первый запуск обязательно через лампочку накаливания на 25 Вт. Если горит и люминесцент изначально мигает и гаснет – увеличивайте (постепенно) С4, когда все заработало, и ничего подозрительного не нашлось, снял лампу накаливания, то уменьшил его номинал до начального значения.

В какой-то мере ориентируясь на печатную плату, покрасил пломбу под имеющийся подходящий корпус и электронные компоненты.

Приготовил платок и собрал схему. Уже предвкушал тот момент, когда я буду доволен собой и буду рад Бытию. Но, схема, собранная на pCB, отказалась работать. Пришлось вникнуть и заняться подбором резисторов и конденсаторов. На момент установки ЭПР на месте эксплуатации С4 имел емкость 3Н5, С5 – 7Н5, сопротивление R4 6 Ом, R5 – 8 Ом, R7 – 13 Ом.

Светильник «вписывается» не только в дизайн, поднятый до упора светильник позволил с комфортом использовать полочку внутри ниши секретера. Уют в «комнате» принес Бабай.

Rife Руководство 2009 PDF | PDF | Энергетическая медицина

Вы читаете бесплатный превью
Страницы с 19 по 28 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 32 по 34 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 66 по 70 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 87 по 196 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 225 по 241 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 258 по 288 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 311 по 345 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 356 по 357 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 365 по 369 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 377 по 409 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 432 по 460 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 474 по 478 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 486 по 517 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 525 по 535 не показаны при предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 564 по 580 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 596 по 652 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 666 по 701 не показаны в этом предварительном просмотре.

Вы читаете бесплатный превью
Страницы с 715 по 766 не показаны в этом предварительном просмотре.

SEC.gov | Превышен порог скорости запросов

Чтобы обеспечить равный доступ для всех пользователей, SEC оставляет за собой право ограничивать запросы, исходящие от необъявленных автоматизированных инструментов. Ваш запрос был идентифицирован как часть сети автоматизированных инструментов за пределами допустимой политики и будет обрабатываться до тех пор, пока не будут приняты меры по объявлению вашего трафика.

Укажите свой трафик, обновив свой пользовательский агент, включив в него информацию о компании.

Чтобы узнать о передовых методах эффективной загрузки информации с SEC.gov, в том числе о последних документах EDGAR, посетите sec.gov/developer. Вы также можете подписаться на рассылку обновлений по электронной почте о программе открытых данных SEC, включая передовые методы, которые делают загрузку данных более эффективной, и улучшения SEC.gov, которые могут повлиять на процессы загрузки по сценарию. Для получения дополнительной информации свяжитесь с opendata @ sec.губ.

Для получения дополнительной информации см. Политику конфиденциальности и безопасности веб-сайта SEC. Благодарим вас за интерес к Комиссии по ценным бумагам и биржам США.

Ссылочный идентификатор: 0.5dfd733e.1632884264.c5850346

Дополнительная информация

Политика безопасности в Интернете

Используя этот сайт, вы соглашаетесь на мониторинг и аудит безопасности. В целях безопасности и обеспечения того, чтобы общедоступная услуга оставалась доступной для пользователей, эта правительственная компьютерная система использует программы для мониторинга сетевого трафика для выявления несанкционированных попыток загрузки или изменения информации или иного причинения ущерба, включая попытки отказать пользователям в обслуживании.

Несанкционированные попытки загрузить информацию и / или изменить информацию в любой части этого сайта строго запрещены и подлежат судебному преследованию в соответствии с Законом о компьютерном мошенничестве и злоупотреблениях 1986 года и Законом о защите национальной информационной инфраструктуры 1996 года (см. Раздел 18 USC §§ 1001 и 1030).

Чтобы обеспечить хорошую работу нашего веб-сайта для всех пользователей, SEC отслеживает частоту запросов на контент SEC.gov, чтобы гарантировать, что автоматический поиск не влияет на возможность доступа других пользователей к SEC.содержание правительства. Мы оставляем за собой право блокировать IP-адреса, которые отправляют чрезмерное количество запросов. Текущие правила ограничивают пользователей до 10 запросов в секунду, независимо от количества машин, используемых для отправки запросов.

Если пользователь или приложение отправляет более 10 запросов в секунду, дальнейшие запросы с IP-адреса (-ов) могут быть ограничены на короткий период. Как только количество запросов упадет ниже порогового значения на 10 минут, пользователь может возобновить доступ к контенту на SEC.губ. Эта практика SEC предназначена для ограничения чрезмерного автоматического поиска на SEC.gov и не предназначена и не ожидается, чтобы повлиять на людей, просматривающих веб-сайт SEC.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *