Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Что такое резистор, классификация резисторов и их обозначения на схемах

Резистор (англ. resistor от лат. resisto — сопротивляюсь) —один из самых распространенных радиоэлементов. Даже в простом транзисторном приемнике число резисторов достигает нескольких десятков, а в современном теле-иизоре их не менее двух-трех сотен.

Резисторы используют в качестве нагрузочных и токоограничительных элементов, делителей напряжения, добавочных сопротивлений и шунтов в измерительных цепях и т. д.

Основным параметром резистора является сопротивление, характеризующее его способность препятствовать протеканию электрического тока. Сопротивление измеряется в омах, килоомах (тысяча Ом) и мегаомах (1 000000 Ом).

Постоянные резисторы

Вначале резисторы изображали на схемах в виде ломаной линии — меандра (рис. 1,а, б), которая обозначала высокоомный прокол, намотанный на изоляционный каркас. По мере усложнения радиоприборов число резисторов в них увеличивалось, и, чтобы облегчить начертание, их с шли изображать на схемах в виде зубчатой линии (рис. 1,в).

На смену этому символу пришел символ в виде прямоугольника (рис. 1,г), который стали применять для обозначения любого резистора, независимо от его конструкции и особенностей.

Рис. 1. Постойнные резисторы и их обозначение.

Постоянные резисторы могут иметь один или несколько отводов от резистивного элемента. На условном обозначении такого резиетора дополнительные выводы изображают в том же порядке, как это имеет место в самом резисторе (рис. 2). При большом числе отводов длину символа допускается увеличивать.

   Рис. 2. Постоянные резисторы с отводами - обозначение.

Сопротивление постоянного резистора, как говорит само название, изменить невозможно. Поэтому, если в цепи требуется установить определенный ток или напряжение, то для этого приходится подбирать отдельные элементы цепи, которыми часто являются резисторы. Возле символов этих элементов на схемах ставят звездочку * — знак, говорящий о необходимости их подбора при настройке или регулировке.

Обозначение сопротивления резисторов

Нимннальную мощность рассеяния резистора (от 0,05 до 5 Вт) обозначают специальными знаками, помещаемыми внутри символа (рис. 3). Заметим, мм ни таки не должны касаться контура условного обозначения резистора.

Рис. 3. Обозначение мощности резисторов.

На принципиальной схеме номинальное сопротивление резистора указывают рядом с условным обозначением (рис. 4). Согласно ГОСТ 2.702—7S сопротивлении от 0 до 999 Ом указывают числом без единицы измерения (2,2; 33, 120...), от 1 до 999 кОм — числом с бумвой к (47 к, 220 к, 910к и т. д.),свыше 1 мегаома — числом с буквой М (1 М, 3,6М и т. д.).

   Рис. 4. Обозначение сопротивления для резисторов на схемах.

На резисторах отечественного производства номинальное сопротивление, допускаемое отклонение от него, а если позволяют размеры, и номинальную мощность рассеяния указывают в виде полного или сокращенного (кодированного) обозначения.

Согласно ГОСТ 11076—69 единицы сопротивления в кодированной системе обозначают буквами Е (ом), К (килоом) и М (мегаом). Так, резисторы сопротивлением 47 Ом маркируют 47Е, 75 Ом —75Е, 12 кОм — 12К, 82 кОм —82К и т. д.

Сопротивления от 100 до 1000 Ом и от 100 до 1000 кОм выражают в долях килоома и мегаома соответственно, причем на месте нуля и запятой ставят соответствующую единицу измерения:

  • 180 Ом = 0,18 кОм = К18;
  • 910 Ом = 0,91 кОм = К91;
  • 150 к0м = 0,15 МОм = М15;
  • 680 к0м = 0,68 МОм = М68 и т. д.

Если же номинальное сопротивление выражено целым числом с дробью, то единицу измерения ставят на месте запятой: 2,2 Ом — 2Е2; 5,1 кОм —5К1; 3,3 МОм — ЗМЗ и т. д.

Кодированные буквенные обозначения установлены и для допускаемых отклонений сопротивления от номинального. Допускаемому отклонению ±1% -соответствует буква Р, ±2%—Л, ±5%—И, ±10% —С, ±20%—В. Таким образом, надпись на корпусе резистора К75И обозначает номинальное сопротивление 750 Ом с допускаемым отклонением ±5%; надпись МЗЗВ — 330 кОм ±20% и т. д.

Переменные резисторы

Переменные резисторы, как правило, имеют минимум три вывода: от концов токопроводящего элемента и от щеточного контакта, который может перемещаться по нему. С целью уменьшения размеров и упрощения конструкции токопроводящий элемент обычно выполняют в виде незамкнутого кольца, а щеточный контакт закрепляют на валике, ось которого проходит через его центр.

Таким образом, при вращении валика контакт перемещается по поверхности токопроводящего элемента, в результате сопротивление между ним и крайними выводами изменяется.

В непроволочных переменных резисторах обладающий сопротивлением то-копроводящий слой нанесен на подковообразную пластинку из гетинакса или текстолита (резисторы СП, СПЗ-4) или впрессован в дугообразную канавку керамического основания (резисторы СПО).

В проволочных резисторах сопротивление создается высокоомным проводом, намотанным в один слой на кольцеобразном каркасе. Для надежного соединения между обмоткой и подвижным контактом провод зачищают на глубину до четверти его диаметра, а в некоторых случаях и полируют.

Существуют две схемы включения переменных резисторов в электрическую цепь. В одном случае их используют для регулирования тока в цепи, и тогда регулируемый резистор называют реостатом, в другом — для регулирования напряжения, тогда его называют потенциометром. Показанное на рис. 5 условное графическое обозначение используют, когда необходимо изобразить реостат в общем виде.

Для регулирования тока в цепи переменный резистор можно включить диумя выводами: от щеточного контакта и одного из концов токопроводящего элемента (рис. 6,а). Однако такое включение не всегда допустимо.

Рис. 5. Реостаты и переменные резисторы - условное обозначение.

Если, например, в процессе регулирования случайно нарушится соединение щеточного контакта с токопроводящим элементом, электрическая цепь ока-1 жется разомкнутой, а это может явиться причиной повреждения при

бора. Чтобы исключить такую возможность, второй вывод токопроводящего элемента соединяют с выводом щеточного контакта (рис. 6,б). В этом случае даже при нарушении соединения электрическая цепь не будет разомкнута.

Общее обозначение потенциометра (рис. 6,в) отличается от символа реостата без разрыва цепи только отсутствием соединения выводов между собой.

Рис. 6. Обозначение потенциометра на принципиальных схемах.

К переменным резисторам, применяемым в радиоэлектронной аппаратуре, часто предъявляются требования по характеру изменения сопротивления при повороте их оси.

Так, для регулирования громкости в звуковоспроизводящей аппаратуре необходимо, чтобы сопротивление между выводом щеточного контакта и правым (если смотреть со стороны этого контакта) выводом токопроводящего элемента изменялось по показательному (обратному логарифмическому) закону.

Только в этом случае наше ухо воспринимает равномерное увеличение громкости при малых и больших уровнях сигнала. В измерительных генераторах сигналов звуковой частоты, где в качестве частотозадающих элементов часто используют переменные резисторы, также желательно, чтобы их сопротивление изменялось по логарифмическому или показательному закону.

Если это условие не выполнить, шкала генератора получается неравномерной, что затрудняет точную установку частоты.

Промышленность выпускает непроволочные переменные резисторы, в основном, трех групп:

  • А — с линейной,
  • Б — с логарифмической,
  • В — с обратно-логарифмической зависимостью сопротивления между правым и средним выводами от угла поворота оси ф (рис. 47,а).

Резисторы группы А используют в радиотехнике наиболее широко, поэтому характеристику изменения их сопротивления на схемах обычно не указывают. Если же переменный резистор нелинейный (например, логарифмический) и это необходимо указать на схеме, символ резистора перечеркивают знаком нелинейного регулирования, возле которого (внизу) помещают соответствующую математическую запись закона изменения.

Рис. 7. Переменный резистор с обратно-логарифмической зависимостью сопротивления.

Резисторы групп Б и В конструктивно отличаются от резисторов группы А только токопроводящим элементом: на подковку таких резисторов наносят токопроводящий слой с удельным сопротивлением, меняющимся по ее длине. В проволочных резисторах форму каркаса выбирают такой, чтобы длина витка высокоомного провода менялась по соответствующему закону (рис. 7,6).

Регулируемые резисторы

Регулируемые резисторы - резисторы, сопротивление которых можно изменять в определенных пределах, применяют в качестве регуляторов усиления, громкости, тембра и т. д. Общее обозначение такого резистора состоит из базового символа и знака регулирования, причем независимо от положения символа на схеме стрелку, обозначающую регулирование, проводят в направлении снизу вверх под углом 45 градусов.

Регулируемые резисторы имеют относительно невысокую надежность и ограниченный срок службы. Кому из владельцев радиоприемника или магнитофона не приходилось после двух-трех лет эксплуатации слышать шорохи п треоки из громкоговорителя при регулировании громкости.

Причина этого неприятного явления — в нарушении контакта щетки с токопроводящим слоем или износ последнего. Поэтому, если основным требованием к переменному резистору является повышенная надежность, применяют резисторы со ступенчатым регулированием.

Такой резистор может быть выполнен на базе переключателя на несколько положений, к контактам которого подключены ре-, зисторы постоянного сопротивления. На схемах эти подробности не показывают, ограничиваясь изображением символа регулируемого резистора со знаком ступенчатого регулирования, а если необходимо, указывают и число ступеней (рис. 8).

Рис. 8. Изображение символа регулируемого резистора со знаком ступенчатого регулирования.

Некоторые переменные резисторы изготовляют с одним, двумя и даже с тремя отводами.

Такие резисторы применяют, например, в тонкомпенсиро-ванных регуляторах громкости, используемых в высококачественной звуковоспроизводящей аппаратуре. Отводы изображают в виде линий, отходящих от длинной стороны основного символа (рис. 9).

Рис. 9. Обозначение переменного резистора с отводами.

Для регулирования громкости, тембра, уровня записи в стереофонической аппаратуре, частоты в измерительных генераторах сигналов и т. д. применяют сдвоенные переменные резисторы, сопротивления которых изменяются одновременно при повороте общей оси (или перемещении движка). На схемах символы входящих в них резисторов стараются расположить возможно ближе друг к другу, а механическую связь показывают либо двумя сплошными линиями, либо одной штриховой (рис. 10,а).

   Рис. 10. Внешний вид и обозначение блоков с переменными резисторами.

Если же сделать этого не удается, т. е. символы резисторов оказываются на большом удалении один от другого, механическую связь изображают отрезками штриховой линии (рис. 10,6). Принадлежность резисторов к одному сдвоенному блоку показывают в этом случае и в позиционном обозначении (R1.1—первый — по схеме — резистор сдвоенного переменного резистора R1, R1.2 — второй).

Встречаются и такие сдвоенные переменные резисторы, в которых каждым резистором можно управлять отдельно (ось одного проходит внутри трубчатой оси другого). Механической связи, обеспечивающей одновременное изменение сопротивлений обоих резисторов, в этом случае нет, поэтому и на схемах ее не показывают (принадлежность к сдвоенному резистору указывают только в позиционном обозначении).

В бытовой радиоаппаратуре часто применяют переменные резисторы, объединенные с одним или двумя выключателями. Символы их контактов размещают на схемах рядом с обозначением переменного резистора и соединяют штриховой линией с жирной точкой, которую изображают с той стороны прямоугольника, при перемещении к которой узел щеточного контакта (движок) воздействует на выключатель (рис. 11,а).

Рис. 11. Обозначение переменного резистора совмещенного с переключателем.

При этом имеется в виду, что контакты замыкаются при движении от точки, а размыкаются при движении к ней. В случае, если символы резистора и выключателя удалены один от другого, механическую связь показывают отрезками штриховых линий (рис. 11,6).

Подстроечные резисторы

Подстроечные резисторы — разновидность переменных. Узел щеточного контакта таких резисторов приспособлен для управления отверткой. Условное обозначение подстроечного резистора (рис. 12) наглядно отражает его назначение: это, по сути, постоянный резистор с отводом, положение которого можно изменять.

Рис. 12. Внешний вид и обозначение подстроечных резисторов.

Общее обозначение подстроечного резистора отличается тем, что вместо знака регулирования использован знак подстроечного регулирования.

Нелинейные резисторы

В радиотехнике, электронике и автоматике находят применение нелинейные саморегулирующиеся резисторы, изменяющие свое сопротивление поя действием внешних электричеоких или неэлектрических факторов: угольные столбы, варисторы, терморезисторы и tj д.

Угольный столб, представляющий собой пакет угольных шайб, изменяет свое сопротивление под действием механического усилия.

Рис. 13. Вид и обозначение нелинейных саморегулирующихся резисторов.

Для сжатия шайб обычно используют электромагнит. Изменяя напряжение на его обмйтке, можно в больших пределах изменять степень сжатия шайб и, следовательно, сопротивление угольного столба.

Используют такие резисторы в стабилизаторах и регуляторах напряжения. Условное обозначение угольного столба состоит из ба-зовцго символа резистора и знака нелинейного саморегулирования с буквой Р, которая символизирует механическое усилие — давление (рис. 13,а).

Терморезисторы, как говорит само название, характеризуются тем, что их сопротивление изменяется под действием температуры. Токопроводящие элементы этих резисторов изготовляют из полупроводниковых материалов.

Сопротивление терморезистора прямого подогрева изменяется за счет выделяющейся в нем мощности или при изменении температуры окружающей среды, а терморезистора косвенного подогрева — под действием тепла, выделяемого специальным подогревателем.

Зависимость сопротивления терморезисторов от температуры имеет нелинейный характер, поэтому на схемах их изображают в виде нелинейного резистора со знаком температуры —1° (рис. 13,6, в).

Знак температурного коэффициента сопротивления (положительный, если с увеличением температуры сопротивление терморезистора возрастает, и отрицательный, если оно уменьшается) указывают только в том случае, если он отрицательный (рис. 13,в).

В условное обозначение терморезистора косвенного подогрева кроме знака нелинейного регулирования входит символ подогревателя, напоминающий перевернутую латинскую букву U (рис. 13,г).

Нелинейные полупроводниковые резисторы, известные под названием варисторов, изменяют свое сопротивление при изменении приложенного к ним напряжения.

Существуют варисторы, у которых увеличение напряжения всего в 2—3 раза сопровождается уменьшением сопротивления в несколько десятков раз. На схемах их обозначают в виде нелинейного саморегулирующегося резистора с латинской буквой U (напряжение) у излома знака саморегулирования (рис. 13,3).

В системах автоматики широко используют фоторезисторы — полупроводниковые резисторы, изменяющие свое сопротивление под действием света. Условное графическое обозначение такого резистора состоит из базового символа, помещенного в круг (символ корпуса полупроводникового прибора), и знака фотоэлектрического эффекта — двух наклонных параллельных стрелок.

Литература: В.В. Фролов, Язык радиосхем, Москва, 1998.

Как обозначаются сопротивления на электросхемах

Стремление к большим познаниям окружающего мира у современного человека вызывает желание к получению полной информации о неизвестном. Вся информация о мире нашем доступна нам никогда не будет, с каким бы напором мы к этому не стремились. Сама природа не хочет этого. Как бы между нами и ней установлено  некое сопротивление, изменяющее ход и направление нашего мышления.

Подобные обстоятельства наблюдаются при движении электрического тока по проводнику, которое  стремится достигнуть своей цели по пути наименьшего сопротивления с выделением энергии во внешнюю среду или для совершения какой-либо работы. Ограничить движение электрического тока можно, установив на его пути участок электрической цепи, обладающим большим электрическим сопротивлением, нежели вся электрическая цепь в целом.

Электрическое сопротивление характеризует свойство электрического проводника в проводимости электрического тока через себя и напрямую зависит от свойства материала, из которого изготовлено это сопротивление, от приложенного к нему электрического напряжения и геометрической формы самого сопротивления, именуемого в электрике резистором (от от лат. resisto — сопротивляюсь и англ. resistor).

Обратная величина сопротивлению — это электропроводность. Лучшей проводимостью электрического тока пока что обладает золото и платина. Но не весело будет смотреться, к примеру, когда электросистема автомобиля будет начинёна проводами из золота и платины. Наилучшей альтернативой таким материалам являются алюминий и медь.

Какие материалы используют для изготовления резисторов?

В качестве материалов используют сплавы высоко сопротивления, напыление материала на керамическую основу и уголь. Резисторы могут использоваться дискретно, как отдельный элемент, так и в составе интегральных электросхем.

В одном компьютере около нескольких тысяч резисторов и отобразить их все на схеме весьма сложно.

Как отличить резисторы на электросхемах?

Любой тип резистора на схемах отечественных производителей отображается в виде прямоугольника. На некоторых  зарубежных схемах в виде зигзагообразной линии. Подключение к схеме указывается линиями, нарисованными от середины сторон прямоугольника. Если резистор меняет своё сопротивление от воздействия внешних факторов (управление оператором или действие окружающей среды), то на схеме добавляется дополнительная линия или отрезок со стрелкой на конце или без, расположенный к середине прямоугольника или пересекает его.

Но есть ещё резисторы, изменяющие свои характеристики, которые можно использовать для своих целей. Когда в качестве материала для изготовления резистора используют высокотемпературные сплавы и подают на него напряжение, то такой резистор превращается в источник тепла. Как правило, такие элементы всегда проволочные и могут быть открытого и закрытого типа, то есть помещаться внутрь полости, изолирующей его от внешней среды.

Самый широко распространённый подобный элемент — это трубчатый электронагреватель (ТЭН). Используется везде, где требуется получить тепло. Ну, да. Вы догадались. Это бойлер, котёл, плита, чайник и многие другие электронагревательные приборы.

На схемах такие сопротивления обозначаются прямоугольником, разделённым внутри на четыре равные части. Буквенное обозначение термоэлемента всегда одно — EK.

Основными характеристиками резистора являются: указанное на нём величина сопротивления, которая является его номинальным значением; номинальная мощность рассеяния и возможные отклонения действительного значения сопротивления от номинального, указанного на корпусе.

Мощность электрического тока, которую резистор может длительное время выдержать и рассеивать в виде тепла без ущерба для его работы, принято называть мощностью рассеяния и обозначать её в ваттах.

К примеру: резистор с сопротивлением 100 Ом пропускающий через себя электрический ток силой 0,1А, рассеивает мощность в виде тепла около 1Вт. При меньшей расчётной характеристике мощности рассеяния резистора и большем токе, проходящем через него, данный резистор быстро сгорает, то есть электрически недостаточно прочен.

Обозначение мощности на рисунке с резистором наносится непосредственно в значок, отображающий резистор или рядом с ним и выражается в виде римских цифр, за исключением указанной мощности 0,5Вт — поперечная черта, 0,25Вт — одна косая черта, 0,125Вт — две косые черты.

Отклонение действительного сопротивления от номинального выражают в процентах. К примеру: номинал резистора 100Ом с допуском 10% означает, что фактическое — действительное сопротивление может находится в пределах от 90Ом до 110Ом. Чем меньше величина процента указана на корпусе резистора, тем более близка действительная величина сопротивления к указанной.

Как понять какой резистор?

Когда на схеме обозначены два вывода, это значит, что резистор постоянный и рабочее сопротивление его не изменяется в нормальном режиме. А вот третий вывод или пересекаемая линия говорят о переменном, подстроечном или нелинейном сопротивлении (зависит от внешних факторов: свет, влага, температура, магнитное поле,  напряжение, освещённость).

Обозначение у каждого типа своё: на рисунке постоянных, переменных и подстроечных резисторов рядом наносится буква R; нелинейные  — обозначаются буквой R с добавленным буквенного символом, в зависимости от типа воздействия физического фактора (температура — t, напряжение — u и т.д.). Пример: Ru, Rt. Символ может стоять рядом и может указываться на дополнительной линии, пересекаемой изображение резистора.

Варистор (сопротивление зависит от приложенного напряжения) — Ru.

Термистор (сопротивление зависит от температуры) — Rt.

Фоторезистор (сопротивление зависит от его освещённости) — Rf.

Величина сопротивления резисторов указывается на рисунке рядом с изображением резистора, в изображении или в специальной таблице величин, приложенной к схеме.

Маркировка на корпусе резисторов наносится цифровая или цветовая, которая более удобна при определении всех величин сопротивления.

Скачать программу для определения номинала резистора по цветовым меткам и программу для вывода цветовой маркировки резистора по указанному номиналу сопротивления.


[Всего: 0   Средний:  0/5]

"Как обозначаются сопротивления на электросхемах"

Любой тип резистора на схемах отечественных производителей отображается в виде прямоугольника. На некоторых  зарубежных схемах в виде зигзагообразной линии. Подключение к схеме указывается линиями, нарисованными от середины сторон прямоугольника. Если резистор меняет своё сопротивление от воздействия внешних факторов (управление оператором или действие окружающей среды), то на схеме добавляется дополнительная линия или отрезок со стрелкой на конце или без, расположенный к середине прямоугольника или пересекает его.

Игорь Александрович

"Весёлый Карандашик"

Что такое резистор. Окончание | Компьютер и жизнь

Приветствую, друзья.

В первой части статьи мы с вами узнали о еще одном «кирпичике» электроники – резисторе.

Сегодня мы продолжим знакомство с этими штуковинами и перейдем от теории к практике.

Сразу отметим, что резистор – это пассивный элемент (в отличие от активных – диодов и транзисторов, способных генерировать сигнал).

Для начала рассмотрим

Обозначения резисторов в схемах

Постоянные резисторы в электронных схемах обозначают прямоугольниками (отечественное обозначение) или ломаной линией (зарубежное обозначение).

Если придерживаться отечественного ГОСТ, то необходимо указывать еще и мощность резистора посредством черточек внутри прямоугольника.

Переменные и подстроечные резисторы обозначаются теми же прямоугольниками или ломаными линиями и стрелкой, символизирующей подвижный контакт.

Рядом с графическим изображением указывается значение сопротивления резистора и его порядковый номер в схеме.

Иногда указывается мощность резистора и его допустимое процентное отклонение сопротивления от номинала.

Величина сопротивления указывается в Омах, килоомах (кОм), мегомах (Мом).

Иногда в зарубежных схемах для обозначения Ом используется символ Ω  (греческая буква «омега»).

Отметим, что в конструкторской документации в схемах зачастую указывают только порядковый номер резистора, а его номинал, отклонение, тип и другие данные сводят в отдельный документ.

Напомним, что о всех параметрах конкретного типа резистора можно почитать в соответствующем даташите  (data sheet).

Примеры обозначений:

— 27 Ом, 27 Ohm, 27Ω, 27R, 27 – 27 Ом,

— 1,5 кОм, 1,5 к, 1,5 kOhm, 1,5 кΩ, 1k5 – 1,5 килоом,

— 3,3 Мом, 3,3 МOhm, 3,3 MΩ, 3M3, 3,3 – 3,3 мегом (мегаом)

Обратите внимание: если в обозначении стоит маленькая буква «м» – то это будут миллиомы, а не мегомы!

Если в обозначении стоит просто цифра без букв, то это могут быть и омы, и мегомы. В этом случае, если в цифре нет запятой – это будут омы, если есть – мегомы.

Маркировка резисторов

Резисторы могут маркироваться нанесением буквенно-цифровых обозначений, наносимых на корпус резистора.

Обычно указывается номинал резистора и его процентный допуск (±5%, ±10%, ±20%). Процентный допуск указывается чаще всего латинской буквой.

Иногда указывается тип резистора и его мощность рассеяния.

Примеры обозначений:

100kΩJ 2W – 100 килоом, допуск ±5%, мощность рассеяния – 2Вт,

4К3И МЛТ-1 – 4,3 кОм, допуск ±5%, тип – МЛТ, мощность рассеяния – 1 Вт (это старый резистор времен CCCР),

560Ω 5% — 560 Ом, допуск ±5%

Однако на корпус мелких резисторов трудно нанести такие обозначения, поэтому для них применяется маркировка посредством 4-х, 5-ти или 6-ти цветных колец.

Обычно маркировка читается слева направо, при этом первое кольцо шире, или находится ближе к выводу резистора.

Мы не будем здесь приводить полных таблиц с цветовой маркировкой.

Номинал резистора можно узнать в онлайн-калькуляторах. Например, здесь. Это удобно.

Измерение сопротивления резистора

Обычно сопротивление резистора указывается на его корпусе посредством маркировки.

Но иногда возникает необходимость измерить величину сопротивления.

Обычно такое происходит при ремонте.

Маркировка может потускнеть или стереться, сам резистор может подгореть.

Измерить сопротивление резистора можно цифровым мультиметром.

Мультиметр измеряет не только сопротивление, но другие величины – ток, напряжение, емкость, температуру и т.д.

Обычно мультиметр имеет переключатель диапазонов и величин и входные гнезда для щупов.

Для измерения сопротивления надо поставить переключатель на один из диапазонов измерения сопротивления (вблизи этих диапазонов обычно расположен символ Ω).

При этом цифра, например, «200» означает диапазон от 0 до 200 Ом, обозначение «20к» – диапазон от 0 до 200 килоом, а обозначение «200М» – диапазон от нуля до 200 Мегом.

Если сопротивление резистора превышает выбранный диапазон, в крайнем левом разряде будет цифра «1».

При измерении малых величин сопротивлений (единицы Ом – доли Ом) надо учитывать сопротивление щупов мультиметра.

Для этого надо замкнуть щупы между собой, при этом мультиметр покажет некоторое сопротивление (доли Ом).

Эту величину надо потом вычесть из измеренного значения сопротивления. При измерении сопротивлений более 100 Ом погрешность измерения будет менее 1%. Этого вполне достаточно для большинства практических применений.

Сопротивление в десятые – сотые доли Ома выполняются с помощью специальных измерителей – миллиомметров и измерительных мостов.

Отметим, что иногда резисторы в изделиях (особенно миниатюрные) изменяют свое сопротивление без изменения внешнего вида – без обгорания, потемнения и т.п. Это одна из самых трудно обнаруживаемых неисправностей. «Вычислить» такой резистор можно только измерением его сопротивления и сравнением его с маркировкой.

 Схемы с резисторами

Параллельное и последовательное соединение резисторов

Еще из школьного курса физики мы помним, что резисторы могут соединяться последовательно и параллельно.

При последовательном соединении сопротивление цепочки будет равно сумме всех сопротивлений.

При параллельном сопротивлении суммируются величины, обратные сопротивлениям, поэтому сопротивление цепочки будет меньше резистора самого малого номинала.

В справедливости этих утверждений можно легко убедиться с помощью мультиметра.

Иногда не удается найти резистор нужного номинала – и в этом случае его можно получить последовательным или параллельным соединением нескольких резисторов.

Последовательное соединение резисторов используется и в том случае, если прилагаемое напряжение превышает максимально допустимое для данного типа резистора.

Так, для большинства современных SMD резисторов прилагаемое напряжение не должно превышать 200 В. Поэтому, при необходимости, например, включить SMD резистор в цепь сетевого напряжения 220 В (при этом амплитудное значение напряжения превышает 300 В) ставят цепочку из двух-трех резисторов одинакового номинала. При этом сетевое напряжение в соответствии с законом Ома поровну распределяется между ними.

Делитель напряжения

В электронных схемах часто бывает нужно получить часть от какой-то величины напряжения. Эту задачу решает делитель напряжения.

При этом входное напряжение подается на цепочку из двух последовательно соединенных резисторов, а выходное снимается с одного из них.

В соответствии с законом Ома, Iд = Uвх/(R1+R2) и Uвых = Iд*R2. Отсюда Uвых = Uвх*R2/(R1+R2). Величина R2/(R1+R2) называется коэффициентом передачи делителя (который всегда меньше единицы).

Поэтому выходное напряжение всегда меньше входного.

В первом приближении коэффициент передачи не зависит от частоты сигнала, так как сопротивление резисторов не зависит от частоты.

Кстати, переменный или подстроечный резистор можно включить по схеме 1 или 2.

В первом случае при вращении ручки резистора изменяется сопротивление, вносимое резистором в цепь сигнала.

Во втором случае резистор представляет собой управляемый делитель напряжения с переменным коэффициентом передачи.

Именно по такой схеме включен переменный резистор в регуляторе громкости акустических систем, стоящих у вас на столе.

Частотно-зависимые делители напряжения

Если в одно из плеч делителя вместо резистора установить конденсатор, получится частотно-зависимый делитель напряжения, так как сопротивление конденсаторы зависит от частоты.

В первом случае конденсатор стоит в верхнем плече делителя. При малой частоте сигнала его сопротивление очень велико, и на нем падает почти все входное напряжение.

Поэтому на выходе будет очень небольшой сигнал. При нулевой частоте (постоянном напряжении) на конденсаторе упадет все напряжение, и на выходе будет вообще 0 вольт.

По мере роста частоты сопротивление конденсатора будет уменьшаться, а коэффициент передачи делителя и, соответственно, выходное напряжение – возрастать.

Эту схему еще называют фильтром верхних частот.

В втором случае конденсатор стоит в нижнем плече.

В этом случае сигнал малой частоты пройдет без заметного ослабления, а сигнал высокой частоты будет сильно ослаблен.

Такую схему называют еще фильтром нижних частот. Он пропускает небольшие частоты и постоянную составляющую.

В заключение отметим, что, конечно же, резисторы (и другие компоненты) встречаются в самых различных комбинациях во множество других схем. И что анализ этих схем достаточно сложен, так как при этом привлекается серьезный математический аппарат.

Но на первых порах вполне достаточно простого качественного объяснения «на пальцах».

Можно еще почитать:

Что такое полевой транзистор.


Как выбрать подходящий резистор

Вы планируете приступить к вашему первому проекту печатной платы? Есть множество радиодеталей, которые вы в конечном итоге будете использовать. Однако нет другой такой детали, которая была бы так печально известна, как простой резистор. Если вы когда-либо видели печатную плату, то могли заметить резисторы по всей ее поверхности. Они контролируют силу тока и заставляют светиться светодиоды. Но что именно представляет собой резистор? Как он работает? Как вообще выбрать подходящий резистор для вашего первого проекта печатной платы? Не бойтесь, мы поможем вам и подскажем все необходимое, что вам нужно знать.

Резисторы – это одни из множества пассивных компонентов. Их задача относительно проста, но очень важна – создавать сопротивление току в электрической цепи. Видели, как загорается светодиод? За эту возможность необходимо поблагодарить резистор. Устанавливая в электрическую цепь резистор последовательно со светодиодом, вы получаете яркое свечение, при этом ничего не перегорает!

Основной характеристикой резистора является сопротивление, измеряемое в Омах (Ом). Если раньше вы прослушали базовый курс электроники, то, скорее всего, изучили закон Ома. При работе с резисторами вы будете вновь и вновь иметь с ними дело.

Закон Ома - это единственная формула для нахождения сопротивления

Найти обозначение резистора на схеме легко. Международное обозначение – стандартизированный прямоугольник, но в стандартах США резистор обозначается зигзагообразной линией – это сделано для простоты его нахождения. Вне зависимости от внешнего вида символа, каждый резистор на концах имеет выводы, обозначенные на схеме.

Обозначения резистора на схемах, принятое в США (слева) и соответствующее международным стандартам (справа). На схемах можно встретить оба обозначения.

Повсеместно встречаются резисторы совершенно разных конструкций. Все резисторы можно разделить на две категории по типу конструкции и по резистивному материалу. Рассмотрим обе категории.

Постоянные резисторы – как следует из названия, эти резисторы имеют постоянное сопротивление и точность, не зависящие от изменения температуры, освещенности и так далее.

Переменные резисторы – эти радиоэлементы обладают переменным сопротивлением. Потенциометр – великолепный пример такого резистора. У него есть регулятор, который можно вращать для увеличения или уменьшения сопротивления. Другие разновидности переменных резисторов – это подстроечный резистор и реостат.

Нелинейные резисторы – эти резисторы как хамелеоны, они могут изменять свое сопротивление в зависимости от той или иной физической величины, воздействующей на резистор – температуры, уровня освещенности и даже магнитного поля. Нелинейные резисторы – это термистор, фоторезистор, варистор и магниторезистор.

Все резисторы можно разбить на группы по материалам, из которых они изготовлены и которые в огромной степени влияют на их способность оказывать сопротивление электрическому току. Вот эти резисторы по используемым материалам:

  • Углеродистые композиционные резисторы;

  • Углеродистые пленочные резисторы;

  • Металлопленочные резисторы;

  • Тонко и толстопленочные резисторы;

  • Фольговые резисторы;

  • Проволочные резисторы.

Углеродистые композиционные резисторы – это резисторы, изготовленные по самой старой технологии, популярной в производстве резисторов малой точности. Их все еще можно найти в схемах, где могут быть импульсы высоких энергий.

Старый углеродистый пленочный резистор.

Такие резисторы все еще используются там, где точность не важна

Из всех вышеперечисленных типов резисторов по резистивному материалу старейшими являются проволочные резисторы. Их все еще можно встретить на старых печатных платах устройств большой мощности, в которых необходимо сопротивление, заданное с большой точностью. Эти древние резисторы широко известны благодаря тому, что большой надежностью обладают даже резисторы с малым сопротивлением.

Проволочный резистор – старейший и наиболее точный из доступных резисторов

Сегодня наиболее широко применяются металлопленочные и металлооксидные резисторы, они лучше всего обеспечивают с неизменной точностью номинальное сопротивление, а также меньше подвержены влиянию изменения температуры.

Наиболее широко применяемый металлооксидный резистор

обеспечивает неизменную точность номинального сопротивления

Можно найти резисторы, используемые самыми различными способами. Они применяются не только для того, чтобы оказывать сопротивление электрическому току. Резисторы используются в делителях напряжения, для производства тепла, в цепях сопряжения и нагрузки, для управления усилением и для настройки постоянных времени. Практическое применение резисторов можно найти в цепях питания электрических тормозов поездов, здесь они помогают высвобождению всей накопленной кинетической энергии.

Серьезное сопротивление – взгляните на тормоза у этого поезда,

которые высвобождают накопленную кинетическую энергию

Вот еще несколько замечательных устройств, в которых используются эти универсальные резисторы:

  • Измерение величины электрического тока – вы можете измерять падение напряжения на включенном в цепь прецизионном резисторе с заранее известным сопротивлением. Расчет тока производится по закону Ома;

  • Питание светодиодов – слишком большой ток, протекающий через светодиод, сожжет этот прекрасный фонарик. Соединив последовательно со светодиодом резистор, вы можете контролировать силу тока через светодиод, обеспечивая его яркое сияние.

  • Питание электромоторов вентиляторов – сердцем системы автомобильной вентиляции является электромотор вентилятора печки. Специальный датчик используется для управления скоростью вращения крыльчатки вентилятора. Резистор такого типа, используемый в датчике, называется, (кто бы мог подумать!) резистором мотора вентилятора!

Резистор мотора вентилятора в ответе за движение воздуха в машине

Эта характеристика, с которой вы будете сталкиваться снова и снова, называется сопротивлением. Величина сопротивления наносится на резистор различными способами. В настоящее время существуют два стандарта нанесения значения сопротивления резистора на корпус резистора – это цветовая маркировка или маркировка SMD-резисторов.

Возможно, вы уже сталкивались с системой цветовой маркировки, если когда-либо возились с макетом электронной схемы. Эта техника была изобретена в 20-х годах прошлого века. Значения величины сопротивления и точности резистора отображалась при помощи нескольких цветных полос, нанесенных на корпус резистора.

Обратите внимание, что цветные полосы на резисторах различаются,

обозначая их уникальные номинальные значения сопротивления и точности.

Большинство резисторов, которые могут попасть к вам в руки, будет иметь четыре цветные полосы. Вот как следует их читать:

  • Первые две полосы указывают первые цифры номинального значения сопротивления;

  • Третья полоса указывает множитель, на который следует умножить число, состоящее из двух цифр, указанных первыми двумя полосами.

  • И, наконец, четвертая полоса указывает точность резистора. Точность очень сильно влияет на стоимость используемого резистора и на цену готового изделия. Поэтому чтобы сэкономить деньги на производстве печатных плат, точность резисторов следует выбирать разумно.

Каждый цвет на резисторе соответствует определенному числу. Вы можете воспользоваться удобным калькулятором номинала резистора по его цветовому коду для быстрого определения номинала в будущем. Если вам легче запомнить наглядную информацию, то ниже мы приводим великолепное видео, в котором рассказано о принципе цветовой маркировки резисторов.

Не у всех резисторов размеры позволяют нанести на него цветовую маркировку. Это особенно актуально, когда речь идет о радиоэлементах для поверхностного монтажа (SMD). Чтобы маркировка смогла поместиться на небольшой поверхности устройства, SMD-резисторы имеют цифровую маркировку. Если вы посмотрите на современную печатную плату, то заметите, что SMD-резисторы еще имеют одинаковые размеры. Это помогает стандартизировать процесс производства с использованием высокоскоростных автоматов размещения деталей.

Как читать номинал на верхней стороне SMD-резисторов

Итак, пришло время наиболее важной части нашей статьи. Давайте узнаем, как определить, какой именно резистор нам нужен для вашего первого проекта печатной платы. Мы разобьем эту задачу на следующие три шага:

  1. Расчет требуемого сопротивления;

  2. Расчет номинальной мощности;

  3. И, наконец, выбор резистора исходя из двух значений найденных ранее.

Именно здесь для расчета требуемого сопротивления нам понадобится закон Ома. Вы можете воспользоваться одной из стандартных формул ниже, если значения напряжения и силы тока известны.

Теперь необходимо выяснить, какое количество энергии должен будет рассеивать резистор. Эту величину можно рассчитать по следующей формуле:

В данной формуле P – мощность рассеивания в Ваттах, V – падение напряжения на резисторе в Вольтах, а R – сопротивление резистора в Омах. Ниже мы привели краткий пример использования данной формулы для расчета в конкретной цепи.

Простая цепь для демонстрации расчета номинальной мощности

Цепь выше содержит светодиод, падение напряжения на котором составляет 2 В, резистор с сопротивлением 350 Ом и источник питания 9 В. Какая мощность будет рассеиваться на искомом резисторе? Давайте посмотрим. Сначала нам необходимо найти падение напряжения на резисторе. Поскольку источник питания дает 9 В, а на светодиоде падает 2 В, то получим:

9 В – 2 В = 7 В

Эти значения можно подставить в формулу:

P = 7 В * 7 В / 350 Ом = 0,14 Ватта

Теперь, когда у нас есть величины сопротивления и мощности, пора подобрать подходящий радиоэлемент у поставщика радиодеталей. Мы всегда рекомендуем выбирать из стандартных резисторов, которые поставляются в продажу каждым продавцом. Выбирая стандартные резисторы, вы значительно упростите себе жизнь, когда дело дойдет до производства устройства. В США тремя ведущими поставщиками радиоэлементов, качество которых не вызывает сомнений – это Digikey, Mouser и Farnell/Newark.

Теперь мы охватили всю информацию о резисторах, которая может вам понадобиться для вашего первого проекта печатной платы. Резисторы настолько многофункциональны, что вы увидите, как раз за разом используете их россыпи в своих электронных устройствах. В следующий раз, когда вам понадобиться выбрать резистор, вспомните три простых шага – рассчитайте сопротивление, найдите мощность и выберите поставщика!

Прежде чем вы броситесь размечать обозначения резисторов и их корпусов в вашем приложении для конструирования печатных плат, не было бы проще, если бы кто-то сделал это за вас? Уже сделали! Для многих систем проектирования печатных плат существует большое количество бесплатных библиотек радиоэлементов. И резисторы там тоже есть!

ГОСТ 2.728-74 ЕСКД. Обозначения условные графические в схемах. Резисторы, конденсаторы

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ
ГРАФИЧЕСКИЕ В СХЕМАХ

ГОСТ 2.728-74

Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ.
РЕЗИСТОРЫ
, КОНДЕНСАТОРЫ

Unified system for design documentation.
Graphical symbols in diagrams.
Resistors, capacitors

ГОСТ
2.728-74*
(CT СЭВ 863-78 и
СТ СЭВ 864-78)

Взамен
ГОСТ 2.728-68,
ГОСТ 2.729-68
в части п. 12 и
ГОСТ 2.747-68
в части подпунктов 24, 25 таблицы

Постановлением Государственного комитета стандартов Совета Министров СССР от 26 марта 1974 г. № 692 срок введения установлен

с 1975-07-01

1. Настоящий стандарт устанавливает условные графические обозначения (обозначения) резисторов и конденсаторов на схемах, выполняемых вручную или автоматизированным способом во всех отраслях промышленности.

Стандарт полностью соответствует СТ СЭВ 863-78 и СТ СЭВ 864-78.

2. Обозначения резисторов общего применения приведены в табл. 1.

Таблица 1

Наименование

Обозначение

1. Резистор постоянный

Примечание . Если необходимо указать величину номинальной мощности рассеяния резисторов, то для диапазона от 0,05 до 5 В допускается использовать следующие обозначения резисторов, номинальная мощность рассеяния которых равна:

0,05 В

0,125 В

0,25 В

0,5 В

1 В

2 В

5 В

2. Резистор постоянный с дополнительными отводами:

а) синим симметричным

б) одним несимметричным

в) с двумя

Примечание. Если резистор имеет более двух дополнительных отводов, то допускается длинную сторону обозначения увеличивать, например, резистор с шестью дополнительными отводами

3. Шунт измерительный

Примечание. Линии, изображенные та продолжения коротких сторон прямоугольника, обозначают выводы для включения в измерительную цепь

4. Резистор переменный

Примечания :

1. Стрелка обозначает подвижный контакт

2. Неиспользуемый вывод допускается не изображать

3. Для переменного резистора в реостатном включении допускается попользовать следующие обозначения:

а) общее обозначение

б) с нелинейным регулированием

5. Резистор переменный с дополнительными отводами

6. Резистор переменный с несколькими подвижными контактами, например, с двумя:

а) механически не связанными

б) механически связанными

7. Резистор переменный сдвоенный

Примечание к пп. 4-7.

Если необходимо уточнить характер регулирования, то следует применять обозначения регулирования по ГОСТ 2.71-74; например, резистор переменный:

а) с плавным регулированием

б) со ступенчатым регулированием

Для указания разомкнутой позиции используют обозначение, например, резистор с разомкнутой позицией и ступенчатым регулированием

в) с логарифмической характеристикой регулирования

г) с обратно логарифмической (экспоненциальной) характеристикой регулирования

д) регулируемый с помощью электродвигателя

8. Резистор переменный с замыкающим контактом, изображенный:

а) совмещенно

б) разнесенно

Примечания :

1. Точка указывает положение подвижного контакта резистора, в котором происходят срабатывание замыкающего контакта. При этом замыкание происходит при движении от точки, а размыкание - при движении к точке.

2. При разнесенном способе замыкающий контакт следует изображать

3. Точку в обозначениях допускается не зачернять

9. Резистор подстроечный

Примечания :

1. Неиспользуемый вывод допускается не изображать

2. Для подстроечного резистора в реостатном включении допускается использовать следующее обозначение

10. Резистор переменный с подстройкой

Примечание . Приведенному обозначению соответствует следующая эквивалентная схема:

11. Тензорезистор:

а) линейный

б) нелинейный

12. Элемент нагревательный

13. Терморезистор:

а) прямого подогрева с положительным температурным коэффициентом

с отрицательным температурным коэффициентом

б) косвенного подогрева

14. Bap истор

(Измененная редакция, Изм. № 1, 2).

3. Обозначения функциональных потенциометров, предназначенных для генерирования нелинейных непериодических функций, приведены в табл. 2.

Таблица 2

Наименование

Обозначение

1. Потенциометр функциональный однообмоточный (например, с профилированным каркасом)

Примечание. Около изображения подвижного контакта допускается записывать аналитическое выражение для генерируемой функции, например, потенциометр для генерирования квадратичной зависимости

2. Потенциометр функциональный однообмоточный с несколькими дополнительными отводами, например, с тремя

Примечания :

1. Линии, изображающие дополнительные отводы, должны делить длинную сторону обозначения на отрезки, приблизительно пропорциональные линейным (или угловым) размерам соответствующих участков потенциометра

2. Линия, изображающая подвижный контакт, должна занимать промежуточное положение относительно линий дополнительных отводов

3. Потенциометр функциональный многообмоточный, например, двухобмоточный, изображенный:

а) совмещенно

б) разнесенно

Примечание . Предполагается, что многообмоточный функциональный потенциометр конструктивно выполнен таким образом, что все обмотки находятся на общем каркасе, а подвижный контакт электрически контактирует одновременно со всеми обмотками

4. Потенциометр функциональный многообмоточный, например, трехобмоточный с двумя дополнительными отводами от каждой обмотки, изображенный:

а) совмещенно

б) разнесенно

Примечание к пп. 3 и 4. При разнесенном изображении применяют следующие условности:

а) подвижный контакт следует показывать на обозначении каждой обмотки потенциометра;

б) линии механической связи между обозначениями подвижных контактов не изображают;

в) линию электрической связи, изображающую цепь подвижного контакта, допускается изображать только на одной из обмоток, например, двухобмоточный потенциометр с последовательно соединенными обмотками

Примечание . Обозначения, установленные в табл. 2, следует применять для потенциометров, у которых подвижный контакт перемещается между двумя фиксированными (начальным и конечным) положениями. При этом конструктивное пополнение потенциометра может быть любым: линейным, кольцевым или спиральным (многооборотные потенциометры).

4. Обозначения функциональных кольцевых замкнутых потенциометров, предназначенных для циклического генерирования нелинейных функций, приведены в табл. 3.

Таблица 3

Наименование

Обозначение

1. Потенциометр функциональный кольцевой замкнутый однообмоточный (например, с профилированным каркасом) с одним подвижным контактом и двумя отводами

Примечание . Около изображения подвижного контакта допускается записывать аналитическое выражение для генерируемой функция. например, синусный потенциометр

2. Потенциометр функциональный кольцевой замкнутый однообмоточный с несколькими подвижными контактами, например, с тремя:

а) механически не связанными

б) механически связанными

3. Потенциометр функциональный кольцевой замкнутый однообмоточный с изолированным участком

Примечание . На изолированном участке электрический контакт между обмоткой и подвижным контактом отсутствует

4. Потенциометр функциональный кольцевой замкнутый однообмоточный с короткозамкнутым участком

Примечания .

1. На короткозамкнутом участке потенциометра сопротивление равно нулю.

2. Кольцевой сектор, соответствующий короткозамкнутому участку, допускается не зачернять

3. Потенциометр функциональный кольцевой замкнутый многообмоточный, например, двухобмоточный с двумя отводами от каждой обмотки, изображенный:

а) совмещенно

б) разнесенно

Примечания :

1. Предполагается, что многообмоточный функциональный потенциометр конструктивно выполнен таким образам, что все обмотки находятся на общем каркасе, а подвижный контакт электрически -контактирует одновременно со всеми обмотками.

2. При разнесенном изображении действуют условности, установленные в примечании к п.п. 3 и 4 табл. 2

Примечание . Все угловые размеры в обозначениях (углы между линиями отводов, между подвижными механически связанными контактами, размеры и расположение секторов изолированных или короткозамкнутых участков) должны быть приблизительно равны соответствующим угловым размерам в конструкции потенциометров.

5. Обозначения конденсаторов приведены в табл. 4.

Таблица 4

Наименование

Обозначение

1. Конденсатор постоянной емкости

Примечание . Для указания поляризованного конденсатора используют обозначение

1а. Конденсатор постоянной емкости с обозначенным внешним электродом

2. Конденсатор электролитический:

а) поляризованный

б) неполяризованный.

Примечание . Знак «+» допускается опускать, если это не приведет к неправильному чтению схемы

3. Конденсатор постоянной емкости с тремя выводами (двухсекционный), изображенный:

а) совмещенно

б) разнесенно

4. Конденсатор проходной

Примечание . Дуга обозначает наружную обкладку конденсатора (корпус)

Допускается использовать обозначение

5. Конденсатор опорный. Нижняя обкладка соединена с корпусом (шасси) прибора

6. Конденсатор с последовательным собственным резистором

7. Конденсатор в экранирующем корпусе:

а) с одной обкладкой, соединенной с корпусом

б) с выводом от корпуса

8. Конденсатор переменной емкости

9. Конденсатор переменной емкости многосекционный, например, трехсекционный

10. Конденсатор подстроечный

11. Конденсатор дифференциальный

11а. Конденсатор переменной емкости двухстаторный (в каждом положении подвижного электрода С=С)

Примечание к пп. 8 - 11а. Если необходимо указать подвижную обкладку (ротор), то ее следует изображать в виде дуги, например

12. Вариконд

13. Фазовращатель емкостный

14. Конденсатор широкополосный

16. Конденсатор помехоподавляющий

(Измененная редакция, Изм. № 1).

6. Условные графические обозначения резисторов и конденсаторов для схем, выполнение которых при помощи печатающих устройств ЭВМ установлено стандартами Единой системы конструкторской документации, приведены и табл. 5.

Таблица 5

Наименование

Обозначение

Отпечатанное обозначение

1. Резистор постоянный, изображенный:

а) в горизонтальной цепи

б) в вертикальной цепи

2. Конденсатор постоянной емкости, изображенный:

а) в горизонтальной цепи

б) в вертикальной цели

3. Конденсатор электролитический поляризованный изображенный:

а) в горизонтальной цепи

б) в вертикальной цепи

Примечание . Линии электрической связи - по ГОСТ 2.721.-74.

(Измененная редакция, Изм. № 2).

7. Размеры условных графических обозначений приведены и табл. 6.

Все геометрические элементы условных графических обозначений следует выполнять линиями той же толщины, что и линии электрической связи.

Таблица 6

Наименование

Обозначение

1. Резистор постоянный

2. Резистор постоянный с дополнительными отводами:

а) одним

б) с двумя

3. Резистор переменный

4. Резистор переменный с двумя подвижными контактами

5. Резистор подстроечный

6. Потенциометр функциональный

7. Потенциометр функциональный кольцевой замкнутый:

а) однообмоточный

б) многообмоточный, например, двухобмоточный

8. Потенциометр функциональный кольцевой замкнутый с изолированным участком

9. Конденсатор постоянной емкости

10. Конденсатор электролитический

11. Конденсатор опорный

12. Конденсатор переменной емкости

13. Конденсатор проходной

обозначения, таблицы, возможности расшифровки резисторов

В начале XX века все сопротивления имели очень широкие производственные допуски, что было крайне неудобно и вызывало множество негативных последствий. В связи с этим необходимо было искать пути решения проблемы, так как электротехника развивалась семимильными шагами. Но лишь в 1952 году были приняты номиналы сопротивлений. И это позволило по-новому взглянуть на мир электроники, что дало новый толчок в её развитии.

Общее понятие

Резисторы выступают в роли пассивного элемента электроцепи, но используются практически в каждой из них. Обладая постоянным или переменным сопротивлением, они преобразовывают напряжение в силу тока или наоборот, поскольку, согласно закону Ома, эти величины напрямую связаны с сопротивлением.

Таким образом, основным параметром резисторов будет выступать электрическое сопротивление, которое принято измерять в Омах.

Обозначение на схемах

На схемах эти элементы могут обозначаться по-разному, в зависимости от страны и номинальной мощности рассеивания. Но в основу заложены простейшие формы, представленные на рисунке.

И если со странами всё понятно, то мощность рассеивания может вызвать вопросы. А это, не что иное, как мощность, которую сможет рассеять сопротивление без вреда для себя. Ведь во время протекания электричества через резистор образуется мощность, которая его нагревает. Если она выше допустимой величины, то последует его перегрев, что приведёт к выходу детали из строя.

Помимо стандартного обозначения, возможны некоторые вариации для более точного отображения номинала. Так, в прямоугольнике, схематически обозначающем сопротивление, могут находиться римские цифры или полоски:

  • Три наклонные обозначают, что резистор 0,05 Вт;
  • Две наклонные – 0,125 Вт;
  • Одна наклонная полоса – 0,25 Вт;
  • Одна горизонтальная полоска – 0,5 Вт;
  • Римская 1 – 1 Вт;
  • Римская цифра 2 – 2 Вт;
  • Римская 5 – 5 Вт.

Номинальный ряд

Ненормированные допуски в широком поле обуславливали проблемы с подбором сопротивлений и последующей их заменой. И все эти неудобства вынудили прибегнуть к образованию номинального ряда, в результате чего были установлены общие для производства резисторов номинальные допуски.

Чтобы понять ценность образования такого ряда, можно в качестве примера взять сопротивление на 100 Ом, которое имеет номинальное отклонение в 10%. Например, в конкретном случае необходим резистор на 105 Ом. Но, учитывая десятипроцентное отклонение от ста Ом в обе стороны, несложно понять, что это же сопротивление подойдёт и для требуемых 105 Ом, а это исключает необходимость делать деталь для этого значения.

Однако рациональнее будет сделать резистор на 120 Ом, так как при номинальном отклонении в 10% он будет покрывать значения от 108 до 132 Ом.

И это куда более удобно, ведь те же 100 и 105 Ом будут входить в этот интервал. А помимо них, сюда смогут войти и множество других.

Таблица номиналов

Если следовать такой логике, то при номинальном отклонении сопротивления в 10% с диапазоном от 100 до 1000 Ом смогут покрыть множество значений: 100, 120, 150 и так далее, со стандартным округлением. Причём все они относятся к маркировочному обзначению Е12.

Отношение к номинальному ряду EIA здесь показывает буква "Е". А цифра, следующая за ней, указывает, сколько логарифмических шагов будет содержать диапазон от 100 до 1000.

Приведённая таблица номиналов резисторов отображает значения сопротивлений 100-1000. Когда необходимо узнать другие диапазоны, то высчитать их несложно действиями деления или умножения.

Между сериями могут быть определённые отличия:

  • Е6 – подразумевает допуск в 20%;
  • Е12 – 10%;
  • Е24 – 5 и 2%;
  • Е48 – 2%;
  • Е96 – имеет допуск в 1%;
  • Е192 – указывает на значения 0,5%, 0,25%, 0,1% и выше.

Цветовая маркировка и кодовые значения

Большинство современных резисторов из-за слишком миниатюрных габаритов часто маркируют цветовыми полосками. Их может быть 4, 5 и реже 6. Цвета на них наносятся далеко не для красоты, и каждый из них имеет своё индивидуально значение, благодаря которому можно легко узнать все данные по сопротивлению:

  • Первые две полоски указывают на номинальное сопротивление.
  • Если полоски три или четыре, то третья указывает множитель.
  • Четвёртая говорит о точности сопротивления.

Максимально точно узнать какой резистор имеется в наличии, можно с помощью онлайн-калькуляторов или благодаря таблице цветов резисторов.

Если обозначение пятиполосное, то:

  • Первые три полосы – значение сопротивления.
  • Четвёртая – данные по множителю.
  • Пятая – указание точности.

Новичков часто интересует, с какой стороны считать полоски. За первую принято принимать ту, которая ближе находится к краю. Не бывают первыми полоски золотистого цвета. Это даёт дополнительную возможность определить начало отсчёта с некоторыми резисторами.

Для обозначения номинала резисторов могут использоваться буквенно-цифровые кодировки. Четыре-пять символов способны передать всю необходимую для пользователя информацию. Номинал резистора здесь укажут первые знаки. Это может быть несколько цифр и одна буква. Буква указывает на положение запятой в десятичном исчислении, а также множитель. Символ, стоящий на конце, указывает на отклонение.

SMD резисторы

Резисторы SMD ввиду своих незначительных размеров имеют индивидуальную маркировку. Это могут быть как цифры, так и цифры с буквами. Обозначения встречаются в трёх вариациях:

  1. Три цифры – два первых знака покажут значение сопротивления, а последний — множитель.
  2. Четыре цифры – три начальные из них указывают сопротивление резистора, а четвёртая расскажет о множителе.
  3. Две цифры и символ – в первых двух цифрах скрывается показатель сопротивления, но для их расшифровки потребуется воспользоваться таблицей. Символ же обозначит множитель.

Учитывать необходимо и букву, которая указывает множитель: S=10¯²; R=10¯¹; B=10; C=10²; D=10³; E=10⁴.

Определить номинал резистора совсем несложно, если знать, как это сделать. Опытные электронщики многую информацию держат в голове ввиду большого опыта и регулярного контакта с электродеталями.

Что же касается любителей и новичков, то для них значительно проще определить номинал деталей с помощью таблиц, которые можно распечатать и всегда держать под рукой, или онлайн-калькуляторов, помогающих точно определить параметры детали.

Чип и дип маркировка резисторов

Калькулятор маркировки резисторов – это удобный онлайн-инструмент, который поможет определить резисторное сопротивление по цветной маркировке и установить последовательность цветов по номинальному параметру.

Программа представляет собой приложение, основывающееся на данных из общепринятой таблицы цветных маркировок резисторов. Поскольку эти элементы отличаются по пределу сопротивления, мощности и погрешности, они помечаются разными цветовыми комбинациями, и определить тип резистора можно, правильно расшифровав данные.

Располагаем резистор таким образом,чтобы кольца были сдвинуты к левому краю или широкая полоса была бы слева, и выбираем соответствующие цвета в форме.
Калькулятор позволяет рассчитывать сопротивление и допуск сопротивления резисторов с цветовой маркировкой в виде 4 или 5 цветных колец.

Существуют стандартные ряды резисторов, каждый из которых отличается определенным показателем сопротивления, рассеиваемой мощностью и допустимой погрешностью. На любом современном сопротивлении находятся цветовые кольца. Они могут иметь различный цвет, от которого и зависят конкретные показатели электронного компонента. Но также встречаются цифровые и буквенные обозначения.

При использовании буквенно-цифрового кода сопротивления резисторов обозначают цифрами с указанием единицы измерения. Принято обозначать буквами: R – ом, К – килоом, М -мегаом.

Если значение сопротивления выражается целым числом, то обозначение единицы измерения ставят после числа:

Если сопротивление выражается десятичной дробью, меньшей единицы, то вместо нуля целых и запятой впереди цифры располагают обозначение единицы измерения:

Если сопротивление выражается целым числом с десятичной дробью, то после целого числа вместо запятой ставят обозначение единицы измерения:

Продолжаем изучать основы электроники и сегодня наш разговор будем посвящен одному компоненту, без которого невозможно представить ни одну электрическую цепь, а именно резистору 🙂

Резистор.

Итак, начнем с основного определения резистора. Резистор – это, в первую очередь, пассивный элемент электрической цепи, который имеет определенное значение сопротивления (оно может быть постоянным и переменным). Предназначен этот элемент для линейного преобразования силы тока в напряжения и наоборот, ведь как мы помним из закона Ома, напряжение и сила тока связаны друг с другом как раз через величину сопротивления:

Резисторы являются одними из самых широко используемых компонентов – редко можно встретить схему, в которой бы не было ни одного резистора 😉 Основным параметром резистора, как уже понятно из определения, является его электрическое сопротивление, измеряемое в Омах (Ом).

Обозначение резисторов на схеме.

Давайте рассмотрим обозначение резисторов на схемах. Существуют два возможных варианта:

Кроме того, используются немного измененные символы, которые характеризуют резисторы на схеме по величине номинальной мощности рассеивания. Тут возникает вполне закономерный вопрос – а что это за параметр такой – номинальная мощность рассеивания? При протекании тока через резистор в нем будет выделяться мощность, что приведет к нагреву резистора. И если мощность будет превышать допустимую величину, то резистор будет перегреваться и просто сгорит. Таким образом, номинальная рассеиваемая мощность – это величина мощности, которая может рассеиваться резистором без превышения предельно допустимой температуры. То есть если мощность в цепи будет меньше или равна номинальной, то с резистором все будет в порядке 🙂 Итак, вернемся к обозначению резисторов:

Вот так обозначаются наиболее часто встречающиеся на схемах резисторы в зависимости от их номинальной рассеиваемой мощности, тут даже особо нечего дополнительно комментировать =)

Сопротивление резистора на схемах указывается рядом с условным обозначением, причем единицу измерения обычно опускают. Если увидите на схеме рядом с резистором число 68, то не сомневайтесь ни секунды – сопротивление резистора равно 68 Омам. Если же величина сопротивления составляет, к примеру, 1500 Ом (1,5 КОм), то на схеме будет обозначение “1.5 К”:

С этим все просто… Несколько сложнее ситуация обстоит с цветовой маркировкой резисторов. Сейчас мы разберемся и с этим моментом 😉

Цветовая маркировка резисторов.

Большинство резисторов имеют цветовую маркировку, такую как на этом рисунке. Она представляет из себя 4 или 5 полос (чаще всего, хотя их может быть, например, и 6) определенных цветов, и каждая из этих полос несет определенный смысл. Первые две полоски абсолютно всегда обозначают первые две цифры номинального сопротивления резистора. Если полосок всего 3 или 4, то третья полоса будет означать множитель, на который необходимо умножить число, полученное из первых двух полос, для определения величины сопротивления. Если всего на резисторе 4 полосы, то 4 будет указывать на точность резистора. Если полос всего пять, то ситуация несколько меняется – первые три полосы означают три цифры сопротивления резистора, четвертая – множитель, пятая – точность. Соответствие цифр цветам приведено в таблице:

Тут есть еще один немаловажный момент – а какую именно полосу считать первой? 🙂 Чаще всего первой считается та полоса, которая находится ближе к краю резистора. Кроме того, можно заметить, что золотая и серебряная полосы не могут быть первыми, поскольку не несут информации о величине сопротивления. Поэтому если на резисторе есть полосы этого цвета и они расположены с краю, то можно точно утверждать, что первая полоса находится с противоположной стороны. Давайте рассмотрим практический пример:

Поскольку у нас здесь 5 полос, то первые три указывают на сопротивление резистора. Посмотрев нужные значения в таблице, мы получаем величину 510. Четвертая полоса – множитель – в данном случае он равен . И, наконец, пятая полоса – погрешность – 10 %. В итоге мы получаем резистор 510 КОм, 10 %.

В принципе, если нет желания разбираться с цветами и значениями, то можно обратиться к какому-нибудь автоматизированному сервису, определяющему сопротивление по цветовой маркировке, которых сейчас полно в интернете. Там нужно будет только выбрать цвета, которые нанесены на резистор и сервис сам выдаст величину сопротивления и точность.

Итак, с цветовой маркировкой резисторов мы разобрались, переходим к следующему вопросу 🙂

Кодовая маркировка резисторов.

Помимо цветовой маркировки используется так называемая кодовая – для обозначения номинала резистора в данном случае используются буквы и цифры (четыре или пять знаков). Первые знаки (все, кроме последнего) используются для обозначения номинала резистора и включают в себя две или три цифры и букву. Буква определяет положение запятой десятичного знака, а также множитель. Последний же символ определяет допустимое отклонение сопротивления резистора. Возможны следующие значения:

Для букв, обозначающих множитель возможны такие варианты:

Давайте для наглядности рассмотрим несколько примеров:

С этим типом маркировки мы разобрались, давайте теперь изучим всевозможные способы маркировки SMD резисторов.

Маркировка SMD резисторов.

Для SMD резисторов также существуют разные варианты обозначения номиналов. Итак, давайте разбираться:

  • Маркировка тремя цифрами – в данном случае первые две цифры – это величина сопротивления в Омах, а третья цифра – множитель. То есть величину в Омах нужно умножить на десять в соответствующей множителю степени.
  • Маркировка четырьмя цифрами. Тут все похоже на предыдущий вариант, вот только для обозначения номинала сопротивления в Омах используются первые три цифры, а не две. Четвертая цифра – множитель.
  • Маркировка двумя цифрами и символом. В данном случае две цифры определяют сопротивление резистора, но не напрямую, а через специальный код. Ниже я приведу таблицу всех возможных кодов. Если на резисторе указан код “02”, то из таблицы мы получаем значение 102 Ома. Но и это не является финальным значением сопротивления 🙂 Нужно еще учесть третий символ, который является множителем. Для этого символа возможны такие варианты: S=10 -2 ; R=10 -1 ; B=10; C=10 2 ; D=10 3 ; E=10 4 ;

Таблица соответствия кодов величине сопротивления:

Клик левой кнопкой мыши – для увеличения.

В первых двух вариантах маркировки возможно также использование латинской буквы “R” – она ставится для обозначения положения десятичной запятой.

По традиции рассмотрим пару примеров:

Номиналы резисторов.

Сопротивления резисторов не являются произвольными числами. Существуют специальные ряды номиналов, которые представляют из себя значения от 0 до 10. Так вот номиналы резисторов (значения сопротивления) могут иметь величины, которые определяются как значение из соответствующего ряда, умноженное на 10 в целой степени. Рассмотрим основные ряды – E3, E6, E12 и E24:

Цифра в названии ряда означает количество чисел ряда номиналов в диапазоне от 0 до 10. В ряде E3 – три числа – 1.0, 2.2, 4.7, аналогично, и в других рядах. Таким образом, если резистор из ряда E3, то его номинал (сопротивление) может быть равно 1 Ом, 2.2 Ом, 4.7 Ом, 10 Ом, 22 Ом, 47 Ом…..1 КОм……22 КОм и т. д.Также существуют номинальные ряды Е48, Е96, Е192 – их отличие от рассмотренного нами ряда состоит лишь в том, что допустимых значений еще больше 🙂

На этом мы заканчиваем нашу статью, мы рассмотрели основные моменты, которые будут важны при работе с резисторами, а в одной из следующих статей мы продолжим разговор о резисторах и на очереди будут переменные резисторы, так что следите за обновлениями и заходите на наш сайт!

Онлайн-калькулятор цветной маркировки резисторов.

Определение номинала резистора по цветовому коду

Цветовая маркировка резисторов чаще всего представляет собой набор цветных колец на корпусе резистора, причем каждому маркировочному цвету соответствует определенный цифровой код.

Предлагаемая онлайн-программа позволяет быстро и удобно определить номинал резистора по цветовой маркировке, а также найти последовательность цветовых колец по введенному номиналу. Программа предназначена для работы с маркировкой резистров, состоящей из четырех колец. Для того, чтобы определить номинал резистора с цветной маркировкой из пяти колец, можно воспользоваться специальной таблицей.

Цветная маркировка на резисторах сдвинута к одному из выводов и читается слева направо. Первая полоса при этом – ближайшая к выводу резистора. Если из-за малого размера резистора цветную маркировку нельзя сдвинуть к одному из выводов, то первый знак делается полосой с шириной приблизительно вдвое большей, чем остальные. Цветовая маркировка резисторов зарубежных производителей, которые имеют наибольшее распространение в нашей стране, состоит чаще всего из четырех цветовых колец. Сопротивление резистора определяют по первым трем кольцам. Первые два кольца – это цифры, а третье кольцо – множитель. Четвертое кольцо представляет допустимое отклонение сопротивления резистора от его номинального значения.

Сайт находится в разработке, поэтому, пожалуйста, проявите снисходительность к тому, что материалов, пока мало.

Резисторы

| Закон Ома | Учебник по электронике

Поскольку соотношение между напряжением, током и сопротивлением в любой цепи настолько регулярное, мы можем надежно контролировать любую переменную в цепи, просто управляя двумя другими. Возможно, самой простой переменной в любой цепи для управления является ее сопротивление. Это можно сделать, изменив материал, размер и форму проводящих компонентов (помните, как тонкая металлическая нить накала лампы создавала большее электрическое сопротивление, чем толстый провод?).

Что такое резистор?

Специальные компоненты, называемые резисторами, производятся специально для создания точного количества сопротивления для вставки в цепь. Обычно они изготавливаются из металлической проволоки или углерода и спроектированы так, чтобы поддерживать стабильное значение сопротивления в широком диапазоне условий окружающей среды.

В отличие от ламп, они не излучают свет, но выделяют тепло, поскольку электрическая энергия рассеивается ими в рабочем контуре. Однако, как правило, резистор предназначен не для выработки полезного тепла, а просто для обеспечения точного количества электрического сопротивления.

Условные обозначения и значения на схеме резистора

Наиболее распространенным условным обозначением резистора на схеме является зигзагообразная линия:

Значения резисторов в омах обычно отображаются как смежные числа, и если в цепи присутствует несколько резисторов, они будут помечены уникальным идентификационным номером, например R 1 , R 2 , R 3 и т. Д. Как видите, символы резисторов могут отображаться как по горизонтали, так и по вертикали:

Реальные резисторы не похожи на зигзагообразный символ.Вместо этого они выглядят как маленькие трубки или цилиндры с двумя торчащими проводами для подключения к цепи. Вот образцы резисторов разных типов и размеров:

В соответствии с их внешним видом, альтернативное схематическое обозначение резистора выглядит как небольшая прямоугольная коробка:

Также можно показать, что резисторы

имеют переменное, а не фиксированное сопротивление. Это может быть сделано с целью описания реального физического устройства, разработанного с целью обеспечения регулируемого сопротивления, или может быть для того, чтобы показать какой-то компонент, который просто случайно имеет нестабильное сопротивление:

Фактически, каждый раз, когда вы видите символ компонента, нарисованный через диагональную стрелку, этот компонент имеет переменную, а не фиксированное значение.Этот символ «модификатор» (диагональная стрелка) является стандартным условным обозначением электронных символов.

Переменные резисторы

Переменные резисторы должны иметь какие-либо физические средства регулировки, либо вращающийся вал, либо рычаг, который можно перемещать для изменения величины электрического сопротивления. На фотографии показаны некоторые устройства, называемые потенциометрами, которые можно использовать как переменные резисторы:

Номинальная мощность резисторов

Поскольку резисторы рассеивают тепловую энергию, поскольку электрические токи через них преодолевают «трение» их сопротивления, резисторы также оцениваются с точки зрения того, сколько тепловой энергии они могут рассеять без перегрева и повреждений.Естественно, эта номинальная мощность указывается в физических единицах измерения «ватты». Большинство резисторов, используемых в небольших электронных устройствах, таких как портативные радиоприемники, рассчитаны на 1/4 (0,25) Вт или меньше.

Номинальная мощность любого резистора примерно пропорциональна его физическому размеру. Обратите внимание на первую фотографию резистора, как номинальная мощность соотносится с размером: чем больше резистор, тем выше его номинальная рассеиваемая мощность. Также обратите внимание, что сопротивление (в омах) не имеет ничего общего с размером! Хотя сейчас может показаться бессмысленным иметь устройство, которое ничего не делает, кроме сопротивления электрическому току, резисторы - чрезвычайно полезные устройства в схемах.

Поскольку они просты и широко используются в мире электричества и электроники, мы потратим много времени на анализ схем, состоящих только из резисторов и батарей.

Чем полезны резисторы?

Для практической иллюстрации полезности резисторов, рассмотрите фотографию ниже. Это изображение печатной платы или печатной платы: сборка, состоящая из прослоенных слоев изоляционной фенольной волокнистой платы и проводящих медных полос, в которые можно вставлять компоненты и закреплять их с помощью процесса низкотемпературной сварки, называемого «пайкой».”

Различные компоненты на этой печатной плате обозначены печатными этикетками. Резисторы обозначаются любой этикеткой, начинающейся с буквы «R».

Эта конкретная печатная плата представляет собой компьютерный аксессуар, называемый «модемом», который позволяет передавать цифровую информацию по телефонным линиям. На плате этого модема можно увидеть как минимум дюжину резисторов (все с мощностью рассеиваемой мощности 1/4 Вт). Каждый из черных прямоугольников (называемых «интегральными схемами» или «микросхемами») также содержит собственный массив резисторов для своих внутренних функций.Другой пример печатной платы показывает резисторы, упакованные в еще меньшие блоки, называемые «устройствами для поверхностного монтажа».

Эта конкретная печатная плата является нижней стороной жесткого диска персонального компьютера, и снова припаянные к ней резисторы обозначены этикетками, начинающимися с буквы «R»:

На этой печатной плате более сотни резисторов для поверхностного монтажа, и это количество, конечно, не включает количество резисторов, встроенных в черные «микросхемы».Эти две фотографии должны убедить любого, что резисторы - устройства, которые «просто» препятствуют прохождению электрического тока, - очень важные компоненты в области электроники!

«Нагрузка» на принципиальных схемах

В схематических диаграммах символы резисторов иногда используются для иллюстрации любого общего типа устройства в цепи, выполняющего что-то полезное с электрической энергией. Любое неспецифическое электрическое устройство обычно называется нагрузкой, поэтому, если вы видите схематическую диаграмму, показывающую символ резистора с пометкой «нагрузка», особенно в учебной принципиальной схеме, объясняющей некоторые концепции, не связанные с фактическим использованием электроэнергии, этот символ может просто быть своего рода сокращением чего-то еще более практичного, чем резистор.

Анализ цепей резисторов

Чтобы обобщить то, что мы узнали в этом уроке, давайте проанализируем следующую схему, определив все, что мы можем, исходя из предоставленной информации:

Все, что нам здесь дано для начала, - это напряжение батареи (10 вольт) и ток цепи (2 ампера). Нам неизвестно сопротивление резистора в омах или рассеиваемая им мощность в ваттах. Изучая наш массив уравнений закона Ома, мы находим два уравнения, которые дают нам ответы на основе известных величин напряжения и тока:

Подставляя известные величины напряжения (E) и тока (I) в эти два уравнения, мы можем определить сопротивление цепи (R) и рассеиваемую мощность (P):

Для условий цепи 10 В и 2 А сопротивление резистора должно быть 5 Ом.Если бы мы проектировали схему для работы при этих значениях, нам пришлось бы указать резистор с минимальной номинальной мощностью 20 Вт, иначе он перегреется и выйдет из строя.

Материалы резистора

Резисторы

могут быть изготовлены из самых разных материалов, каждый из которых имеет свои свойства и специфические области применения. Большинство инженеров-электриков используют указанные ниже типы:

Резисторы с проволочной обмоткой
Резисторы с проволочной обмоткой

изготавливаются путем намотки резистивного провода вокруг непроводящего сердечника по спирали.Обычно они производятся для высокоточных и силовых приложений. Сердечник обычно изготавливается из керамики или стекловолокна, а резистивный провод из никель-хромового сплава не подходит для приложений с частотами выше 50 кГц.

Низкий уровень шума и устойчивость к колебаниям температуры являются стандартными характеристиками проволочных резисторов. Доступны значения сопротивления от 0,1 до 100 кВт с точностью от 0,1% до 20%.

Металлопленочные резисторы

Нитрид тантала или нихрома обычно используется для изготовления металлопленочных резисторов.Комбинация керамического материала и металла обычно составляет резистивный материал. Значение сопротивления изменяется путем вырезания спирального рисунка в пленке, очень похоже на углеродную пленку с помощью лазера или абразива. Металлопленочные резисторы обычно менее устойчивы к температуре, чем резисторы с проволочной обмоткой, но лучше справляются с более высокими частотами.

Металлооксидные пленочные резисторы

В металлооксидных резисторах используются оксиды металлов, такие как оксид олова, что немного отличает их от металлических пленочных резисторов.Эти резисторы надежны и стабильны и работают при более высоких температурах, чем металлопленочные резисторы. Из-за этого металлооксидные пленочные резисторы используются в приложениях, требующих высокой прочности.

Фольгированные резисторы

Разработанный в 1960-х годах резистор из фольги до сих пор остается одним из самых точных и стабильных типов резисторов, которые вы найдете и используются в приложениях с высокими требованиями к точности. Керамическая подложка, к которой приклеена тонкая объемная металлическая фольга, составляет резистивный элемент.Фольговые резисторы имеют очень низкотемпературный коэффициент сопротивления.

Резисторы из углеродного состава (CCR)

До 1960-х годов резисторы из углеродного состава были стандартом для большинства приложений. Они надежны, но не очень точны (их допуск не может быть лучше примерно 5%). Смесь мелких частиц углерода и непроводящего керамического материала используется для резистивного элемента резисторов CCR.

Вещество формуют в форме цилиндра и запекают.Размеры корпуса и соотношение углерода и керамики определяют величину сопротивления. Использование большего количества углерода в процессе означает меньшее сопротивление. Резисторы CCR по-прежнему полезны для определенных приложений из-за их способности выдерживать импульсы высокой энергии, хорошим примером применения может быть источник питания.

Углеродистые пленочные резисторы

Углеродные пленочные резисторы имеют тонкую углеродную пленку (со спиралью, вырезанной в пленке для увеличения резистивного пути) на изолирующем цилиндрическом сердечнике.Это позволяет получить более точное значение сопротивления, а также увеличивает значение сопротивления. Резисторы из углеродной пленки намного точнее, чем резисторы из углеродной композиции. Специальные углеродные пленочные резисторы используются в приложениях, требующих высокой импульсной стабильности.

Ключевые показатели эффективности (КПЭ)

Ключевые показатели эффективности для каждого материала резистора можно найти ниже:

Характеристика Металлическая пленка Толстая металлическая пленка Прецизионная металлическая пленка Углеродный состав Углеродная пленка
Темп.диапазон -55 + 125 -55 + 130 -55 + 155 -40 + 105 .55 + 155
Макс. темп. коэфф. 100 100 15 1200 250-1000
Vmax 200-350 250 200 350-500 350-500
Шум (мкВ на вольт приложенного постоянного тока) 0,5 0,1 0.1 4 (100 КБ) 5 (100 КБ)
R Insul. 10000 10000 10000 10000 10000
Припой (изменение значения сопротивления в%) 0,20% 0,15% 0,02% 2% 0,50%
Влажное тепло (изменение значения сопротивления в%) 0,50% 1% 0,50% 15% 3.50%
Срок годности (изменение значения сопротивления,%) 0,10% 0,10% 0,00% 5% 2%
Полный рейтинг (2000 ч при 70 ° C) 1% 1% 0,03% 10% 4%

ОБЗОР:

  • Устройства, называемые резисторами, созданы для обеспечения точной величины сопротивления в электрических цепях.Резисторы оцениваются как по их сопротивлению (Ом), так и по их способности рассеивать тепловую энергию (ватты).
  • Номинальное сопротивление резистора не может быть определено по физическому размеру резистора (ов), о котором идет речь, хотя приблизительная номинальная мощность может. Чем больше резистор, тем большую мощность он может рассеять без повреждений.
  • Любое устройство, которое выполняет какую-либо полезную задачу с помощью электроэнергии, обычно называется нагрузкой. Иногда символы резисторов используются на принципиальных схемах для обозначения неспецифической нагрузки, а не для обозначения фактического резистора.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Попробуйте наш калькулятор цветового кода резистора в разделе Инструменты .

Резисторы

1. Резисторы

Резисторы наиболее часто используемый компонент в электронике, и их цель - создать заданные значения тока и напряжения в цепи. А количество различных резисторов показано на фотографиях.(Резисторы на миллиметровой бумаге с интервалом 1 см, чтобы представление о габаритах). На фото 1.1a показаны резисторы малой мощности, а на фото 1.1b - некоторые высшая сила резисторы. Резисторы с рассеиваемой мощностью менее 5 Вт (большинство обычно используемые типы) имеют цилиндрическую форму с выступающей из каждый конец для подключения в цепь (фото 1.1-а). Резисторы с рассеиваемой мощностью более 5 Вт являются показано ниже (фото 1.1-б).

Фиг.1.1a: Некоторые маломощные резисторы Рис. 1.1b: Резисторы большой мощности и реостаты

Обозначение резистора показано на следующая диаграмма (вверху: американский символ, внизу: европейский символ.)

Рис. 1.2a: Символы резисторов

Агрегат для Измерение сопротивления - ОМ . (греческая буква Ω - называется Омега).Более высокие значения сопротивления обозначаются буквой «k». (килоом) и М (мегом). Для Например, 120000 Ом отображается как 120 кОм, а 1 200 000 Ом - как 1M2. Точка обычно опускается, так как его легко потерять в процессе печати. В какой-то цепи На диаграммах такое значение, как 8 или 120, представляет сопротивление в Ом. Другой распространенной практикой является использование буквы E для обозначения сопротивления в омах. В буква R. также может быть использована. Для Например, 120E (120R) обозначает 120 Ом, 1E2 обозначает 1R2 и т. д.

1.1 Маркировка резисторов

Значение сопротивления составляет маркировка на корпусе резистора. Большинство резисторов имеют 4 полосы. Первые две полосы обеспечивают числа для сопротивления, а третья полоса обеспечивает количество нули. Четвертая полоса указывает допуск. Значения допуска 5%, Чаще всего доступны 2% и 1%.

В следующей таблице показаны используемые цвета. для определения номиналов резистора:

ЦВЕТ ЦИФРА МНОЖИТЕЛЬ ДОПУСК TC
Серебристый х 0.01 Вт 10%
Золото x 0,1 Вт 5%
Черный 0 x 1 Вт
Коричневый 1 x 10 Вт 1% 100 * 10 -6 / K
Красный 2 x 100 Вт 2% 50 * 10 -6 / K
Оранжевый 3 x 1 кВт 15 * 10 -6 / K
Желтый 4 x 10 кВт 25 * 10 -6 / K
Зеленый 5 x 100 кВт 0.5%
Синий 6 x 1 МВт 0,25% 10 * 10 -6 / K
Фиолетовый 7 x 10 МВт 0,1% 5 * 10 -6 / K
Серый 8 x 100 МВт
Белый 9 x 1 GW 1 * 10 -6 / K

** TC - Темп.Коэффициент, только для SMD устройства

Рис. 1.2: б. Четырехполосный резистор, c. Пятиполосный резистор, d. Цилиндрический резистор SMD, эл. Резистор SMD плоский

Ниже показаны все резисторы от 0R1 (одна десятая ома) до 22M:

ПРИМЕЧАНИЯ:
Резисторы, указанные выше, имеют "общее значение" 5% типы.
Четвертая полоса называется полосой «допуска».Золото = 5%
(полоса допуска Серебро = 10%, но современные резисторы не 10% !!)
"общие резисторы" имеют номиналы от 10 Ом до 22 МОм.

РЕЗИСТОРЫ МЕНЬШЕ 10 ОМ
Когда третий диапазон золото, это означает, что значение «цветов» необходимо разделить на 10.
золота = "разделите на 10", чтобы получить значения 1R0. к 8R2
Примеры см. в 1-й колонке выше.

Когда третий полоса серебряная, это означает, что значение «цветов» необходимо разделить на 100.
(Помните: в слове «серебро» больше букв, значит делитель "больше")
Silver = "разделить на 100", чтобы получить значения от 0R1 (одна десятая ома) до 0R82
например: 0R1 = 0,1 Ом 0R22 = Точка 22 Ом
См. 4-й столбец выше для Примеры.

Буквы "R, k и M" заменяют десятичную дробь. точка. Буква «Е» также используется для обозначения слова «ом».
например: 1 R 0 = 1 Ом 2 R 2 = 2 точка 2 Ом 22 R = 22 Ом
2 k 2 = 2200 Ом 100 к = 100000 Ом
2 M 2 = 2200000 Ом

Резисторы общие имеют 4 группы.Они показаны выше. Первый две полосы указывают первые две цифры сопротивления, третья полоса - это множитель (количество нулей, которые должны быть добавлены к полученному числу от первых двух полос), а четвертая представляет собой допуск.

Маркировка сопротивления с помощью пять полос используются для резисторов с допуском 2%, 1% и др. резисторы высокой точности. Первые три полосы определяют первые три цифр, четвертая - множитель, пятая - допуск.

для поверхностного монтажа Device) на резисторе очень мало свободного места. Резисторы 5% используйте трехзначный код, в то время как 1% резисторов используют четырехзначный код.

Некоторые резисторы SMD изготавливаются в форма небольшого цилиндра, в то время как наиболее распространенный тип - плоский. Цилиндрические резисторы SMD помечены шестью полосами - первые пять "читаются" как с обычными пятиполосными резисторами, а шестая полоса определяет температурный коэффициент (TC), который дает нам значение сопротивления изменение при изменении температуры на 1 градус.

Сопротивление Плоские резисторы SMD маркируются цифрами на их верхней стороне. Первые две цифры - это значение сопротивления, а третья цифра представляет количество нулей. Например, напечатанное число 683 стоит для 68000Вт, то есть 68к.

Само собой разумеется, что существует массовое производство всех типы резисторов. Чаще всего используются резисторы E12. серии и имеют значение допуска 5%.Общие значения для первых двух цифры: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68 и 82.
E24 серия включает все значения, указанные выше, а также: 11, 13, 16, 20, 24, 30, 36, 43, 51, 62, 75 и 91. Что означают эти числа? Это означает, что резисторы со значениями для цифр «39»: 0,39 Вт, 3,9 Вт, 39 Вт, 390 Вт, 3,9 кВт, 39 кВт и т. д. (0R39, 3R9, 39R, 390R, 3к9, 39к)

Для некоторых электрических цепей, допуск резистора не важен и не указывается.В этом в корпусе можно использовать резисторы с допуском 5%. Однако устройства, которые требуется, чтобы резисторы имели определенную точность, требуется указанная толерантность.

1,2 Резистор Рассеивание

Если поток ток через резистор увеличивается, он нагревается, а если температура превышает определенное критическое значение, он может выйти из строя. В номинальная мощность резистора - это мощность, которую он может рассеивать в течение длительного времени. промежуток времени.
Номинальная мощность резисторов малой мощности не указана. На следующих диаграммах показаны размер и номинальная мощность:

Рис. 1.3: Размеры резистора

Наиболее часто используется резисторы в электронных схемах имеют номинальную мощность 1/2 Вт или 1/4 Вт. Существуют резисторы меньшего размера (1/8 Вт и 1/16 Вт) и выше (1 Вт, 2 Вт, 5 Вт, так далее).
Вместо одиночного резистора с заданной рассеиваемой мощностью, можно использовать другой с таким же сопротивлением и более высоким рейтингом, но его большие размеры увеличивают пространство, занимаемое на печатной плате а также добавленная стоимость.

Мощность (в ваттах) может быть рассчитана по одному из следующие формулы, где U - символ напряжения на резистор (в вольтах), I - ток в амперах, а R - сопротивление в Ом:

Например, если напряжение на 820 Вт резистор 12В, мощность, рассеиваемая резисторами это:

Резистор

A 1/4 Вт может использоваться.

Во многих случаях это Непросто определить ток или напряжение на резисторе.В этом в случае, когда мощность, рассеиваемая резистором, определяется для «худшего» дело. Мы должны принять максимально возможное напряжение на резисторе, т.е. полное напряжение источника питания (аккумулятор и т. д.).
Если мы отметим это напряжение как В В , максимальное рассеивание это:

Например, если В В = 9 В, рассеиваемая мощность 220 Вт резистор:

А 0.Резистор мощностью 5 Вт или выше должен использоваться

1.3 Нелинейные резисторы

Значения сопротивления указанные выше являются постоянными и не изменяются, если напряжение или ток меняется. Но есть схемы, требующие резисторов для изменить значение с изменением умеренного или светлого. Эта функция не может быть линейный, отсюда и название НЕЛИНЕЙНЫЕ РЕЗИСТОРЫ.

Есть несколько типы нелинейных резисторов, но наиболее часто используемые включают: Резисторы NTC (рисунок a) (отрицательный температурный коэффициент) - их сопротивление снижается с повышением температуры. PTC резисторы (рисунок б) (положительный температурный коэффициент) - их сопротивление увеличивается с повышением температуры. Резисторы LDR (рисунок в) (Light Dependent Resistors) - их сопротивление уменьшается с увеличением свет. Резисторы VDR (резисторы, зависимые от напряжения) - их сопротивление критически снижается, когда напряжение превышает определенное значение. Символы, представляющие эти резисторы, показаны ниже.

Фиг.1.4: Нелинейные резисторы - а. НТЦ, б. PTC, c. LDR

дюйм любительские условия, когда нелинейный резистор может быть недоступен, это можно заменить другими компонентами. Например, NTC резистор можно заменить на транзистор с подстроечным резистором потенциометр, для настройки необходимого значения сопротивления. Автомобильный свет может играть роль резистора PTC , в то время как резистор LDR можно было заменить открытым транзистором.В качестве примера на рисунке справа показан 2N3055 с его верхним часть удалена, так что свет может падать на кристалл внутри.

1,4 Практическая примеры с резисторами

На рис. 1.5 показаны два практических примеры с нелинейными и обычными резисторами в качестве подстроечных потенциометров, элементы, которые будут рассмотрены в следующей главе.

Рис. 1.5a: RC-усилитель

На рисунке 1.5a показан RC-усилитель напряжения, который можно использовать для усиления низкочастотные аудиосигналы с малой амплитудой, например сигналы микрофона. Усиливаемый сигнал передается между узлом 1. (вход усилителя) и земля, а результирующий усиленный сигнал появляется между узлом 2 (выход усилителя) и заземление. Чтобы получить оптимальную производительность (высокая усиление, низкий уровень искажений, низкий уровень шума и т. д.) необходимо "установить" рабочая точка транзистора.Подробная информация о рабочей точке будет приведено в главе 4; пока давайте просто скажем, что напряжение постоянного тока между узел C и земля должны составлять примерно половину батареи (источника питания) Напряжение. Так как напряжение аккумулятора равно 6В, необходимо установить напряжение в узле C. до 3В. Регулировка производится через резистор R1.

Подключить вольтметр между узел C и земля. Если напряжение превышает 3 В, замените резистор. R1 = 1,2 МВт с меньшим резистором, скажем R1 = 1 МВт.Если напряжение по-прежнему превышает 3 В, оставьте понижая сопротивление, пока оно не достигнет примерно 3 В. Если напряжение в узле C изначально ниже 3В, увеличьте сопротивление R1.

Степень усиления каскада зависит от сопротивления R2: более высокое сопротивление - более высокое усиление , более низкое сопротивление - нижнее усиление . Если значение R2 изменяется, напряжение в узле C следует проверить и отрегулировать (через R1).

Резистор R3 и конденсатор 100Ф сформировать фильтр, чтобы предотвратить возникновение обратной связи. Эта обратная связь называется «Моторная лодка», как это звучит как шум моторной лодки. Этот шум возникает только при использовании более чем одной ступени.
По мере добавления каскадов к цепи вероятность обратной связи в форма нестабильности или катания на лодке.
Этот шум появляется на выходе усилителя даже при отсутствии сигнала доставляется к усилителю.
Нестабильность возникает следующим образом:
Даже если на вход не поступает сигнал, выходной каскад производит очень слабый фоновый шум, называемый "шипением". Это происходит из-за ток, протекающий через транзисторы и другие компоненты.
Это помещает очень маленькую форму волны на шины питания. Эта форма волны поступил на вход первого транзистора и, таким образом, мы получили петля для «генерации шума». Скорость прохождения сигнала вокруг цепи определяет частоту нестабильности.От добавление резистора и электролита к каждому каскаду, фильтр низких частот производится, и это «убивает» или снижает амплитуду нарушения сигнал. При необходимости значение R3 можно увеличить.

Практические примеры с резисторами будет рассмотрено в следующих главах, поскольку почти все схемы требуют резисторы.

Рис. 1.5b: Звуковой индикатор изменения температуры или количества света

Практическое применение нелинейных резисторов показано на простом сигнальном устройстве, показанном на фигура 1.5б. Без триммера TP и нелинейного резистора NTC это аудио осциллятор. Частоту звука можно рассчитать по следующей формуле:

В нашем случае R = 47кВт и C = 47nF, а частота равна:

Когда по рисунку обрезать горшок и резистор NTC добавляются, частота генератора увеличивается. Если горшок обрезки установлен на минимальное сопротивление, осциллятор останавливается.При желаемой температуре сопротивление обшивки Pot следует увеличивать до тех пор, пока осциллятор снова не заработает. Для Например, если эти настройки были сделаны на 2C, осциллятор остается замороженным на более высоких температур, поскольку сопротивление резистора NTC ниже, чем номинальный. Если температура падает, сопротивление увеличивается и при 2С осциллятор активирован.

Если в автомобиле установлен резистор NTC, близко к поверхности дороги, осциллятор может предупредить водителя, если дорога покрытый льдом.Естественно резистор и два соединяющих его медных провода к контуру следует беречь от грязи и воды.

Если вместо резистора NTC, резистор PTC используется, осциллятор будет активирован, когда температура поднимется выше определенный обозначенное значение. Например, резистор PTC может использоваться для индикации состояние холодильника: настроить осциллятор на работу при температурах выше 6C через подстроечный резистор TP, и схема сообщит, не так с холодильником.

Вместо NTC можно использовать резистор LDR. - осциллятор будет заблокирован, пока есть определенное количество света настоящее время. Таким образом, мы могли бы сделать простую сигнализацию для помещений, где свет должен быть всегда включен.

LDR может быть соединен с резистором R. In в этом случае осциллятор работает, когда присутствует свет, в противном случае он заблокирован. Это может быть интересный будильник для егерей и рыбаков, которые хотели бы встать на рассвете, но только если погода ясная.Рано утром в нужный момент обрезайте горшок должен быть установлен в самое верхнее положение. Затем сопротивление следует тщательно уменьшается, пока не запустится осциллятор. Ночью осциллятор будет заблокирован, так как есть нет света и сопротивление LDR очень высокое. По мере увеличения количества света в утром сопротивление LDR падает и осциллятор активируется, когда LDR освещается необходимым количеством света.

Обрезной горшок с рисунка 1.5b используется для точной настройки. Таким образом, TP с рисунка 1.5b можно использовать для установки осциллятор для активации при разных условиях (выше или ниже температура или количество света).

1,5 Потенциометры

Потенциометры (также называемые горшками ) переменные резисторы, используемые в качестве регуляторов напряжения или тока в электронные схемы. По конструкции их можно разделить на 2 группы: мелованные и проволочные.

С потенциометрами с покрытием (рисунок 1.6a), Корпус изолятора покрыт резистивным материалом. Eсть проводящий ползунок перемещается по резистивному слою, увеличивая сопротивление между ползунком и одним концом горшка, уменьшая сопротивление между ползунком и другим концом горшка.

Рис. 1.6a: Потенциометр с покрытием

с проволочной обмоткой потенциометры изготовлены из провод намотан на корпус изолятора.По проводу движется ползунок, увеличивающий сопротивление. между ползунком и одним концом горшка, уменьшая сопротивление между слайдер и другой конец горшка.

Гораздо чаще встречаются горшки с покрытием. С их помощью сопротивление может быть линейным, логарифмическим, обратным логарифмическим или обратным логарифмическим. другое, в зависимости от угла или положения ползунка. Большинство распространены линейные и логарифмические потенциометры, а наиболее распространенными являются приложения - радиоприемники, усилители звука и аналогичные устройства где горшки используются для регулировки громкости, тона, баланса, и т.п.

Потенциометры с проволочной обмоткой используются в приборах. которые требуют большей точности управления. В них есть более высокое рассеивание, чем у горшков с покрытием, и поэтому токовые цепи.

Сопротивление потенциометра обычно составляет E6 ряд, включающий значения: 1, 2.2 и 4.7. Стандартные значения допуска включают 30%, 20%, 10% (и 5% для проволочной обмотки). горшки).

Потенциометры

бывают разных формы и размеры, с мощностью от 1/4 Вт (горшки с покрытием для объема управление в амперах и т. д.) до десятков ватт (для регулирования больших токов).Несколько разных горшков показаны на фото 1.6b вместе с символом потенциометр.

Рис. 1.6b: Потенциометры

Верхняя модель представляет собой стерео потенциометр. На самом деле это две кастрюли в одном корпусе, с ползунки установлены на общей оси, поэтому они перемещаются одновременно. Эти используется в стереофонических усилителях для одновременного регулирования как левого, так и правильные каналы, и т.п.

Слева внизу находится так называемый бегунок потенциометр.

Внизу справа - горшок с проволочной обмоткой мощностью 20 Вт, обычно используется как реостат (для регулирования тока во время зарядки аккумулятор и т. д.).

Для схем, требующих очень точной значения напряжения и тока, подстроечные потенциометры (или просто горшки для обрезки ). Это небольшие потенциометры с ползунком, который регулируется отверткой.

Кастрюли также бывают разных различных форм и размеров, с мощностью от 0,1 Вт до 0,5 Вт. Изображение 1.7 показаны несколько различных горшков для обрезки вместе с символом.

Рис. 1.7: Декоративные ванночки

Корректировки сопротивления сделано отверткой. Исключением является обрезной горшок в правом нижнем углу, который можно регулировать с помощью пластикового вала. Особенно точная регулировка достигается при помощи декоративного кожуха в пластиковом прямоугольном корпусе (нижний середина).Его ползунок перемещается винтом, так что можно сделать несколько полных оборотов. требуется для перемещения ползунка из одного конца в другой.

1,6 Практический примеры с потенциометрами

Как указывалось ранее, потенциометры чаще всего используются в усилителях, радио- и ТВ-приемниках, кассетные плееры и аналогичные устройства. Они используются для регулировки громкости, тон, баланс и т. д.

В качестве примера разберем общая схема регулировки тембра в аудиоусилителе.В нем два горшка и показан на рисунке 1.8a.

Рис. 1.8 Регулировка тона цепь: а. Схема электрическая, б. Функция усиления

Потенциометр с маркировкой BASS регулирует усиление низких частот. Когда ползунок находится в самом нижнем положения, усиление сигналов очень низкой частоты (десятки Гц) примерно в десять раз больше, чем усиление сигналов средней частоты (~ кГц).Если ползунок находится в крайнем верхнем положении, усиление очень низкое. частота сигналов примерно в десять раз ниже, чем усиление средних частотные сигналы. Усиление низких частот полезно при прослушивании музыки с битом (диско, джаз, R&B ...), в то время как усиление низких частот должно быть снижается при прослушивании речи или классической музыки.

Аналогично, потенциометр с маркировкой TREBLE регулирует усиление высоких частот. Усиление высоких частот полезно, когда музыка состоит из высоких тонов. например, звуковой сигнал, в то время как, например, усиление высоких частот должно быть уменьшено, когда прослушивание старой записи для уменьшения фонового шума.

На диаграмме 1.8b показана функция усиления в зависимости от частоты сигнала. Если оба ползунка в крайнем верхнем положении результат показан кривой 1-2. Если оба находятся в среднем положении, функция описывается строкой 3-4, а оба ползунка в самом нижнем положении, результат отображается с помощью кривая 5-6. Установка пары ползунков на любые другие возможные результаты приводит к кривым между кривыми 1-2 и 5-6.

Потенциометры BASS и TREBLE имеют покрытие по конструкции и линейные по сопротивлению.

Третий банк на диаграмме - регулятор громкости. Покрытый и логарифмический по сопротивлению (отсюда и марка log )

Резисторы | Electronics Club

Резисторы | Клуб электроники

Цветовой код | Толерантность | Серия E6 / E12 | Номинальная мощность

См. Также: Сопротивление | Закон Ома | Переменные резисторы

Резисторы ограничивают прохождение электрического тока, например, резистор включен последовательно с светодиод (LED) для ограничения тока, проходящего через светодиод.

Резисторы можно подключать любым способом, и они не повреждаются от нагрева при пайке.

Сопротивление измеряется в омах, символ (омега). 1 довольно мала, поэтому номиналы резисторов также приведены в к и М:

1k = 1000
1M = 1000k = 1000000.

Большинство резисторов слишком малы, чтобы отображать их сопротивление в виде числа. Вместо этого используется цветовой код.

Информацию о резисторах, подключенных последовательно и параллельно, см. В страница сопротивления.

Rapid Electronics: резисторы

Сокращенное обозначение резистора

Значения резисторов часто записываются на принципиальных схемах с использованием кодовой системы, исключающей использование десятичной точки. потому что очень легко пропустить маленькую точку. Вместо десятичной точки используются буквы R, K и M.

Чтобы прочитать код: замените букву десятичной точкой, затем умножьте значение на 1000, если буква K, или 1000000, если это была буква М. Буква R означает умножение на 1.


Код цвета резистора

Номиналы резистора

обычно отображаются с помощью цветных полос, каждый цвет представляет собой число, как показано в таблице. Большинство резисторов имеют 4 полосы:

  • Первая полоса дает первую цифру .
  • Вторая полоса дает вторую цифру .
  • Третья полоса указывает количество нулей .
  • Четвертая полоса показывает допуск (точность) резистора. но это можно игнорировать почти для всех схем.
Пример

Этот резистор имеет красную (2), фиолетовую (7), желтую (4 нуля) и золотую полосы, поэтому его значение составляет 270000 = 270 тыс. (на принципиальных схемах обычно отображается как 270K ).

Сделайте свой собственный калькулятор цветового кода.

Электроника
Код цвета
Цвет Номер
Черный 0
Коричневый 1
9020 Оранжевый 3
Желтый 4
Зеленый 5
Синий
Серый 8
Белый 9
Резисторы малой стоимости (
<10 Ом)

Стандартный цветовой код не может отображать значения меньше 10.Для отображения меньших значений используются два специальных цвета для третьей полосы :

  • золота, что означает × 0,1
  • серебра, что означает × 0,01

Первая и вторая полосы представляют собой цифры обычным образом.

Например:

красные, фиолетовые, золотые полосы представляют 27 × 0,1 = 2,7.

зеленые, синие, серебряные полосы представляют 56 × 0,01 = 0,56.



Калькулятор цветового кода резистора

Этот калькулятор можно использовать для определения номиналов резисторов.Он состоит из трех карточных дисков, показывающих цвета и значения, они скреплены вместе, чтобы вы могли просто поверните диски, чтобы выбрать требуемое значение или цветовой код. Простой, но эффективный!

Есть две версии для загрузки и печати на белой карточке формата А4 (два калькулятора на листе):

Чтобы сделать калькулятор: вырежьте три диска и скрепите их вместе латунной застежкой для бумаги. Черно-белую версию необходимо раскрасить вручную, и проще всего это сделать перед вырезанием .


Допуск резисторов

Допуск резистора показан четвертой полосой цветового кода. Допуск - это точность резистора и выражается в процентах.

Например, 390 резистор с допуском ± 10% будет иметь значение в пределах 10% от 390, г. между 390 - 39 = 351 и 390 + 39 = 429 (39 составляет 10% от 390).

Для четвертой полосы используется специальный цветовой код Допуск :

  • серебро ± 10%
  • золото ± 5%
  • красный ± 2%
  • коричневый ± 1%
  • Если четвертая полоса не отображается, допуск составляет ± 20%

Допуском можно пренебречь почти для всех цепей, поскольку точное значение резистора требуется редко. и там, где это переменный резистор, обычно будет использоваться.


Реальные значения резисторов (серии E6 и E12)

Вы могли заметить, что резисторы доступны не со всеми возможными значениями, например 22k и 47k есть в наличии, но 25к а 50к нет!

Почему это? Представьте, что вы решили делать резисторы каждые 10 дает 10, 20, 30, 40, 50 и так далее. Кажется, это нормально, но что произойдет, когда вы достигнете 1000? Делать 1000, 1010, 1020, 1030 и так далее было бы бессмысленно, потому что для этих значений 10 - очень маленькая разница, слишком мала, чтобы быть заметной в большинстве схем.

Для получения разумного диапазона значений резистора вам необходимо увеличить размер «шага». по мере увеличения значения. Стандартные номиналы резисторов основаны на этой идее и образуют серия, которая следует той же схеме для каждого числа, кратного десяти.

Деньги используют аналогичную систему

Аналогичное расположение используется для денег: размер шага монет и банкнот увеличивается с увеличением стоимости.
Например, валюта Великобритании (1 фунт = 100 пенсов) содержит монеты 1, 2, 5, 10, 20, 50, 1 и 2 фунта стерлингов. (плюс банкноты 5, 10, 20 и 50 фунтов стерлингов).

Серия E6

Серия E6 имеет 6 значений для каждого кратного десяти, она используется для резисторов с допуском 20%. Значения: 10, 15, 22, 33, 47, 68, ... затем продолжается 100, 150, 220, 330, 470, 680, 1000 и т. Д. Обратите внимание, как размер шага увеличивается с увеличением значения. Для этой серии шаг (к следующее значение) примерно вдвое меньше.

Серия E12

Серия E12 имеет 12 значений для каждого кратного десяти, она используется для резисторов с допуском 10%.Значения: 10, 12, 15, 18, 22, 27, 33, 39, 47, 56, 68, 82, ... затем продолжается 100, 120, 150 и т. Д. Обратите внимание, как это серия E6 с дополнительным значением в промежутках.

Серия E12 наиболее часто используется для резисторов.

Позволяет выбрать значение в пределах 10% от точного значения, которое вам нужно. Это достаточно точно для почти все проекты и это разумно, потому что большинство резисторов имеют допуск ± 10%.



Номинальные мощности резисторов

Электрическая энергия преобразуется в тепло, когда через резистор протекает ток.Обычно эффект незначителен, но если сопротивление низкое или напряжение на резисторе высокое, может пройти большой ток, в результате чего резистор заметно нагреется. Резистор должен выдерживать эффект нагрева и резисторы имеют номинальную мощность, чтобы показать это.

Номинальная мощность резисторов редко указывается в списках деталей, потому что для большинства цепей стандартная мощность Подходит мощность 0,25 Вт или 0,5 Вт. В редких случаях, когда требуется более высокая мощность, она должна быть четко обозначена. указанные в перечне деталей, это будут схемы с резисторами малого номинала (менее около 300) или высокого напряжения (более 15В).

Rapid Electronics: силовые резисторы

Мощность P, развиваемая в резисторе, может быть определена с помощью следующих уравнений:

P = V² / R или P = I² × R

P = развиваемая мощность в ваттах (Вт)
I = ток через резистор в амперах (A)
R = сопротивление резистора в Ом ()
В = напряжение на резисторе в вольтах (В)

Примеры:
  • Резистор 470 с 10 В на нем требуется номинальная мощность P = V² / R = 10² / 470 = 0.21Вт.
    В данном случае подойдет стандартный резистор 0,25 Вт.
  • Резистор 27 А с 10 В на нем требуется номинальная мощность P = V² / R = 10² / 27 = 3,7 Вт.
    Требуется резистор большой мощности с номинальной мощностью 5 Вт (или более).

Rapid Electronics любезно разрешили мне использовать их изображения на этом веб-сайте, и я очень благодарен за их поддержку. У них есть широкий ассортимент резисторов и других компонентов для электроники, и я рад рекомендую их как поставщика.


Книг по комплектующим:


Политика конфиденциальности и файлы cookie

Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста, посетите AboutCookies.org.

electronicsclub.info © Джон Хьюс 2021 г.

Учебное пособие по физике

: схемы серии

Как упоминалось в предыдущем разделе Урока 4, два или более электрических устройства в цепи могут быть соединены последовательным или параллельным соединением.Когда все устройства соединены последовательным соединением, схема называется последовательной схемой . В последовательной цепи каждое устройство подключается таким образом, что существует только один путь, по которому заряд может проходить через внешнюю цепь. Каждый заряд, проходящий через контур внешней цепи, будет последовательно проходить через каждый резистор.

Краткое сравнение и контраст между последовательными и параллельными цепями было сделано в предыдущем разделе Урока 4.В этом разделе подчеркивалось, что добавление большего количества резисторов в последовательную цепь приводит к весьма ожидаемому результату - увеличению общего сопротивления. Поскольку в цепи есть только один путь, каждый заряд встречает сопротивление каждого устройства; поэтому добавление большего количества устройств приводит к увеличению общего сопротивления. Это увеличенное сопротивление служит для уменьшения скорости протекания заряда (также известной как ток).

Эквивалентное сопротивление и ток

Заряды проходят через внешнюю цепь со скоростью, которая везде одинакова.В одном месте ток не больше, чем в другом. Фактическое количество тока обратно пропорционально общему сопротивлению. Существует четкая взаимосвязь между сопротивлением отдельных резисторов и общим сопротивлением набора резисторов. Что касается батареи, которая нагнетает заряд, наличие двух последовательно соединенных резисторов с сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора с сопротивлением 12 Ом. Наличие трех последовательно соединенных резисторов сопротивлением 6 Ом было бы эквивалентно наличию в цепи одного резистора сопротивлением 18 Ом.А наличие четырех последовательно соединенных резисторов 6 Ом было бы эквивалентно наличию в цепи одного резистора 24 Ом.

Это концепция эквивалентного сопротивления. Эквивалентное сопротивление схемы - это величина сопротивления, которая потребуется одному резистору, чтобы сравняться с общим эффектом от совокупности резисторов, присутствующих в схеме. Для последовательных цепей математическая формула для вычисления эквивалентного сопротивления (R eq ) составляет

. R экв. = R 1 + R 2 + R 3 +...

, где R 1 , R 2 и R 3 - значения сопротивления отдельных резисторов, соединенных последовательно.

Создавайте, решайте и проверяйте свои собственные проблемы с помощью виджета Equivalent Resistance ниже. Создайте себе проблему с любым количеством резисторов и любыми номиналами. Решать проблему; затем нажмите кнопку «Отправить», чтобы проверить свой ответ.

Ток в последовательной цепи везде одинаковый.Заряд НЕ накапливается и не начинает накапливаться в любом заданном месте, так что ток в одном месте больше, чем в других местах. Заряд НЕ расходуется резисторами, поэтому в одном месте его меньше по сравнению с другим. Можно представить, что заряды движутся вместе по проводам электрической цепи и везде движутся с одинаковой скоростью. Ток - скорость, с которой течет заряд - везде одинаков. То же самое на первом резисторе, как на последнем резисторе, как в батарее.Математически можно написать

I аккумулятор = I 1 = I 2 = I 3 = ...

, где I 1 , I 2 и I 3 - значения тока в отдельных местах расположения резисторов.

Эти значения тока легко вычислить, если известно напряжение батареи и известны отдельные значения сопротивления. Используя значения отдельных резисторов и приведенное выше уравнение, можно рассчитать эквивалентное сопротивление.А используя закон Ома (ΔV = I • R), ток в батарее и, следовательно, через каждый резистор можно определить, найдя соотношение напряжения батареи и эквивалентного сопротивления.

I аккумулятор = I 1 = I 2 = I 3 = ΔV аккумулятор / R экв

Разность электрических потенциалов и падения напряжения

Как обсуждалось в Уроке 1, электрохимическая ячейка цепи подает энергию на заряд, чтобы перемещать его через ячейку и устанавливать разность электрических потенциалов на двух концах внешней цепи.Элемент с напряжением 1,5 В создает разность электрических потенциалов во внешней цепи 1,5 В. Это означает, что электрический потенциал на положительной клемме на 1,5 В больше, чем на отрицательной клемме. Когда заряд движется по внешней цепи, он теряет 1,5 вольт электрического потенциала. Эта потеря электрического потенциала называется падением напряжения . Это происходит, когда электрическая энергия заряда преобразуется в другие формы энергии (тепловую, световую, механическую и т. Д.).) внутри резисторов или нагрузок. Если электрическая цепь, питаемая от элемента на 1,5 В, оснащена более чем одним резистором, то совокупная потеря электрического потенциала составляет 1,5 В. Для каждого резистора существует падение напряжения, но сумма этих падений напряжения составляет 1,5 В - то же самое, что и номинальное напряжение источника питания. Математически это понятие может быть выражено следующим уравнением:

ΔV аккумулятор = ΔV 1 + ΔV 2 + ΔV 3 +...

Чтобы проиллюстрировать этот математический принцип в действии, рассмотрим две схемы, показанные ниже на диаграммах A и B. Предположим, вас попросили определить два неизвестных значения разности электрических потенциалов между лампочками в каждой цепи. Чтобы определить их значения, вам нужно будет использовать приведенное выше уравнение. Батарея обозначается обычным схематическим символом, а рядом с ней указывается ее напряжение. Определите падение напряжения для двух лампочек, а затем нажмите кнопку «Проверить ответы», чтобы убедиться, что вы правы.

Ранее в Уроке 1 обсуждалось использование диаграммы электрических потенциалов. Диаграмма электрического потенциала - это концептуальный инструмент для представления разности электрических потенциалов между несколькими точками электрической цепи. Рассмотрим приведенную ниже принципиальную схему и соответствующую диаграмму электрических потенциалов.

Схема, показанная на схеме выше, питается от источника энергии 12 В.В цепи последовательно соединены три резистора, каждый из которых имеет собственное падение напряжения. Отрицательный знак разности электрических потенциалов просто означает потерю электрического потенциала при прохождении через резистор. Обычный ток направляется через внешнюю цепь от положительной клеммы к отрицательной. Поскольку схематический символ источника напряжения использует длинную полосу для обозначения положительного вывода, точка A на схеме находится на положительном выводе или выводе с высоким потенциалом.В точке A электрический потенциал 12 вольт, а в точке H (отрицательный вывод) - 0 вольт. Проходя через батарею, заряд приобретает электрический потенциал 12 вольт. А при прохождении через внешнюю цепь заряд теряет 12 вольт электрического потенциала, как показано на диаграмме электрических потенциалов, показанной справа от принципиальной схемы. Эти 12 вольт электрического потенциала теряются в три этапа, каждый из которых соответствует прохождению через резистор. При прохождении через соединительные провода между резисторами происходит небольшая потеря электрического потенциала из-за того, что провод оказывает относительно небольшое сопротивление потоку заряда.Поскольку точки A и B разделены проводом, они имеют практически одинаковый электрический потенциал 12 В. Когда заряд проходит через свой первый резистор, он теряет 3 В электрического потенциала и падает до 9 В в точке C. точка D отделена от точки C простым проводом, она имеет практически тот же электрический потенциал 9 В, что и C. Когда заряд проходит через второй резистор, он теряет 7 В электрического потенциала и падает до 2 В в точке E. Поскольку точка F отделена от точки E простым проводом, она имеет практически тот же электрический потенциал 2 В, что и E.Наконец, когда заряд проходит через свой последний резистор, он теряет 2 В электрического потенциала и падает до 0 В в точке G. В точках G и H в заряде заканчивается энергия, и ему требуется повышение энергии, чтобы пройти через внешнее сопротивление. схема снова. Прирост энергии обеспечивается аккумулятором по мере того, как заряд перемещается с H на A.

В Уроке 3 закон Ома (ΔV = I • R) был введен как уравнение, которое связывает падение напряжения на резисторе с сопротивлением резистора и током на резисторе.Уравнение закона Ома можно использовать для любого отдельного резистора в последовательной цепи. При объединении закона Ома с некоторыми принципами, уже обсужденными на этой странице, возникает большая идея.

В последовательных цепях наибольшее падение напряжения имеет резистор с наибольшим сопротивлением.

Поскольку в последовательной цепи ток везде одинаковый, значение I ΔV = I • R одинаково на каждом из резисторов последовательной цепи. Таким образом, падение напряжения (ΔV) будет изменяться с изменением сопротивления.Где бы сопротивление ни было наибольшим, падение напряжения будет наибольшим у этого резистора. Уравнение закона Ома можно использовать не только для прогнозирования того, что резистор в последовательной цепи будет иметь наибольшее падение напряжения, но и для расчета фактических значений падения напряжения.

Δ V 1 = I • R 1 Δ V 2 = I • R 2 Δ V 3 = I • R 3

Математический анализ последовательных цепей

Приведенные выше принципы и формулы могут быть использованы для анализа последовательной цепи и определения значений тока и разности электрических потенциалов на каждом из резисторов в последовательной цепи.Их использование будет продемонстрировано математическим анализом схемы, показанной ниже. Цель состоит в том, чтобы использовать формулы для определения эквивалентного сопротивления цепи (R eq ), тока в батарее (I до ), а также падений напряжения и тока для каждого из трех резисторов.

Анализ начинается с использования значений сопротивления отдельных резисторов для определения эквивалентного сопротивления цепи.

R экв = R 1 + R 2 + R 3 = 17 Ом + 12 Ом + 11 Ом = 40 Ом

Теперь, когда известно эквивалентное сопротивление, ток в батарее можно определить с помощью уравнения закона Ома.При использовании уравнения закона Ома (ΔV = I • R) для определения тока в цепи важно использовать напряжение батареи для ΔV и эквивалентное сопротивление для R. Расчет показан здесь:

I до = ΔV аккумулятор / R eq = (60 В) / (40 Ом) = 1,5 А

Значение тока 1,5 А - это ток в месте расположения батареи. В последовательной цепи без точек разветвления ток везде одинаковый.Ток в месте расположения батареи такой же, как ток в каждом месте расположения резистора. Впоследствии 1,5 ампер - это значение I 1 , I 2 и I 3 .

I аккумулятор = I 1 = I 2 = I 3 = 1,5 А

Осталось определить три значения - падение напряжения на каждом отдельном резисторе. Закон Ома снова используется для определения падения напряжения для каждого резистора - это просто произведение тока на каждом резисторе (вычисленное выше как 1.5 ампер) и сопротивление каждого резистора (указано в постановке задачи). Расчеты показаны ниже.

ΔV 1 = I 1 • R 1

ΔV 1 = (1,5 A) • (17 Ом)

ΔV 1 = 25,5 В

ΔV 2 = I 2 • R 2

ΔV 2 = (1,5 A) • (12 Ом)

ΔV 2 = 18 В

ΔV 3 = I 3 • R 3

ΔV 3 = (1.5 А) • (11 Ом)

ΔV 3 = 16,5 В

В качестве проверки точности выполненных математических расчетов целесообразно проверить, удовлетворяют ли вычисленные значения принципу, согласно которому сумма падений напряжения для каждого отдельного резистора равна номинальному напряжению батареи. Другими словами, ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?

ΔV батареи = ΔV 1 + ΔV 2 + ΔV 3 ?

Это 60 В = 25.5 В + 18 В + 16,5 В?

60 В = 60 В?

Да !!

Математический анализ этой последовательной схемы включал смесь концепций и уравнений. Как это часто бывает в физике, отделение понятий от уравнений при принятии решения физической проблемы является опасным актом. Здесь необходимо учитывать концепции, согласно которым ток везде одинаков и что напряжение батареи эквивалентно сумме падений напряжения на каждом резисторе, чтобы завершить математический анализ.В следующей части Урока 4 параллельные цепи будут проанализированы с использованием закона Ома и концепций параллельных цепей. Мы увидим, что подход сочетания концепций с уравнениями будет не менее важен для этого анализа.

Мы хотели бы предложить ... Зачем просто читать об этом и когда можно с этим взаимодействовать? Взаимодействие - это именно то, что вы делаете, когда используете одну из интерактивных функций The Physics Classroom.Мы хотели бы предложить вам совместить чтение этой страницы с использованием нашего интерактивного средства построения цепей постоянного тока. Вы можете найти его в разделе Physics Interactives на нашем сайте. Построитель цепей постоянного тока предоставляет учащемуся набор для построения виртуальных цепей. Вы можете легко перетащить источники напряжения, резисторы и провода на рабочее место, расположить и подключить их так, как вам нужно. Вольтметры и амперметры позволяют измерять ток и падение напряжения. Нажатие на резистор или источник напряжения позволяет изменять сопротивление или входное напряжение.Это просто. Это весело. И это безопасно (если вы не используете его в ванне).


Проверьте свое понимание

1. Используйте свое понимание эквивалентного сопротивления, чтобы заполнить следующие утверждения:

а. Два резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора сопротивлением 3 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное сопротивлению одного резистора _____ Ом.

г. Три резистора 5 Ом, включенные последовательно, обеспечат сопротивление, эквивалентное одному резистору _____ Ом.

г. Три резистора с сопротивлением 2 Ом, 4 Ом и 6 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

e. Три резистора с сопротивлением 5 Ом, 6 Ом и 7 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

ф. Три резистора с сопротивлением 12 Ом, 3 Ом и 21 Ом включены последовательно. Они обеспечили бы сопротивление, эквивалентное одному резистору _____ Ом.

2. По мере увеличения количества резисторов в последовательной цепи общее сопротивление __________ (увеличивается, уменьшается, остается прежним) и ток в цепи __________ (увеличивается, уменьшается, остается прежним).


3. Рассмотрим следующие две схемы последовательных цепей. На каждой диаграмме используйте стрелки, чтобы указать направление обычного тока. Затем сравните напряжение и ток в обозначенных точках для каждой диаграммы.


4. Три одинаковые лампочки подключены к D-ячейке, как показано справа.Какое из следующих утверждений верно?

а. Все три лампочки будут иметь одинаковую яркость.

г. Лампа между X и Y будет самой яркой.

г. Лампа между Y и Z будет самой яркой.

г. Лампочка между Z и батареей будет самой яркой.

5. Три одинаковые лампочки подключены к батарее, как показано справа.Какие настройки можно было бы внести в схему, чтобы увеличить ток, измеряемый в точке X? Перечислите все подходящие варианты.

а. Увеличьте сопротивление одной из лампочек.

г. Увеличьте сопротивление двух лампочек.

г. Уменьшите сопротивление двух лампочек.

г. Увеличьте напряжение аккумулятора.

e. Уменьшите напряжение аккумулятора.

ф. Удалите одну из луковиц.


6. Три одинаковые лампочки подключены к батарее, как показано справа. W, X, Y и Z обозначают места на трассе. Какое из следующих утверждений верно?

а. Разница потенциалов между X и Y больше, чем между Y и Z.

г. Разница потенциалов между X и Y больше, чем между Y и W.

г. Разность потенциалов между Y и Z больше, чем между Y и W.

г. Разница потенциалов между X и Z больше, чем между Z и W.

e. Разность потенциалов между X и W больше, чем на батарее.

ф. Разность потенциалов между X и Y больше, чем между Z и W.


7.Сравните схему X и Y ниже. Каждый питается от 12-вольтовой батареи. Падение напряжения на резисторе 12 Ом в цепи Y равно ____ падению напряжения на единственном резисторе в цепи X.

а. меньше чем

г. больше

г. то же, что

8. Аккумулятор на 12 В, резистор на 12 Ом и лампочка подключаются, как показано на схеме X ниже. {5} ~ ± 0.{-2} ~ ± 10%

Обратите внимание, что информация, представленная в этой статье, предназначена только для справки. Amplified Parts не делает никаких заявлений, обещаний или гарантий относительно точности, полноты или адекватности содержания этой статьи и прямо отказывается от ответственности за ошибки или упущения со стороны автора. В отношении содержания данной статьи не дается никаких гарантий, подразумеваемых, выраженных или установленных законом, включая, помимо прочего, гарантии ненарушения прав третьих лиц, права собственности, товарной пригодности или пригодности для определенной цели. или его ссылки на другие ресурсы.

Резисторы

Функция резистора заключается в уменьшении протекания электрического тока.
Этот символ используется для обозначения резистора на принципиальной схеме, известной как схема.
Значение сопротивления обозначается в единицах, называемых «Ом». Резистор на 1000 Ом обычно отображается как 1 кОм (килоом), а 1000 кОм записывается как 1 МОм (мегаом).

Есть два класса резисторов; постоянные резисторы и переменные резисторы. Они также классифицируются по материалу, из которого они сделаны.Типичный резистор изготавливается из углеродной или металлической пленки. Есть и другие типы, но они самые распространенные.
Значение сопротивления резистора - не единственное, что нужно учитывать при выборе резистора для использования в цепи. Также важны «допуск» и номинальная электрическая мощность резистора.
Допуск резистора показывает, насколько он близок к фактическому номинальному значению сопротивления. Например, допуск в 5% означает, что сопротивление резистора находится в пределах 5% от указанного значения сопротивления.
Номинальная мощность показывает, какую мощность резистор может безопасно выдерживать. Точно так же, как вы не стали бы использовать фонарик на 6 В для замены перегоревшей лампы в вашем доме, вы не стали бы использовать резистор на 1/8 Вт, когда вам следует использовать резистор на 1/2 Вт.

Максимальная номинальная мощность резистора указана в ваттах.
Мощность рассчитывается как квадрат тока (I 2 ) x значение сопротивления (R) резистора. Если максимальный номинал резистора будет превышен, он станет очень горячим и даже сгорит.
Резисторы в электронных схемах обычно имеют номинальную мощность 1/8 Вт, 1/4 Вт и 1/2 Вт. 1/8 Вт почти всегда используется в сигнальных цепях.
При питании светоизлучающего диода через резистор протекает сравнительно большой ток, поэтому вам необходимо учитывать номинальную мощность резистора, который вы выбираете.

Номинальная электрическая мощность

    Например, для питания цепи 5 В от источника 12 В обычно используется трехконтактный регулятор напряжения.
    Однако, если вы попытаетесь понизить напряжение с 12 В до 5 В, используя только резистор, вам необходимо рассчитать номинальную мощность резистора, а также значение сопротивления.

    В это время необходимо знать ток, потребляемый цепью 5 В.
    Вот несколько способов узнать, какой ток требует цепь.
    Соберите схему и измерьте фактический ток с помощью мультиметра.
    Проверьте текущее использование компонента по стандартной таблице.
    Предположим, что потребляемый ток составляет 100 мА (миллиампер) в следующем примере.
    7V необходимо сбросить с резистором. Значение сопротивления резистора становится 7 В / 0,1 А = 70 (Ом). Потребление электроэнергии для этого резистора становится равным 0.1A x 0,1A x 70 Ом = 0,7Вт.
    Как правило, можно безопасно выбирать резистор с номинальной мощностью, примерно в два раза превышающей необходимую потребляемую мощность.

Значение сопротивления
    Что касается стандартного значения сопротивления, используемые значения можно разделить логарифмом. (См. Таблицу логарифмов)
    Например, в случае E3, используются значения [1], [2.2], [4.7] и [10]. Они делят 10 на три, как логарифм.
    В случае E6: [1], [1.5], [2.2], [3.3], [4.7], [6.8], [10].
    В случае E12: [1], [1.2], [1.5], [1.8], [2.2], [2.7], [3.3], [3.9], [4.7], [5.6], [6.8] , [8.2], [10].
    Именно из-за этого значение сопротивления с первого взгляда воспринимается как дискретное значение.
    Значение сопротивления отображается с использованием цветового кода (цветные полосы / цветные полосы), потому что средний резистор слишком мал, чтобы на нем было напечатано значение с числами.
    Вам лучше выучить цветовой код, потому что почти все резисторы мощностью 1/2 Вт или меньше используют цветовую кодировку для отображения значения сопротивления.


Фиксированные резисторы
    Фиксированный резистор - это резистор, значение сопротивления которого не может изменяться.
Углеродистые пленочные резисторы
    Это недорогой резистор общего назначения. Обычно допуск значения сопротивления составляет 5%. Часто используются номиналы мощности 1/8 Вт, 1/4 Вт и 1/2 Вт.
    Углеродные пленочные резисторы имеют недостаток; они имеют тенденцию быть электрически шумными. Металлопленочные резисторы рекомендуется использовать в аналоговых схемах.Однако у меня никогда не было проблем с этим шумом.
    Физические размеры различных резисторов следующие.

Сверху фотографии
1 / 8W
1 / 4W
1 / 2W

Приблизительный размер
Номинальная мощность
(Вт)
Толщина
(мм)
Длина
(мм)
1/8 2 3
1/4 2 6
1/2 3 9


    Этот резистор называется сетью одинарных резисторов (SIL).Он состоит из множества резисторов одинакового номинала в одном корпусе. Одна сторона каждого резистора соединена с одной стороной всех остальных резисторов внутри. Одним из примеров его использования может быть управление током в цепи, питающей множество светоизлучающих диодов (СИД).
    На фотографии слева в корпусе размещено 8 резисторов. Каждый вывод на корпусе представляет собой один резистор. Девятое отведение слева - общее. Напечатан номинал сопротивления. (Это зависит от поставщика.)
    В некоторых цепях резисторов наверху цепей резисторов напечатано «4S». 4S означает, что в упаковке 4 независимых резистора, которые не соединены между собой внутри. В корпусе восемь выводов вместо девяти. Внутренняя проводка этих типичных резисторных цепей показана ниже. Размер (черная часть) схемы резисторов, которая у меня есть, следующий: для типа с 9 выводами толщина составляет 1,8 мм, высота 5 мм и ширина 23 мм. Для типов с 8 компонентными выводами толщина равна 1.8 мм, высота 5 мм, ширина 20 мм.

Металлопленочные резисторы
    Металлопленочные резисторы используются, когда требуется более высокий допуск (более точное значение). Они намного точнее по стоимости, чем резисторы из углеродной пленки. У них допуск около 0,05%. У них допуск около 0,05%. Я не использую в своих схемах резисторы с высокими допусками. Резисторов порядка 1% более чем достаточно. Ni-Cr (нихром), кажется, используется в качестве материала резистора.Металлопленочный резистор используется в мостовых схемах, схемах фильтров и схемах аналоговых сигналов с низким уровнем шума.

Сверху фотографии
1 / 8W (допуск 1%)
1 / 4W (допуск 1%)
1W (допуск 5%)
2W (допуск 5%)

Размер черновика
Номинальная мощность
(Вт)
Толщина
(мм)
Длина
(мм)
1/8 2 3
1/4 2 6
1 3.5 12
2 5 15

Переменные резисторы

    Есть два основных способа использования переменных резисторов. Один из них - это переменный резистор, значение которого можно легко изменить, например, регулировку громкости радио. Другой - полуфиксированный резистор, который не предназначен для настройки кем-либо, кроме технического специалиста. Он используется техником для регулировки рабочего состояния контура.Полустационарные резисторы используются для компенсации неточностей резисторов и для точной настройки схемы. Угол поворота переменного резистора обычно составляет около 300 градусов. Некоторые переменные резисторы необходимо повернуть много раз, чтобы использовать весь диапазон сопротивления, который они предлагают. Это позволяет очень точно регулировать их значение. Они называются «потенциометрами» или «подстроечными потенциометрами».

    На фотографии слева переменный резистор, обычно используемый для регуляторов громкости, можно увидеть справа.Его значение очень легко настроить.
    Четыре резистора в центре фотографии полуфиксированного типа. Эти устанавливаются на печатной плате.
    Два резистора слева - это подстроечные потенциометры.

    Этот символ используется для обозначения переменного резистора на принципиальной схеме.


    Существует три способа изменения величины переменного резистора в зависимости от угла поворота его оси.
    Когда тип «A» вращается по часовой стрелке, сначала значение сопротивления изменяется медленно, а затем во второй половине его оси оно изменяется очень быстро.
    Переменный резистор типа «А» обычно используется, например, для регулировки громкости радио. Он хорошо подходит для тонкой настройки тихого звука. Это соответствует характеристикам уха. Ухо хорошо слышит низкие звуковые изменения, но не так чувствительно к небольшим изменениям громких звуков. При увеличении громкости требуется большее изменение. Эти переменные резисторы типа «А» иногда называют потенциометрами «звуковой конус».
    Что касается типа «B», вращение оси и изменение значения сопротивления напрямую связаны.Скорость изменения одинакова или линейна по всей длине оси. Этот тип подходит для регулировки значения сопротивления в цепи, цепи баланса и так далее.
    Их иногда называют потенциометрами с линейным конусом.
    Тип «C» изменяет способ, прямо противоположный типу «A». На ранних стадиях вращения оси величина сопротивления меняется быстро, а во второй половине изменение происходит медленнее. Этот тип не слишком часто используется. Это особенное использование.
    Что касается переменного резистора, большинство из них типа «A» или типа «B».



Элементы CDS
    Некоторые компоненты могут изменять значение сопротивления, изменяя количество падающего на них света. Одним из типов является фотоэлемент на основе сульфида кадмия. (Cd) Чем больше света попадает на него, тем меньше становится значение его сопротивления.
    Есть много типов этих устройств. Они различаются в зависимости от светочувствительности, размера, значения сопротивления и т. Д.

Слева показан типичный фотоэлемент CDS. Его диаметр 8 мм, высота 4 мм, цилиндрическая форма.Когда на него падает яркий свет, значение сопротивления составляет около 200 Ом, а в темноте значение сопротивления составляет около 2 МОм.
Это устройство используется, например, для устройства подтверждения включения фар автомобиля.

Другие резисторы
    Существует другой тип резистора, кроме углеродно-пленочного и металлопленочного. Это проволочный резистор.
    Резисторы с проволочной обмоткой изготовлены из металлической проволоки сопротивления, поэтому их можно производить с точными значениями.Кроме того, резисторы высокой мощности могут быть изготовлены из толстого проволочного материала. Резисторы с проволочной обмоткой нельзя использовать в высокочастотных цепях. Катушки используются в высокочастотных цепях. Поскольку резистор с проволочной обмоткой представляет собой провод, обернутый вокруг изолятора, он также является катушкой, так сказать. С его помощью можно было изменить поведение схемы. Еще один тип резистора - керамический резистор. Это резисторы с проволочной обмоткой в ​​керамическом корпусе, укрепленные специальным цементом. У них очень высокая номинальная мощность, от 1 или 2 Вт до нескольких десятков ватт.Эти резисторы могут сильно нагреваться при использовании в приложениях с высокой мощностью, и это необходимо учитывать при проектировании схемы. Эти устройства могут легко нагреться и обжечься, если вы прикоснетесь к одному из них.
На фотографии слева показаны резисторы с проволочной обмоткой.
Верхний - 10 Вт, длина 45 мм, толщина 13 мм.
Нижний - 50 Вт, длина 75 мм, толщина 29 мм.
Верхняя имеет металлическую фурнитуру.Эти устройства изолированы керамическим покрытием.



На фотографии выше изображен керамический (или цементный) резистор мощностью 5 Вт, высота 9 мм, глубина 9 мм, ширина 22 мм.

Термистор (термочувствительный резистор)



Значение сопротивления термистора изменяется в зависимости от температуры.
Эта деталь используется как датчик температуры.
Существует три типа термисторов.
    NTC (Термистор с отрицательным температурным коэффициентом)
      : В этом типе значение сопротивления непрерывно уменьшается при повышении температуры.
    PTC (Термистор с положительным температурным коэффициентом)
      : В этом типе значение сопротивления внезапно увеличивается, когда температура поднимается выше определенной точки.
    CTR (Термистор сопротивления для критических температур)
      : В этом типе значение сопротивления внезапно уменьшается, когда температура поднимается выше определенной точки.

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *