Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Регулятор напряжения для паяльника своими руками. Собираем простую схему регулятора мощности для паяльника своими руками. Тринисторный регулятор мощности для паяльника

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки. Наиболее распространенные мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения. Сегодня применяются самодельные и заводские установки.

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В.

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу. Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении. Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена.

Схема регулятора мощности включает в себя резисторы — МЛТ и R5 – СП-0,4. Транзистор можно использовать любой.

Плата и корпус для прибора

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах.

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных – 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

От компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе. Хорошо, если один такой лежит дома без дела.

Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4. Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника. Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше.

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем. От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки.

Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения.

Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно. Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности. Повышающий регулятор придется собирать самостоятельно.

Все, кто умеет пользоваться паяльником старается бороться с явлением перегрева жала и вследствие этого ухудшения качества пайки. Для борьбы с этим не очень приятным фактом предлагаю вам собрать одну из простых и надежных схем регулятора мощности паяльника своими руками.

Для ее изготовления вам понадобится проволочный переменный резистор типа СП5-30 либо аналогичный и жестяная коробка из-под кофе. Просверлив, по центру дна банки отверстие и устанавливаем там резистор, и осуществляем разводку

Данный и очень простой девайс повысит качество пайки а также сможет защитить жало паяльника от разрушения из-за перегрева.

Гениальное – просто. По сравнению с диодом переменный резистор не проще и ненадежнее. Но паяльник с диодом слабоват, а резистор позволяет работать без перекала и без недокала. Где взять мощный, подходящий по сопротивлению переменный резистор? Проще найти постоянный, а выключатель, применяемый в “классической” схеме, заменить на трехпозиционный

Дежурный и максимальный нагрев паяльника дополнится оптимальным, соответствующим среднему положению переключателя. Нагрев резистора по сравнению с снизится, а надежность работы повысится.

Еще одна очень простая радиолюбительская разработка, но в отличии от первых двух с более высоким КПД

Резисторные и транзисторные регуляторы – неэкономичные. Повысить КПД можно так же, включением диода. При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе.

Напряжение с выпрямительных диодов поступает на параметрический стабилизатор напряжения, состоящий из сопротивления R1, стабилитрона VD5 и емкости С2. Созданное им девяти вольтовое напряжение используется для питания микросхемы счетчика К561ИЕ8.

Кроме того ранее выпрямленное напряжение, через емкость C1 в виде полупериода с частотой 100 Гц, проходит на вход 14 счетчика.

К561ИЕ8 это обычный десятичный счетчик, поэтому, с каждым импульсом на входе CN на выходах будет последовательно устанавливаться логическая единица. Если переключатель схемы переместим, на 10 выход, то с появлением каждого пятого импульса осуществится обнуление счетчика и счет начнется повторно, а на выводе 3 логическая единица установится только на время одного полупериода. Поэтому, транзистор и тиристор будут открываться только через четыре полупериода. Тумблером SA1 можно регулировать количество пропущенных полупериодов и мощность схемы.

Диодный мост используем в схеме такой мощности, чтобы она соответствовала мощности подключенной нагрузки. В качестве нагревательных приборов можно применить таких как электроплитка, ТЭН и т.п.

Схема очень простая, и состоит из двух частей: силовой и управляющей. К первой части относится тиристор VS1, с анода которого идет регулируемое напряжение на паяльник.

Схема управления, реализована на транзисторах VT1 и VT2, управляет работой ранее упомянутого тиристора. Она получает питание через параметрический стабилизатор, собранный на резисторе R5 и стабилитроне VD1. Стабилитрон предназначен для стабилизации и ограничения напряжения, питающего конструкцию. Сопротивление R5 гасит лишнее напряжение, а переменным сопротивлением R2 настраивается выходное напряжение.

В качестве корпуса конструкции, возьмем обычную розетку. Когда будете покупать, то выбирайте, чтобы она была сделана из пластмассы.

Этот регулятор управляет мощностью от ноля до максимума. HL1 (неоновая лампа МН3… МН13 и т. п) – линеаризует управление и одновременно выполняет функцию индикатора индикатором. Конденсатор С1 (емкостью 0,1 мкф)– генерирует пилообразный импульс и реализует функцию защиты цепи управления от помех. Сопротивление R1 (220 кОм) – регулятор мощности. Резистор R2 (1 кОм) – ограничивает ток протекающий через анод – катод VS1 и R1. R3 (300 Ом) – ограничивает ток через неонку HL1 () и управляющий электрод симистора.

Регулятор собран в корпусе от блока питания советского калькулятора. Симистор и потенциометр закреплены на стальном уголке, толщиной 0,5мм. Уголок привинчен к корпусу двумя винтами М2,5 с применением изолирующих шайб. Сопротивления R2, R3 и неонка HL1 помещены в изолирующую трубку (кембрик) и закреплены с помощью навесного монтажа.

T1: BT139 симистор, T2: BC547 транзистор, D1: DB3 динистор, D2 и D3: 1N4007 диод, C1: 47nF/400V, C2:220uF/25 В, R1 и R3: 470K, R2: 2K6, R4: 100R, P1: 2M2, Светодиод 5 мм красный.


Симистор BT139 применяется для регулировки фазы «резистивной» нагрузки нагревательного элемента паяльника.

Красный светодиод является визуальным индикатором активности работы конструкции.

Основа схемы МК PIC16F628A, который и осуществляет ШИМ регулирование подводимой к главному инструменту радиолюбителя потребляемой мощности.


Если ваш паяльник большой мощностью от 40 ватт, то при пайке небольших радиоэлементов, особенно smd компонентов трудно подобрать момент времени, когда пайка будет оптимальной. А паять им smd мелочевку просто не возможно. Чтобы не тратить деньги на покупку паяльной станции, особенно если она вам нужна не часто. Предлагаю собрать к вашему главному радиолюбительскому инструменту эту приставку.

Паяльник с регулировкой температуры – электроинструмент, необходимый для пайки подверженных перегреву различных радиодеталей (транзисторов, резисторов, конденсаторов, микросхем, диодов). Используют его не только начинающие и опытные радиолюбители, домашние мастера, но и специалисты, занимающиеся ремонтом электронных устройств. Значительно возросшая в последнее популярность такого электроинструмента объясняется его многочисленными плюсами, возможностью сборки своими руками.

Конструкция

Самый простой инструмент данного вида с терморегуляцией состоит из следующих частей:

  • Корпус с печатной платой внутри – цилиндрическая полая ручка из плотного пластика
  • Плата управления – расположенный внутри полой ручки контроллер;
  • Регулятор – резистор с переменным сопротивлением, имеющим вращающуюся круглую ручку с указанием значений температуры;
  • Светодиод – индикатор, сигнализирующий о том, что жало нагрелось до заданной температуры;
  • Трубка-фиксатор с гайкой – штуцер со вставляемым внутрь его жалом и подвижной гайкой, при помощи которой он прикручивается к корпусу;
  • Нагревательный элемент – трубка, на которую одевается жало;
  • Несгораемое жало – предварительно залуженная насадка конической формы термостойким несгораемым покрытием.

Во многих современных моделях данного электроинструмента регулятор выполнен в виде двух кнопок, значение температуры указывается на небольшом монохромном жидкокристаллическом дисплее.

Для чего повышать мощность

Повышение мощности, следовательно, температуры необходимо для того, чтобы производить пайку различных по устойчивости к температурному воздействию и размерам радиодеталей. Так, для пайки мелких тиристоров конденсаторов небольшой емкости необходима температура значительно меньшая, чем для их более крупных аналогов.

Принцип работы

Нагрев и поддержание заданной температуры жала такого регулируемого паяльника происходят следующим образом:

  1. При подключении устройства к источнику питания ток поступает на регулятор;
  2. Посредством изменения сопротивления регулятора устанавливается определённый уровень мощности нагревательного элемента, которому соответствует заранее вычисленная и установленная при испытаниях инструмента температура жала;
  3. Поддержание строго определенной температуры жала происходит, благодаря расположенному внутри него термодатчика – небольшой термопары, предотвращающей перегревание жала.

Благодаря наличию управляющей нагревом платы, термодатчика, в процессе работы с таким инструментом исключены перегревание и перепаливание очень чувствительных к повышенным температурам радиодеталей. К тому же, в отличие от нерегулируемых аналогов, такие инструменты полностью защищены от пробоя фазы на жало.

Разновидности паяльников с регулировкой температуры

Все современные устройства, применяемые как отдельные электроинструменты, так и в составе паяльных станций, в зависимости от вида нагревательного элемента и способа нагрева жала, подразделяются на импульсные, устройства с нихромовым и керамическим нагревателем.

Импульсный паяльник

Такой паяльник представляет собой устройство, работающее от сети, при этом понижающее сетевое напряжение, но увеличивающее частоту тока. Работает такое устройство не все время, только во время нажатия кнопки на рукояти. Благодаря этому, оно экономичнее аналогов других видов, позволяет выполнять пайку очень мелких и деликатных радиодеталей.

С нихромовым нагревателем

Классический нихромовый нагревательный элемент такого устройства представляет собой металлическую трубку с намотанными на нее стеклотканью, слюдой и многочисленными витками тонкой нихромовой проволоки. При нагреве проволока, обладающая большим сопротивлением, разогревает трубку со вставленным в нее медным жалом.

С керамическим нагревателем

В таких устройствах жало одевают на трубчатый керамический нагревательный элемент, обладающий электропроводностью и большим сопротивлением. При прохождении тока эта керамическая трубка почти мгновенно разогревается, обеспечивая максимально быстрый нагрев установленного на ней жала.

Преимущества и недостатки

Паяльник с регулятором температуры имеет ряд плюсов и минусов.

К преимуществам такого инструмента относятся:

  • Возможность регулировки температуры;
  • Полное исключение риска перегрева и порчи чувствительных к высоким температурам радиодеталей;
  • Быстрый нагрев;
  • Доступная цена;
  • Наличие в комплекте к устройству комплекта несгораемых жал – предварительно залуженных насадок, имеющих специальное необгарающее покрытие.

Из недостатков таких устройств можно выделить:

  • Низкую ремонтопригодность;
  • Высокую стоимость качественных полупрофессиональных и профессиональных моделей;
  • Хрупкость нагревательного элемента из керамики.

Также недостатком дешевых моделей является поддельный керамический нагреватель, представляющий собой полую керамическую трубку, внутри которой расположен асбестовый стержень с намотанной тонкой нихромовой проволокой. Из-за маленькой толщины проволоки такие нагреватели очень быстро выходят из строя по причине термострикции – разрыва проволоки при ее остывании.

Управление нагревом

Для управления нагревом в таких устройствах служат аналоговый или цифровой (кнопочный) терморегулятор, термодатчик в нагревательном элементе и управляющая плата. В некоторых моделях и усовершенствованных простых паяльниках регулировка температуры происходит, благодаря двухпозиционным переключателям, диммерам, электронным блокам управления.

Переключатели и диммеры

Для регулировки температуры жала паяльника применяют такие устройства, как:

  • Переключатели – двухпозиционные тумблера, позволяющие переключать инструмент в режим ожидания или максимального нагрева;
  • Диммеры – подключаемые в разрыв провода регуляторы с круглой плавно вращающейся ручкой, позволяющие производить очень тонкую регулировку степени нагрева жала.

Блоки управления

Блок управления представляет собой расположенную отдельно от устройства управляющую плату с регулировочным резистором. В некоторые блоки управления также встроен понижающий трансформатор.

Самые совершенные и многофункциональные блоки управления вместе с подключенными к ним паяльниками представляют собой такой вид устройств, как паяльные станции.

Самостоятельное изготовление регуляторов мощности для паяльников

Регулятор мощности для паяльника можно не только приобрети, но и достаточно легко собрать самостоятельно. Монтируют его в разрыв сетевого кабеля устройства в корпусах от небольших старых электроприборов. Для пайки схем применяют перфорированные текстолитовые платы с медным покрытием.

Ниже приведены схемы наиболее часто собираемых терморегуляторов на основе таких радиодеталей, как переменный резистор, симистор, тиристор.

Из резистора

Самый простой терморегулятор для паяльника на основе переменного резистора собирается по приведенной ниже схеме.

Из тиристора

Плата терморегулятора на основе тиристора имеет следующую принципиальную схему.

Из симистора

Самый простой терморегулятор на таких полупроводниковых деталях, как симисторы, можно собрать по следующей схеме.

Схемы регуляторов

Регулятор для паяльника может быть собран по двум схемам: диммерной и ступенчатой.

Диммерная

Диммерная схема включает в себя один регулятор (диммер), подключенный к разрыву сетевого кабеля устройства.

Ступенчатая

Собираемый своими руками регулятор мощности для паяльника по ступенчатой схеме подразумевает монтаж дополнительного контроллера в пластиковом корпусе.

Видео

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://сайт/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.


Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.


Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г.

VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.

На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод – катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н.

VS1 – КУ202Н

Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.


Регулятор мощности на маломощном тиристоре.

Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.

VD1… VD4 – 1N4007

Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.


Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.


Get the Flash Player to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.


Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.


Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3

Основным регулирующим элементом многих схем является тиристор или симистор. Давайте рассмотрим несколько схем построенных на этой элементной базе.

Вариант 1.

Ниже представлена первая схема регулятора, как видите проще наверно уже и некуда. Диодный мост собран на диодах Д226, в диагональ моста включен тиристор КУ202Н со своими цепями управления.

Вот еще одна подобная схема, которую можно встретить в интернете, но на ней мы останавливаться не будем.

Для индикации наличия напряжения можно дополнить регулятор светодиодом, подключение которого показано на следующем рисунке.

Перед диодным мостом по питанию можно врезать выключатель. Если будете применять в качестве выключателя тумблер, проследите, чтобы его контакты могли выдерживать ток нагрузки.

Вариант 2.

Этот регулятор построен на симисторе ВТА 16-600. Отличие от предыдущего варианта в том, что в цепи управляющего электрода симистора стоит неоновая лампа. Если остановите выбор на этом регуляторе, то неонку нужно будет выбрать с невысоким напряжением пробоя, от этого будет зависеть плавность регулировки мощности паяльника. Неоновую лампочку можно выкусить из стартера, применяемого в светильниках ЛДС. Емкость С1 – керамическая на U=400В. Резистором R4 на схеме обозначена нагрузка, которую и будем регулировать.

Проверка работы регулятора осуществлялась с применением обычного настольного светильника, смотри фото ниже.

Если использовать данный регулятор для паяльника мощностью не выше 100 Вт, то симистор не нуждается в установке на радиатор.

Вариант 3.

Эта схема чуть сложнее предыдущих, в ней присутствует элемент логики (счетчик К561ИЕ8), применение которого позволило регулятору иметь 9 фиксированных положений, т.е. 9 ступеней регулирования. Нагрузкой так же управляет тиристор. После диодного моста стоит обычный параметрический стабилизатор, с которого берется питание для микросхемы. Диоды для выпрямительного моста выбирайте такие, чтобы их мощность соответствовала той нагрузке, которую вы будете регулировать.

Схема устройства показана на рисунке ниже:

Спавочный материал по микросхеме К561ИЕ8:

Диаграмма работы микросхемы К561ИЕ8:

Вариант 4.

Ну и последний вариант, который мы сейчас рассмотрим, как самому сделать паяльную станцию с функцией регулирования мощности паяльника.

Схема довольно распространенная, не сложная, многими уже не раз повторяемая, никаких дефицитных деталей, дополнена светодиодом, который показывает, включен или выключен регулятор, и узлом визуального контроля установленной мощности. Выходное напряжение от 130 до 220 вольт.

Так выглядит плата собранного регулятора:

Доработанная печатная плата выглядит вот так:

В качестве индикатора была использована головка М68501, такие раньше стояли в магнитофонах. Головку было решено немного доработать, в правом верхнем углу установили светодиод, он и включение/отключение покажет, и шкалу мал-мал подсветит.

Дело осталось за корпусом. Его было решено сделать из пластика (вспененного полистирола), который применяется для изготовления всякого рода реклам, легко режется, хорошо обрабатывается, склеивается намертво, краска ровно ложится. Вырезаем заготовки, зачищаем края, клеим “космофеном” (клей для пластика).

Схема тиристорного регулятора мощности без помех

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.

Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.

Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.

Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.


Виталий Александрович 15.12.2016

Александр Николаевич, добрый вечер.
Сегодня собрал по Вашей схеме регулятор под заглавием в статье “Простейшая тиристорная схема регулятора”. Но он у меня не работает, точнее, сильно греется конденсатор, два просто взорвались, если можно подскажите в чём причина.

Александр

Здравствуйте, Виталий Александрович!
Электролитический конденсатор может греться или взорваться если не соблюдена полярность его подключения или от превышения величины, поданного напряжения. В данной схеме величина напряжения на конденсаторе определяется величиной сопротивления нагрузки, R2 и от положения движка резистора R1. Расчетная его величина не должна превышать 25 В.

Поэтому и установлен конденсатор, рассчитанный на напряжение 25 В. Конденсатор выйдет из строя в случае пробоя диода VD1.
Любые бестрансформаторные схемы, работающие непосредственно от сети 220 В нужно очень аккуратно собирать, так как при ошибках элементы могут мгновенно выйти из строя.

Виталий Александрович

Оказалось, что напряжение конденсатора действительно ниже 25 В и второй вопрос. На сколько можно увеличить или уменьшить его ёмкость.

Александр

Емкость конденсатора не очень влияет на работу устройства и только определяет диапазон регулировки. Обычно емкость электролитических конденсаторов имеет разброс до 50%, так что его величину лучше определять экспериментально, включив в место паяльника электрическую лампочку. По ее яркости легко подобрать нужную емкость конденсатора и, в случае необходимости номиналы резисторов.

Узнаем как изготовить регулятор мощности для паяльника? Регулятор мощности для паяльника своими руками: схемы и инструкция

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки. Наиболее распространенные схемы регуляторов мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения. Сегодня применяются самодельные и заводские установки.

Простой регулятор мощности для паяльника

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В.

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования номинальной мощности такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу. Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении. Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена.

Схема регулятора мощности включает в себя конденсатор С1КМ5, резисторы — МЛТ и R5 – СП-0,4. Транзистор можно использовать любой.

Плата и корпус для прибора

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах.

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для паяльника своими руками, можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных – 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На полевом транзисторе IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. Параметрический стабилизатор монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

Ферритовое кольцо от компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе. Хорошо, если один такой лежит дома без дела.

Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4. Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника. Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше.

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем. От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки. Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения.

Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно. Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности. Повышающий регулятор придется собирать самостоятельно.

Полезные статьи, радиосхемы, конструкции, разработки, рабочие и готовые к повторению

 

Простой регулятор мощности на однопереходном транзисторе и тиристоре (симисторе)

Отступление от темы или полезные самоделки в домашнюю радиолабораторию

Легок в повторении. Работает сразу. Как говорилось лепили из того, что было. Потребовались два регулятора мощности для двух паяльников. Схему взял из интернета. Так чтобы не покупать лишних деталей, как говорится дешево и сердито. Благо были 2 тиристора КУ202Н, 8 диодов КД202Р, два однопереходных транзистора КТ117а, 6 стабилитронов КС170 (3шт соединены последовательно для получения напряжения 21-22 в), были докуплены только цифровые индикаторы напряжения (китай), и клеммы. Все остальное взято из старых деталей от мониторов и телевизоров. Резисторы МЛТ из старых запасов, ну не люблю я импортные и все…Тиристор КУ202н можно заменить на симистор КУ208Г – тогда выкидываем диодный мост.

В результате подбора кондесатора – поигрался емкостью от 0,1 до 0,4 мкф, от него зависит диапазон регулирования выходного напряжения. Остановился на 3 шт параллельно соединенных по 0,1 мкф, общая емкость 0,3 мкф. Переменный резистор 10 кОм.

При конденсаторе 0,3 мкф, пределы регулировки выходного напряжения при мощности паяльника:

25 вт – составила – 74-220 вольт

100 вт -составила – 62-220 вольт

При такой нагрузке, в при напряжении на нагрузке 180 вольт, в течении 10 часов все элементы схемы оставались холодные. При большой нагрузке, тиристор и диоды ставим на радиаторы, так для самоуспокоения, может придется подключать более мощную нагрузку, например утюг – 1000 вт, или кипятильник.

Остальное на рисунке ниже. Можно конечно применить тиристор современный, и диоды тоже, типа диодных мостов и сборок, но куда девать старые надежные детали, пусть поработают. В качестве вольтметра применил цифровой вольтметр переменного тока из Китая (показан на фото, куплено на алиэкспресс)

 

Схема регулятора мощности до 2кВт.

Предохранитель 5а, резисторы: млт-1 вт -11кОм – 2шт, млт 0,25 – 1 ком – 3шт, млт 0,25 – 510 ом -1 шт, млт 0,25 – 100 ом -1шт, переменный резистор 10 кОм, стабилитроны любые, можно 1 на общее напряжение стабилизации 20-24 в.

Параллельно выходным гнездам и гнездам нагрузи подключены конденсаторы 0,1х400 в (для уменьшения импульсных помех) и соответственно параллельно им резисторов 1мом х 0,25 вт для разряда этик конденсаторов (на схеме не показаны)

Полезные ссылки

Читать про стабилизаторы серии к142, к1114, к1145, к1168, 286

На предыдущую страницу  На главную страницу  На следующую страницу

 

Симисторный регулятор мощности паяльника не создающий. Универсальный регулятор мощности своими руками

Вступление.

Я много лет тому назад изготовил подобный регулятор, когда приходилось подрабатывать ремонтом р/а на дому у заказчика. Регулятор оказался настолько удобным, что со временем я изготовил ещё один экземпляр, так как первый образец постоянно обосновался в качестве регулятора оборотов вытяжного вентилятора. https://сайт/

Кстати, вентилятор этот из серии Know How, так как снабжён воздушным запорным клапаном моей собственной конструкции. Материал может пригодиться жителям, проживающим на последних этажах многоэтажек и обладающих хорошим обонянием.

Мощность подключаемой нагрузки зависит от применяемого тиристора и условий его охлаждения. Если используется крупный тиристор или симистор типа КУ208Г, то можно смело подключать нагрузку в 200… 300 Ватт. При использовании мелкого тиристора, типа B169D мощность будет ограничена 100 Ваттами.

Как это работает?

Вот так работает тиристор в цепи переменного тока. Когда сила тока, текущего через управляющий электрод, достигает определённого порогового значения, тиристор отпирается и запирается лишь тогда, когда исчезает напряжение на его аноде.

Примерно так же работает и симистор (симметричный тиристор), только, при смене полярности на аноде, меняется и полярность управляющего напряжения.

На картинке видно, что куда поступает и откуда выходит.

В бюджетных схемах управления симисторами КУ208Г, когда есть только один источник питания, лучше управлять «минусом» относительно катода.


Чтобы проверить работоспособность симистора, можно собрать вот такую простую схемку. При замыкании контактов кнопки, лампа должна погаснуть. Если она не погасла, то либо симистор пробит, либо его пороговое напряжение пробоя ниже пикового значения напряжения сети. Если лампа не горит при отжатой кнопке, то симистор оборван. Номинал сопротивления R1 выбирается так, чтобы не превысить максимально-допустимое значение тока управляющего электрода.


При проверке тиристров в схему нужно добавить диод, чтобы предотвратить подачу обратного напряжения.


Схемные решения.

Простой регулятор мощности можно собрать на симисторе или тиристоре. Я расскажу и о тех и о других схемных решениях.

Регулятор мощности на симисторе КУ208Г.

VS1 – КУ208Г

HL1 – МН3… МН13 и т.д.

На этой схеме изображён, на мой взгляд, самый простой и удачный вариант регулятора, управляющим элементом которого служит симистор КУ208Г. Этот регулятор управляет мощностью от ноля до максимума.

Назначение элементов.

HL1 – линеаризует управление и является индикатором.

С1 – генерирует пилообразный импульс и защищает схему управления от помех.

R1 – регулятор мощности.

R2 – ограничивает ток через анод – катод VS1 и R1.

R3 – ограничивает ток через HL1 и управляющий электрод VS1.

Регулятор мощности на мощном тиристоре КУ202Н.

VS1 – КУ202Н

Похожую схему можно собрать на тиристоре КУ202Н. Её отличие от схемы на симисторе в том, что диапазон регулировки мощности регулятора составляет 50… 100%.

На эпюре видно, что ограничение происходит только по одной полуволне, тогда как другая беспрепятственно проходит через диод VD1 в нагрузку.


Регулятор мощности на маломощном тиристоре.

Данная схема, собранная на самом дешёвом маломощном тиристоре B169D, отличается от схемы приведённой выше, только наличием резистора R5, который вместе с резистором R4 являются делителем напряжения и снижают амплитуду сигнала управления. Необходимость этого вызвана высокой чувствительностью маломощных тиристоров. Регулятор регулирует мощность в диапазоне 50… 100%.

Регулятор мощности на тиристоре с диапазоном регулировки 0… 100%.

VD1… VD4 – 1N4007

Чтобы регулятор на тиристоре мог управлять мощностью от ноля до 100%, нужно добавить в схему диодный мост.

Теперь схема работает аналогично симисторному регулятору.


Конструкция и детали.

Регулятор собран в корпусе блока питания некогда популярного калькулятора «Электроника Б3-36».

Симистор и потенциометр размещены на стальном уголке, изготовленном из стали толщиной 0,5мм. Уголок прикручен к корпусу двумя винтами М2,5 с использованием изолирующих шайб.

Резисторы R2, R3 и неоновая лампа HL1 одеты в изолирующую трубку (кембрик) и закреплены методом навесного монтажа на других электроэлементах конструкции.

Для повышения надёжности крепления штырей вилки, пришлось напаять на них по несколько витков толстой медной проволоки.


Так выглядят регуляторы мощности, которые я использую много лет.


Get the Flash Player to see this player.

А это 4-х секундный ролик, который позволяет убедиться в том, что всё это работает. Нагрузкой служит лампа накаливания мощностью 100 Ватт.


Дополнительный материал.

Цоколёвка (распиновка) крупных отечественных симисторов и тиристоров. Благодаря могучему металлическому корпусу эти приборы могут без дополнительного радиатора рассеивать мощность 1… 2 Ватта без существенного изменения параметров.


Цоколёвка мелких популярных тиристоров, которые могут управлять напряжением сети при среднем токе 0,5 Ампера.

Тип прибора Катод Управ. Анод
BT169D(E, G) 1 2 3
CR02AM-8 3 1 2
MCR100-6(8) 1 2 3

Основой послужила статья в журнале Радио №10 за 2014г. Когда эта статья попалась на глаза, мне понравилась идея и простота реализации. Но сам я использую малогабаритные низковольтные паяльники.

Напрямую схему для низковольтных паяльников использовать нельзя из-за низкого сопротивления нагревателя паяльника и как следствие значительного тока измерительной цепи. Я решил переделать схему.

Получившиеся схема подходит для любого паяльника с напряжением питания до 30В. Нагреватель которого имеет положительный ТКС (горячий имеет большее сопротивление). Лучший результат даст керамический нагреватель. Например можно запустить паяльник от паяльной станции со сгоревшим термодатчиком. Но и паяльники с нагревателем из нихрома тоже работают.

Поскольку номиналы в схеме зависят от сопротивления и ТКС нагревателя то, прежде чем реализовывать надо выбрать и проверить паяльник. Измерить сопротивление нагревателя в холодном и горячем состоянии.

А также рекомендую проверить реакцию на механическую нагрузку. Один из моих паяльников оказался с подвохом. Измерьте сопротивление холодного нагревателя кратковременно включите и повторно проведите измерение. После прогрева измеряя сопротивление надавите на жало и легонько постучите имитируя работу с паяльником, следите на скачки сопротивления. Мой паяльник в итоге вел себя как будто у него не нагреватель а угольный микрофон. В итоге при попытке работы, чуть более сильное нажатие приводило к отключению из-за увеличения сопротивления нагревателя.

В итоге переделал собранную схему под паяльник ЭПСН с сопротивлением нагревателя 6 ом. Паяльник ЭПСН это худший вариант для данной схемы, низкий ТКС нагревателя и большая тепловая инертность конструкции делает термостабилизацию вялой. Но тем не менее время нагрева паяльника сократилось в 2 раза без перегрева, относительно нагрева напряжением дающим примерно такую же температуру. И при длительном лужении или пайке меньше падение температуры.

Рассмотрим алгоритм работы.

1. В начальный момент времени на входе 6 U1.2 напряжение близко к 0, оно сравнивается с напряжением с делителя R4,R5. На выходе U1.2 появляется напряжение. (Резистор ПОС R6 увеличивает гистерезис U1.2 для помеха защиты.)

2. С выхода U1.2 напряжение через резистор R8 открывает транзистор Q1. (Резистор R13 необходим для гарантированного закрытия Q1, если операционный усилитель не может выдать на выходе напряжение равное отрицательному напряжению питания)

3. Через нагреватель паяльника RN, диод VD3, резистор R9 и транзистор Q1 протекает измерительный ток. (мощность резистора R9 и ток транзистора Q1 выбирают исходя из величины измерительного тока, при этом падение напряжении на паяльнике стоит выбирать в районе 3 в, это компромисс между точностью измерения и мощностью рассеиваемой на R9. Если рассеиваемая мощность получается слишком большой то можно увеличить сопротивление R9,но точность стабилизации температуры снизится).

4. На входе 3 U1.1 при протекании измерительного тока появляется напряжение, зависимое от соотношения сопротивлений R9 и RN, а также падения напряжения на VD3 и Q1, которое сравнивается с напряжением с делителя R1, R2, R3.

5. Если напряжение на входе 3 усилителя U1.1 превысить напряжение на входе 2 (холодный паяльник низкое сопротивлении RN). На выходе 1 U1.1 появится напряжение.

6. Напряжение с выхода 1 U1.1 через разряженный конденсатор С2 и диод VD1 подает на вход 6 U1.2, в итоге закрывая Q1 и отключая R9 от измерительной цепи. (Диод VD1 требуется если операционный усилитель не допускает наличия на входе отрицательного напряжения.)

7. Напряжение с выхода 1 U1.1 через резистор R12 заряжает конденсатор С3 и емкость затвора транзистора Q2. И при достижении порогового напряжения транзистор Q2 открывается включая паяльник, при этом диод VD3 закрывается отключая сопротивление нагревателя паяльника RN от измерительной цепи. (Резистор R14 необходим для гарантированного закрытия Q2, если операционный усилитель не может выдать на выходе напряжение равное отрицательному напряжению питания, а также при более высоком напряжение питания схемы на затворе транзистора напряжение не превысило 12 в.)

8. От измерительной цепи отключены резистор R9 и сопротивление нагревателя RN. Напряжение на конденсаторе С1 поддерживается резистором R7, компенсируя возможные утечки через транзистор Q1 и диод VD3. Его сопротивление должно значительно превышать сопротивление нагревателя паяльника RN, чтобы не вносить погрешности в измерении. При этом конденсатор С3 требовался, что бы RN был отключен от измерительной цепи после отключения R9, иначе схема не защелкнется в положении нагрева.

9. Напряжение с выхода 1 U1.1 заряжает конденсатор С2 через резистор R10. Когда напряжение на входе 6 U1.2 достигнет половины напряжения питания откроется транзистор Q1 и начнется новый цикл измерения. Время зарядки выбирается в зависимости от тепловой инерции паяльника т.е. его размеров, для миниатюрного паяльника 0.5с для ЭПСН 5с . Делать слишком коротким цикл не стоит поскольку начнется стабилизация только температуры нагревателя. Указанные на схеме номиналы дают длительность цикла примерно 0.5с.

10. Через открытый транзистор Q1 и резистор R9 будет разряжен конденсатор С1. После падения напряжения на входе 3 U1.1 ниже входа 2 U1.1 на выходе появится низкое напряжение.

11. Низкое напряжение с выхода 1 U1.1 через диод VD2 разрядит конденсатор С2. А также через цепочку резистор R12 конденсатор С3 закроет транзистор Q2.

12. При закрытом транзисторе Q2 диод VD3 откроется и через измерительную цепь RN, VD3, R9, Q1 потечет ток. И начнется зарядка конденсатора С1. Если паяльник нагрелся выше установленной температуры и сопротивление RN увеличилось достаточно что бы напряжение на входе 3 U1.1 не превысило напряжение с делителя R1, R2, R3 на входе 2 U1.1, то на выходе 1 U1.1 сохранится низкое напряжение. Такое состояние продлится до тех пор пока паяльник не остынет ниже установленной резистором R2 температуры, тогда повторится цикл работы начиная с первого пункта.

Выбор компонентов.

1. Операционный усилитель я использовал LM358 с ней схема может работать до напряжения 30 в.2)/R9 . Сопротивление резистора подбирается, чтобы падение напряжение во время измерения на паяльнике было около 3В.

4. Диод VD3. Желательно для уменьшения падения напряжения использовать диод Шоттки с запасом по току.

5. Транзистор Q2. Любой силовой N MOSFET. Я использовал снятый со старой материнской платы 32N03.

6. Резистор R1, R2, R3. Суммарное сопротивление резисторов может быть от единиц килоом до сотен килоом, что позволяет подобрать сопротивления R1, R3 делителя, под имеющейся в наличие переменный резистор R2. Точно рассчитать значение резисторов делителя затруднительно поскольку в измерительной цепи присутствует транзистор Q1 и диод VD3, учесть точное падение напряжения на них сложно.

Примерное соотношение сопротивлений:
Для холодного паяльника R1/(R2+R3)≈ RNхол/ R9
Для максимально нагретого R1/R2≈ RNгор/ R9

7. Так как изменение сопротивления для стабилизации температуры намного меньше ома. То для подключения паяльника должны использоваться высококачественные разъемы, а еще лучше напрямую запаять кабель паяльника к плате.

8. Все диоды, транзисторы и конденсаторы должны быть рассчитаны на напряжение минимум в полтора раза выше напряжения питания.

Схема из-за наличия диода VD3 в измерительной цепи имеет небольшую чувствительность к изменению температуры и напряжения питания. Уже после изготовления пришла идея как уменьшить эти эффекты. Необходимо заменить Q1 на N MOSFET с низким сопротивлением в открытом состоянии и добавить еще один диод аналогичный VD3, Дополнительно оба диода можно соединить куском алюминии для теплового контакта.

Исполнение.

Я выполнил схему максимально используя компоненты SMD монтажа.Резисторы и керамические конденсаторы тип размера 0805. Электролиты в корпусе В. Микросхема LM358 в корпусе SOP-8. Диод ST34 в корпусе SMC. Транзистор Q1 можно монтировать в любом из SOT-23, TO-252 или SOT -223 корпусах. Транзистор Q2 может быть в корпусах TO-252 или TO-263. Резистор R2 ВСП4-1. Резистор R9 как самую горячую деталь лучше расположить вне платы, только для паяльников с мощностью менее 10вт можно в качестве R9 распаять 3 резистора 2512.

Плата из двух стороннего текстолита. На одной стороне медь не травится и используется под землю на плате отверстия в которые запаиваются перемычки обозначены как отверстия с металлизацией, остальные отверстия со стороны сплошной меди зенкеруются сверлом большего диаметра. Для плату надо распечатывать в зеркальном виде.

Немного теории. Или почему высокая частота управления не всегда хорошо.

Если спросить какая частота управления лучше. Скорее всего будет ответ чем выше тем лучше, т. е. тем точнее.

Попытаюсь объяснить как я понимаю этот вопрос.

Если брать вариант когда датчик находится на кончике жала то этот ответ правильный.

Но в нашем случае датчиком является нагреватель, хотя и во многих паяльных станциях датчик находится не в жале а рядом с нагревателем. Вот для таких случаев такой ответ будет не верен.

Начнем с точности удержания температуры.

Когда паяльник лежит на подставке и начинают сравнивать регуляторы температуры какая схема точнее держит температуру и речь зачастую идет о цифрах в один и меньше градуса. Но так ли важна точность температуры в этот момент? Ведь по сути более важно удержание температуры в момент пайки, т. е. насколько паяльник сможет удержать температуру при интенсивном отборе мощности от жала.

Представим упрощенную модель паяльника. Нагреватель к которому подводится мощность и жало от которого идет малый отбор мощности в воздух когда паяльник лежит на подставке или большой во время пайки. Оба эти элемента имеют тепловую инертность или по другому теплоемкость, как правило нагреватель имеет значительно более низкую теплоемкость. Но между нагревателем и жалом имеется тепловой контакт который имеет свое тепловое сопротивление, а это значит чтобы передать какую то мощность от нагревателя к жалу надо иметь разность температур. Тепловое сопротивление между нагревателем и жалом может иметь разную величину в зависимости от конструкции. В китайских паяльных станциях теплопередача происходит вообще через воздушный зазор и в итоге паяльник мощность пол сотни ват и по индикатору удерживающий температуру до градуса не может пропаять площадку на плате. Если датчик температуры находится в жале то можно просто увеличить температуру нагревателя. Но у нас датчик и нагреватель одно целое и при увеличении отбора мощности с жала в момент пайки температура жала будет падать поскольку из-за теплового сопротивление для передачи мощности нужно падение температуры.

Полностью решить эту проблему нельзя, но можно максимально уменьшить. И позволит это сделать более низкая теплоемкости нагревателя относительно жала. И так у нас противоречие для передачи мощности в жало надо увеличить температуру нагревателя для поддержания температуры жала, но мы не знаем температуры жала поскольку измеряем температуру у нагревателя.

Вариант управления реализованный в этой схеме позволяет разрешить эту дилемму простым способом. Хотя можно попытаться придумать и более оптимальные модели управления но сложность схемы возрастет.

И так в схеме энергия в нагреватель подается фиксированное время и оно достаточно длительное, чтобы нагреватель успевал разогрелся значительно выше температуры стабилизации. Между нагревателем и жалом появляется значительная разность температур и происходит передача тепловой мощности в жало. После выключения нагрева нагреватель и жало начинают остывать. Нагреватель остывает передавая мощность в жало, а жало остывает передавая мощность во внешнюю среду. Но за счет меньшей теплоемкости нагреватель успеет остыть до того как температура жала значительно изменится, а также и во время нагрева температура на жале не успеет сильно изменится. Повторное включение произойдет когда температура нагревателя упадет до температуры стабилизации, а так как передача мощности происходит в основном в жало, то температура нагревателя в этот момент будет слабо отличатся от температуры жала. И точность стабилизации будет тем выше чем меньше теплоемкость нагревателя и меньше тепловое сопротивление между нагревателем и жалом.

Если длительность цикла нагрева будет слишком низкой (высокая частота управления) то на нагревателе не будут возникать моменты перегрева когда происходит эффективный перенос мощности в жало. И как следствие в момент пайки будет сильное падение температуры жала.

При слишком большой длительности нагрева теплоемкости жала не будет хватать для сглаживания бросков температуры до приемлемой величины, и вторая опасность если при высокой мощности нагревателя тепловое сопротивление между нагревателем и жалом велико, то можно получить разогрев нагревателя выше допустимых для его работы температур, что приведет к его поломке.

В итоге как мне кажется необходимо подбирать время задающие элементы C2 R10 так, что бы при измерении температуры на конце жала были видны незначительные колебания температуры. С учетом точности индикации тестера и инертности датчика заметные колебания в один или несколько градусов не приведут к колебаниям реальной температуры более десятка градусов, а такая нестабильность температуры для радиолюбительского паяльника более чем достаточная.

Вот что окончательно получилось

Так как тот паяльник на который первоначально рассчитывал оказался не пригодным, то переделал в вариант под паяльник ЭПСН с 6 ом нагревателем. Без перегрева работал от 14в я подал на схему 19в, что бы был запас на регулирование.

Доработал под вариант с установкой VD3 и заменой Q1 на MOSFET. Плату не переделывал просто установил новые детали.

Чувствительность схемы к изменению напряжения питания полностью не пропала. Такая чувствительность не будет заметна на паяльниках с керамическим жалом, а для нихрома заметно становится при изменении питающего напряжения более 10%.

Плата ЛУТ

Распайка не совсем по схеме платы. Вместо резисторов распаял диод VD5 разрезал дорожку к транзистору и просверлил отверстие под провод от резистора R9.

На переднюю панель выходят светодиод и резистор. Плата будет крепится за переменный резистор, поскольку она не большая и механических нагрузок не предполагается.

Окончательно схема приобрела следующий вид указываю получившиеся у меня номиналы под любой другой паяльник необходимо подбирать как писал выше. Сопротивление нагревателя паяльника конечно не точно 6 ом. Транзистор Q1 пришлось брать этот из-за корпуса силовой не стал просто менять хотя они оба могут быть одинаковые. Резистор R9 даже ПЭВ-10 чувствительно нагревается. Конденсатор С6 особо не влияет на работу и я его убрал. На плате еще распаивал керамику параллельно С1 но нормально и без неё.

П.С. Интересно если кто соберет для паяльника с керамическим нагревателем, самому пока проверить не на чем. Пишите если нужны дополнительные материалы или пояснения.

Работа многих связана с применением паяльника. Для кого-то это просто хобби. Паяльники бывают разные. Могут быть простые, но надежные, могут представлять собой современные паяльные станции, в том числе инфракрасные. Для получения качественной пайки требуется иметь паяльник нужной мощности и нагревать его до определенной температуры.

Рисунок 1. Схема регулятора температуры, собранная на тиристоре КУ 101Б.

Для помощи в этом деле предназначены различные регуляторы температуры для паяльника. Они продаются в магазинах, но умелые руки могут самостоятельно собрать подобное устройство с учетом своих требований.

Достоинства регуляторов температуры

Большинство из домашних мастеров с юных лет пользуется паяльником мощностью в 40 Вт. Раньше трудно было что-то купить с другими параметрами. Паяльник сам по себе удобный, с его помощью можно паять многие предметы. Но пользоваться им при монтаже радиоэлектронных схем неудобно. Тут и пригодится помощь регулятора температуры для паяльника:

Рисунок 2. Схема простейшего регулятора температуры.

  • жало паяльника прогревается до оптимальной температуры;
  • продлевается срок службы жала;
  • радиодетали никогда не перегреются;
  • не произойдет отслоения токоведущих элементов на печатной плате;
  • при вынужденном перерыве в работе паяльник не нужно выключать из сети.

Не в меру нагретый паяльник не держит на жале припой, с перегретого паяльника он капает, делая место пайки очень непрочным. Жало покрывается слоем окалины, которую счищают только шкуркой и напильниками. В результате появляются кратеры, которые тоже нужно удалять, сокращая длину жала. Если использовать регулятор температуры, такого не произойдет, жало всегда будет готово к работе. При перерыве в работе достаточно уменьшить его нагрев, не выключая из сети. После перерыва горячий инструмент быстро наберет нужную температуру.

Вернуться к оглавлению

Простые схемы регулятора температуры

В качестве регулятора можно использовать ЛАТР (лабораторный трансформатор), регулятор освещенности для настольной лампы, блок питания КЭФ-8, современную паяльную станцию.

Рисунок 3. Схема выключателя для регулятора.

Современные паяльные станции способны регулировать температуру жала паяльника в разных режимах — в ручном, в полностью автоматическом. Но для домашнего мастера стоимость их довольно значительна. Из практики видно, что автоматическая регулировка практически не нужна, так как напряжение в сети обычно стабильное, температура в помещении, где ведется пайка, тоже не меняется. Поэтому для сборки может использоваться простая схема регулятора температуры, собранная на тиристоре КУ 101Б (рис.1). Этот регулятор с успехом используется для работы с паяльниками и лампами мощностью до 60 Вт.

Этот регулятор очень прост, но позволяет менять напряжение в пределах 150-210 В. Продолжительность нахождения тиристора в открытом состоянии зависит от положения переменного резистора R3. Этим резистором и осуществляется регулировка напряжения на выходе прибора. Пределы регулировки устанавливаются резисторами R1 и R4. С помощью подбора R1 устанавливается минимальное напряжение, R4 — максимальное. Диод Д226Б можно заменить на любой с обратным напряжением более 300 В. Тиристор подойдет КУ101Г, КУ101Е. Для паяльника мощностью свыше 30 Вт диод нужно брать Д245А, тиристор КУ201Д-КУ201Л. Плата после сборки может выглядеть примерно так, как показано на рис. 2.

Для индикации работы прибора можно регулятор оснастить светодиодом, который будет светиться при наличии напряжения на его входе. Не будет лишним и отдельный выключатель (рис. 3).

Рисунок 4. Схема регулятора температуры с симистором.

Следующая схема регулятора зарекомендовала себя с хорошей стороны (рис. 4). Изделие получается очень надежным и простым. Деталей требуется минимум. Главная из них — симистор КУ208Г. Из светодиодов достаточно оставить HL1, который будет сигнализировать о наличии напряжения на входе и о работе регулятора. Корпусом для собранной схемы может быть подходящих размеров коробочка. Можно для этой цели использовать корпус электрической розетки или выключателя с установленным проводом питания и вилкой. Ось переменного резистора нужно вывести наружу и надеть на нее пластмассовую ручку. Рядом можно нанести деления. Такой простейший прибор способен регулировать нагрев паяльника в пределах примерно 50-100%. При этом мощность нагрузки рекомендуется в пределах 50 Вт. На практике схема работала с нагрузкой 100 Вт без последствий в течение часа.

Для пайки радиосхем и других деталей нужны разные инструменты. Главный из них — паяльник. Для более красивой и качественной пайки его рекомендуется оснастить регулятором температуры. Вместо него можно использовать разные приборы, которые продаются в магазинах.

Можно своими руками без проблем собрать приспособление из нескольких деталей.

Это обойдется очень дешево, да интерес представляет больший.

Устройства для настройки уровня напряжения, подающегося на нагревательный элемент, нередко используются радиолюбителями для предотвращения преждевременного разрушения жала паяльника и повышения качества пайки. Наиболее распространенные мощности для паяльника содержат двухпозитронные контактные переключатели и тринисторные устройства, установленные в подставке. Эти и другие приборы обеспечивают возможность выбора необходимого уровня напряжения. Сегодня применяются самодельные и заводские установки.

Если нужно получить 40 Вт из паяльника на 100 Вт, можно применить схему на симисторе ВТ 138-600. Принцип работы заключается в обрезке синусоиды. Уровень среза и температуру нагрева можно регулировать, используя резистор R1. Неоновая лампочка выполняет функцию индикатора. Ставить ее не обязательно. На радиатор устанавливается симистор ВТ 138-600.

Корпус

Вся схема обязательно должна быть помещена в закрытый диэлектрический корпус. Желание сделать прибор миниатюрным не должно влиять на безопасность при его использовании. Помните, что устройство работает от источника напряжения 220 В.

Тринисторный регулятор мощности для паяльника

В качестве примера можно рассмотреть устройство, рассчитанное на нагрузку от нескольких ватт до сотни. Диапазон регулирования такого прибора изменяется от 50% до 97%. В устройстве используется тринистор КУ103В с удерживающим током не более одного миллиампера.

Через диод VD1 беспрепятственно проходят отрицательные полуволны напряжения, обеспечивая примерно половину всей мощности паяльника. Ее можно регулировать тринистором VS1 в течение каждого положительного полупериода. Устройство включается встречно-параллельно диоду VD1. Тринистор управляется по фазоимпульсному принципу. Генератор вырабатывает импульсы, поступающие на управляющий электрод, состоящий из цепи R5R6C1, задающей время, и однопереходного транзистора.

Позицией ручки резистора R5 определяется время от положительного полупериода. Схема регулятора мощности требует температурной стабильности и повышения помехоустойчивости. Для этого можно зашунтировать управляющий переход резистором R1.

Цепь R2R3R4VT3

Генератор питается импульсами напряжением до 7В и длительностью 10 мс, сформированными цепью R2R3R4VT3. Переход транзистора VT3 является стабилизирующим элементом. Он включается в обратном направлении. Мощность, которую рассеивает цепь резисторов R2-R4, будет уменьшена.

Схема регулятора мощности включает в себя резисторы — МЛТ и R5 – СП-0,4. Транзистор можно использовать любой.

Плата и корпус для прибора

Для сборки данного устройства подойдет плата из фольгированного стеклопластика диаметром 36 мм и толщиной 1 мм. Для корпуса можно использовать любые предметы, например пластиковые коробки или футляры из материала с хорошей изоляцией. Понадобится база под элементы вилки. Для этого к фольге можно припаять две гайки М 2,5 таким образом, чтобы штыри прижимали плату к корпусу при сборке.

Недостатки тринисторов КУ202

Если мощность паяльника небольшая, регулирование возможно только в узкой области полупериода. В той, где удерживающее напряжение тринистора хотя бы немного ниже тока нагрузки. Температурная стабильность не может быть достигнута, если использовать такой регулятор мощности для паяльника.

Повышающий регулятор

Большая часть устройств для стабилизации температуры работает только на снижение мощности. Регулировать напряжение можно от 50-100% или от 0-100%. Мощности паяльника может оказаться недостаточно в случае подачи питания ниже 220 В или, например, при необходимости выпаять большую старую плату.

Действующее напряжение сглаживается электролитическим конденсатором, увеличивается в 1,41 раза и питает паяльник. Постоянная мощность, выпрямленная на конденсаторе, достигнет 310 В при питании 220 В. Оптимальная температура нагрева может быть получена даже при 170 В.

Мощные паяльники не нуждаются в повышающих регуляторах.

Необходимые детали для схемы

Чтобы собрать удобный регулятор мощности для можно использовать метод навесного монтажа возле розетки. Для этого нужны малогабаритные комплектующие. Мощность одного резистора должна составлять не менее 2 Вт, а остальных – 0,125 Вт.

Описание схемы повышающего регулятора мощности

На электролитическом конденсаторе C1 с мостом VD1 выполнен входной выпрямитель. Его рабочее напряжение не должно быть меньше 400 В. На IRF840 размещается выходная часть регулятора. С этим устройством можно использовать паяльник до 65 Вт без радиатора. Они могут нагреваться выше нужной температуры даже при пониженной мощности питания.

Управление ключевым транзистором, размещенным на микросхеме DD1, производится от ШИМ-генератора, частота которого задается конденсатором C2. монтируется на приборах C3, R5 и VD4. Он питает микросхему DD1.

Для защиты выходного транзистора от самоиндукции устанавливается диод VD5. Его можно не ставить, если регулятор мощности паяльника не будет использоваться с другими электрическими приборами.

Возможности замены деталей в регуляторах

Микросхема DD1 может быть заменена на К561ЛА7. Выпрямительный мостик делается из диодов, рассчитанных на минимальный ток 2А. Устройство IRF740 можно использовать как выходной транзистор. Схема не нуждается в накладке, если все детали исправны и при ее сборке не было допущено ошибок.

Другие возможные варианты устройств для рассеивания напряжения

Собираются простые схемы регуляторов мощности для паяльника, работающие на симисторах КУ208Г. Вся их хитрость в конденсаторе и неоновой лампочке, которая, меняя свою яркость, может послужить в качестве индикатора мощности. Возможное регулирование – от 0% до 100%.

При отсутствии симистора или лампочки можно применить тиристор КУ202Н. Это весьма распространенный прибор, имеющий множество аналогов. С его использованием можно собрать схему, работающую в диапазоне от 50% до 99% мощности.

От компьютерного шнура можно использовать для изготовления петли, чтобы погасить возможные помехи от переключения симистора или тиристора.

Стрелочный индикатор

В регулятор мощности паяльника может быть интегрирован стрелочный индикатор для большего удобства при использовании. Сделать это совсем несложно. Неиспользуемая старая аудиоаппаратура может помочь с поиском таких элементов. Приборы несложно найти на местных рынках в любом городе. Хорошо, если один такой лежит дома без дела.

Для примера рассмотрим возможность интегрирования в регулятор мощности для паяльника индикатора М68501 со стрелкой и цифровыми отметками, который устанавливался в старых советских магнитофонах. Особенность настройки заключается в подборе резистора R4. Наверняка придется подбирать прибор R3 дополнительно, если будет использован другой индикатор. Необходимо соблюдение соответствующего баланса резисторов при понижении мощности паяльника. Дело в том, что стрелка индикатора может отображать снижение мощности на 10-20% при фактическом потреблении паяльником 50%, то есть наполовину меньше.

Заключение

Регулятор мощности для паяльника можно собрать, руководствуясь множеством инструкций и статей с приведенными примерами возможных разнообразных схем. От хороших припоев, флюсов и температуры нагревательного элемента во многом зависит качество спайки. Сложные устройства для стабилизации или элементарное интегрирование диодов может применяться при сборке аппаратов, необходимых для регулирования поступающего напряжения.

Такие приборы широко используются с целью понижения, а также повышения мощности, подающейся на нагревательный элемент паяльника в диапазоне от 0% до 141%. Это очень удобно. Появляется реальная возможность работать при напряжении ниже 220 В. На современном рынке доступны качественные аппараты, укомплектованные специальными регуляторами. Заводские устройства работают только на понижение мощности. Повышающий регулятор придется собирать самостоятельно.

Все, кто умеет пользоваться паяльником старается бороться с явлением перегрева жала и вследствие этого ухудшения качества пайки. Для борьбы с этим не очень приятным фактом предлагаю вам собрать одну из простых и надежных схем регулятора мощности паяльника своими руками.

Для ее изготовления вам понадобится проволочный переменный резистор типа СП5-30 либо аналогичный и жестяная коробка из-под кофе. Просверлив, по центру дна банки отверстие и устанавливаем там резистор, и осуществляем разводку

Данный и очень простой девайс повысит качество пайки а также сможет защитить жало паяльника от разрушения из-за перегрева.

Гениальное – просто. По сравнению с диодом переменный резистор не проще и ненадежнее. Но паяльник с диодом слабоват, а резистор позволяет работать без перекала и без недокала. Где взять мощный, подходящий по сопротивлению переменный резистор? Проще найти постоянный, а выключатель, применяемый в “классической” схеме, заменить на трехпозиционный

Дежурный и максимальный нагрев паяльника дополнится оптимальным, соответствующим среднему положению переключателя. Нагрев резистора по сравнению с снизится, а надежность работы повысится.

Еще одна очень простая радиолюбительская разработка, но в отличии от первых двух с более высоким КПД

Резисторные и транзисторные регуляторы – неэкономичные. Повысить КПД можно так же, включением диода. При этом достигается более удобный предел регулирования (50-100%). Полупроводниковые приборы можно разместить на одном радиаторе.

Напряжение с выпрямительных диодов поступает на параметрический стабилизатор напряжения, состоящий из сопротивления R1, стабилитрона VD5 и емкости С2. Созданное им девяти вольтовое напряжение используется для питания микросхемы счетчика К561ИЕ8.

Кроме того ранее выпрямленное напряжение, через емкость C1 в виде полупериода с частотой 100 Гц, проходит на вход 14 счетчика.

К561ИЕ8 это обычный десятичный счетчик, поэтому, с каждым импульсом на входе CN на выходах будет последовательно устанавливаться логическая единица. Если переключатель схемы переместим, на 10 выход, то с появлением каждого пятого импульса осуществится обнуление счетчика и счет начнется повторно, а на выводе 3 логическая единица установится только на время одного полупериода. Поэтому, транзистор и тиристор будут открываться только через четыре полупериода. Тумблером SA1 можно регулировать количество пропущенных полупериодов и мощность схемы.

Диодный мост используем в схеме такой мощности, чтобы она соответствовала мощности подключенной нагрузки. В качестве нагревательных приборов можно применить таких как электроплитка, ТЭН и т.п.

Схема очень простая, и состоит из двух частей: силовой и управляющей. К первой части относится тиристор VS1, с анода которого идет регулируемое напряжение на паяльник.

Схема управления, реализована на транзисторах VT1 и VT2, управляет работой ранее упомянутого тиристора. Она получает питание через параметрический стабилизатор, собранный на резисторе R5 и стабилитроне VD1. Стабилитрон предназначен для стабилизации и ограничения напряжения, питающего конструкцию. Сопротивление R5 гасит лишнее напряжение, а переменным сопротивлением R2 настраивается выходное напряжение.

В качестве корпуса конструкции, возьмем обычную розетку. Когда будете покупать, то выбирайте, чтобы она была сделана из пластмассы.

Этот регулятор управляет мощностью от ноля до максимума. HL1 (неоновая лампа МН3… МН13 и т.п) – линеаризует управление и одновременно выполняет функцию индикатора индикатором. Конденсатор С1 (емкостью 0,1 мкф)– генерирует пилообразный импульс и реализует функцию защиты цепи управления от помех. Сопротивление R1 (220 кОм) – регулятор мощности. Резистор R2 (1 кОм) – ограничивает ток протекающий через анод – катод VS1 и R1. R3 (300 Ом) – ограничивает ток через неонку HL1 () и управляющий электрод симистора.

Регулятор собран в корпусе от блока питания советского калькулятора. Симистор и потенциометр закреплены на стальном уголке, толщиной 0,5мм. Уголок привинчен к корпусу двумя винтами М2,5 с применением изолирующих шайб. Сопротивления R2, R3 и неонка HL1 помещены в изолирующую трубку (кембрик) и закреплены с помощью навесного монтажа.

T1: BT139 симистор, T2: BC547 транзистор, D1: DB3 динистор, D2 и D3: 1N4007 диод, C1: 47nF/400V, C2:220uF/25 В, R1 и R3: 470K, R2: 2K6, R4: 100R, P1: 2M2, Светодиод 5 мм красный.


Симистор BT139 применяется для регулировки фазы «резистивной» нагрузки нагревательного элемента паяльника. Красный светодиод является визуальным индикатором активности работы конструкции.

Основа схемы МК PIC16F628A, который и осуществляет ШИМ регулирование подводимой к главному инструменту радиолюбителя потребляемой мощности.


Если ваш паяльник большой мощностью от 40 ватт, то при пайке небольших радиоэлементов, особенно smd компонентов трудно подобрать момент времени, когда пайка будет оптимальной. А паять им smd мелочевку просто не возможно. Чтобы не тратить деньги на покупку паяльной станции, особенно если она вам нужна не часто. Предлагаю собрать к вашему главному радиолюбительскому инструменту эту приставку.

схема регулировки температуры. Как сделать регулятор нагрева на симисторе?

Для качественного соединения радиодеталей и медных проводов пользуются разнообразными специальными приборами. Важной тонкостью при пайке является необходимость точного поддержания температуры в точке работы. Для этого применяется схема регулировки мощности прибора.

Такой прибор можно собрать своими руками буквально за один вечер. Если тщательно продумать конструкцию, он найдёт в быту применение не только для управления паяльником. Можно плавно регулировать яркость настольной лампы. Такой аппарат также обеспечит плавную регулировку температуры электроплитки или небольшой кухонной духовки.

Инструменты и материалы

Несмотря на простоту конструкции, симисторный регулятор является радиоэлектронной схемой. Для изготовления такого прибора потребуются инструменты для механической обработки металла и пластмассы. При монтаже электроники придётся использовать уже имеющийся паяльник. Разумеется, для сборки даже самого простого регулятора мастер должен обладать некоторыми знаниями и навыками изготовления радиоконструкций.

В первую очередь, определившись с потребностями и замыслом, приобретите нужные электронные компоненты по списку. Ключевым и самым дорогим элементом конструкции является симистор.

Эта небольшая деталь должна надёжно работать при подключении нагрузки запланированной мощности, поэтому лучше купить более дорогую деталь с некоторым запасом мощности.

Схемы регуляторов настолько похожи, что подобрать детали поможет продавец-консультант прямо в магазине радиотоваров. Ещё проще найти на сайте магазина радиодеталей готовый комплект для сборки. В нём уже будут все нужные компоненты и инструкция по сборке.

Не менее важной деталью является корпус будущего регулятора. Он должен быть компактным, но вмещать все нужные элементы. Большое значение имеет удобство подключения потребителя. В качестве корпуса можно использовать готовую электромонтажную коробку со встроенной электророзеткой. В магазинах радиотоваров также продаются готовые корпуса для самоделок.

Ручка регулятора должна крепко держаться на оси переменного резистора, которым задаётся нужная температура. При этом материал ручки должен гарантировать изоляцию от напряжения бытовой электросети. Хорошо подходят ручки от старых радиоприёмников или электроприборов.

Потребуются и такие предметы:

  • провода, рассчитанные на подключение в сеть 220 В;
  • изолента;
  • винты и шурупы;
  • набор для пайки (припой, флюс, средство для отмывки паяных соединений).

Для проверки работы готового прибора удобно пользоваться электрической лампой накаливания. Можно использовать любую настольную лампу.

Только учтите, что светодиодные или люминисцентные лампы для этого не годятся, потому что неправильно работают с простыми симисторными регуляторами напряжения.

Способы изготовления

Если будете собирать простой симисторный регулятор на базе готового набора деталей, надо сразу же выбрать в магазине подходящую заготовку корпуса. Если есть желание сделать необычную конструкцию, можно использовать для корпуса любой старый электроприбор подходящего размера.

Регулятор небольшой мощности можно собрать в корпусе старого блока питания, включаемого в розетку. Очень необычно также смотрятся самодельные корпуса из древесины, но они трудоёмки в изготовлении. В общем, есть широчайший простор для творчества.

Выбрав корпус будущего регулятора, продумайте расположение элементов внутри него. Если использовать для сборки регулятора на симисторе электротехническую коробку с вилкой и розеткой, придётся поломать голову над способом размещения внутри неё платы регулятора. Кроме того, место расположения ручки регулятора должно быть удобным.

Простой прибор регулировки напряжения на симисторе обычно не содержит элементов обратной связи. Поворотом ручки приблизительно выставляется лишь процент подводимой мощности. Например, среднее положение ручки обеспечивает подачу примерно двух третей мощности.

Если есть желание сделать более точный терморегулятор, можно воспользоваться специальными паяльниками, которые содержат встроенный термодатчик.

Такие приборы обычно применяются для работы в составе паяльных станций и питаются пониженным напряжением.

Их также можно использовать совместно с самодельным регулятором температуры на симисторе. Но схема получится более сложной и будет включать в себя блок питания, понижающий напряжение 220 В до стандартного для паяльных станций – 23-28 В. Кроме того, такой регулятор содержит в конструкции компаратор, который сравнивает заданную температуру с той, которая фактически измерена датчиком температуры.

Выбирая паяльник со встроенным датчиком, обратите внимание на тип измерительного прибора. Более дешёвые модели имеют чувствительный элемент в виде терморезистора. Такие паяльники применимы с самыми простыми регуляторами температуры.

Более дорогие модели имеют датчик в виде термопары. Такие датчики позволяют измерять и регулировать температуру очень точно. Но компаратор, применяемый совместно с термопарой, имеет более сложную и капризную схему.

Симисторные регуляторы, способные работать совместно с термопарой, проще покупать в виде готовых наборов для сборки.

Многие наборы для сборки симисторного регулятора с датчиком температуры имеют схемы, прямо отображающую на индикаторе измеренную температуру паяльника. Это даёт неоценимое удобство работы, но не ведет к значительному удорожанию конструкции. Место для размещения индикатора также надо тщательно продумать.

Следует предусмотреть достаточное охлаждение ключевого элемента. Несмотря на то что симисторные ключи при работе почти не нагреваются, некоторая вентиляция всё равно нужна. Кроме того, могут сильно греться резисторы, ограничивающие ток на контактах симистора. Это следует учитывать, проектируя регулятор температуры на мощность более 200 Вт.

При сборке самодельного симисторного регулятора следует использовать стандартные припои и флюс для пайки. Электронные компоненты и медные провода паяются очень хорошо, и в качестве флюса вполне достаточно сосновой канифоли. Активные флюсы лучше не применять, потому что пайка с их применением может начать быстро разрушаться.

Проверка и наладка

Перед первым включением тщательно проверьте правильность сборки схемы. Особое внимание уделите надёжности паяных соединений и качеству изоляции всех цепей. Симисторный регулятор включается непосредственно в электросеть, и все его части, включая переменный резистор задания температуры, находятся под напряжением, опасным для жизни.

Включать в розетку можно только прибор, все детали которого надёжно закреплены, а корпус закрыт и обеспечивает полную изоляцию. Первое включение можно произвести без нагрузки.

Если всё сделано правильно, подключите нагрузку в виде паяльника или лампы накаливания. Как правило, собранный из исправных деталей симисторный регулятор в особой наладке не нуждается.

Требуемая температура паяльника выставляется приблизительным поворотом ручки регулятора. Особая точность при этом не требуется, поэтому ручка резистора часто даже не снабжается шкалой.

При необходимости можно разметить шкалу температуры, ориентируясь на известные признаки при пайке. Например, распространённый припой марки ПОС-60 плавится при температуре 245°С. Канифоль плавится при 100°С, а при 260-320°С дымит и обугливается. Такая разметка шкалы регулятора позволит заранее устанавливать приблизительно нужный режим пайки.

При любых работах с паяльником соблюдайте общие правила безопасности. Следите за качеством вентиляции в помещении. Пары припоя содержат ядовитые пары свинца, а дым горящего флюса является канцерогеном. Лучше всего производить пайку под вытяжкой.

Остерегайтесь ожогов и всегда возвращайте неиспользуемый паяльник на специальную подставку во избежание нагрева поверхностей. Опасность представляют также капли расплавленного припоя и брызги кипящего флюса.

О том, как сделать для паяльника регулятор мощности своими руками, смотрите далее.

Тиристорный регулятор мощности. Изготовление регулятора мощности на симисторе своими руками

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название – реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление . Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор – полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях . Именно поэтому он используется в сетях переменного тока.

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г .

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.


(Вариант 1)

В симисторных регуляторах мощности, работающих по принципу пропускания через нагрузку определенного числа полупериодов тока в единицу времени, должно выполняться условие четности их числа. Во многих известных радиолюбительских (и не только) конструкциях оно нарушается. Вниманию читателей предлагается регулятор, свободный от этого недостатка. Его схема изображена на рис. 1.

Здесь имеются узел питания, генератор импульсов регулируемой скважности и формирователь импульсов, управляющих симистором. Узел питания выполнен по классической схеме: токоограничивающие резистор R2 и конденсатор С1, выпрямитель на диодах VD3, VD4, стабилитрон VD5, сглаживающий конденсатор СЗ. Частота импульсов генератора, собранного на элементах DD1.1, DD1.2 и DD1.4, зависит от емкости конденсатора С2 и сопротивления между крайними выводами переменного резистора R1. Этим же резистором регулируют скважность импульсов. Элемент DD1.3 служит формирователем импульсов с частотой сетевого напряжения, поступающего на его вывод 1 через делитель из резисторов R3 и R4, причем каждый импульс начинается, вблизи перехода мгновенного значения сетевого напряжения через ноль. С выхода элемента DD1.3 эти импульсы через ограничительные резисторы R5 и R6 поступают на базы транзисторов VT1, VT2. Усиленные транзисторами импульсы управления через разделительный конденсатор С4 приходят на управляющий электрод симистора VS1. Здесь их полярность соответствует знаку сетевого напряжения, приложенного в этот момент к выв. 2 симистора. Благодаря тому, что элементы DD1.1 и DD1.2, DD1.3 и DD1.4 образуют два триггера, уровень на выходе элемента DD1.4, соединенном с выводом 2 элемента DD1.3, сменяется на противоположный только в отрицательном полупериоде сетевого напряжения. Предположим, триггер на элементах DD1.3, DD1.4 находится в состоянии с низким уровнем на выходе элемента DD1.3 и высоким на выходе элемента DD1.4. Для изменения этого состояния необходимо, чтобы высокий уровень на выходе элемента DD1.2, соединенном с выводом 6 элемента DD1.4, стал низким. А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.1, независимо от момента установки высокого уровня на выводе 8 элемента DD1.2. Формирование управляющего импульса начинается с приходом положительного полупериода сетевого напряжения на вывод 1 элемента DD1.3. В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.2 сменится низким, что установит на выходе элемента высокий уровень напряжения. Теперь высокий уровень на выходе элемента DD1.4 тоже может смениться низким, но только в отрицательный полупериод напряжения, поступающего на вывод 1 элемента DD1.3. Следовательно, рабочий цикл формирователя управляющих импульсов закончится в конце отрицательного полупериода сетевого напряжения, а общее число полупериодов напряжения, приложенного к нагрузке, будет четным. Основная часть деталей устройства смонтирована на плате с односторонней печатью, чертеж которой показан на рис. 2.

Диоды VD1 и VD2 припаяны непосредственно к выводам переменного резистора R1, а резистор R7 – к выводам симистора VS1. Симистор снабжен ребристым теплоотводом заводского изготовления с площадью теплоотводящей поверхности около 400 см2. Использованы постоянные резисторы МЛТ, переменный резистор R1 – СПЗ-4аМ. Его можно заменить другим такого же или большего сопротивления. Номиналы резисторов R3 и R4 должны быть одинаковыми. Конденсаторы С1, С2 – К73-17. Если требуется повышенная надежность, то оксидный конденсатор С4 можно заменить пленочным, например, К73-17 2,2…4,7 мкФ на 63 В, но размеры печатной платы придется увеличить.
Вместо диодов КД521А подойдут и другие маломощные кремниевые, а стабилитрон Д814В заменит любой более современный с напряжением стабилизации 9 В. Замена транзисторов КТ3102В, КТ3107Г – другие маломощные кремниевые соответствующей структуры. Если амплитуда открывающих симистор VS1 импульсов тока окажется недостаточной, сопротивление резисторов R5 и R6 уменьшать нельзя. Лучше подобрать транзисторы с возможно большим коэффициентом передачи тока при напряжении между коллектором и эмиттером 1 В. У VT1 он должен быть 150…250, у VT2 – 250…270. По окончании монтажа можно присоединять к регулятору нагрузку сопротивлением 50…100 Ом и включать его в сеть. Параллельно нагрузке подключите вольтметр постоянного тока на 300…600 В. Если симистор устойчиво открывается в обоих полупериодах сетевого напряжения, стрелка вольтметра вообще не отклоняется от нуля либо немного колеблется вокруг него. Если же стрелка вольтметра отклоняется лишь в одну сторону, значит, симистор открывается только в полупериодах одного знака. Направление отклонения стрелки соответствует той полярности приложенного к симистору напряжения, при которой он остается закрытым. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока.

Симисторный регулятор мощности.
(Вариант 2)

Предлагаемый симисторный регулятор мощности (см. рис.) можно использовать для регулирования активной мощности нагревательных приборов (паяльника, электрической печки, плиты и пр.). Для изменения яркости осветительных приборов его использовать не рекомендуется, т.к. они будут сильно мигать. Особенностью регулятора является коммутация симистора в моменты перехода сетевого напряжения через ноль, поэтому он не создает сетевых помех Мощность регулируется изменением числа полупериодов сетевого напряжения, поступающих в нагрузку.

Синхрогенератор выполнен на базе логического элемента ИСКЛЮЧАЮЩЕЕ ИЛИ DD1.1. Его особенностью является появление высокого уровня (логической “1”) на выходе в том случае, когда входные сигналы отличаются друг от друга, и низкого уровня (“О”) при совладении входных сигналов. В результате этого “Г появляется на выходе DD1.1 только в моменты перехода сетевого напряжения через ноль. Генератор прямоугольных импульсов с регулируемой скважностью выполнен на логических элементах DD1.2 и DD1.3. Соединение одного из входов этих элементов с питанием превращает их в инверторы. В результате получается генератор прямоугольных импульсов. Частота импульсов приблизительно 2 Гц, а их длительность изменяется резистором R5.

На резисторе R6 и диодах VD5. VD6 выполнена схема совпадения 2И. Высокий уровень на ее выходе появляется только при совпадении двух “1” (импульса синхронизации и импульса с генератора). В результате на выходе 11 DD1.4 появляются пачки импульсов синхронизации. Элемент DD1.4 является повторителем импульсов, для чего один из его входов подключен к общей шине.
На транзисторе VT1 выполнен формирователь управляющих импульсов. Пачки коротких импульсов с его эмиттера, синхронизированные с началом полупериодов сетевого напряжения, поступают на управляющий переход симистора VS1 и открывают его. Через RH протекает ток.

Питание симисторного регулятора мощности осуществляется через цепочку R1-C1-VD2. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Положительные импульсы со стабилитрона VD1 через диод VD2 заряжают конденсатор СЗ.
При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тогда симистор типа КУ208Г позволяет коммутировать мощность до 1 кВт. Размеры радиатора можно приближенно прикинуть из расчета, что на 1 Вт рассеиваемой мощности необходимо около 10 см2 эффективной поверхности радиатора (сам корпус симистора рассеивает 10 Вт мощности). Для большей мощности необходим более мощный симистор, например, ТС2-25-6. Он позволяет коммутировать ток 25 А. Симистор выбирается с допустимым обратным напряжением не ниже 600 В. Симистор желательно защитить варистором, включенным параллельно, например, СН-1-1-560. Диоды VD2.. .VD6 можно применять в схеме любые, например. КД522Б или КД510А Стабилитрон – любой маломощный на напряжение 14.. .15 В. Подойдет Д814Д.

Симисторный регулятор мощности размещен на печатной плате из одностороннего стеклотекстолита размерами 68×38 мм.

Простой регулятор мощности.

Регулятор мощности до 1 кВт (0%-100%).
Схема собиралась не раз, работает без наладки и других проблем. Естественно диоды и тиристор на радиатор при мощности более 300 ватт. Если меньше, то хватает самих корпусов деталей для охлаждения.
Изначально в схеме применялись транзисторы типа МП38 и МП41.

Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора. Схема достаточно проста и доступна даже начинающему радиолюбителю. Для управления более мощной нагрузкой тиристоры необходимо поставить на радиатор (150 см2 и более). Для устранения помех, создаваемых регулятором, желательно на входе поставить дроссель.

На схеме – родителе, был установлен симистор КУ208Г, и меня он не устроил из за малой мощности коммутации. Покопавшись нашел импортные симисторы BTA16-600. Максимальное напряжение коммутации которого равен 600 вольт пр токе 16А!!!
Все резисторы МЛТ 0,125;
R4 – СП3-4аМ;
Конденсатор составлен из двух (включенных параллельно) по 1 микрофараду 250 вольт, типа – К73-17.
При данных, указанных на схеме, были достигнуты следующие результаты: Регулировка напряжения от 40 до напряжения сети.

Регулятор можно вставить в штатный корпус обогревателя.

Схема срисованная с платы регулятора пылесоса.

на кондесаторе маркировка: 1j100
Пробовал управлять ТЭНом 2 квт – никаких морганий света на той же фазе не заметил,
напряжение на ТЭНе регулируется плавно и, вроде бы, равномернно (пропорционально углу поворота резистора).
Регулируется от 0 до 218 вольт при напряжении в сети 224-228 вольт.

Регуляторы мощности получили широкое применение в повседневной жизни. Их использование очень разнообразное: от регулирования величины яркости освещения до управления оборотами различных двигателей, с их помощью можно выставлять требуемую температуру различных нагревательных приборов. Таким образом, регулировать мощность можно для нагрузки любого вида как реактивной, так и активной.

Регулятор мощности представляет собой определённую электронную схему, с помощью которой можно контролировать значение энергии, подводимой к нагрузке.

Устройства, предназначенные для управления значениями мощности, разделяют по способу регулировки:

По виду выходного сигнала:

  • стабилизированные;
  • не стабилизированные.

Регулировка осуществляется при питании как от постоянного, так и переменного напряжения. Управлять можно величиной напряжения или тока.

По своему виду расположения регуляторы могут быть портативными и стационарными, устанавливаться в любом положении: вертикальном, потолочном, горизонтальном, крепиться на специальную дин рейку или встраиваться. Конструктивно выполняются как на специализированных печатных платах, так и с помощью навесного монтажа.

Основными характеристиками , на которые следует обращать внимание, являются следующие параметры:

  • плавность регулировки;
  • рабочая и пиковая подводимая мощность;
  • диапазон входного рабочего напряжения;
  • диапазон задания напряжения, поступающего на нагрузку;
  • условия эксплуатации.

Тиристорный регулятор мощности

Схема и принцип работы такого устройства не отличается особой сложностью. Основное назначение тиристорного преобразователя — управление устройствами с малой мощностью, но в редких случаях и большой. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока. Главным компонентом такой схемы является тиристор, работающий в режиме ключа. При появлении разности потенциалов на управляющем контакте он открывается. Чем больше задержка при включении, тем меньше мощности поступает в нагрузку.

Простейшая схема, кроме тиристора, содержит два биполярных транзистора, два резистора, задающих рабочую точку, и конденсатор. Транзисторы, работая в режиме ключа, формируют управляющий сигнал. Как только разность потенциалов на конденсаторе достигает значения, равному рабочему, то транзисторы открываются, и подаётся сигнал на управляющий контакт. Конденсатор начинает разряжаться до следующего полупериода.

Преимущества этого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом используется как активная, так и пассивная система охлаждения.

Применяется тиристорный регулятор для управления мощностью бытовых (паяльники, электронагреватели, лампы накаливания и т. д.) и производственных приборов (плавный запуск мощных силовых установок). Агрегат может быть однофазным и трёхфазным.

Изготовление устройства самостоятельно

Если есть необходимость использовать тиристорный регулятор мощности, можно своими руками сделать прибор неплохого качества. Для этого нужно в специализированной точке продаж приобрести набор, содержащий подробную схему с описанием принципа сборки и работы. Или можно использовать любую схему из интернета или литературы и спаять устройство самостоятельно.

В качестве тиристоров можно использовать любой тип, например, отечественный КУ202Н или импортный bt151, в зависимости от необходимой мощности. Кроме тиристора, значение последней будет также зависеть от параметров , применяемого в схеме. Регулировка мощности осуществляется с помощью переменного резистора. Если нет возможности или желания изготовить печатную плату, можно собрать прибор с помощью навесного монтажа. При этом необходимо тщательно заизолировать все места соединений во избежание короткого замыкания.

Симистор является полупроводниковым элементом, предназначенным для использования в цепях переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, проводящего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно из-за этой способности симистор и применяется в сетях переменного тока.

Мощность регулируется в этом случае путём изменения количества полупериодов напряжения, которые действуют на нагрузку. Главное отличие от тиристорных схем в том, что здесь не используется выпрямительное устройство. Работа схемы основана на принципе фазного управления, то есть на изменении момента открытия симистора относительно перехода сетевого напряжения через ноль.

Этот прибор используется для управления нагревательными элементами, лампами накаливания, оборотами двигателя. Сигнал на выходе устройства имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление прибора даже проще, чем изготовление тиристорного регулятора. Широкую популярность получили симисторы средней мощности типа BT137−600E или MAC97A6. Схема регулятора мощности на симисторе с использованием этих элементов отличается простотой изготовления.

Фазовый регулятор

Фазовое регулирование используется для плавного запуска двигателей различного типа или управления током при заряде аккумулятора. Один из видов таких приборов является диммер.

Основа работы лежит в изменении угла открытия ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижается действующая величина напряжения.

Достоинство такого типа регулирования — низкая стоимость ввиду применения недорогих радиодеталей. А вот основной недостаток — значимый коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

Нередко в конструкции такого вида регуляторов используются микросхемы низкочастотного типа. Благодаря этому регулятор способен быстро изменять мощность. Фазовые регуляторы редко стабилизируют с помощью стабилитронов, обычно роль стабилизатора выполняют попарно работающие тиристоры.

Регулятор мощности для паяльника своими руками

Рассмотрим пример изготовления регулятора тока своими руками. Например, будем регулировать мощность паяльника. Регулирование в таком устройстве позволяет не перегревать место пайки и способно защищать жало паяльника от выгорания.

Такого типа устройства выпускаются достаточно давно. Одним из видов его был отечественный прибор, носящий название «Добавочное устройство для электропаяльника типа П223». Он позволял использовать низковольтный паяльник напряжением 36 вольт, питаемый от сети 220 В.

Регулятор на симисторе КУ208Г

Схема прибора довольно интересная и простая в реализации. Отличительной её особенностью является использование неоновой лампочки.

Конденсатор, величиной порядка 0,1 мкФ, предназначен для генерации пилообразного импульса и защиты схемы управления от помех. Резисторы применяются для ограничения тока, а с помощью переменного резистора ток регулируется, его величина составляет около 220 кОм. Неоновая лампочка позволяет выполнять линейное управление и одновременно является индикатором. По интенсивности её яркости можно контролировать регулировку.

Недостатком такой схемы будет слабая информированность о мощности паяльника. Для наглядного отображения значений выставленного значения, при достаточном уровне радиоподготовки, можно применить микроконтроллер, например, pic16f628a. На нем также возможно будет выполнить электронную регулировку мощности, отказавшись от переменного резистора.

Регулировка на интегральном стабилизаторе

Ещё одним способом управления мощностью является применение интегральных стабилизаторов. Используя такое устройство, очень легко изготовить диммер для 12 вольтового регулятора напряжения. Такое устройство простое в сборке и обладает встроенной защитой, может использоваться как для подключения паяльника на 12 В, так и светодиодной ленты. Обычно переменный резистор подключается к входу управляющего электрода микросхемы. Недостаток — сильный нагрев стабилизирующей микросхемы.

Переменное напряжение сети 220 В понижается через трансформатор до 16−18 вольт. Далее через диодный мост и сглаживающий конденсатор выпрямленное значение поступает на вход линейного стабилизатора. С помощью переменного резистора посредством изменения рабочей характеристики микросхемы выставляется требуемое напряжение на выходе. Такое напряжение будет стабилизированным и для нашего случая составит 12 вольт.

При самостоятельном изготовлении приборов соблюдайте осторожность и помните про технику безопасности при работе с сетью переменного тока 220 В. Как правило, верно выполненный регулятор из исправных деталей не требует настройки и сразу начинает работать.

Приборы, которые работают на потреблении электрического тока, можно настраивать. Для этого существуют специальные регуляторы. Сегодня всё большую популярность набирает симисторный подтип. Его существенным отличием стало двухстороннее действие. Благодаря тому, что в приборе есть анод и катод, в процессе их передвижения появляется возможность изменять направления тока.

Не стоит думать, то этот элемент можно заменить контакторами, пускателями или реле. Именно симисторы отличаются долговечностью, детали на приборе практически не изнашиваются. Основным положительным моментом от использования симистора, стало полное отсутствие искры в электрических приборах. Были проанализированы схемы, в которых использовались симисторы двунаправленные, их стоимость была значительно меньше, чем те, которые базировались на транзисторах и микросхемах .

Плюсы и минусы использования симисторов

Среди основных преимуществ можно назвать следующие:

  • минимальная стоимость прибора;
  • длительный срок эксплуатации;
  • возможность избежать механических контактов.

Есть и недостатки:

  • чтобы не произошло перегрева прибора, необходимо обязательно устанавливать радиатор;
  • симистор очень чувствителен к переходным процессам;
  • нет возможности использовать на больших частотах;
  • реагирует на посторонние помехи и шумы.

Особенности применения в электроприборах

Учитывая те показатели, которыми обладает симистор, его активно используют в работе приборов бытовой техники, таких как:

  • осветительные приборы, которые можно регулировать;
  • бытовые строительные электроинструменты;
  • нагревательные приборы;
  • приборы с наличием компрессора;
  • стиральные машины , пылесосы, вентиляторы, фены.

Как сделать регулятор мощности своими руками

Сегодня есть возможность установки простых диммеров в электрические приборы. Рассмотрим несколько вариантов схем по установке симисторов.

Для паяльника

Для этого прибора есть возможность собрать устройство настройки мощности до 100 Вт, необходимо всего несколько деталей. Именно с помощью него можно контролировать температуру жала паяльника, яркость настольной лампы, скорость вращения вентилятора. Сам регулятор можно собрать на основе симистора ВТА 16600. Его отличительными чертами станет то, что в цепи управляющего электрода симистора будет находить неоновая лампа.

Если вы решите использовать именно такой вид, то необходимо правильно выбрать неоновую лампу, она должна иметь минимальные показатели напряжения пробоя. Это очень важно, так как именно этот показатель и будет влиять на плавность регулировки мощности лампы или паяльника. Если устанавливать стартер в светильник, здесь можно неоновую лампочку не применять.

Варианты схем

Схемы диммера являются сами простыми. В качестве диодного моста используются диоды Д226, обязательно включаются тиристор КУ202Н, который имеет свою цепь управления. Если вы хотите иметь до 9 фиксированных положений регулировки, то нужно немного усложнить схему и добавить элемент логики – счётчик К561ИЕ8. Здесь также регулировать нагрузку будет тиристор. В схеме после установки диодного моста будет находиться обычный параметрический стабилизатор, который будет подавать питание на микросхему. Необходимо правильно для такой схемы подобрать диоды, их мощность должна равняться нагрузке, которую будет настраивать аппарат.

Существует ещё один вариант составления схемы для регулировки мощности пальника. В самой схеме нет ничего сложного, никаких дорогих или дефицитных деталей. С помощью установки светодиода можно контролировать включение и выключение прибора. Допустимые параметры выходного напряжения варьируются в пределах от 130 до 220 вольт. Для всех приборов можно использовать специальный индикатор напряжения. Его можно взять из старых моделей магнитофонов. Для того чтобы усовершенствовать такую головку, можно добавить светодиод. Он покажет включение и выключение прибора и будет подсвечивать шкалу мощности.

Не стоит забывать, что для такого прибора должен быть подобран правильный корпус. Его можно изготовить из обычного пластика, так как его удобно и легко резать, гнуть, обрабатывать, склеивать. Из куска пластика необходимо вырезать заготовку, зачистить края, и с помощью клея собрать коробку. В неё вкладывается собранный диммер. Когда собран сам прибор регулирования мощности, то его необходимо проверить перед введением в эксплуатацию.

Для проверки можно использовать обычный паяльник или мультиметр. Эти проборы достаточно подключить к выходу схемы, и постепенно вращать ручку регулятора. Это даст возможность определить плавность изменения выходного напряжения. Если в устройстве вы установили светодиод, то по его яркости свечения можно определить уменьшение или увеличение выходного напряжения.

Настройка устройства

Существуют схемы регулировки мощности, при нагрузке до 500 Вт или при переменном токе в 220 В. Это могут быть домашние вентиляторы, электродрели. Здесь нужно использовать устройства широкого диапазона, большой мощности. Симисторный регулятор будет использоваться в качестве фазового управления. Основным назначением прибора будет изменение момента включения симистора относительно перехода сетевого напряжения через ноль.

Изначально, в периоде положительного полупериода симистор закрыт. Как только начнёт увеличиваться напряжение, конденсатор заряжается и делится в двух направлениях. По мере увеличения сетевого напряжения, напряжение на конденсате отстаёт на величину, суммарного сопротивления делителя и ёмкости. Конденсатор будет заряжаться до момента получения напряжения около 32 В. В этот момент происходит открытие динистора, а с ним и симистора. Тогда начнёт поступать равный суммарному сопротивлению симистора и нагрузки. Симистор будет открыт на весь полупериод. Таким образом, происходит регулировка мощности напряжения.

Собрать симисторный регулятор мощности достаточно просто, даже не обладая специальными знаниями. Гораздо сложнее чётко усвоить правила его эксплуатации. Чрезвычайно важно, чтобы вышеизложенные нюансы строго соблюдались. В ином случае, собственноручная конструкция не будет функционировать качественно и может принести проблемы, связанные с целостностью и эффективной эксплуатацией электроприборов.

Видео: изготовление симисторного диммера

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.


Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.


Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.


Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.


Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.


Контроллер температуры паяльника

| Доступен полный проект

При пайке иногда возникает необходимость контролировать температуру паяльника. Менять паяльник каждый раз каждый раз не получится. Если вы просто припаиваете небольшие резисторы и микросхемы, 15 Вт, вероятно, будет достаточно, но вам, возможно, придется немного подождать между соединениями, чтобы наконечник восстановился. Если вы паяете более крупные компоненты, особенно с радиаторами (например, регуляторы напряжения), или выполняете много пайки, вам, вероятно, понадобится утюг на 25 или 30 Вт.

Для пайки более крупных предметов, таких как медный провод 10 калибра, кожух двигателя или большие радиаторы, вам может потребоваться утюг мощностью не менее 50 Вт. Паяльники бывают разной мощности и обычно работают от сети переменного тока 230 В. Однако у них нет контроля температуры. Низковольтные паяльники (например, 12 В) обычно являются частью паяльной станции и предназначены для использования с регулятором температуры. Правильный паяльник или станция с регулируемой температурой стоит дорого. Вот простая схема, которая обеспечивает ручное управление температурой обычного паяльника на 12 В переменного тока.

Схема регулятора температуры паяльника

Вот простая схема регулятора температуры паяльника для управления температурой паяльника. Это особенно полезно, если паяльник будет оставаться включенным в течение длительного времени, так как вы можете контролировать отвод тепла от паяльника. Когда паяльник включен, ему требуется время, чтобы достичь точки плавления припоя. Просто подключите эту схему к паяльнику, как показано на рисунке, и паяльник быстро достигнет точки плавления припоя.

Схема состоит из TRIAC1, DIAC1, потенциометра VR1, резистора и конденсатора. Симисторы широко используются в системах управления питанием переменного тока. Они могут переключать высокие напряжения и высокие уровни тока и по обеим частям сигнала переменного тока. Это делает схемы симистора идеальными для использования в различных приложениях, где требуется переключение мощности. Одно из конкретных применений симисторных цепей – это регуляторы освещенности для домашнего освещения, а также они используются во многих других ситуациях управления мощностью, включая управление двигателем.

Диак – это двухполупериодный или двунаправленный полупроводниковый переключатель, который можно включать как в прямой, так и в обратной полярности. Название diac происходит от слов Diode AC switch. Диак – это электронный компонент, который широко используется для помощи даже в срабатывании симистора при использовании в переключателях переменного тока, и в результате они часто встречаются в диммерах, таких как те, что используются в домашнем освещении. Типичная диак-симисторная схема используется для плавного управления мощностью переменного тока, подаваемой на нагреватель.

Схема регулятора температуры паяльника

Triac BT136 срабатывает под разными фазовыми углами, чтобы получить температуру, изменяющуюся от нуля до максимума.Диак используется для управления срабатыванием симистора в обоих направлениях. Потенциометр VR1 служит для установки температуры паяльника.

Схема может быть размещена в коробке с потенциометром, закрепленным сбоку, так что его ручку можно использовать извне коробки для регулировки температуры паяльника.


Статья была впервые опубликована в ноябре 2004 г. и недавно была обновлена.

Схема и работа контроллера температуры паяльника

Схема и работа контроллера температуры паяльника

Если вы энтузиаст электроники, то вы должны быть знакомы с устройством паяльника.Обычно это используется для проектирования электронных схем на печатной плате. Если вы не используете регулируемый паяльник для пайки, скорее всего, вы можете повредить свою ИС или даже устройство.

Требования к напряжению паяльной машины полностью зависят от характеристик пайки компонентов, используемых в устройстве. Например, маленькому устройству или ИС требуется мощность всего 5 Вт, тогда как большому устройству может потребоваться железо мощностью 25-30 Вт. Некоторым из огромных устройств также требуется даже 50 Вт или больше.

Паяльники бывают самых разных видов с разной мощностью. Как правило, устройство работает от сети переменного тока 230 В без терморегулятора. По этой причине в данной статье мы решили разработать недорогой терморегулятор для паяльника.

Иногда износ жала паяльника может быть вызван постоянным потреблением энергии. Чтобы решить эту проблему, мы можем использовать терморегулятор вместе с утюгом, чтобы регулировать температуру в соответствии с требованиями.Паяльник с терморегулятором, представленный на рынке, чертовски дорог и доступен далеко не всем.

В этой статье мы будем проектировать регулятор температуры для паяльника, используя базовые электронные компоненты, такие как резисторы, DIAC и TRIAC. Прежде чем начать процесс проектирования этой схемы, давайте обсудим основные компоненты, используемые в схемах, а именно DIAC и TRIAC. Поскольку резистор и конденсаторы, используемые в схеме, не нуждаются в каких-либо объяснениях и хорошо знакомы каждому любителю, и мы уже подробно их уже обсуждали.

DIAC

DIAC – это дискретный электронный компонент, также известный как симметричные триггерные диоды. Это двунаправленный полупроводниковый переключатель, который можно использовать как с прямой, так и с обратной полярностью. DIAC очень часто используется для запуска TRIAC, средств, используемых в комбинации DIAC-TRIAC. Одним из наиболее интересных фактов о DIAC является то, что они являются двунаправленными устройствами, в которых любой из выводов может использоваться в качестве основного.

Работа DIAC

DIAC начинает проводить напряжение только после превышения определенного напряжения пробоя.Большинство DIAC имеют напряжение пробоя около 30 В, но фактическое напряжение пробоя полностью зависит от характеристик этого типа компонентов. При достижении напряжения пробоя сопротивление компонента резко уменьшается. Это приводит к резкому падению напряжения на DIAC и в результате увеличивается соответствующий ток. Когда ток падает ниже тока удержания, DIAC переключается обратно в непроводящее состояние. Здесь ток удержания – это уровень, на котором DIAC остается в проводящем состоянии.

Каждый раз, когда напряжение в цикле падает, устройство возвращается в проводящее состояние. DIAC обеспечивают равное переключение для обеих половин цикла переменного тока, поскольку поведение устройства одинаково в обоих направлениях.

Конструкция DIAC

DIAC изготавливаются с трехслойной и пятислойной структурой. Давайте посмотрим, как строятся оба по порядку.

Трехслойная структура

В этой структуре переключение происходит, когда обратный смещенный переход испытывает обратный пробой.Это наиболее часто используемый DIAC на практике из-за его симметричной работы. Этот трехслойный DIAC может достигать напряжения пробоя около 30 В в целом и способен обеспечить достаточное улучшение характеристик переключения.

Пятиуровневая структура DIAC

Пятиуровневая структура DIAC сильно отличается по сроку действия. Эта структура устройства формирует кривую I-V, аналогичную трехслойной версии. Можно сказать, что эта структура выглядит как два переключающих диода, соединенных спина к спине.

Применение DIAC

DIAC широко используются в электронике из-за характера их симметричной работы. Некоторые из общих приложений включают:

  • Его можно использовать вместе с устройством TRIAC, чтобы сделать переключение симметричным для обеих половин цикла переменного тока.
  • DIAC широко используются в качестве диммеров или домашнего освещения.
  • DIAC также используются в люминесцентных лампах в качестве пусковых цепей.

TRIAC

. Как следует из названия, TRIAC – это трехконтактное устройство, которое контролирует поток тока.Он используется для управления током переменного тока для обеих половин. Это двунаправленное устройство, также входящее в семейство тиристоров. TRIAC ведет себя как два обычных тиристора, соединенных спина к спине друг с другом.

Проще говоря, TRIAC может быть приведен в состояние проводимости как отрицательным, так и положительным напряжением с помощью как отрицательных, так и положительных импульсов запуска, подаваемых на его клемму GATE.

В большинстве приложений коммутации переменного тока терминал затвора TRIAC присоединен к основному терминалу.

Конструкция TRIAC

Конструкция TRIAC состоит из четырех слоев. Это устройство может проводить в любом направлении при срабатывании одиночного импульса. PNPN размещается в положительном направлении, а NPNP – в отрицательном направлении. Он действует как переключатель разомкнутой цепи, который блокирует ток в выключенном состоянии.

Существует четыре режима работы TRIAC, а именно:

Режим I +: Ток MT2 положительный, и ток затвора также положительный

Режим I -: Ток MT2 положительный, а ток затвора также отрицательный.

Mode III +: Ток MT2 отрицательный, и ток затвора также положительный

Mode III -: Ток MT2 отрицательный, и ток затвора также отрицательный

TRIAC запускается в проводимость положительным током применяется в терминале выхода на посадку.В приведенном выше обсуждении это обозначено как режим I. Вы также можете запустить TRIAC отрицательным током затвора, который переходит в режим Ι–.

Следуя тому же процессу, в квадранте ΙΙΙ, запуск с отрицательным током затвора, –G также является общим в обоих режимах ΙΙΙ– и +. Однако режимы Ι– и ΙΙΙ + являются менее чувствительными конфигурациями, которые требуют большого количества тока на выводе затвора, чтобы вызвать запуск, чем более распространенные режимы запуска TRIAC + и ΙΙΙ–.

TRIAC требует минимального тока удержания для поддержания проводимости в точке пересечения форм волны.

Применение TRIAC
  • Он широко используется в приложениях управления и коммутации, используемых в домашнем хозяйстве
  • Он используется в качестве устройства контроля фазы в большинстве приложений переменного тока
  • Он также используется для управления скоростью вентиляторов
  • Используется в двигателях
  • Он также используется в качестве регулятора яркости в лампах

Мы надеемся, что вы хорошо знакомы с DIAC и TRIAC. Мы обсудили работу обоих устройств в приведенном выше обсуждении, чтобы помочь вам понять использование обоих компонентов в контроллере температуры паяльника.Помимо этих двух, мы использовали потенциометр в нашей схеме для контроля температуры с помощью ручки.

Соберите следующие компоненты для разработки схемы регулятора температуры паяльника:

  • Резистор – 2,2 кОм (1 шт.)
  • Потенциометр – 100 К (1 шт.)
  • Конденсатор 400 В – 0,1 мкФ (1 шт.)
  • DB3 DIAC (1 н. Регулятор температуры железа очень прост в конструкции.Схема сделана с использованием некоторых простейших электронных компонентов, упомянутых в приведенном выше списке. Один конец резистора 2K подключается к клемме DIAC, а другой конец подключается к источнику питания 220 В через потенциометр для контроля температуры. С другой стороны, DIAC соединен с выводом затвора TRIAC для управления переключением TRIAC.

    Работа регулятора температуры паяльника

    Температура этой цепи регулятора может быть изменена от максимального значения для регулирования рассеивания тепла.Подключите эту схему к паяльнику, чтобы быстро нагреть утюг. TRIAC, подключенный здесь, в цепи, переключает высокий ток и напряжение по обеим частям сигнала переменного тока. TRIAC запускается под разными углами, чтобы получить разные уровни температуры от 0 градусов до максимума. Подключенный DIAC управляет стрельбой в обоих направлениях. Здесь вы можете использовать потенциометр для соответствующей установки температуры.

    Работа этого регулятора температуры паяльника очень проста и понятна.Вам просто нужно подключить схему к паяльнику, чтобы соответствующим образом варьировать температуру.

    Применение регулятора температуры паяльника

    Регулятор температуры паяльника используется для регулирования температуры паяльника. Вы можете подключить этот контроллер, чтобы уменьшить время нарастания температуры паяльника. Это очень полезно при пайке чувствительных компонентов.

    Итог:

    Паяльники с терморегулятором довольно дороги и доступны не всем.Здесь этот регулятор температуры для паяльника разработан с очень низкой стоимостью и базовыми электронными компонентами. Вы можете использовать это с паяльником для автоматического контроля температуры. Мы также определили работу и спецификации основных компонентов, таких как TRIAC и DIAC, в нашем вышеупомянутом обсуждении. Это будет очень полезно для понимания работы паяльника с легкостью. Мы надеемся, что теперь вы сможете без каких-либо неудобств спроектировать эту маломощную и высоконадежную схему.

    Родственные проекты:

    ЭЛ цепей регуляторов, напряжение 0 220 вольт. Схема тиристорного регулятора напряжения простая, принцип работы. Как это работает

    8 основных схем регулятора своими руками. Топ-6 брендов регуляторов из Китая. 2 схемы. 4 Наиболее часто задаваемые вопросы о регуляторах напряжения. + ТЕСТ на самоконтроль

    Регулятор напряжения Это специализированное электрическое устройство, предназначенное для плавного изменения или регулировки напряжения, подаваемого на электрическое устройство.

    Регулятор напряжения

    Важно помнить! Устройства этого типа предназначены для изменения и регулировки напряжения питания, а не тока. Ток регулируется грузоподъемностью!

    ИСПЫТАНИЕ:

    4 вопроса о регуляторах напряжения

    1. Для чего предназначен регулятор:

    а) Изменение напряжения на выходе из прибора.

    б) Разрыв цепи электрического тока

    1. От чего зависит мощность регулятора:

    а) От источника входного тока и от исполнительного органа

    б) От размера потребителя

    1. Основные детали устройства, собраны вручную:

    а) Стабилитрон и диод

    б) Симистор и тиристор

    1. Для чего нужны регуляторы 0-5 вольт:

    а) Источник питания со стабилизированным напряжением микросхемы

    б) Ограничить потребление тока электролампами

    ответов.

    2 Самые распространенные схемы РН 0-220 вольт своими руками

    Схема № 1.

    Самый простой и удобный в эксплуатации регулятор напряжения – регулятор на тиристорах, включенных в обратном направлении. Это создаст синусоидальный выходной сигнал желаемой величины.


    Входное напряжение до 220В, через предохранитель идет на нагрузку, а через второй проводник, через кнопку включения, синусоидальная полуволна идет на катод и анод тиристоров VS1 и VS2.А через переменный резистор R2 регулируется выходной сигнал. Два диода VD1 и VD2 оставляют после себя только положительную полуволну, приходящую на управляющий электрод одного из тиристоров , , что приводит к его обнаружению.

    Важно! Чем выше сигнал тока на тиристорном ключе, тем больше он откроется, то есть тем больше тока может пройти через себя.

    Световой индикатор предназначен для контроля входной мощности и вольтметр для настройки выходной мощности.

    Схема № 2.

    Отличительной особенностью данной схемы является замена двух тиристоров на один симистор . Это упрощает схему, делает ее более компактной и легкой в ​​изготовлении.


    В схеме есть и предохранитель, и кнопка включения, и регулировочный резистор R3, и он управляет базой симистора, это один из немногих полупроводниковых приборов с возможностью работы с переменным током. Ток, проходящий через резистор R3, приобретает определенное значение, он будет управлять степенью открытия симистора . После этого он выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы C1, C2, C3 и C4, служат для гашения пульсаций входного сигнала и фильтрации его от посторонних шумов и частот нерегулируемой частоты.

    Как избежать 3 распространенных ошибок при работе с симистором.

    1. Буква после кодового обозначения симистора говорит о его максимальном рабочем напряжении: A – 100V, B – 200V, V – 300V, G – 400V.Поэтому не стоит брать прибор с буквой А и В для регулировки 0-220 вольт – такой симистор выйдет из строя.
    2. Симистор, как и любой другой полупроводниковый прибор, сильно нагревается во время работы, стоит подумать об установке радиатора или активной системы охлаждения.
    3. При использовании симистора в цепях нагрузки с большим потреблением тока необходимо четко выбирать устройство для заявленной цели. Например, люстра, в которой установлено 5 лампочек по 100 Вт каждая, будет потреблять всего 2 ампера.Выбирая из каталога, необходимо смотреть на максимальный рабочий ток устройства. Итак, симистор MAC97A6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а MAC228A8 способен пропускать до 8 А и подходит для этой нагрузки.

    3 Основные моменты при изготовлении мощного РН и тока своими руками

    Устройство выдерживает нагрузки до 3000 Вт. Он построен на использовании мощного симистора и управляет своим затвором или ключом динистора .

    Динистор – это такой же симистор, только без управляющего выхода. Если симистор открывается и начинает пропускать ток через себя, когда на его базе возникает управляющее напряжение и остается открытым до тех пор, пока не исчезнет, ​​то динистор откроется, если между его анодом и катодом появится разность потенциалов выше открывающегося барьера. Он будет оставаться разблокированным до тех пор, пока ток между электродами не упадет ниже уровня блокировки.


    Как только положительный потенциал попадет на управляющий электрод, он откроется и пропустит переменный ток, и чем сильнее этот сигнал, тем выше напряжение между его выводами и, следовательно, нагрузка.Для регулирования степени открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта схема устанавливает ограничение тока на ключе. Симистор , и конденсаторы сглаживают пульсации входного сигнала.

    2 основных принципа изготовления PH 0-5 вольт

    1. Для преобразования входного высокого потенциала в низкий постоянный потенциал используются специальные микросхемы серии LM.
    2. Питание микросхем осуществляется только постоянным током.

    Рассмотрим эти принципы подробнее и разберем типичную схему регулятора.

    Микросхемы серии

    LM предназначены для снижения высокого постоянного напряжения до низких значений. Для этого в корпусе устройства есть 3 выхода:

    • Первый вывод – это входной сигнал.
    • Второй вывод – это выходной сигнал.
    • Третий выход – управляющий электрод.

    Принцип работы устройства очень прост – входное высокое напряжение положительного значения подается на вход-выход и затем преобразуется внутри микросхемы.Степень трансформации будет зависеть от силы и величины сигнала на контрольной «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предела для этой серии.


    В схему подводится входное напряжение не выше 28 вольт и обязательно выпрямленное. Взять его можно со вторичной обмотки силового трансформатора или от регулятора высокого напряжения. После этого положительный потенциал поступает на вывод микросхемы 3.Конденсатор С1 сглаживает пульсации входного сигнала. Переменный резистор R1 на 5000 Ом устанавливает выходной сигнал. Чем выше ток, который проходит через себя, тем выше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 поступает в нагрузку. Чем выше емкость конденсатора, тем плавнее он на выходе.

    Регулятор напряжения 0 – 220В

    Верхние 4 микросхемы стабилизации 0-5 вольт:

    1. КР1157 – отечественная микросхема, с ограничением входного сигнала до 25 вольт и током нагрузки не более 0.1 ампер.
    2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не более 15 вольт.
    3. TS7805CZ – прибор с допустимыми токами до 1,5 ампер и повышенным входным напряжением до 40 вольт.
    4. L4960 – импульсная микросхема с максимальным током нагрузки до 2,5 А. Входное напряжение не должно превышать 40 вольт.

    PH на 2 транзисторах

    Используется в схемах регуляторов особо мощных.В этом случае ток на нагрузку также передается через симистор, но ключевой вывод управляется через транзисторы каскада . Это реализовано следующим образом: переменный резистор регулирует ток, который поступает на базу первого маломощного транзистора, а через переход коллектор-эмиттер управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления большими токами нагрузки.


    Ответы на 4 самых распространенных нормативных вопроса:

    1. Каков допустимый допуск выходного напряжения? Для заводских устройств крупных фирм отклонение не превысит + -5%
    2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который переключает цепь.
    3. Для чего нужны регуляторы 0-5 вольт? Эти устройства чаще всего используются для питания микросхем и различных плат.
    4. Зачем нужен бытовой регулятор 0-220 вольт? Они используются для плавного включения и выключения бытовых электроприборов.

    4 Diy RN Схемы и схема подключения

    Кратко рассмотрим каждую из схем, особенности, преимущества.

    Схема 1.

    Очень простая схема подключения и плавной регулировки паяльника. Используется для предотвращения подгорания и перегрева жала паяльника. В схеме используется мощный симистор , , который управляется резистором тиристорно-регулируемой цепи .


    Схема 2.

    Схема на основе микросхемы фазорегулирования типа 1182ПМ1. Она контролирует степень открытия симистора , управляет нагрузкой. Они используются для плавного регулирования степени яркости ламп накаливания.

    Схема 3.

    Самая простая схема регулирования нагрева жала паяльника. Выполнен в очень компактной конструкции с использованием доступных компонентов. Нагрузка управляется одним тиристором, степень включения которого регулируется переменным резистором.Также есть диод для защиты от обратного напряжения. Тиристор,

    В наше время товары из Китая стали довольно популярной темой, и китайские регуляторы напряжения не отстают от общей тенденции. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

    Есть возможность выбрать любой регулятор именно под ваши требования и нужды. В среднем один ватт полезной мощности стоит менее 20 центов, что является очень хорошей ценой.Но все же стоит обратить внимание на качество деталей и сборки, для товаров из Китая оно все равно очень низкое.

    В последнее время в нашей повседневной жизни все чаще используются электронные устройства для плавной регулировки сетевого напряжения. С помощью таких устройств регулируют яркость свечения ламп, температуру электронагревательных приборов, скорость вращения электродвигателей.

    Подавляющее большинство тиристорных регуляторов напряжения имеют существенные недостатки, ограничивающие их возможности.Во-первых, они вносят довольно заметные помехи в электрическую сеть, что часто негативно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно использовать только для управления нагрузкой с активным сопротивлением – электрической лампой или нагревательным элементом, и нельзя использовать вместе с индуктивной нагрузкой – электродвигателем, трансформатором.

    Между тем, все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента будет выполнять не тиристор, а мощный транзистор.

    Принципиальная схема

    Транзисторный регулятор напряжения (рис. 9.6) содержит минимум радиоэлементов, не вносит помех в электрическую сеть и работает от нагрузки как с активным, так и с индуктивным сопротивлением. С его помощью можно регулировать яркость люстры или настольной лампы, температуру нагрева паяльника или электроплиты, скорость вращения вентилятора или электродвигателя дрели, а также напряжение на обмотке трансформатора. Устройство имеет следующие параметры: диапазон регулировки напряжения – от 0 до 218 В; максимальная мощность нагрузки при использовании в цепи управления одного транзистора не более 100 Вт.

    Регулирующим элементом устройства является транзистор VT1. Диодный мост VD1 … VD4 выпрямляет сетевое напряжение, так что на коллектор VT1 всегда подается положительное напряжение. Трансформатор Т1 понижает напряжение 220 В до 5 … 8 В, которое выпрямляется диодным блоком VD6 и сглаживается конденсатором С1.

    Рис. Принципиальная схема мощного регулятора напряжения сети 220 В.

    Переменный резистор R1 используется для регулировки величины управляющего напряжения, а резистор R2 ограничивает базовый ток транзистора.Диод VD5 защищает VT1 от отрицательного напряжения на его базе. Устройство подключается к сети с помощью вилки XP1. Гнездо XS1 используется для подключения нагрузки.

    Регулятор работает следующим образом … После включения питания тумблером S1 напряжение сети одновременно подается на диоды VD1, VD2 и первичную обмотку трансформатора Т1.

    В этом случае выпрямитель, состоящий из диодного моста VD6, конденсатора C1 и переменного резистора R1, генерирует управляющее напряжение, которое поступает на базу транзистора и открывает его.Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 – эмиттер-коллектор VT1, VD3. При положительной полярности сетевого напряжения ток протекает по цепи VD1 – коллектор-эмиттер VT1, VD4.

    Величина тока нагрузки зависит от величины управляющего напряжения на основе VT1. Вращая ползунок R1 и изменяя значение управляющего напряжения, регулируйте величину тока коллектора VT1.Этот ток и, следовательно, ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот.

    В крайнем правом положении двигателя переменного резистора согласно схеме транзистор будет полностью открыт и «доза» электроэнергии, потребляемая нагрузкой, будет соответствовать номинальному значению. Если ползунок R1 переместить в крайнее левое положение, VT1 будет заблокирован, и ток через нагрузку не будет протекать.

    Управляя транзистором, мы фактически контролируем амплитуду переменного напряжения и тока, действующих в нагрузке.При этом транзистор работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, присущих тиристорным устройствам.

    Конструкция и детали

    А теперь перейдем к дизайну устройства. Диодные мосты, конденсатор, резистор R2 и диод VD6 устанавливаются на печатной плате размером 55х35 мм из фольгированного гетинакса или печатной платы толщиной 1 … 2 мм (рисунок 9.7).

    В устройстве можно использовать следующие детали. Транзистор – КТ812А (Б), КТ824А (Б), КТ828А (Б), КТ834А (Б, В), КТ840А (Б), КТ847А или КТ856А.Диодные мосты: VD1 … VD4 – КЦ410В или КЦ412В, VD6 – КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 – серии D7, D226 или D237.

    Резистор переменный – типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный – ВС, MJIT, ОМЛТ, С2-23. Конденсатор оксидный – К50-6, К50-16. Сетевой трансформатор – ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 – от ТВ «Юность» или любой другой маломощный с вторичным напряжением 5 … 8 В.

    Предохранитель рассчитан на максимальный ток 1 А. Тумблер – ТЗ-С или любой другой сетевой.XP1 – вилка стандартная, XS1 – розетка.

    Все элементы регулятора помещены в пластиковый корпус размером 150x100x80 мм. На верхней панели корпуса установлен тумблер и переменный резистор, снабженный декоративной ручкой. Гнездо нагрузки и гнездо предохранителя смонтированы на одной из боковых стенок корпуса.

    На этой же стороне сделано отверстие для шнура питания. Внизу корпуса установлены транзистор, трансформатор и печатная плата.Транзистор должен быть оборудован радиатором с площадью рассеяния не менее 200 см2 и толщиной 3 … 5 мм.

    Рис. Печатная плата для мощного регулятора напряжения сети 220 В.

    Регулятор не требует регулировки. При правильной установке и обслуживаемых деталях он начинает работать сразу после подключения к сети.

    А теперь несколько рекомендаций для желающих улучшить устройство. Изменения в основном связаны с увеличением выходной мощности регулятора.Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 – 200 Вт, а для КТ847 – 250 Вт.

    Если необходимо дополнительно увеличить выходную мощность устройства, можно использовать несколько параллельно соединенных транзисторов в качестве регулирующего элемента, подключив их соответствующие выводы.

    Вероятно, в этом случае регулятор придется оснастить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов.Кроме того, диодный мост VD1 … VD4 потребуется заменить четырьмя более мощными диодами, рассчитанными на рабочее напряжение не менее 600 В и значение тока в соответствии с потребляемой нагрузкой.

    Для этого подходят устройства серии D231 … D234, D242, D243, D245 .. D248. Также потребуется замена VD5 на более мощный диод, рассчитанный на ток до I А. Также предохранитель должен выдерживать более высокий ток.

    Авто самоделки самоделки Самоделки для дачи Рыбак, охотник, турист Строительство, ремонт Самоделки из ненужных вещей Радиолюбителям Коммуникации для дома Самодельная мебель Самодельный свет Домашний мастер Самоделки для бизнеса Самоделки на праздник Самоделки для женщин Оригами Оригами Бумажные модели Самоделки для детей Компьютерные самоделки Самоделки для животных доктор Еда и рецепты Эксперименты и эксперименты Полезные советы

    Эту конструкцию я использую для самодельной электроплиты, на которой мы готовим кашу для собак, и недавно применил ее для пайки железо.

    Для изготовления этого регулятора нам понадобятся:

    Пара резисторов 1 кОм может быть даже 0,25 Вт, один переменный резистор 1 мОм, два конденсатора 0,01 мкФ и
    47 нФ, один динистор, который я взял из экономичной лампы. лампочка, динистор не имеет полярности, так что паять можно как угодно, еще нужен симистор с небольшим радиатором, я использовал симистор серии ТС в металлическом корпусе на 10 ампер, но можно и КУ208Г , нам также потребуются винтовые клеммы.

    Да, кстати, немного о переменном резисторе, если поставить на 500 кОм, он будет регулировать довольно плавно, но только от 220 до 120 вольт, а если на 1 мОм, то будет жестко регулироваться интервал 5-10 вольт, но диапазон увеличится с 220 до 60 вольт.
    Итак, приступим к сборке нашего регулятора мощности, для этого нам сначала нужно сделать печатную плату.

    После того, как печатная плата готова, приступаем к установке радиодеталей на печатную плату. Первым делом припаиваем винтовые клеммы.

    И наконец, что не менее важно, мы устанавливаем радиатор и симистор.

    Вот и готов наш стабилизатор напряжения, промоем плату спиртом и проверим.

    Более подробный обзор симисторного регулятора в видеоролике. Удачной сборки.

    В последнее время в нашей повседневной жизни все чаще используются электронные устройства для плавной регулировки напряжения сети. С помощью таких устройств регулируют яркость свечения ламп, температуру электронагревательных приборов, скорость вращения электродвигателей.

    Подавляющее большинство тиристорных регуляторов напряжения имеют существенные недостатки, ограничивающие их возможности.Во-первых, они вносят довольно заметные помехи в электрическую сеть, что часто негативно сказывается на работе телевизоров, радиоприемников и магнитофонов. Во-вторых, их можно использовать только для управления нагрузкой с активным сопротивлением – электрической лампой или нагревательным элементом, и нельзя использовать вместе с индуктивной нагрузкой – электродвигателем, трансформатором.

    Между тем все эти проблемы легко решаются путем сборки электронного устройства, в котором роль регулирующего элемента будет выполнять не тиристор, а мощный транзистор.

    Принципиальная схема

    Транзисторный регулятор напряжения (рис. 9.6) содержит минимум радиоэлементов, не вносит помех в электрическую сеть и работает от нагрузки как с активным, так и с индуктивным сопротивлением. С его помощью можно регулировать яркость люстры или настольной лампы, температуру нагрева паяльника или электроплиты, скорость вращения вентилятора или электродвигателя дрели, а также напряжение на обмотке трансформатора. Устройство имеет следующие параметры: диапазон регулировки напряжения – от 0 до 218 В; максимальная мощность нагрузки при использовании в цепи управления одного транзистора не более 100 Вт.

    Регулирующим элементом устройства является транзистор VT1. Диодный мост VD1. VD4 выпрямляет сетевое напряжение, поэтому на коллектор VT1 всегда подается положительное напряжение. Трансформатор Т1 понижает напряжение 220 В до 5,8 В, которое выпрямляется диодным блоком VD6 и сглаживается конденсатором С1.

    Рис. Принципиальная схема мощного регулятора напряжения сети 220 В.

    Переменный резистор R1 используется для регулировки величины управляющего напряжения, а резистор R2 ограничивает базовый ток транзистора.Диод VD5 защищает VT1 от отрицательного напряжения на его базе. Устройство подключается к сети с помощью вилки XP1. Гнездо XS1 используется для подключения нагрузки.

    Регулятор работает следующим образом. После включения питания тумблером S1 сетевое напряжение одновременно подается на диоды VD1, VD2 и первичную обмотку трансформатора Т1.

    В этом случае выпрямитель, состоящий из диодного моста VD6, конденсатора C1 и переменного резистора R1, генерирует управляющее напряжение, которое поступает на базу транзистора и открывает его.Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 – эмиттер-коллектор VT1, VD3. При положительной полярности сетевого напряжения ток протекает по цепи VD1 – коллектор-эмиттер VT1, VD4.

    Величина тока нагрузки зависит от величины управляющего напряжения на базе VT1. Вращая ползунок R1 и изменяя значение управляющего напряжения, регулируйте величину тока коллектора VT1.Этот ток и, следовательно, ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот.

    В крайнем правом положении двигателя переменного резистора согласно схеме транзистор будет полностью открыт и «доза9»; электричество, потребляемое нагрузкой, будет соответствовать номиналу. Если ползунок R1 переместить в крайнее левое положение, VT1 будет заблокирован, и ток через нагрузку не будет протекать.

    Управляя транзистором, мы фактически контролируем амплитуду переменного напряжения и тока, действующих в нагрузке.При этом транзистор работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, присущих тиристорным устройствам.

    Конструкция и детали

    А теперь перейдем к устройству устройства. Диодные мосты, конденсатор, резистор R2 и диод VD6 установлены на печатной плате размером 55 × 35 мм из фольгированного гетинакса или печатной платы толщиной 1,2 мм (рис. 9.7).

    В устройстве можно использовать следующие детали. Транзистор – КТ812А (Б), КТ824А (Б), КТ828А (Б), КТ834А (Б, В), КТ840А (Б), КТ847А или КТ856А.Диодные мосты: VD1. VD4 – КЦ410В или КЦ412В, VD6 – КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 – серии D7, D226 или D237.

    Резистор переменный – типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный – ВС, MJIT, ОМЛТ, С2-23. Конденсатор оксидный – К50-6, К50-16. Сетевой трансформатор – ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 – от ТВ «Юность9»; или любой другой маломощный с вторичным напряжением 5,8 В.

    Предохранитель рассчитан на максимальный ток 1 А. Тумблер – ТЗ-С или любой другой сетевой.XP1 – вилка стандартная, XS1 – розетка.

    Все элементы регулятора помещены в пластиковый корпус размером 150x100x80 мм. На верхней панели корпуса установлен тумблер и переменный резистор, снабженный декоративной ручкой. Гнездо нагрузки и гнездо предохранителя смонтированы на одной из боковых стенок корпуса.

    На этой же стороне проделано отверстие для шнура питания. Внизу корпуса установлены транзистор, трансформатор и печатная плата.Транзистор должен быть оборудован радиатором с площадью рассеяния не менее 200 см2 и толщиной 3,5 мм.

    Рис. Печатная плата для мощного регулятора напряжения сети 220 В.

    Регулятор не требует регулировки. При правильной установке и обслуживаемых деталях он начинает работать сразу после подключения к сети.

    А теперь несколько рекомендаций для желающих улучшить устройство. Изменения в основном связаны с увеличением выходной мощности регулятора.Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 – 200 Вт, а для КТ847 – 250 Вт.

    При необходимости дальнейшего увеличения выходной мощности В устройстве несколько параллельно соединенных транзисторов можно использовать в качестве регулирующего элемента, подключив их соответствующие выводы.

    Возможно, в этом случае регулятор придется оснастить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов.Кроме того, диодный мост VD1. VD4 нужно будет заменить четырьмя более мощными диодами, рассчитанными на рабочее напряжение не менее 600 В и значение тока в соответствии с потребляемой нагрузкой.

    Для этой цели подходят устройства серии D231. Д234, Д242, Д243, Д245. D248. Также потребуется замена VD5 на более мощный диод, рассчитанный на ток до I А. Также предохранитель должен выдерживать более высокий ток.

    Современная электросеть спроектирована таким образом, что в ней часто возникают скачки напряжения.Допустимы изменения тока, но он не должен превышать 10% от принятых 220 вольт. Прыжки плохо сказываются на работоспособности различных электроприборов, и очень часто они начинают выходить из строя. Чтобы этого не происходило, мы начали использовать стабилизаторы мощности для выравнивания входящего тока. При определенной фантазии и навыках можно изготавливать различные типы устройств стабилизации, при этом симисторный стабилизатор остается наиболее эффективным.

    На рынке такие устройства либо дорогие, либо зачастую некачественные.Понятно, что мало кто захочет переплачивать и получить неэффективное устройство. В этом случае вы сможете собрать его с нуля своими руками. Так родилась идея создания регулятора мощности на основе диммера. Диммер, слава богу, у меня был, но он немного не работал.

    Ремонт симисторного регулятора – Диммер

    На этом изображении показана заводская электрическая схема диммера Leviton, который работает от 120 вольт. Если проверка неработающих диммеров показала, что сгорел только симистор, то можно приступать к процедуре его замены.Но здесь вас могут поджидать сюрпризы. Дело в том, что есть диммеры, в которых установлены какие-то странные симисторы с разными номерами. Вполне возможно, что найти информацию о них даже в даташите не удастся. Кроме того, в таких симисторах контактная площадка изолирована от электродов симистора (симистора). Хотя, как видите, контактная площадка сделана из меди и даже не покрыта пластиком, как корпуса транзисторов. Такие симисторы очень легко ремонтировать.

    Также обратите внимание на способ припайки симисторов к радиатору, он выполнен заклепками, они полые. При использовании изолирующих прокладок этот способ крепления не рекомендуется. Да такое крепление не очень надежное. Вообще ремонт такого симистора займет много времени и вы потратите нервы именно из-за установки симистора такого типа, диммер просто не рассчитан на такие габариты симистора (симистора).

    Полые заклепки следует удалять с помощью сверла, которое заточено под определенным углом. точнее, под углом 90 °, вы также можете использовать для этой работы боковые резаки.

    При неаккуратной работе есть вероятность повреждения радиатора. чтобы этого не произошло, правильнее делать это только с другой стороны. где расположен симистор.

    Радиаторы из очень мягкого алюминия могут слегка деформироваться при заклепке. Поэтому необходимо шлифовать контактные поверхности наждачной бумагой.

    Если вы используете симистор без гальванической развязки, разделяющей электроды и контактную площадку, то вы должны применить эффективную изоляцию.

    На изображении показано. как это сделано. Чтобы случайно не протолкнуть стенки радиатора в этом месте. там, где установлен симистор, необходимо сточить большую часть крышки с винта, чтобы не зацепиться за поручень потенциометра или стабилизатора мощности, а затем под головку винта подложить шайбу.

    Вот как должен выглядеть симистор после изоляции от радиатора. Для лучшего отвода тепла необходимо приобрести специальную теплопроводную пасту КПТ-8.

    На рисунке показано, что находится под кожухом радиатора

    Теперь все должно работать

    Схема заводского регулятора мощности

    На основе схемы заводского регулятора мощности вы можете построить макет регулятора для вашего сетевого напряжения.

    Вот схема регулятора, который адаптирован для работы в сети со статическим напряжением 220 вольт. Данная схема отличается от оригинала лишь несколькими деталями, а именно, при ремонте мощность резистора R1 была увеличена в несколько раз, номиналы R4 и R5 уменьшены в 2 раза, а динистор был заменен на 60 вольт. на два. которые включены последовательно с динисторами VD1, VD2 на 30 вольт. Как видите, неисправный диммер можно не только отремонтировать своими руками, но и легко настроить под свои нужды.

    Это рабочая модель регулятора мощности. Теперь вы точно знаете, какую схему вы получите при правильном ремонте. Эта схема не требует подбора дополнительных деталей и сразу готова к использованию. Может потребоваться отрегулировать положение ползунка триммера R4. Для этих целей ползунки потенциометра R4 и R5 устанавливаются в крайнее верхнее положение, затем меняется положение ползунка R4, после чего лампа загорается с самой низкой яркостью, а затем ползунок следует немного сдвинуть в противоположное направление.На этом процесс установки завершен! Но стоит отметить, что этот регулятор мощности работает только с нагревательными приборами и лампами накаливания, а с двигателями или мощными устройствами результаты могут быть непредсказуемыми. Для начинающих мастеров-любителей с небольшим опытом такая работа – вещь.

    РЕГУЛЯТОР НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА

    Здравствуйте! В прошлой статье я рассказал, как сделать регулятор напряжения постоянного тока … Сегодня мы сделаем регулятор напряжения переменного тока 220В. Дизайн довольно просто повторить даже новичкам.Но при этом регулятор выдерживает нагрузку даже в 1 киловатт! Для изготовления этого регулятора нам понадобится несколько компонентов:

    1. Резистор 4,7кОм млт-0,5 (даже 0,25 Вт пойдет).
    2. Переменный резистор 500кОм-1мОм, при 500кОм будет регулировать достаточно плавно, но только в диапазоне 220в-120в. При 1 мОм – регулировать будет жестче, то есть регулировать с интервалом 5-10 вольт, но диапазон увеличится, можно регулировать от 220 до 60 вольт! Резистор желательно установить со встроенным переключателем (хотя можно обойтись и без него, просто поставив перемычку).
    3. Динистор DB3. Вы можете получить это от экономичных ламп LSD. (Возможна замена на отечественный Х202).
    4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиоаппаратуре.
    5. Энергосберегающие светодиоды.
    6. Симистор BT136-600B или BT138-600.
    7. Винтовые клеммы. (Можно обойтись без них, просто припаяв провода к плате).
    8. Маленький радиатор (до 0,5 кВт не нужен).
    9. Конденсатор пленочный на 400 вольт, от 0,1 мкФ до 0.47 мкФ.

    Схема регулятора переменного напряжения:

    Приступим к сборке устройства. Для начала сотрем и сотрем доску. Печатная плата – ее рисунок в LAY, находится в архиве. Более компактный вариант представил друг сергей – здесь.

    Далее припаиваем конденсатор. На фото конденсатор со стороны лужения, т.к. у моего экземпляра конденсатора ножки были слишком короткие.

    Паяем динистор.У динистора нет полярности, поэтому вставляем как угодно. Припаиваем диод, резистор, светодиод, перемычку и клеммник под винт. Выглядит это примерно так:

    И в итоге последний этап – поставить радиатор на симистор.

    Но фото готового устройства уже в чехле.

    Регулятор не требует дополнительной настройки. Видео этого устройства:

    Хочу отметить, что его можно устанавливать не только в сети 220В на обычные приборы и электроинструменты.но и к любому другому источнику переменного тока напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). Я был с тобой Кипел-: D

    Полупроводниковый прибор, имеющий 5 p-n-переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за невозможности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок они в настоящее время не нашли широкого применения в мощных промышленных установках.

    Там их успешно заменяют схемы на тиристорах и транзисторах IGBT. Но компактные размеры устройства и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили использовать их там, где указанные недостатки не существенны.

    Сегодня симисторные цепи можно найти во многих бытовых приборах, от фенов до пылесосов, ручных электроинструментов и электрических нагревательных устройств, где требуется плавное регулирование мощности.

    Принцип работы

    Регулятор мощности на симисторе работает как электронный ключ, периодически открывая и закрываясь с частотой, задаваемой схемой управления. В разблокированном состоянии симистор пропускает часть полуволны сетевого напряжения, а значит, потребитель получает только часть номинальной мощности.

    Сделай сам

    На сегодняшний день ассортимент симисторных регуляторов в продаже невелик. И, хотя цены на такие устройства невысокие, часто они не соответствуют требованиям потребителя.По этой причине мы рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

    Схема прибора

    Самый простой вариант схемы, рассчитанный на работу с любой нагрузкой. Используются традиционные электронные компоненты, принцип управления – фазово-импульсный.

    • симистор VD4, 10 А, 400 В;
    • динистор VD3, порог открытия 32 В;
    • Потенциометр
    • R2.

    Ток, протекающий через потенциометр R2 и сопротивление R3, заряжает конденсатор C1 каждой полуволной. Когда напряжение на обкладках конденсатора достигает 32 В, динистор VD3 открывается, и C1 начинает разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который размыкается для протекания тока к нагрузке.

    Продолжительность открытия регулируется выбором порогового напряжения VD3 (постоянное значение) и сопротивления R2. Мощность нагрузки прямо пропорциональна значению сопротивления потенциометра R2.

    Дополнительная схема из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавного и точного регулирования выходной мощности.Ограничение тока, протекающего через VD3, осуществляется резистором R4. Таким образом достигается длительность импульса, необходимая для открытия VD4. Предохранитель Ex. 1 защищает цепь от токов короткого замыкания.

    Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. В результате ток не выпрямляется, и появляется возможность подключить индуктивную нагрузку, например, трансформатор.

    Симисторы следует выбирать в соответствии с размером нагрузки, исходя из расчета 1 А = 200 Вт.

    • Динистор DB3;
    • Triac TC106-10-4, VT136-600 или другие с требуемым номинальным током 4-12A.
    • Диоды VD1, VD2 типа 1N4007;
    • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
    • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

    Обратите внимание, что схема наиболее распространенная, с небольшими вариациями. Например, динистор можно заменить диодным мостом, или RC-цепь шумоподавления может быть установлена ​​параллельно симистору.

    Более современной является схема с управлением симистором от микроконтроллера – PIC, AVR или другие. Эта схема обеспечивает более точное регулирование напряжения и тока в цепи нагрузки, но ее также сложнее реализовать.

    Схема симисторного регулятора мощности

    Регулятор мощности необходимо собирать в следующей последовательности:

    1. Определите параметры устройства, на котором будет работать разработанное устройство. Параметры включают: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и ​​номинальный ток в амперах.
    2. Выберите тип устройства (аналоговое или цифровое), выберите элементы по мощности нагрузки. Вы можете проверить свое решение в одной из программ моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн-аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
    3. Рассчитайте тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В), умноженное на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальной допустимой токовой нагрузки указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Выбирайте радиатор по расчетной мощности.
    4. Приобрести необходимые электронные компоненты … радиатор и печатную плату.
    5. Разложите контактные дорожки на плате и подготовьте площадки для установки элементов. Обеспечьте монтажную плату для симистора и радиатора.
    6. Установите элементы на плату с помощью пайки. Если невозможно подготовить печатную плату, можно использовать поверхностный монтаж для соединения компонентов с помощью коротких проводов. При сборке особое внимание обратите на полярность подключения диодов и симистора. Если на них нет маркировки штырей, то прозвоните их цифровым мультиметром или «дугой».
    7. Проверить собранную схему мультиметром в режиме сопротивления. Полученный товар должен соответствовать оригинальному дизайну.
    8. Надежно прикрепите симистор к радиатору. Не забудьте проложить изолирующую прокладку теплопередачи между симистором и радиатором. Надежно заизолируйте крепежный винт.
    9. Поместите собранную схему в пластиковый корпус.
    10. Напомним, что на контактах элементов присутствует опасное напряжение.
    11. Отвинтите потенциометр до минимума и выполните пробный пуск. Измерить мультиметром напряжение на выходе регулятора. Плавно поворачивая ручку потенциометра, наблюдайте за изменением напряжения на выходе.
    12. Если результат вас устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировку мощности.

    Излучатель мощности симистора

    Регулировка мощности

    Потенциометр отвечает за регулировку мощности, через которую заряжаются конденсатор и цепь разряда конденсатора.Если параметры выходной мощности неудовлетворительны, следует выбрать номинальное сопротивление в цепи разряда и, при небольшом диапазоне регулировки мощности, выбрать номинал потенциометра.

    • продлить срок службы лампы, отрегулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
    • выберите тип цепи и параметры компонентов в соответствии с запланированной нагрузкой.
    • тщательно проработать схемотехнических решений.
    • будьте осторожны при сборке схемы … соблюдайте полярность полупроводниковых компонентов.
    • Не забывайте, что электричество присутствует во всех элементах цепи и оно смертельно опасно для человека.

    Проверка конденсатора мультиметром

  • Как выбрать светодиодные лампы для дома

  • Выбор фотореле для уличного освещения

  • НЕСКОЛЬКО ОСНОВНЫХ СХЕМ РЕГУЛЯТОРОВ МОЩНОСТИ

    РЕГУЛЯТОР МОЩНОСТИ НА SYMISTOR

    Особенностями предлагаемого устройства являются использование D-триггера для построения генератора, синхронизированного с сетевым напряжением, и способ управления симистором одиночным импульсом, длительность которого регулируется автоматически.В отличие от других методов импульсного управления симистором, этот метод не критичен к наличию индуктивной составляющей в нагрузке. Импульсы генератора следуют с периодом примерно 1,3 с.
    Микросхема DD 1 питается током, протекающим через защитный диод, расположенный внутри микросхемы между ее выводами 3 и 14. Он протекает, когда напряжение на этом выводе, подключенном к сети через резистор R 4 и диод VD 5, превышает напряжение стабилизации стабилитрона VD 4…

    К. ГАВРИЛОВ, Радио, 2011, № 2, с. 41

    ДВУХКАНАЛЬНЫЙ РЕГУЛЯТОР МОЩНОСТИ НАГРЕВАТЕЛЬНЫХ ПРИБОРОВ

    Регулятор содержит два независимых канала и позволяет поддерживать необходимую температуру для различных нагрузок: температуры жала паяльника, электрического утюга, электронагревателя, электроплиты и т. Д. Глубина регулирования составляет 5 … 95% от номинальной. сеть электроснабжения. Схема регулятора питается выпрямленным напряжением 9 … 11 В с трансформаторной развязкой от сети 220 В с низким потреблением тока.


    В.Г. Никитенко, О.В. Никитенко, Радиоаматор, 2011, № 4, с. 35

    СИМИСТОР РЕГУЛЯТОР МОЩНОСТИ

    Особенностью симисторного регулятора является то, что количество полупериодов сетевого напряжения, подаваемого на нагрузку при любом положении управляющего элемента, оказывается четным. В результате не образуется постоянная составляющая потребляемого тока и, следовательно, отсутствует намагничивание магнитных цепей, подключенных к регулятору трансформаторов и электродвигателей.Мощность регулируется изменением количества периодов подачи переменного напряжения на нагрузку в течение определенного промежутка времени. Регулятор предназначен для регулирования мощности устройств со значительной инерцией (ТЭНов и т. Д.).
    Не подходит для регулировки яркости освещения, так как лампы будут сильно мигать.

    В. КАЛАШНИК, Н. ЧЕРЕМИСИНОВА, В. ЧЕРНИКОВ, Радиомир, 2011, № 5, с. 17–18

    РЕГУЛЯТОР ШУМОВОГО НАПРЯЖЕНИЯ

    Большинство регуляторов напряжения (мощности) выполнено на тиристорах по фазоимпульсной схеме управления.Как известно, такие устройства создают заметный уровень радиопомех. Предлагаемый регулятор лишен этого недостатка. Особенностью предлагаемого регулятора является такой контроль амплитуды переменного напряжения, при котором форма выходного сигнала не искажается, в отличие от фазоимпульсного управления.
    Регулирующим элементом является мощный транзистор VT1 в диагонали диодного моста VD1-VD4, включенный последовательно с нагрузкой. Главный недостаток устройства – невысокий КПД.Когда транзистор выключен, ток через выпрямитель и нагрузку не протекает. Если на базу транзистора подается управляющее напряжение, он открывается, ток начинает течь через его коллектор-эмиттерную секцию, диодный мост и нагрузку. Напряжение на выходе регулятора (при нагрузке) увеличивается. Когда транзистор включен и находится в режиме насыщения, почти все сетевое (входное) напряжение подается на нагрузку. Управляющий сигнал формируется маломощным блоком питания, собранным на трансформаторе Т1, выпрямителе VD5 и сглаживающем конденсаторе С1.
    Переменный резистор R1 используется для регулирования тока базы транзистора и, следовательно, амплитуды выходного напряжения. При перемещении ползунка переменного резистора в верхнее положение по схеме напряжение на выходе уменьшается, а в нижнее – увеличивается. Резистор R2 ограничивает максимальный управляющий ток. Диод VD6 защищает блок управления при пробое коллекторного перехода транзистора. Регулятор напряжения установлен на плате из фольгированного стеклотекстолита толщиной 2.5 мм. Транзистор VT1 следует установить на радиатор площадью не менее 200 см2. При необходимости диоды VD1-VD4 заменяются на более мощные, например, D245A, а также ставятся на радиатор.

    Если прибор собран без ошибок, он сразу начинает работать и практически не требует настройки. Вам просто нужно выбрать резистор R2.
    С регулирующим транзистором КТ840Б мощность нагрузки не должна превышать 60 Вт … Его можно заменить приборами: КТ812Б, КТ824А, КТ824Б, КТ828А, КТ828Б с допустимой рассеиваемой мощностью 50 Вт.; КТ856А -75 Вт .; КТ834А, КТ834Б – 100 Вт; КТ847А-125 Вт. Увеличить мощность нагрузки можно, если параллельно соединить регулирующие транзисторы одного типа: коллекторы и эмиттеры соединены между собой, а базы соединены с двигателем переменного резистора через отдельные диоды и резисторы.
    В приборе используется малогабаритный трансформатор с напряжением на вторичной обмотке 5 … 8 В. Выпрямительный блок КЦ405Э можно заменить любым другим или собрать из отдельных диодов с допустимым прямым током не менее необходимого. базовый ток регулирующего транзистора.Те же требования предъявляются к диоду VD6. Конденсатор С1 – оксидный, например К50-6, К50-16 и др., На номинальное напряжение не менее 15 В. Переменный резистор R1 – любой с номинальной рассеиваемой мощностью 2 Вт. При установке и настройке прибора, соблюдайте меры предосторожности: элементы регулятора находятся под напряжением сети. Примечание. Чтобы уменьшить искажение синусоидальной волны выходного напряжения, попробуйте исключить C1. А. Чекаров

    Регулятор напряжения на MOSFET – транзисторы (IRF540, IRF840)

    Олега Белоусов, электрика, 201 2, корп.12, стр. 64–66

    В качестве физического принципа Поскольку работа полевого транзистора с изолированным затвором отличается от работы тиристора и симмистора, его можно многократно включать и выключать в течение периода напряжения сети. Частота переключения мощных транзисторов в этой схеме выбрана равной 1 кГц. Достоинством этой схемы является ее простота и возможность изменять скважность импульсов, немного изменяя при этом частоту следования импульсов.

    В авторской разработке были получены следующие длительности импульсов: 0,08 мс с периодом повторения 1 мс и 0,8 мс с периодом повторения 0,9 мс в зависимости от положения ползунка резистора R2.
    Вы можете отключить напряжение на нагрузке, замкнув переключатель S 1, при этом затворы полевых МОП-транзисторов устанавливают напряжение, близкое к напряжению на выводе 7 микросхемы. При разомкнутом тумблере напряжение на нагрузке в авторской копии устройства могло изменяться резистором R 2 в пределах 18… 214 В (измерено прибором TES 2712).
    Принципиальная схема такого регулятора показана на рисунке ниже. В регуляторе применена отечественная микросхема К561ЛН2, на двух элементах которой собран генератор с регулируемым слагаемым, а четыре элемента используются в качестве усилителей тока.

    Для исключения помех в сети 220 В после нагрузки рекомендуется подключать дроссель намотанный на ферритовом кольце диаметром 20 … 30 мм до заполнения его проволокой 1 мм.

    Генератор тока нагрузки на биполярных транзисторах (КТ817, 2SC3987)

    Бутов А.Л., Радиоконструктор, 201 2, вып. 7, стр. 11–12

    Имитатор нагрузки в виде регулируемого генератора тока удобно использовать для проверки работоспособности и настройки источников питания. С помощью такого устройства можно не только быстро настроить блок питания, стабилизатор напряжения, но и, например, использовать его как генератор стабильного тока для зарядки и разрядки аккумуляторов, устройств электролиза, электрохимического травления печатные платы, в качестве стабилизатора тока для питания электрических ламп, для «мягкого» пуска коллекторных электродвигателей.
    Устройство двухполюсное, не требует дополнительного источника питания и может быть включено в разрыв цепи питания различных устройств и исполнительных механизмов.
    Диапазон регулировки тока от 0 … 0,16 до 3 А, максимальная потребляемая мощность (рассеиваемая) 40 Вт, диапазон напряжения питания 3 … 30 В постоянного тока. Ток потребления регулируется переменным резистором R 6. Чем больше слева от мотора резистора R6 по схеме, тем больше тока потребляет прибор.При разомкнутых контактах переключателя SA 1 резистор R6 может устанавливать ток потребления от 0,16 до 0,8 А. При замкнутых контактах этого переключателя ток регулируется в диапазоне 0,7 … 3 А.



    Чертеж печатной платы генератора тока

    Симулятор автомобильного аккумулятора (KT827)

    В. МЕЛЬНИЧУК, Радиомир, 201 2, корп. 1 2, стр. 7–8

    При переделке компьютерных импульсных источников питания (ИБП) зарядные устройства (зарядные устройства) для автомобильных аккумуляторов должны быть чем-то загружены в процессе настройки.Поэтому я решил сделать аналог мощного стабилитрона с регулируемым напряжением стабилизации, схема которого показана на рис. 1. Резистор R 6 может регулировать напряжение стабилизации от 6 до 16 В. Всего таких устройств было сделано два. В первом варианте в качестве транзисторов VT 1 и VT 2 используются КТ 803.
    Внутреннее сопротивление такого стабилитрона оказалось завышенным. Так, при токе 2 А напряжение стабилизации составляло 12 В, а при 8 А – 16 В. Во втором варианте использовались составные транзисторы КТ827.Здесь при токе 2 А напряжение стабилизации составляло 12 В, а при 10 А – 12,4 В.

    Однако при регулировании более мощных потребителей, например, электрокотлов, симисторные регуляторы мощности становятся непригодными – они будут создавать слишком много помех в сети. Для решения этой проблемы лучше использовать регуляторы с длительным периодом включения-выключения, что однозначно исключает возникновение помех. Показан один из вариантов схемы.

    Полупроводниковый прибор с 5 pn переходами, способный пропускать ток в прямом и обратном направлениях, называется симистором.Из-за невозможности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок они в настоящее время не нашли широкого применения в мощных промышленных установках.

    Там их успешно заменяют схемы на тиристорах и транзисторах IGBT. Но компактные размеры устройства и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили использовать их там, где указанные недостатки не существенны.

    Сегодня симисторные цепи можно найти во многих бытовых приборах, от фенов до пылесосов, ручных электроинструментов и электрических нагревательных устройств, где требуется плавное регулирование мощности.

    Принцип действия

    Регулятор мощности на симисторе работает как электронный ключ, периодически открывая и закрываясь с частотой, задаваемой схемой управления. В разблокированном состоянии симистор пропускает часть полуволны сетевого напряжения, а значит, потребитель получает только часть номинальной мощности.

    Сделай сам

    На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невысокие, часто они не соответствуют требованиям потребителя. По этой причине мы рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

    Схема прибора

    Самый простой вариант схемы, рассчитанный на работу с любой нагрузкой. Используются традиционные электронные компоненты, принцип управления – фазово-импульсный.

    Основные компоненты:

    • симистор VD4, 10 А, 400 В;
    • динистор VD3, порог открытия 32 В;
    • Потенциометр
    • R2.

    Ток, протекающий через потенциометр R2 и сопротивление R3, заряжает конденсатор C1 каждой полуволной. Когда напряжение на обкладках конденсатора достигает 32 В, динистор VD3 открывается, и C1 начинает разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который размыкается для протекания тока к нагрузке.

    Продолжительность открытия регулируется подбором порогового напряжения VD3 (постоянное значение) и сопротивления R2. Мощность нагрузки прямо пропорциональна значению сопротивления потенциометра R2.

    Дополнительная схема из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавного и точного регулирования выходной мощности. Ограничение тока, протекающего через VD3, осуществляется резистором R4. Таким образом достигается длительность импульса, необходимая для открытия VD4.Предохранитель Ex. 1 защищает цепь от токов короткого замыкания.

    Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. В результате ток не выпрямляется, и появляется возможность подключить индуктивную нагрузку, например, трансформатор.

    Симисторы следует выбирать в соответствии с величиной нагрузки, исходя из расчета 1 А = 200 Вт.

    Используемые элементы:

    • Динистор DB3;
    • Triac TC106-10-4, VT136-600 или другие с требуемым номинальным током 4-12A.
    • Диоды VD1, VD2 типа 1N4007;
    • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
    • C1 0,47 мкФ (рабочее напряжение от 250 В).

    Обратите внимание, что схема наиболее распространенная, с небольшими вариациями. Например, динистор можно заменить диодным мостом, или RC-цепь шумоподавления может быть установлена ​​параллельно симистору.

    Более современной является схема с управлением симистором от микроконтроллера – PIC, AVR или другие. Эта схема обеспечивает более точное регулирование напряжения и тока в цепи нагрузки, но ее также сложнее реализовать.


    Цепь регулятора мощности симистора

    Сборка

    Регулятор мощности необходимо собирать в следующей последовательности:

    1. Определите параметры устройства, на котором будет работать разработанное устройство. Параметры включают: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и ​​номинальный ток в амперах.
    2. Выберите тип устройства (аналоговое или цифровое), выберите элементы по мощности нагрузки. Вы можете проверить свое решение в одной из программ моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн-аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
    3. Рассчитайте тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В), умноженное на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальной допустимой токовой нагрузки указаны в характеристиках симистора.Получаем рассеиваемую мощность в ваттах. Выбирайте радиатор по расчетной мощности.
    4. Приобрести необходимые электронные компоненты , радиатор и печатную плату.
    5. Разложите контактные дорожки на плате и подготовьте площадки для установки элементов. Обеспечьте монтажную плату для симистора и радиатора.
    6. Установите элементы на плату с помощью пайки. Если невозможно подготовить печатную плату, можно использовать поверхностный монтаж для соединения компонентов с помощью коротких проводов.При сборке обращайте особое внимание на полярность подключения диодов и симистора. Если на них нет штыревой маркировки, то или «арки».
    7. Проверить собранную схему мультиметром в режиме сопротивления. Полученный товар должен соответствовать оригинальному дизайну.
    8. Надежно прикрепите симистор к радиатору. Не забудьте проложить изолирующую прокладку теплопередачи между симистором и радиатором. Надежно заизолируйте крепежный винт.
    9. Поместите собранную схему в пластиковый корпус.
    10. Напомним, что на контактах элементов присутствует опасное напряжение.
    11. Отвинтите потенциометр до минимума и выполните пробный пуск. Измерить мультиметром напряжение на выходе регулятора. Плавно поворачивая ручку потенциометра, наблюдайте за изменением напряжения на выходе.
    12. Если результат вас устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировку мощности.

    Радиатор мощности симистора

    Регулировка мощности

    Потенциометр отвечает за регулировку мощности, через которую заряжается конденсатор и цепь разряда конденсатора. Если параметры выходной мощности неудовлетворительны, следует выбрать номинальное сопротивление в цепи разряда и, при небольшом диапазоне регулировки мощности, выбрать номинал потенциометра.

    • продлить срок службы лампы, отрегулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
    • выберите тип цепи и параметры компонентов в соответствии с запланированной нагрузкой.
    • тщательно проработать схемотехнических решений.
    • будьте осторожны при сборке схемы , соблюдайте полярность полупроводниковых компонентов.
    • Не забывайте, что во всех элементах цепи есть электрический ток и он смертельно опасен для человека.

    lm324 Аналоговая паяльная станция | VLZQZ electronics

    Аналоговая паяльная станция с контроллером на базе операционного усилителя lm324.Вы можете найти файлы KiCad на GitHub.

    Введение

    Я использую дешевый паяльник с регулируемой мощностью для своих электронных проектов. Я купил его, когда не знал, продолжу ли я заниматься электроникой, и он всегда был очень полезен, но по мере того, как я все больше и больше увлекался электроникой, я думал о том, чтобы получить обновление.

    Но какие у меня были варианты? Помимо дешевых нерегулируемых паяльников, в настоящее время существуют температурные паяльные станции, которые можно дешево купить в Интернете.Если вы не боитесь запачкать руки, другой вариант – это множество различных конструкций паяльных станций, которые можно найти в Интернете, от схем старых станций hakko до различных оригинальных (и иногда сбивающих с толку) конструкций.

    Как любитель электроники, создание электронного инструмента казалось правильным решением, поэтому я начал свои поиски, чтобы найти дизайн среди хаоса Интернета и построить его в качестве своего следующего проекта. Во время исследования я обнаружил два основных типа конструкций: основанные на микроконтроллере и конструкции на основе аналоговых компонентов (в основном операционные усилители).Я решил построить аналоговую станцию, потому что мне было интересно узнать больше об аналоговой электронике, и я мог найти все необходимые компоненты в моем местном магазине электроники.

    Изучив множество дизайнов, я остановился на аналоговой паяльной станции на этой статье от ZL2PD как на моем главном источнике вдохновения. Он понравился мне, потому что это был своего рода ПИД-регулятор температуры железа и казался достаточно простым, поэтому я построил схему с переменным резистором вместо термистора, чтобы проверить ее.Тем не менее, меня не полностью убедил способ генерации импульсов для управления нагревателем, поскольку они зависели от пилообразной волны переменной амплитуды, которая деформировалась и создавала импульс, который быстро менялся от примерно половины рабочего цикла до почти 100% рабочего цикла.

    После просмотра видео GreatScott о создании повышающего преобразователя без микроконтроллера я понял, что аналогичная схема может быть использована для решения проблемы генерации сигнала управления нагревателем, поэтому я начал работать над созданием схемы на основе этой конструкции.Но помимо добавления другого дизайна паяльной станции к изобилию, которое можно найти в Интернете, я в конечном итоге много узнал об операционных усилителях, симисторах и термопарах.

    Описание цепи

    Схема контролирует температуру утюга, управляя мощностью, поступающей в нагреватель, с помощью симистора, переключаемого с помощью сигнала ШИМ, рабочий цикл которого зависит от разницы между заданной температурой и температурой, измеренной термопарой.

    Сигнал ШИМ генерируется путем сравнения этой разницы с треугольной волной, так что, когда разница выше, рабочий цикл выше, а когда разница меньше, коэффициент заполнения также ниже.

    Вот представление того, как должны выглядеть осциллограммы цепи (измените температуру с помощью ползунка внизу):

    А вот схема схемы. Все резисторы на 5% 1/4 Вт, я использовал 1/2 Вт, потому что это те, которые были в моем местном магазине электроники. Обратите внимание, что на схеме отсутствует соединение резистора 1 МОм между заземляющим контактом ручки паяльника и землей (для защиты от статического электричества).

    Ручка паяльника

    Это одна из центральных частей дизайна, поскольку конструкция ручки определяет необходимый источник питания, а также необходимую логику для контроля температуры.Я использовал ручку паяльника 907A (очень похожую на ht eone, описанный в этом видео BigClive, который рассчитан на 24 В 50 Вт.

    В этой рукоятке также используется термопара в качестве датчика температуры. Вы также можете найти ручки 907 (без A), которые используют термистор в качестве датчика, важно знать, какой у вас тип, поскольку методы измерения его выхода различаются. Чтобы точно знать, измерьте сопротивление клемм датчика при комнатной температуре, если оно около 2 Ом, датчик представляет собой термопару, если оно между 40 и 50 Ом, датчик представляет собой термистор.

    Использование нагревательного элемента с датчиком термопары вызвало некоторые проблемы, поскольку я хотел свести количество компонентов к минимуму.

    Выпуск термотрансфера

    Одна из основных проблем, отмеченных людьми, использующими этот утюг, – это зазор между нагревательным элементом и наконечником утюга. Это приводит к тому, что термопара дает неточные показания температуры, а утюг с трудом нагревает более крупные детали.

    В этом видео предлагается решение этой проблемы, которое заключается в использовании тонкого медного листа для заполнения пространства между наконечником и нагревательным элементом.Я изо всех сил пытался найти медный металлический лист подходящей толщины, поэтому я использовал кусок алюминия для содовой банки вместо него, и, похоже, он работает нормально (я удалил пластик и лакокрасочное покрытие с помощью растворителя для краски и наждачной бумаги, прежде чем использовать его в утюге) .

    Блок питания

    Я хотел, чтобы паяльная станция питалась от 24 В, и, чтобы сохранить конструкцию как можно проще, я решил использовать трансформатор и нагревать ручку переменным током. Поскольку сопротивление нагревательного элемента составляло около 14 Ом, я оценил его максимальную потребляемую мощность 41 Вт при 24 В (чуть больше 1 Ом).7а), поэтому я решил использовать трансформатор 24В 2А. Пиковый ток на сетевой стороне трансформатора был немногим более 300 мА, поэтому я использовал линейный предохранитель на 500 мА.

    Трансформатор, который я получил, был с центральным ответвлением, поэтому я использовал 2 диода 1n4007 в качестве двухполупериодного выпрямителя с центральным ответвлением, чтобы получить 12 вольт для логики платы. Этот выпрямитель подает нерегулируемый постоянный ток около 19 В, который сглаживается конденсатором 100 мкФ, а затем регулируется стабилитроном 12 В с резистором 220 Ом, который ограничивает ток через стабилитрон примерно до 23 мА.К стабилизированным линиям питания добавлен конденсатор емкостью 100 нФ для устранения шума.

    Я решил использовать стабилитрон + резистор в качестве регулятора, потому что ток, потребляемый логикой, был очень низким (около 20 мА), и я хотел поэкспериментировать с этой конфигурацией, источник питания также можно было легко регулировать с помощью 7812 IC.

    Симистор и драйвер

    Поскольку я хотел использовать переменный ток для питания нагревательного элемента, мне понадобился способ управления мощностью, достигающей его. Ответом на это является использование симистора, который похож на пару управляемых диодов, которые можно активировать как транзистор (подробнее о симисторах здесь).Но симистор необходимо активировать переменным током, а логика регулятора температуры использует постоянный ток.

    Решением этой проблемы является использование драйвера симистора, типа оптопары, для переключения переменного тока симистора с цепью постоянного тока (подробнее об оптопарах здесь). Этот тип схемы можно рассматривать как твердотельное реле.

    Я использовал симистор BTA08, управляемый moc3041. Поскольку симистор управляет резистивной нагрузкой, ему нужен только резистор между клеммой под напряжением / нагрузкой симистора и фототиаком драйвера, управляющим затвором.Значение 39 Ом было выбрано в соответствии с формулой, описанной в ответе на это сообщение о переполнении стека. Эмиттер moc3041 соединен последовательно со светодиодным индикатором и токоограничивающим резистором 1 кОм (для ограничения тока примерно до 9 мА).

    Moc3041 похож на moc3021, но имеет встроенное обнаружение перехода через нуль, которое включает симистор только тогда, когда переменная волна находится на нулевом (или близком к нему) значении, чтобы не было резких скачков тока.

    Я бы рекомендовал использовать симистор с минимально возможным падением напряжения, особенно если ручка питается от 24 В переменного тока, поскольку любое падение напряжения отразится на максимальной мощности утюга.

    Усилитель термопары

    Поскольку термопара ручки паяльника относится к типу K (я думаю), она вырабатывает напряжение от 0 до 19 мВ в диапазоне от 0 до 450 (этот диапазон был полезен для этого проекта). Это означает, что сигнал необходимо усилить перед использованием его с дифференциальным компаратором, в противном случае усиление компаратора должно быть слишком высоким (и может привести к искажению сигнала).

    Я использовал один из операционных усилителей lm324 как неинвертирующий усилитель с коэффициентом усиления около 100, определяемым резисторами R3 и R5.R2 и C1 действуют как фильтр нижних частот, пропускающий только сигналы ниже 1,6 Гц, чтобы устранить входной шум.

    Дифференциальный усилитель

    Дифференциальный усилитель принимает в качестве входов как выход усиленного сигнала термопары, так и выход делителя напряжения, создаваемого RV1, RV3, R1 и R6. Затем он увеличивает разницу между этими напряжениями в 100 раз, определяемую резисторами R8, R9, R10 и R11.

    RV1 и R1 определяют самый низкий уровень температуры, а R6 – самый высокий.RV1 используется для калибровки температуры утюга.

    Выход этой схемы используется как один вход компаратора.

    Генератор треугольных волн

    Другой вход для компаратора – это треугольная волна 10 Гц, генерируемая одним операционным усилителем. Поскольку я уже использовал 3 из 4 операционных усилителей в lm324, я решил использовать генератор треугольных сигналов с одним операционным усилителем, описанный в этой статье об изоляции печатной платы. Он отлично подходит для этого приложения, но потребляемый ток из цепи должен быть минимальным.

    Почему 10 Гц? Потому что это частота, которая позволяет быстро считывать и изменять, сохраняя при этом достойную четкость сигнала ШИМ. Для пояснения, поскольку moc3041 включается только в нулевой точке переменного тока, его можно включить с максимальной частотой 120 Гц (для сети 60 Гц). Это означает, что сигнал ШИМ с рабочим циклом, зависящим от треугольной волны 1 Гц, пропускает максимум 120 полуволн переменного тока и имеет 120 возможных уровней рабочего цикла. Таким образом, сигнал с частотой 10 Гц позволяет пройти максимум 12 полуволн переменного тока и имеет 12 возможных уровней рабочего цикла.

    RV2 используется для контроля симметрии треугольной волны, он должен быть установлен в или около среднего диапазона потенциометра.

    Компаратор

    Последний операционный усилитель используется в качестве компаратора для создания сигнала ШИМ, используемого для управления симистором. Этот сигнал высокий, когда выходной сигнал дифференциального усилителя выше, чем выходной сигнал генератора треугольных волн, и низкий в противном случае.

    Следовательно, рабочий цикл этого сигнала и нагревательного элемента увеличивается по мере увеличения разницы между температурой железа и заданной температурой и уменьшается, когда она ниже.

    Дисплей LED

    Я использовал двухцветный светодиод. Красный светодиод подключен последовательно с эмиттером moc3041, поэтому, когда нагреватель включен, красный светодиод включается. Транзистор npn использовался в качестве инвертора или не затвора, чтобы загорать зеленый светодиод, когда нагреватель выключен.

    Двухцветный светодиод можно заменить двумя обычными светодиодами или, при желании, можно использовать один светодиод, чтобы показывать только то, что нагреватель включен, без транзистора Q1, зеленого светодиода и токоограничивающего резистора R15.

    Механическая конструкция

    Я имитировал дизайн дешевых клонов хакко, но использовал металл вместо пластика, потому что с ним легче работать (по крайней мере, для меня). Корпус был изготовлен из двух кусков гнутой стали с отверстиями для входов и элементов управления, а также с резьбовыми отверстиями для соединения этих двух частей винтами.

    Мой друг, который профессионально работает с металлом, помог мне построить корпус, но инструменты, которые мы использовали, были не особо сложными, мы даже не использовали металлический тормоз.Изгибы производились металлическим верстаком, зажимами, деревянными брусками и молотком.

    Так как я использовал сталь, я покрыл корпус цинковой краской, чтобы избежать ржавчины, а затем покрасил корпус и покрыл его прозрачным лаком. Я думаю, что алюминий лучше подходит для изготовления корпуса, но я использовал сталь, потому что это то, что у моего друга было в виде металлолома.

    Основным фактором, по которому я решил не монтировать печатную плату на передней панели корпуса, как это делают многие паяльные станции, было то, что я не мог (локально) найти потенциометр, который я мог бы установить вертикально на печатной плате, потенциометры I У find были ноги, которые были слишком короткими, чтобы их можно было согнуть, поэтому их можно было установить так, как мне было нужно.Вместо этого печатная плата была прикреплена к нижней части корпуса с использованием кусков тонких трубок из ПВХ в качестве прокладок, а нижняя сторона печатной платы была защищена с помощью тонкого твердого пластикового слоя, удерживаемого теми же винтами, что и печатная плата.

    Контрольные отметки были нанесены фломастером поверх слоя краски и перед нанесением прозрачных слоев покрытия.

    Заключение

    У этой конструкции есть пара недостатков. Во-первых, кажется, что существует заметная тепловая задержка между наконечником железа и термопарой, из-за чего железу требуется больше времени для нагрева.Тем не менее, этот эффект уменьшается за счет модификации, описанной в разделе ручки пайки.

    Еще одно изменение, которое я бы внес в дизайн, – это двухцветный светодиод, потому что он светится желтым оттенком, когда утюг достигает желаемой температуры. Я бы, вероятно, предпочел использовать один светодиод, чтобы показывать, когда нагреватель включен, поскольку наличие более точного индикатора того, когда утюг достиг желаемой температуры с аналоговыми компонентами, потребовал бы увеличения количества компонентов.

    Меры предосторожности при использовании твердотельных реле | Средства автоматизации | Промышленные устройства

    1.Конструкция со снижением номинальных характеристик

    Снижение номинальных характеристик является важным фактором надежности конструкции и срока службы продукта.
    Даже если условия использования (температура, ток, напряжение и т. Д.) Изделия находятся в пределах абсолютных максимальных номинальных значений, надежность может значительно снизиться при продолжительном использовании в условиях высокой нагрузки (высокая температура, высокая влажность, высокий ток, высокое напряжение. и т. д.) Поэтому, пожалуйста, снизьте номинальные характеристики до уровня ниже абсолютного максимума и оцените устройство в фактическом состоянии.
    Более того, независимо от области применения, если можно ожидать, что неисправность будет представлять высокий риск для жизни человека или имущества, или если продукты используются в оборудовании, в противном случае требующем высокой эксплуатационной безопасности, в дополнение к проектированию двойных цепей, то есть с включением таких функций, как цепи защиты или резервной цепи, также должны быть проведены испытания на безопасность.

    2. приложение напряжения, превышающего абсолютный максимум

    Если значение напряжения или тока для любой из клемм превышает абсолютный максимальный номинал, внутренние элементы выйдут из строя из-за перенапряжения или перегрузки по току.В крайних случаях может расплавиться проводка или разрушиться кремниевые контакты P / N.
    Следовательно, схема должна быть спроектирована таким образом, чтобы нагрузка никогда не превышала абсолютные максимальные значения, даже на мгновение.

    3. Фотоэлемент

    Соединитель фототриака предназначен исключительно для управления симистором. Предварительно необходимо запитать симистор.

    4. неиспользуемые клеммы

    1) Фотоприемник

    Клемма № 3 используется со схемой внутри устройства.
    Поэтому не подключайте его к внешним цепям. (6 контактов)

    2) AQ-H

    Терминал № 5 подключен к воротам.
    Не подключайте напрямую клеммы № 5 и 6.

    5. Короткое замыкание между клеммами

    Не допускайте короткого замыкания между клеммами, когда устройство находится под напряжением, так как существует возможность поломки внутренней ИС.

    6.При использовании для нагрузки ниже номинальной

    SSR может выйти из строя, если он используется ниже указанной нагрузки.В таком случае используйте фиктивный резистор параллельно нагрузке.

    Характеристики нагрузки

    Тип Ток нагрузки
    AQ-G Все модели 20 мА
    AQ1 Все модели 50 мА
    AQ8 Все модели 50 мА
    AQ-J Все модели 50 мА
    AQ-A (тип выхода переменного тока) 100 мА

    7.Защита от шума и перенапряжения на входе

    1) Фотоэлемент и AQ-H

    Если на входных клеммах присутствуют обратные перенапряжения, подключите диод в обратной параллели к входным клеммам и поддерживайте обратные напряжения ниже обратного напряжения пробоя.
    Ниже показаны типовые схемы.

    <Фотоэлемент (6-контактный)>

    2) ССР

    Сильное шумовое импульсное напряжение, приложенное к входной цепи SSR, может вызвать неисправность или необратимое повреждение устройства.Если ожидается такой сильный выброс, используйте во входной цепи поглотитель шума C или R.
    Ниже показаны типовые схемы

    8.Рекомендуемый входной ток соединителя Phototriac и AQ-H

    Дизайн в соответствии с рекомендованными условиями эксплуатации для каждого продукта.
    Поскольку на эти условия влияет рабочая среда, убедитесь в соответствии со всеми соответствующими спецификациями.

    9. Пульсация на входе источника питания

    Если во входном источнике питания присутствует пульсация, обратите внимание на следующее:

    1) Чувствительный к току тип (Phototriac Coupler, AQ-H)

    (1) Для прямого тока светодиода при Emin поддерживайте значение, указанное в «Рекомендуемом входном токе».
    (2) Убедитесь, что прямой ток светодиода для Emax. не превышает 50 мА.

    2) Тип, чувствительный к напряжению (AQ-G, AQ1, AQ8, AQ-J, AQ-A)

    (1) Эмин.должно превышать минимальное номинальное управляющее напряжение
    (2) Emax. не должно превышать максимальное номинальное управляющее напряжение

    10.Когда входные клеммы подключены с обратной полярностью

    Название продукта Если полярность входного управляющего напряжения обратная
    AQ1 、 AQ-J 、 AQ-A (AC) Изменение полярности не приведет к повреждению устройства из-за наличия защитного диода, но устройство не будет работать.
    AQ-H 、 AQ-G 、 AQ8
    AQ-A (DC)
    Изменение полярности может привести к необратимому повреждению устройства. Будьте особенно осторожны, чтобы избежать обратной полярности, или используйте защитный диод во входной цепи.

    11.Защита от шума и перенапряжения на выходной стороне

    1) Фотоэлемент и AQ-H

    На рисунке ниже показана обычная схема управления симистором. Пожалуйста, добавьте демпферную цепь или варистор, так как шум / скачок напряжения на стороне нагрузки могут повредить устройство или вызвать сбои в работе.
    Типовые схемы показаны ниже.

    <Типы фотоэлементов SOP4 и DIP4>

    <Фотоэлемент типа DIP6>

    Примечание: подключение внешнего резистора и т. Д., к терминалу №5 (выход) не нужен.

    2) ССР

    (1) Тип выхода переменного тока

    Сильный импульсный импульс напряжения, приложенный к цепи нагрузки SSR, может вызвать неисправность или необратимое повреждение устройства. Если ожидается такой сильный выброс, используйте варистор на выходе SSR.

    (2) Тип выхода постоянного тока

    Если индуктивная нагрузка генерирует скачки напряжения, превышающие абсолютный максимум номинального значения, скачки напряжения должны быть ограничены.
    Типовые схемы показаны ниже.

    3) Ограничивающий диод и демпферная цепь могут ограничивать выбросы напряжения на сторона нагрузки. Однако длинные провода могут вызвать скачки напряжения. из-за индуктивности. Рекомендуется использовать провода как можно короче. можно минимизировать индуктивность.
    4) Выходные клеммы могут стать токопроводящими, хотя входная мощность не подается, когда на них подается внезапное повышение напряжения, даже когда реле выключено.Это может произойти, даже если повышение напряжения между клеммами меньше повторяющегося пикового напряжения в выключенном состоянии. Поэтому, пожалуйста, проведите достаточные испытания в реальных условиях.
    5) При управлении нагрузками, в которых фазы напряжения и тока различаются, при выключении происходит резкое повышение напряжения, и симистор иногда не выключается. Пожалуйста, проведите достаточные испытания на реальном оборудовании.
    6) При управлении нагрузками с использованием типов напряжения с переходом через нуль, в которых фазы напряжения и тока различаются, симистор иногда не включается независимо от состояния входа, поэтому, пожалуйста, проведите достаточные испытания с использованием реального оборудования.

    12. Очистка (для монтажа на печатной плате)

    Для очистки флюса припоя следует использовать погружную промывку с органическим растворителем. Если вам необходимо использовать ультразвуковую очистку, примите следующие условия и убедитесь, что при фактическом использовании нет проблем.

    • Частота: от 27 до 29 кГц
    • Ультразвуковая мощность: не более 0,25 Вт / см 2 (Примечание)
    • Время очистки: 30 с или менее
    • Используемое очищающее средство: Асахиклин АК-225
    • Другое: Погрузите печатную плату и устройство в очищающий растворитель для предотвращения контакта с ультразвуковым вибратором.

    Примечание: относится к ультразвуковой мощности на единицу площади для ультразвуковых ванн

    13. Замечания по монтажу (для типа монтажа на печатной плате)

    1) Когда на печатной плате устанавливаются разные типы корпусов, повышение температуры на выводе пайки сильно зависит от размера корпуса. Поэтому, пожалуйста, установите более низкую температуру пайки, чем условия пункта «14. Пайка »и подтвердите фактический температурный режим использования перед пайкой.
    2) Если условия монтажа превышают наши рекомендации, это может отрицательно повлиять на характеристики устройства. Это может произойти из-за несоответствия тепловому расширению и снижения прочности смолы. Пожалуйста, свяжитесь с нашим офисом продаж, чтобы узнать о правильности условий.
    3) Пожалуйста, подтвердите тепловую нагрузку, используя фактическую плату, потому что она может быть изменена в зависимости от состояния платы или условий производственного процесса.
    4) Ползучесть припоя, смачиваемость или прочность пайки будут зависеть от условий монтажа или используемого типа пайки.

    Пожалуйста, внимательно проверьте их в соответствии с фактическим производственным состоянием.
    5) Нанесите покрытие, когда устройство вернется к комнатной температуре.

    14. Пайка

    1) При пайке клемм для поверхностного монтажа рекомендуются следующие условия.

    (1) Метод пайки инфракрасным оплавлением
    (Рекомендуемые условия оплавления: макс.2 раза, точка измерения: паяльный провод)

    T 1 = от 150 до 180 ° C
    Т 2 = 230 ° C
    T 3 = от 240 до 250 ° C
    t 1 = от 60 до 120 с
    t 2 = В течение 30 с
    t 3 = В течение 10 с

    (2) Другие способы пайки
    Другие методы пайки (VPS, горячий воздух, горячая пластина, лазерный нагрев, импульсный нагреватель и т. Д.) по-разному влияют на характеристики реле, пожалуйста, оцените устройство в соответствии с фактическим использованием.

    (3) Метод паяльника
    Температура наконечника: от 350 до 400 ° C
    Мощность: от 30 до 60 Вт
    Время пайки: в пределах 3 с

    2) При пайке стандартных клемм печатной платы рекомендуются следующие условия.

    (1) Метод пайки DWS
    (Рекомендуемое количество раз: макс. 1 раз, точка измерения: паяльный провод * 1)

    Т 1 = 120 ° C
    T 2 = Макс.260 ° С
    t 1 = в течение 60 с
    t 2 + t 3 = в течение 5 с

    * 1 Температура пайки: макс. 260 ° С

    (2) Другой метод пайки погружением (рекомендуемые условия: 1 раз)
    Предварительный нагрев: Макс. 120 ° C, в течение 120 с, точка измерения: паяльный провод
    Пайка: Макс. 260 ° C, в течение 5 с *, область измерения: температура пайки
    * Фотоэлемент и AQ-H: в течение 10 с

    (3) Метод ручной пайки
    Температура наконечника: от 350 до 400 ° C
    Мощность: от 30 до 60 Вт
    Время пайки: в пределах 3 с

    • Мы рекомендуем сплав со сплавом Sn3.0Ag0.5Cu.

    15. прочие

    1) Если SSR используется в непосредственной близости от другого SSR или тепловыделяющего устройства, его температура окружающей среды может превышать допустимый уровень. Тщательно спланируйте расположение SSR и вентиляцию.
    2) Клеммные соединения должны выполняться в соответствии с соответствующей электрической схемой.
    3) Для большей надежности проверьте качество устройства в реальных условиях эксплуатации.
    4) Во избежание опасности поражения электрическим током отключайте источник питания при проведении технического обслуживания.Хотя AQ-A (тип выхода постоянного тока) сконструирован с изоляцией для входных / выходных клемм и задней алюминиевой пластины, изоляция между входом / выходом и задней алюминиевой пластиной не одобрена UL.

    16. Транспортировка и хранение

    1) Сильная вибрация во время транспортировки может деформировать кабель или повредить характеристики устройства. Пожалуйста, обращайтесь с внешней и внутренней коробкой осторожно.
    2) Неправильные условия хранения могут ухудшить пайку, внешний вид и характеристики.Рекомендуются следующие условия хранения:
    • Температура: от 0 до 45 ° C
    • Влажность: Макс. 70% относительной влажности
    • Атмосфера: Отсутствие вредных газов, таких как сернисто-кислый газ, минимальное количество пыли.
    3) Хранение фотоэлемента (тип SOP)

    В случае, если тепловая нагрузка при пайке применяется к устройству, которое поглощает влагу внутри своей упаковки, испарение влаги увеличивает давление внутри упаковки и может вызвать вздутие или трещину на упаковке.Устройство чувствительно к влаге и упаковано в герметичную влагонепроницаемую упаковку. После распечатывания убедитесь, что соблюдены следующие условия.

    • Пожалуйста, используйте устройство сразу после распечатывания. (В течение 30 дней при температуре от 0 до 45 ° C и относительной влажности макс. 70%)
    • Если устройство будет храниться в течение длительного времени после вскрытия упаковки, храните его в другой влагонепроницаемой упаковке, содержащей силикагель. (Используйте в течение 90 дней.)

    17. конденсация воды

    Конденсация воды происходит, когда температура окружающей среды внезапно меняется с высокой температуры на низкую при высокой влажности, или когда устройство внезапно переключается с низкой температуры окружающей среды на высокую температуру и влажность.
    Конденсация вызывает такие отказы, как ухудшение изоляции. Panasonic Corporation не гарантирует отказы, вызванные конденсацией воды.
    Теплопроводность оборудования, на котором установлен SSR, может ускорить конденсацию воды. Убедитесь, что в худших условиях фактического использования конденсата нет.
    (Особое внимание следует уделять, когда детали, нагревающиеся при высоких температурах, находятся близко к твердотельному реле.)

    18. Ниже показан формат упаковки

    ※ Если щелкнуть каждую фигуру, откроется увеличение.

    1) Лента и катушка (фотоприемник)
    2) Лента и катушка (AQ-H)
    Тип Размеры ленты (единица измерения: мм) Размеры катушки с бумажной лентой
    (Единицы измерения: мм)
    8-контактный SMD
    тип

    (1) При выборе со стороны 1/2/3/4 контактов: № детали AQH ○○○○ AX (Показано выше)
    (2) При выборе со стороны 5/6/8 контактов: Номер детали.AQH ○○○○ AZ
    3) Трубка
    Соединитель

    Phototriac и AQ-H SSR упакованы в трубку, так как штифт № 1 находится на стороне стопора B. Соблюдайте правильную ориентацию при установке их на печатные платы.

    <Тип СОП фотоэлемента>

    <Тип DIP фотоэлектрического преобразователя и AQ-H SSR>

    1.Уменьшить дв / дт

    SSR, используемый с индуктивной нагрузкой, может случайно сработать из-за высокой скорости нарастания напряжения нагрузки (dv / dt), даже если напряжение нагрузки ниже допустимого уровня (срабатывание индуктивной нагрузки).
    Наши SSR содержат демпферную цепь, предназначенную для уменьшения dv / dt (кроме AQ-H).

    2. Выбор демпфирующих постоянных

    1) Выбор C

    Коэффициент зарядки тау для C цепи SSR показан в формуле (1)

    τ = (R L + R) × C ———— (1)

    Установив формулу (1) так, чтобы она была ниже значения dv / dt, вы получите:

    С = 0.632V A / [(dv / dt) × (R L + R)] —– (2)

    Установив C = 0,1–0,2 мкФ, dv / dt можно регулировать в диапазоне от нВ / мкс до n + В / мкс или ниже. Для конденсатора используйте либо металлизированную полиэфирную пленку конденсатора MP. Для линии 100 В используйте напряжение от 250 до 400 В, а для линии 200 В используйте напряжение от 400 до 600 В.

    2) Выбор R

    Если сопротивление R отсутствует (сопротивление R управляет разрядным током конденсатора C), при включении SSR произойдет резкое повышение dv / dt и начнет течь разрядный ток с высоким пиковым значением.
    Это может вызвать повреждение внутренних элементов SSR.
    Следовательно, всегда необходимо вставлять сопротивление R. В обычных приложениях для линии 100 В необходимо иметь R = от 10 до 100 Ом, а для линии 200 В – R = от 20 до 100 Ом. (Допустимый ток разряда при включении будет отличаться в зависимости от внутренних элементов SSR.) Потери мощности от R, записанные как P, вызванные током разряда и током заряда от C, показаны в формуле (3) ниже. Для линии 100 В используйте мощность 1/2 Вт, а для линии 200 В используйте мощность выше 2 Вт.

    P =

    C × V A 2 × f

    ……… (3)

    2

    f = частота питания

    Кроме того, при выключении SSR формируется цепь вызывного сигнала с конденсатором C и индуктивностью L цепи, и на обоих выводах SSR генерируется всплеск напряжения. Сопротивление R служит контрольным сопротивлением для предотвращения этого звона.Кроме того, требуется хорошее неиндуктивное сопротивление для R. Часто используются углеродные пленочные резисторы или металлопленочные резисторы.
    Для общих приложений рекомендуемые значения: C = 0,1 мкФ и R = от 20 до 100 Ом. В индуктивной нагрузке бывают случаи резонанса, поэтому при выборе необходимо соблюдать соответствующие меры.

    Высоконадежные цепи SSR требуют соответствующей схемы защиты, а также тщательного изучения характеристик и максимальных номиналов устройства.

    1. Защита от перенапряжения

    Источник питания нагрузки SSR требует соответствующей защиты от ошибок перенапряжения по разным причинам. К методам защиты от перенапряжения относятся следующие:

    1) Используйте устройства с гарантированным выдерживаемым обратным перенапряжением

    (лавинные управляемые устройства и др.)

    2) Подавить кратковременные всплески

    Используйте переключающее устройство во вторичной цепи трансформатора или используйте переключатель с медленной скоростью размыкания.

    3) Используйте схему поглощения скачков напряжения

    Используйте поглотитель перенапряжения CR или варистор на источнике питания нагрузки или SSR.
    Следует проявлять особую осторожность, чтобы скачки напряжения при включении / выключении или внешние скачки не превышали номинальное напряжение нагрузки устройства. Если ожидается скачок напряжения, превышающий номинальное напряжение устройства, используйте устройство и схему поглощения скачков напряжения (например, ZNR от Panasonic Corporation.).

    Выбор номинального напряжения ЗНР

    (1) Пиковое напряжение питания
    (2) Изменение напряжения питания
    (3) Ухудшение характеристики ZNR (1 мА ± 10%)
    (4) Допуск номинального напряжения (± 10%)
    Для подключения к линиям переменного тока 100 В выберите ZNR со следующим номинальным напряжением:
    (1) × (2) × (3) × (4) = (100 × √2) × 1.1 × 1,1 × 1,1 = 188 (В)

    D : 17,5 диам. Максимум.
    T 6,5 макс.
    H : 20,5 макс.
    W : 7,5 ± 1
    (Единица измерения: мм)

    Пример ЗНР (Panasonic)

    Типы Напряжение варистора Макс.допустимое напряжение цепи Макс. управляющее напряжение Макс. средняя
    импульсная электрическая
    мощность
    Устойчивость к энергии Выдерживает импульсный ток Электростатическая емкость
    (справочная)
    (10/1000 мкс) (2 мс) 1 раз (8/20 мкс)
    2 раза
    В 1 мА (В) ACrms (В) постоянный ток (В) V50A (В) (Ш) (Дж) (Дж) (А) (А) @ 1 кГц (пФ)
    ERZV14D201 200 (от 185 до 225) 130 170 340 0.6 70 50 6 000 5 000 770
    ERZV14D221 220 (198 до 242) 140 180 360 0,6 78 55 6 000 5 000 740
    ERZV14D241 240 (от 216 до 264) 150 200 395 0.6 84 60 6 000 5 000 700
    ERZV14D271 270 (от 247 до 303) 175 225 455 0,6 99 70 6 000 5 000 640
    ERZV14D361 360 (324–396) 230 300 595 0.6 130 90 6 000 4,500 540
    ERZV14D391 390 (от 351 до 429) 250 320 650 0,6 140 100 6 000 4,500 500
    ERZV14D431 430 (от 387 до 473) 275 350 710 0.6 155 110 6 000 4,500 450
    ERZV14D471 470 (с 423 по 517) 300 385 775 0,6 175 125 6 000 4,500 400
    ERZV14D621 620 (от 558 до 682) 385 505 1,025 0.6 190 136 5 000 4,500 330
    ERZV14D681 680 (от 612 до 748) 420 560 1,120 0,6 190 136 5 000 4,500 320

    2. защита от перегрузки по току

    Цепь SSR, работающая без защиты от перегрузки по току, может привести к повреждению устройства.Спроектируйте схему таким образом, чтобы номинальная температура перехода устройства не превышалась при продолжительном токе перегрузки.
    (например, импульсный ток в двигателе или лампочке)
    Номинальный импульсный ток применяется к ошибкам перегрузки по току, которые возникают менее нескольких десятков раз в течение срока службы полупроводникового прибора. Для этого номинала требуется устройство координации защиты.
    К методам защиты от перегрузки по току относятся следующие:

    1) Защита от сверхтоков

    Используйте токоограничивающий реактор последовательно с источником питания нагрузки.

    2) Используйте устройство отключения тока

    Используйте токоограничивающий предохранитель или автоматический выключатель последовательно с источником питания нагрузки.

    Пример выполнения выбора предохранителя для взаимодействия защиты от сверхтоков

    1. Обогреватели (резистивная нагрузка)

    SSR лучше всего подходит для резистивных нагрузок. Уровень шума можно значительно снизить с помощью переключения через нуль.

    2. лампы

    Вольфрамовые или галогенные лампы потребляют высокий пусковой ток при включении (примерно в 7-8 раз больше, чем ток в установившемся режиме для SSR с переходом через ноль; примерно в 9-12 раз, в худшем случае, для SSR произвольного типа). Выберите SSR так, чтобы пик пускового тока не превышал 50% от тока хирурга SSR.

    3. соленоиды

    Электромагнитные контакторы или электромагнитные клапаны с приводом от переменного тока

    также потребляют пусковой ток, когда они активированы.Выберите SSR таким образом, чтобы пик пускового тока не превышал 50% тока SSR хирурга. Для небольших электромагнитных клапанов и, в частности, реле переменного тока ток утечки может вызвать сбой в работе нагрузки после выключения SSR. В таком случае используйте фиктивный резистор параллельно нагрузке.

    • Использование SSR ниже указанной нагрузки

    4.Нагрузка на двигатели

    При запуске электродвигатель потребляет симметричный пусковой ток переменного тока, который в 5-8 раз превышает установившийся ток нагрузки, который накладывается на постоянный ток. Время пуска, в течение которого поддерживается этот высокий пусковой ток, зависит от мощности нагрузки и источника питания нагрузки. Измерьте пусковой ток и время в реальных условиях эксплуатации двигателя и выберите SSR, чтобы пик пускового тока не превышал 50% от пускового тока SSR.
    Когда нагрузка двигателя отключена, на SSR подается напряжение, превышающее напряжение питания нагрузки, из-за противо-ЭДС.
    Это напряжение примерно в 1,3 раза больше напряжения питания нагрузки для асинхронных двигателей и примерно в 2 раза больше напряжения синхронных двигателей.

    • Управление реверсивным двигателем

    Когда направление вращения двигателя меняется на противоположное, переходный ток и время, необходимые для реверсирования, намного превышают те, которые требуются для простого запуска. Ток и время реверсирования также следует измерять в реальных условиях эксплуатации.
    В однофазном асинхронном двигателе с конденсаторным пуском в процессе реверсирования возникает ток емкостного разряда.Обязательно используйте токоограничивающий резистор или дроссель последовательно с SSR.
    Кроме того, SSR должен иметь высокое предельное значение напряжения, поскольку в процессе реверсирования на SSR возникает напряжение, вдвое превышающее напряжение питания нагрузки.
    Для управления реверсивным двигателем тщательно спроектируйте схему драйвера, чтобы реле прямого и обратного хода не включались одновременно.

    5. емкостная нагрузка

    Емкостная нагрузка (импульсный стабилизатор и т. Д.) Потребляет пусковой ток для зарядки конденсатора нагрузки при включении SSR.
    Выбирайте SSR так, чтобы пик пускового тока не превышал 50% пускового тока SSR. Ошибка синхронизации до одного цикла может произойти, когда переключатель, используемый последовательно с SSR, размыкается или замыкается. Если это проблема, используйте индуктивность (от 200 до 500 мкГн) последовательно к SSR, чтобы подавить ошибку dv / dt.

    6. Другое электронное оборудование

    В основном электронное оборудование использует сетевые фильтры в первичной цепи питания.
    Конденсаторы, используемые в сетевых фильтрах, могут вызвать неисправность SSR из-за включения dv / dt при включении или выключении оборудования.В таком случае используйте индуктивность (от 200 до 500 мкГн) последовательно с SSR, чтобы подавить включение du / dt.

    Волна и время пускового тока нагрузки

    (1) Нагрузка лампы накаливания

    Пусковой ток / номинальный ток: i / io ≒ от 10 до 15 раз

    (2) Нагрузка ртутной лампы i / io ≒ 3 раза

    Газоразрядная трубка, трансформатор, дроссельная катушка, конденсатор и т. Д., объединены в общие цепи газоразрядных ламп. Обратите внимание, что пусковой ток может быть от 20 до 40 раз, особенно если полное сопротивление источника питания низкое в типе с высоким коэффициентом мощности.

    (3) Нагрузка люминесцентной лампы i / io ≒ от 5 до 10 раз

    (4) Нагрузка двигателя i / io ≒ от 5 до 10 раз

    • Условия становятся более суровыми, если выполняется заглушка или толчкование, поскольку переходы между состояниями повторяются.
    • При использовании реле для управления двигателем постоянного тока и тормозом, пусковой ток во включенном состоянии, ток установившегося состояния и ток отключения во время торможения различаются в зависимости от того, свободна или заблокирована нагрузка на двигатель. В частности, с неполяризованными реле, при использовании контакта «от B» или «от контакта» для тормоза двигателя постоянного тока, на механический срок службы может влиять ток тормоза.
      Поэтому, пожалуйста, проверьте ток при фактической нагрузке.

    (5) Нагрузка на соленоид i / io ≒ от 10 до 20 раз

    Обратите внимание, что поскольку индуктивность велика, дуга длится дольше при отключении питания.
    Контакт может легко изнашиваться.

    (6) Нагрузка на электромагнитный контакт
    i / io ≒ от 3 до 10 раз

    (7) Емкостная нагрузка i / io ≒ от 20 до 40 раз

    DIY 12 В паяльник

    В этом DIY мы собираемся сделать «Паяльник 12В».«Паяльник» – это ручной аппарат, который обеспечивает плавление припоя теплом, поскольку он может течь в стык между двумя деталями. Этот процесс называется «пайкой».

    «Паяльник» состоит из нагретого металлического жала и ручки. Мы можем нагреть металлический наконечник, пропустив «электрический поток». Электроэнергия может подаваться через «аккумуляторные кабели» или «электрическую линию» через резистивный нагревательный элемент. Это одно из самых простых руководств по изготовлению паяльника на 12 В, доступных в Интернете.

    Аппаратные компоненты

    Необходимые аппаратные компоненты для изготовления паяльника 12 В перечислены ниже:

    Строительство схемы

    Шаг # 01

    Сначала сделайте наконечник, потерев 8-миллиметровую медную проволоку.

    Шаг №02

    Затем возьмите кусок дерева и просверлите сверлом отверстие диаметром 4 мм.

    Шаг №03

    Покройте 8-миллиметровый медный провод термостойким.

    Шаг № 04

    Соедините 8-миллиметровый медный провод с деревянным бруском.

    Шаг № 05

    Используйте нихромовую проволоку диаметром 35 см 32AWG и намотайте нихромовую проволоку на медную проволоку диаметром 8 мм.

    Шаг № 06

    Оберните 1-миллиметровый медный провод в верхней и нижней части 8-миллиметрового медного провода.

    Шаг № 07

    Присоедините переключатель ВКЛ / ВЫКЛ, подключив его к нижнему медному проводу диаметром 1 мм.

    Шаг № 08

    Подсоедините красный зажим аккумулятора с проводом к переключателю ВКЛ / ВЫКЛ.

    Шаг № 09

    Затем подсоедините черный зажим аккумулятора с проводом к верхнему медному проводу диаметром 1 мм.

    Шаг № 10

    Теперь прикрепите все провода к деревянной детали лентой.

    Шаг № 11

    Подключите аккумулятор 12 В к паяльнику.

    Шаг № 12

    Наконец-то можно протестировать паяльник.

    Шаг № 13

    Для индикации также можно использовать светодиодный индикатор.

    Шаг № 14

    Вы также можете использовать трансформатор 12 В вместо батареи.

    Работа контура

    В этом разделе мы обсудим, как работает схема «паяльника 12В». В этой схеме основными компонентами являются 8-миллиметровый медный провод, кусок дерева и трансформатор. Медный провод диаметром 8 мм работает как металлический наконечник, деревянный кусок работает как изолированная ручка, а трансформатор 12 В обеспечивает электрическое соединение.Мы также использовали термостойкую нихромовую проволоку и медную проволоку диаметром 1 мм для достижения лучших результатов. Мы также можем добавить «переключатель включения / выключения» и «светодиодный индикатор 12 В» для индикации того, находится ли паяльник в рабочем состоянии или нет.

    Приложения и способы использования

    Паяльники используются для пайки электронных компонентов

    • Для установки микросхем, таких как микросхемы, резисторы, конденсаторы и т. Д. На печатную плату.
    • Для ремонта или замены IC или любых других электронных компонентов в электронных схемах.

    (PDF) 270 ПРОЕКТ МИНИ-ЭЛЕКТРОНИКИ СО СХЕМАМИ

    198 | Страница By Suman Debnath

    , отображаемое на вольтметре, и продолжайте менять то же самое с помощью поворотного переключателя. Или же выходное напряжение

    может достичь предварительно установленного предела автоматического отключения, чтобы отключить нагрузку без ведома пользователя

    . Чтобы снова включить нагрузку, необходимо заново отрегулировать напряжение стабилизатора с помощью поворотного переключателя

    .Такая операция очень раздражает и неудобна для пользователя.

    Эта схема звуковой сигнализации пониженного / повышенного напряжения, разработанная как дополнительная схема для существующих ручных стабилизаторов

    , решает вышеуказанную проблему. Когда выходное напряжение стабилизатора падает на

    ниже заданного напряжения низкого уровня или поднимается выше заданного напряжения высокого уровня, он издает различные звуковые сигналы

    для «высокого» и «низкого» уровней напряжения – короткие звуковые сигналы с короткими интервалами.

    между последовательными звуковыми сигналами для «высокого» уровня напряжения и немного более продолжительными звуковыми сигналами с более длинным интервалом

    между последовательными звуковыми сигналами для «низкого» уровня напряжения.Используя эти два разных типа звуковых сигналов

    , можно легко прочитать только выходное напряжение переменного тока стабилизатора с помощью поворотного переключателя

    . Нет необходимости часто проверять показания вольтметра.

    Рекомендуется предварительно установить напряжение высокого уровня на 10–20 В ниже требуемого предела высокого напряжения

    для работы с автоматическим отключением. Аналогично, для низкого уровня можно предварительно установить напряжение переменного тока низкого уровня

    на 20–30 В выше минимального рабочего напряжения для данной нагрузки.

    Клеммы первичной обмотки понижающего трансформатора Х1 подключены к выводам

    ручного стабилизатора. Таким образом, напряжение 9 В постоянного тока, доступное на конденсаторе C1, будет изменяться в пределах

    в соответствии с напряжением, доступным на выходных клеммах ручного стабилизатора, которое составляет

    , используемое для определения высокого или низкого напряжения в этой цепи.

    Транзистор T1 в сочетании со стабилитроном ZD1 и предустановкой VR1 используется для определения и настройки

    уровня высокого напряжения для звуковой индикации.Точно так же транзистор T2 вместе с стабилитроном ZD2 и

    предварительно установленным VR2 используется для определения и регулировки низкого уровня напряжения для звуковой индикации.

    Когда напряжение постоянного тока на конденсаторе C1 поднимается выше предварительно установленного напряжения высокого уровня или падает ниже

    предварительно установленного напряжения низкого уровня, коллектор транзистора T2 становится высоким из-за непроводимости

    транзистора T2 в любом случае . Однако, если напряжение постоянного тока, измеренное на C1, находится в пределах предварительно заданного напряжения высокого и низкого уровня

    , транзистор T2 проводит ток, и его напряжение коллектора стягивается до

    уровня земли.Эти изменения напряжения коллектора транзистора T2 используются для запуска или остановки

    колебаний в цепи нестабильного мультивибратора, построенной на транзисторах T3 и T4. Коллектор

    транзистора T4 подключен к базе транзистора T5 драйвера зуммера через резистор

    R8. Таким образом, когда напряжение коллектора транзистора T4 становится высоким, звучит зуммер. Предварительная установка VR3 –

    , используется для управления громкостью звука зуммера.

    В нормальных условиях напряжение постоянного тока, измеренное на конденсаторе C1, находится в пределах допустимой зоны напряжения окна

    .База транзистора T3 подтянута к низкому уровню из-за проводимости диода D2 и

    транзистора T2. В результате конденсатор С2 разряжается.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *