Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Выбор схемы зарядного устройства для автомобильного аккумулятора: простые и сложные схемы

Любой автолюбитель знает, сколько неприятностей может доставить аккумулятор, не работающий в штатном режиме. Гарантированно безотказно он может проработать минимум 5 лет при условии, что водитель постоянно следит за его состоянием. Но ситуации, когда аккумуляторная батарея (АКБ) перестаёт выполнять свои функции, случаются довольно часто. Причин может быть довольно много, начиная от неисправностей в системе электроснабжения автомобиля и заканчивая длительным простоем авто в тяжёлых погодных условиях, чаще всего на холоде.

Поэтому к выбору подзарядки АКБ автолюбители, не желающие тратить деньги в специальных сервисных центрах, должны подойти с большой ответственностью.

Виды зарядных устройств

Перед приобретением зарядного устройства (ЗУ) автолюбитель должен знать, что торговля предлагает ЗУ двух основных видов:

  • устройства зарядно-предпусковые;
  • зарядно-пусковые ЗУ.

Первый вид предназначен только для подзарядки аккумуляторных батарей.

При подключении клемм АКБ проводами с клещевидными зажимами к выходу устройства осуществляется подзарядка аккумулятора.

Используя зарядно-пусковые ЗУ можно осуществлять как обычную подзарядку аккумулятора, так и запуск двигателя вращением стартера без подключения аккумуляторной батареи.

Основные критерии выбора

Критериями могут служить рабочие параметры. К ним относятся:

  • максимальное выходное напряжение;
  • максимальный нагрузочный ток.

Максимальное напряжение для зарядки 12- вольтовых кислотных батарей (с учётом падения напряжения на проводах и клеммах АКБ) 15,5 В. При выборе такого ЗУ в конце зарядки напряжение аккумулятора составит порядка 14,5 В.

Максимальный ток выбирается исходя из номинальной ёмкости АКБ.

Для кислотных аккумуляторов действует простое соотношение между ними:

Imax =0,1 C ном.

Для щелочных батарей:

Imax =0,25Сном.

C ном — мощность АКБ, выраженная в Ампер-часах (А-ч).

Выбрав ЗУ с Imax =10А, можно зарядить любой автомобильный аккумулятор.

Классификация зарядных устройств

ЗУ можно классифицировать по схемным решениям, по элементной базе, используемой при их проектировании, по принципам преобразования переменного тока в постоянный. Исходя из этого, можно выделить две группы устройств зарядки аккумуляторов:

  • трансформаторные ЗУ;
  • импульсные устройства зарядки.

В устройствах первой группы используется мощный силовой трансформатор.

В импульсных устройствах зарядки осуществляется преобразование тока сети в последовательность импульсов высокой частоты.

Трансформаторные ЗУ

В трансформаторных ЗУ используются мощные электронные компоненты. Они могут выдерживать перегрузки (в разумных пределах), справляются с ситуациями ошибочного подключения к клеммам АКБ. В ЗУ самодельного изготовления такого типа не всегда присутствуют все компоненты, необходимые для стабильной и безопасной зарядки аккумуляторов. К необходимым компонентам схемы зарядки относятся:

  • трансформаторный блок питания;
  • стабилизатор тока зарядки;
  • токовый регулятор заряда АКБ;
  • устройство защиты от коротких замыканий;
  • устройства индикации параметров.

В простых «самоделках» регулятором тока часто выступают проволочные реостаты с ручным управлением, лампы ближнего и дальнего света автомобиля, которые облают в некоторой степени свойством термосопротивлений. С увеличением силы тока через спираль лампы её сопротивление возрастает. Таким образом, величина тока как бы поддерживается на постоянном уровне. На элементах таких схем выделяется большая тепловая мощность. КПД этих ЗУ невелик. Элементы устройств, собранных по таким схемам, пожароопасны, и их надёжность оставляет желать лучшего.

В некоторых схемах используют набор конденсаторов разной ёмкости. Они вручную включаются по очереди последовательно с первичной обмоткой понижающего трансформатора. Обладая ёмкостным сопротивлением, они понижают величину входного напряжения. Уменьшается напряжение в понижающей обмотке трансформатора и величина тока заряда аккумуляторной батареи. Нагрев элементов в этих схемах меньше, а их КПД возрастает.

Диоды в выпрямительном мосту должны быть подобраны по величине тока заряда батареи. Ток через них должен быть больше максимального зарядного тока. Они обычно устанавливаются на пластинчатые металлические радиаторы, отводящие от диодов избыток тепла и предотвращающие их перегрев.

Более совершенные конструкции предусматривают возможность их автоматического отключения от нагрузки при полной зарядке АКБ. Такие схемные решения позволяют не бояться обрывов в цепи нагрузки и коротких замыканий в ней.

В «продвинутых» схемах для регулирования зарядного тока используют тиристоры. Напряжение на управляющем электроде, определяющее степень открывания прибора, через который протекает ток зарядки, устанавливается вручную переменным резистором схемы. Его ось выведена на переднюю панель устройства зарядки.

В качестве устройств индикации параметров зарядки выступают стрелочные амперметры, включаемые последовательно в цепь нагрузки и вольтметры, контролирующие напряжение на клеммах аккумуляторных батарей. В последних моделях ЗУ стрелочные индикаторы постепенно заменяют цифровыми. Схема усложняется, так как необходимо питать и элементы электронной индикации.

Схема автоматического зарядного устройства для аккумуляторов 12 В позволяет подключать ЗУ к сети при подсоединении проводов с клещевидными зажимами к АКБ. По окончании заряда, когда ток уменьшается до величины срабатывания компаратора схемы, контакты реле размыкаются, светодиод сигнализирует об окончании процесса зарядки и ЗУ отключается от сетевого напряжения.

Импульсные устройства

Устройства этого класса, как и трансформаторные ЗУ, ставят перед собой задачу — восстановление работоспособности аккумуляторных батарей при их частичном или полном разряде. Но схемные решения, использованные в них, основываются на применении современной базы.

Для того чтобы избавиться от мощных силовых понижающих трансформаторов, в импульсных ЗУ переменное сетевое напряжение (50 Герц) преобразуется в переменное напряжение импульсной формы высокой частоты. Это высокочастотное напряжение с помощью импульсного трансформатора доводится до значений, необходимых для зарядки АКБ. Затем оно выпрямляется и фильтруется. Частота преобразования обычно около 50 килогерц, размеры трансформатора, который в основном определяет размеры устройства, минимизируются.

Повышенные требования в ЗУ импульсного типа предъявляются к уровню помех, создаваемых генераторами этих устройств. Для этих целей в схемах используют высокочастотные дроссели. Трансформаторы выполнены в виде обмоток на ферритовых кольцах. Импульсные диоды имеют небольшие размеры.

Если представить общую схему устройства в виде отдельных составных частей, то она будет включать в себя:

  • блок сетевого выпрямителя;
  • блок преобразователя;
  • импульсный трансформатор;
  • блок контроля зарядки;
  • приборы индикации параметров.

В устройствах импульсной зарядки можно использовать один из способов восстановления работоспособности батарей:

  • постоянным током;
  • напряжением постоянной величины;
  • комбинированным способом.

Последний из них позволяет на разных этапах процесса использовать как первый, так и второй способы. При разряженном аккумуляторе необходимо его подзарядить постоянным током до определённого предела. После этого включается режим стабилизации напряжения при уменьшающемся токе заряда.

Импульсные ЗУ можно разделить, в свою очередь, на ручные, требующие самостоятельного регулирования напряжения и силы тока, автоматические, в которых процесс регулируется программным путём, и полуавтоматы.

Сравнение ЗУ разных классов

Надо заметить, что как одни, так и другие устройства зарядки аккумуляторов обладают рядом преимуществ и недостатков. Рассмотрев каждый класс и сравнив их между собой, можно прийти к окончательному выводу о приобретении того или иного устройства.

Трансформаторные зарядные устройства

Среди достоинств трансформаторных ЗУ можно отметить такие: простота конструкции, которую может повторить радиолюбитель не очень высокого класса, надёжность, проверенная временем, доступность элементов схемы, отсутствие сетевых и радиопомех.

Из недостатков можно отметить: значительный вес и габариты, невысокий коэффициент полезного действия из-за потерь в металлических сердечниках трансформаторов.

Импульсные ЗУ

Достоинствами этих устройств являются: небольшой вес из-за отсутствия железа сетевых трансформаторов и радиаторов силовых элементов, высокий (до 98%) КПД, большие допуски на частоту и напряжение питающей сети, большое количество элементов защиты и автоматизации процесса зарядки АКБ.

К недостаткам относятся следующие: отсутствие гальванической развязки от питающей сети, наличие широкого спектра гармоник, требующее принимать дополнительные схемные решения для их подавления.

Постепенно всё большее число автолюбителей, стремящихся обезопасить себя от неприятных ситуаций, связанных с неисправностями аккумуляторных батарей, выбирают зарядные устройства импульсного класса.

Автоматическое зарядное устройство для автомобильного аккумулятора | Tool Electric

Предлагаю вашему вниманию схему зарядного устройства, которое автоматически отключат зарядку автомобильного аккумулятора при достижении полного заряда. Схема простая, все детали отечественные и практически валяются у каждого радиолюбителя где то в закромах).
Схема автоматического зарядного устройства для зарядки автомобильных аккумуляторов состоит из двух частей. А именно – из блока регулировки зарядного тока на симисторе VS1 со схемой управления на однопереходном транзисторе VT1 и схемы контроля заряда и автоматического отключения аккумулятора.
Схема регулятора зарядного тока даёт возможность регулировать ток заряда в пределах от 0 до 10 А (верхний предел зависит от параметров трансформатора Т1). Тут используется классическая схема с фазовым управлением симистора.
Автоматическое выключение зарядки работает так – сначала процесс зарядки тиристор VS2 открыт током, который протекает через R7. По мере заряди аккумуляторной батареи напряжение на нем начинает расти. Когда оно достигнет величины 14,2÷14,3 В, стабилитрон VD5 начинает пропускать ток. Затем будет открываться транзистор VT2, который заберёт часть тока, поступающего на управляющий электрод тиристора VS2, в результате чего он запрётся и зарядка аккумулятора остановится.
   Трансформатор берём готовый или мотаем сами, входное напряжение 220 вольт, выходное – две обмотки по 15 вольт. Габаритная мощность железа около 350-400 ватт. Выпрямительные диоды нужно установить на теплоотводы, если нет таких, какие указаны на схеме, их можно заменить на любые другие, с током 10 ампер.
   Настройка схемы регулятора зарядного тока заключается в подборе резистора R2 с таким расчётом, чтобы при нулевом сопротивлении переменного резистора R1 зарядный ток был максимальным. Затем подключают к его выходу полностью заряженный аккумулятор (напряжение на его клеммах должно быть в пределах 14,4-14,5 В) и с помощью переменного резистора R11 добиваются открытия транзистора VT2 (на его коллекторе должно быть напряжение около 0,6÷1 В) и закрытия тиристора VS2. На этом настройку зарядного устройства можно считать законченной. Перед настройкой проверяем монтаж и помним про осторожность при налаживании, ведь устройство работает от сети переменного тока 220 вольт, которое опасно для жизни.

схемы, как подключить своими руками, видео с пошаговыми инструкциями

Наверное, каждый автомобилист знает, как быстро ломаются зарядки для аккумулятора автомобиля. Если в очередной раз это произошло, пришло время самостоятельно его собрать. Это несложно, даже если нет электротехнических знаний.

Параметры устройства

Всем известно, что вся электроника автомобиля питается от 12в. При этом устройство для зарядки должно выдавать ток в 10% от номинальной емкости. Без этого ЗУ тоже будет работать, но намного медленнее.

Чтобы добиться этих параметров, понадобится:

  1. Трансформатор с 2 обмотками. Здесь работает правило «чем больше витков – тем лучше». Если обмоток больше, то не страшно. Просто они не будут задействованы. По сути подойдет любой импульсный трансформатор.
  2. Из розетки идет переменное питание. Зарядное устройство для автомобильного аккумулятора, сделанное своими руками, должно выдавать постоянное. На этот случай понадобится выпрямитель.
  3. Тестер. Мультиметр необходим для того, чтобы определить выходное напряжение. Оно должно быть ровно 12 вольт.
  4. Сделать зарядное устройство для аккумулятора невозможно без управления автоматикой. В противном случае аккумулятор может взорваться. Поэтому необходимо реле контроля напряжения.
  5. Понадобится регулировка тока. С этим справится переменный резистор. Желательно взять многооборотистый регулятор тока, чтобы подстройка была плавной.

Этого достаточно, чтобы собрать простое зарядное устройство.

Схема зарядного устройства для автомобильного аккумулятора

Чтобы собрать самодельное зарядное устройство нужны хотя бы навыки пайки, не более. Вот несколько схема зарядного устройства для автомобильного аккумулятора, которые можно собрать за пару часов.

Простые схемы

Вот 3 схемы простого зарядного устройства для автомобильного аккумулятора. Возможно, все необходимые комплектующие уже у вас есть или их можно купить за бесценок на барахолке.

С 1 диодом

Перед трансформатором ставится предохранитель на 1 ампер и выключатель для удобства. После трансформатора с одного вывода обмотки ставится диод, а с другого — предохранитель. В разрыв нужно поставить амперметр и вольтметр. Можно купить дешевые китайские тестеры, где только экран и провода. Можно задействовать советские стрелочные.

Схема автоматического зарядного не самая лучшая. Диод срезает нижнюю часть синуса, от чего пульсация получается неравномерной.

С диодным мостом

Для АКБ автомобиля этот вариант подходит лучше. ДМ – это уже полноценный выравниватель напряжения.

Зарядник для автомобильного аккумулятора собирается также, но вместо диода устанавливается мост. От его минуса провод идет на предохранитель после трансформатора.

Диодный мост можно купить или спаять самостоятельно. Для этого понадобится всего 4 диода. Схема выглядит так. Напряжение все еще пульсирующее, что не очень хорошо для аккумуляторов.

С диодным мостом и конденсатором

Вот как выглядит правильное трансформаторное зарядное устройство. Между плюсом и минусом ставится конденсатор на 25-50 вольт и 5000-6000 микрофарад.

Конденсатор принимает напряжение и отдает его, но уже выровненным и без пульсаций.

Схемы с регулировкой

Если хочется, чтобы зарядник для аккумулятора автомобиля, сделанный своими руками правильно работал, необходим регулятор. С этим справится обычный подстроечный (переменный) резистор на 4,7 килоома.

Также в схеме предусмотрено 3 транзистора. Их расположение и номер подписан, поэтому проблем не будет. Достаточно прийти в радиомагазин и показать наименования. Они необходимы, чтобы резистор работал корректно.

Транзисторам необходимо хотя бы пассивное охлаждение, поэтому к их радиаторам лучше прикрепить алюминиевую пластину или поставить кулер.

Замечание. На схеме в разрыв транзистора П210 и вторым предохранителем установлен амперметр. С регулировкой тока и напряжения в нем нет необходимости, так как подстроить нужно только вольтаж. Поэтому на его место лучше поставить вольтметр.

Подробное видео можно посмотреть ниже.

Порядок сборки зарядного устройства для автомобильного аккумулятора

По рассмотреть, как сделать зарядное устройство для авто. Для новичка вполне подойдет эта схема. Она была рассмотрена ранее. Как ее усовершенствовать – написано выше.

Для начала понадобится раздобыть трансформатор. В радиоаппаратуре и старых магнитофонах можно найти неплохой ТС-180-2. Он состоит из 4 обмоток. Нужно соединить на первичке выводы 1 и 1, а на вторичке 9 номера. То есть, если соединить 4 обмотки в 2 последовательно, получится двухобмоточный трансформатор с напряжением в 13,6 вольт, что и требуется для нормальной работы ЗУ. К выводам № 2 нужно припаять сетевой шнур.

Как подключить зарядное устройство к аккумулятору автомобиля? Просто нужно диодный мост соединить проводами с 10 выводами. В разрыв стоит поставить амперметр с ограничением 15 ампер.

В цепь амперметра подпаивается регулятор напряжения. Между выводами с трансформатора нужно поставить вольтметр.

Чтобы защитить автоматическое зарядного устройства для автомобильных аккумуляторов, нужно поставить предохранители. Один со стороны АКБ (10 А), второй на входе в трансформатор (0,5А).

Не стоит сразу ставить высокий ток. Для перестраховки на зарядном устройстве нужно ставить невысокий ток (от 1А), а затем постепенно повышать до 9-10А. Когда АКБ будет заряжен, амперметр будет показывать около 1 ампера. Это значит, что зарядное устройство можно отключать.

Автозарядка из блока питания

Самодельное подзарядное устройство можно сделать и из БП от компьютера. Придется его немного доработать, зато получается хорошее, почти заводское ЗУ. Возможно, блок питания можно найти в закромах.

В большинстве своем, БП построены на базе ШИМ модуля TL494. Он идеально подходит для автомобильных зарядок.

Далее нужно просто действовать по инструкции:

  1. Все провода, кроме желтых и черных, нужно обрезать.
  2. Спаиваем их между собой: желтые с желтыми, черные с черными.
  3. На контроллере нужно перерезать дорожки, которые идут к пинам: 1, 14, 15, 16.
  4. В корпусе необходимо сделать 2 отверстия под подстроечные резисторы (10 и 4,4 килоом).
  5. Остается только собрать эту схему. Разводить плату не нужно, все делается навесным монтажом.

В автоматическом зарядном устройстве, сделанном своими руками, не помешает мультиметр, который нужно врезать в корпус БП.

 

Зардные устройства – Самоделкин – сделай сам своими руками

Главная » Зардные устройства



Раздел сайта “электроника схемы” содержит большое количество схем приборов, собранных на возможных открытых источниках интернета. Приборы, которые непременно будут вам полезны, приборы на все случаи жизни и для каждого, их можно сделать своими руками. В инструкциях по сборке подробно описан монтаж, приведены схемы, фотографии. Прочитав инструкции, вам будет намного проще собирать те или иные приборы. В этом разделе вы найдете схемы раций, блоков питания, преобразователей напряжения 12в 220в, инверторы, автомобильны, радиотехнические, и другие полезные схемы. Все что вам потребуется для сбора устройств – это паяльник и немного терпения.



      

Предлагаю несложное автоматическое зарядное устройство для аккумуляторных батарей, в схеме которого использована идея, опубликованная в сборнике “В помощь радиолюбителю” (ВРЛ) N100, c.91-94. Зарядка батарей прекращается при достижении на клеммах напряжения выше 12,5 В.

Преимуществом устройства является возможность автоматического … Читать дальше »



 Просмотров: [6996] | Рейтинг: 3.4/8

       Рассмотрим устройство для зарядки маломощных аккумуляторных батарей на 9 вольт, типа 15F8K. Схема позволяет заряжать батарею постоянным током около 12 мА, а по окончании – автоматически отключается.

   В ЗУ есть защита от короткого замыкания в нагрузке. Устройство представляет собой простейший источник тока, включает дополнительно индикатор опорного напряжения на светодиоде и автоматическую схе … Читать дальше »



 Просмотров: [8758] | Рейтинг: 5. 0/1

      

 

мы рассмотрели схему простого автономного зарядного для мобильной техники, работающего по принципу простого стабилизатора с понижением напряжения батарей. На этот раз попробуем собрать чуть более сложное, но более удобное ЗУ. Встроенные в миниатюрные мобильные мультимедийные устройства аккумуляторы обычно имеют небольшую ёмкость, и, как правило, рассчитаны на воспроизведение аудиозаписей в течение не более нескольких десятков часов при выключенном дисплее или на … Читать дальше »



 Просмотров: [7868] | Рейтинг: 5.0/3

      

 

Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулят … Читать дальше »



 Просмотров: [17906] | Рейтинг: 4.1/22

      

TOPы прекрасно подходят для простых гальванически развязанных преобразователей с питанием от 18 вольт и выше. Они при э … Читать дальше »



 Просмотров: [6658] | Рейтинг: 5. 0/1

      

Ключевой транзистор VT1, диод VD5 и силовые диоды VD1 – VD4 через слюдяные прокладки необходимо установить на об … Читать дальше »



 Просмотров: [10177] | Рейтинг: 4.3/3

      

Доброе время суток. Сегодня речь пойдет об ЗУ для АКБ. ( автоматическом зарядном устройстве для свинцово-кислотных аккумуляторных батарей) После поездки по городу на своей машине, я поставил ее в гараж и забыл выключить подфарники, и только на третье сутки когда нужно было срочно  ехать по делам, я обратил внимание что ак … Читать дальше »



 Просмотров: [9530] | Рейтинг: 3.9/7

      

Обратите внимание, приставка включается между зарядным устройством и аккумулятором. При этом провода от приставки к аккумулятору должны быть не тоньше проводов от зарядного устройства к приставке и желательно короче. Иначе пульсации зарядного устройства будут вмешиваться в нормальную работу приставки.

… Читать дальше »



 Просмотров: [8820] | Рейтинг: 3.0/2

      

 

Простое зарядное устройство с регулятором зарядного тока можно собрать по схеме приведенной на рис.1. Резистором R3 регулируют ток зарядки аккумуляторной батареи. Светодиод индицирует включение п … Читать дальше »



 Просмотров: [9877] | Рейтинг: 3.2/4

       У каждого автолюбителя есть зарядное устройство для АКБ 12В. Все эти старые зарядки с различным успехом работают и выполняют свои функции, но есть у них общий недостаток – слишком большие габариты и вес. Это не удивительно, ведь один только силовой трансформатор на 200 ватт может весить до … Читать дальше »


 Просмотров: [15859] | Рейтинг: 3.6/20

Схема автомат зу


Автоматическое зарядное устройство 12 В

Это очень простая схема приставки к вашему уже имеющемуся зарядному устройству. Которая будет контролировать напряжение заряда аккумуляторной батареи и при достижении выставленного уровня – отключать его от зарядника, тем самым предотвращая перезарядку аккумулятора.
Это устройство не имеет абсолютно никаких дефицитных деталей. Вся схема построена всего на одном транзисторе. Имеет светодиодные индикаторы, отображающие состояние: идет зарядка или батарея заряжена.

Кому пригодятся это устройство?


Такое устройство обязательно пригодится автомобилистам. Тем у кого есть не автоматическое зарядное устройство. Это приспособление сделает из вашего обычного зарядного устройства – полностью автоматический зарядник. Вам больше не придется постоянного контролировать зарядку вашей батареи. Все что нужно будет сделать, это поставить аккумулятор заряжаться, а его отключение произойдет автоматически, только после полной зарядки.

Схема автоматического зарядного устройства



Вот собственно и сама схема автомата. Фактически это пороговое реле, которое срабатывает при превышении определенного напряжения. Порог срабатывания устанавливается переменным резистором R2. Для полностью заряженного автомобильного аккумулятора он обычно равен – 14,4 В.
Схему можете скачать здесь – http://www.mediafire.com/file/0ldtxs4ma6mt2q2/12V-Auto-Cut-Off-Charger_circuit_By_hawkar_Fariq.pdf Источник: https://sdelaysam-svoimirukami.ru/?do=lastcomments

Печатная плата



Как делать печатную плату, решать Вам. Она не сложная и поэтому ее запросто можно накидать на макетной плате. Ну или можно заморочиться и сделать на текстолите с травлением.

Настройка


Если все детали исправные настройка автомата сводиться только к выставлению порогового напряжения резистором R2. Для этого подключаем схему к зарядному устройству, но аккумулятор пока не подключаем. Переводим резистор R2 в крайнее нижнее положение по схеме. Устанавливаем выходное напряжение на заряднике 14,4 В. Затем медленно вращаем переменный резистор до тех пор, пока не сработает реле. Все настроено.
Поиграемся с напряжением, чтобы убедиться что приставка надежно срабатывает при 14,4 В. После этого ваш автоматический зарядник готов к работе.

Смотрите видео работы зарядного устройства



В этом видео вы можете подробно посмотреть процесс всей сборки, регулировки и испытания в работе.
Original article in English

sdelaysam-svoimirukami.ru

АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ

   Автоматическое зарядное устройство предназначено для зарядки и десульфатации 12-ти вольтовых АКБ ёмкостью от 5 до 100 Ач и оценки уровня их заряда. Зарядное имеет защиту от переполюсовки и от короткого замыкания клемм. В нём применено микроконтроллерное управление, благодаря чему осуществляются безопасные и оптимальные алгоритмы зарядки: IUoU или IUIoU, с последующей дозарядкой до полного уровня зарядки. Параметры зарядки можно подстроить под конкретный аккумулятор вручную или выбрать уже заложенные в управляющей программе. 

   Основные режимы работы устройства для заложенных в программу предустановок. 

 >>
Режим зарядки – меню «Заряд». Для аккумуляторов емкостью от 7Ач до 12Ач по умолчанию задан алгоритм IUoU. Это значит:

первый этап – зарядка стабильным током 0.1С до достижения напряжения14.6В 

второй этап -зарядка стабильным напряжением 14.6В, пока ток не упадет до 0,02С 

третий этап – поддержание стабильного напряжения 13.8В, пока ток не упадет до 0.01С. Здесь С – ёмкость батареи в Ач. 

четвёртый этап – дозарядка. На этом этапе отслеживается напряжение на АКБ. Если оно падает ниже 12.7В, включается заряд с самого начала. 

   Для стартерных АКБ применяем алгоритм IUIoU. Вместо третьего этапа включается стабилизация тока на уровне 0.02C до достижения напряжения на АКБ 16В или по прошествии времени около 2-х часов. По окончанию этого этапа зарядка прекращается и начинается дозарядка.

 >> Режим десульфатации — меню «Тренировка». Здесь осуществляется тренировочный цикл: 10 секунд – разряд током 0,01С, 5 секунд – заряд током 0.1С. Зарядно-разрядный цикл продолжается, пока напряжение на АКБ не поднимется до 14.6В. Далее – обычный заряд. 

 >>
Режим теста батареи позволяет оценить степень разряда АКБ. Батарея нагружается током 0,01С на 15 секунд, затем включается режим измерения напряжения на АКБ. 

 >> Контрольно-тренировочный цикл. Если предварительно подключить дополнительную нагрузку и включить режим «Заряд» или «Тренировка», то в этом случае, сначала будет выполнена разрядка АКБ до напряжения 10.8В, а затем включится соответствующий выбранный режим. При этом измеряются ток и время разряда, таким образом, подсчитывается примерная емкость АКБ. Эти параметры отображаются на дисплее после окончания зарядки (когда появится надпись «Батарея заряжена») при нажатии на кнопку «выбор». В качестве дополнительной нагрузки можно применить автомобильную лампу накаливания. Ее мощность выбирается, исходя из требуемого тока разряда. Обычно его задают равным 0.1С – 0.05С (ток 10-ти или 20-ти часового разряда). 

Схема зарядного автомата для 12В АКБ



Принципиальная схема автоматического автомобильного ЗУ



Рисунок платы автоматического автомобильного ЗУ

   Основа схемы – микроконтроллер AtMega16. Перемещение по меню осуществляется кнопками «влево», «вправо», «выбор». Кнопкой «ресет» осуществляется выход из любого режима работы ЗУ в главное меню. Основные параметры зарядных алгоритмов можно настроить под конкретный аккумулятор, для этого в меню есть два настраиваемых профиля. Настроенные параметры сохраняются в энергонезависимой памяти.

   Чтобы попасть в меню настроек нужно выбрать любой из профилей, нажать кнопку «выбор», выбрать «установки», «параметры профиля», профиль П1 или П2. Выбрав нужный параметр, нажимаем «выбор». Стрелки «влево» или «вправо» сменятся на стрелки «вверх» или «вниз», что означает готовность параметра к изменению. Выбираем нужное значение кнопками «влево» или «вправо», подтверждаем кнопкой «выбор». На дисплее появится надпись «Сохранено», что обозначает запись значения в EEPROM. Более подробно о настройке читайте на форуме.

   Управление основными процессами возложено на микроконтроллер. В его память записывается управляющая программа, в которой и заложены все алгоритмы. Управление блоком питания осуществляется с помощью ШИМ с вывода PD7 МК и простейшего ЦАП на элементах R4, C9, R7, C11. Измерение напряжения АКБ и зарядного тока осуществляется средствами самого микроконтроллера – встроенным АЦП и управляемым дифференциальным усилителем. Напряжение АКБ на вход АЦП подается с делителя R10 R11. 


   Зарядный и разрядный ток измеряются следующим образом. Падение напряжения с измерительного резистора R8 через делители R5 R6 R10 R11 подается на усилительный каскад, который находится внутри МК и подключен к выводам PA2, PA3. Коэффициент его усиления устанавливается программно, в зависимости от измеряемого тока. Для токов меньше 1А коэффициент усиления (КУ) задается равным 200, для токов выше 1А КУ=10. Вся информация выводится на ЖКИ, подключенный к портам РВ1-РВ7 по четырёхпроводной шине. 

   Защита от переполюсовки выполнена на транзисторе Т1, сигнализация неправильного подключения – на элементах VD1, EP1, R13. При включении зарядного устройства в сеть транзистор Т1 закрыт низким уровнем с порта РС5, и АКБ отключена от зарядного устройства. Подключается она только при выборе в меню типа АКБ и режима работы ЗУ. Этим обеспечивается также отсутствие искрения при подключении батареи. При попытке подключить аккумулятор в неправильной полярности сработает зуммер ЕР1 и красный светодиод VD1, сигнализируя о возможной аварии. 

   В процессе заряда постоянно контролируется зарядный ток. Если он станет равным нулю (сняли клеммы с АКБ), устройство автоматически переходит в главное меню, останавливая заряд и отключая батарею. Транзистор Т2 и резистор R12 образуют разрядную цепь, которая участвует в зарядно-разрядном цикле десульфатирующего заряда и в режиме теста АКБ. Ток разряда 0.01С задается с помощью ШИМ с порта PD5. Кулер автоматически выключается, когда ток заряда падает ниже 1,8А. Управляет кулером порт PD4 и транзистор VT1.

О деталях схемы автоматической зарядки


   Резистор R8 – керамический или проволочный, мощностью не менее 10 Вт, R12 – тоже 10Вт. Остальные – 0.125Вт. Резисторы R5, R6, R10 и R11 нужно применять с допустимым отклонением не хуже 0.5%. От этого будет зависеть точность измерений. Транзисторы T1 и Т1 желательно применять такие, как указаны на схеме. Но если придется подбирать замену, то необходимо учитывать, что они должны открываться напряжением на затворе 5В и, конечно же, должны выдерживать ток не ниже 10А. Подойдут, например, транзисторы с маркировкой 40N03GР, которые иногда используются в тех же БП формата АТХ, в цепи стабилизации 3.3В. 


   Диод Шоттки D2 можно взять из того же БП, из цепи +5В, которая у нас не используется. Элементы D2,Т1 иТ2 через изолирующие прокладки размещаются на одном радиаторе площадью 40 квадратных сантиметров. Звукоизлучатель – со встроенным генератором, на напряжение 8-12 В, громкость звучания можно подрегулировать резистором R13. 

   ЖКИ – Wh3602 или аналогичный, на контроллере HD44780, KS0066 или совместимых с ними. К сожалению, эти индикаторы могут иметь разное расположение выводов, так что, возможно, придется разрабатывать печатную плату под свой экземпляр 


   Налаживание заключается в проверке и калибровке измерительной части. Подключаем к клеммам аккумулятор, либо блок питания напряжением 12-15В и вольтметр. Заходим в меню «Калибровка». Сверяем показания напряжения на индикаторе с показаниями вольтметра, при необходимости, корректируем кнопками «<» и «>». Нажимаем «Выбор». 


   Далее идет калибровка по току при КУ=10. Теми же кнопками «<» и «>» нужно выставить нулевые показания тока. Нагрузка (аккумулятор) при этом автоматически отключается, так что ток заряда отсутствует. В идеальном случае там должны быть нули или очень близкие к нулю значения. Если это так, это говорит о точности резисторов R5, R6, R10, R11, R8 и хорошем качестве дифференциального усилителя. Нажимаем «Выбор». Аналогично – калибровка для КУ=200. «Выбор». На дисплее отобразится «Готово» и через 3 секунды устройство перейдет в главное меню. Поправочные коэффициенты хранятся в энергонезависимой памяти. Здесь стоит отметить, что если при самой первой калибровке значение напряжения на ЖКИ сильно отличается от показаний вольтметра, а токи при каком – либо КУ сильно отличаются от нуля, нужно подобрать другие резисторы делителя R5, R6, R10, R11, R8, иначе в работе устройства возможны сбои. При точных резисторах поправочные коэффициенты равны нулю или минимальны. На этом наладка заканчивается. И в заключение. Если же напряжение или ток зарядного устройства на каком-то этапе не возрастает до положенного уровня или устройство «выскакивает» в меню, нужно ещё раз внимательно проверить правильность доработки блока питания. Возможно, срабатывает защита.

Переделка БП АТХ под зарядное устройство



Схема электрическая доработки стандартного ATX

   В схеме управления лучше использовать прецизионные резисторы, как указано в описании. При использовании подстроечников параметры не стабильные. проверено на собственном опыте. При тестировании данного ЗУ проводил полный цикл разрядки и зарядки АКБ (разряд до 10,8В и заряд в режиме тренировки, потребовалось около суток). Нагревание ATX БП компьютера не более 60 градусов, а модуля МК еще меньще.


   Проблем в настройке не было, запустилось сразу, только нужна подстройка под максимально точные показания. После демострации работы другу-автолюбителю этого зарядного автомата, сразу заявка поступила на изготовление еще одного экземпляра. Автор схемы – Slon, сборка и тестирование – sterc.

   Форум по АЗУ на МК

   Обсудить статью АВТОМАТИЧЕСКОЕ ЗАРЯДНОЕ УСТРОЙСТВО АВТОМОБИЛЬНОЕ


radioskot.ru

Полностью автоматическое зарядное устройство для аккумуляторов

Привет всем, в этой статье я расскажу, как можно сделать простой импульсный стабилизатор, который может быть использован в качестве автомобильной зарядки, источника питания или лабораторного блока питания.Эта схема отлично заточена под зарядку автомобильных аккумуляторов с напряжением 12 вольт, но стабилизатор универсальный, поэтому им можно заряжать любые типы аккумуляторов, как автомобильных, так и всяких других, даже литий-ионных, если они снабжены платой балансировки.Схема зарядного устройства состоит из 2-х частей, блока питания и стабилизатора, начнём пожалуй со стабилизатора.Стабилизатор построен на популярного шим-контроллера TL494, позволит получить выходное напряжение от 2-х до 20 вольт, с возможностью ограничения выходного тока от 1 до 6 ампер, при желании ток можно поднять до 10 ампер.Процесс заряда будет осуществляться методом стабильного тока и напряжения, это наилучший способ для качественной и безопасной зарядки аккумуляторов. По мере заряда аккумулятора ток в цепи будет падать и в конце процесса будет равен 0, следовательно нет опасности перегрева аккумулятора или зарядного устройства, так что процесс не требует человеческого вмешательства.Возможно также использования этого стабилизатора в качестве лабораторного источника питания.

Теперь несколько о самой схеме

Это импульсный стабилизатор с шим-управлением, то есть КПД куда больше, чем у обычных линейных схем. Транзистор работает в ключевом режиме управляясь шим-сигналом, это снижает нагрев силового ключа. Основной транзистор управляется маломощным ключом, такое включение обеспечивает большое усиление по току и разгружает микросхему ШИМ.По сути это аналог составного транзистора. Транзистор нужен с током на менее 10 ампер, возможно также использование составных транзисторов прямой проводимости. Регулировка выходного напряжения осуществляется с помощью переменного резистора R9, для наиболее точной настройки желательно использовать многооборотный резистор, притом очень советую использовать резистор с мощностью 0.5 ватт.Нижним резистором можно установить верхнюю границу выходного напряжения, а подбором соотношения резисторов R1, R3, устанавливается нижняя граница выходного напряжения.Для более быстрой и точной подстройки этот делитель может быть заменён на многооборотный подстроечный резистор сопротивлением от 10 до 20 ком. За ограничение тока отвечает переменный резистор R6, верхнюю границу выходного тока можно изменить подбором резистора R4.

Обратите внимание на чёткое срабатывание функции ограничения, даже при коротком замыкании, ток не более 6.5 ампер. Регулируется довольно плавно, если использовать многооборотный резистор.

Токовый шунт или датчик тока…, тут хотел бы обратить ваше внимание на то, что входные и выходные земли разделяются шунтом, обратите на это внимание при сборке. В качестве шунта можно использовать отрезок нихромовый проволоки с нужным сопротивлением. В моём же варианте было использование snd-шунты, которые можно найти на платах защиты аккумуляторов от ноутбука. Номинальное сопротивление шунта 0.5 ом +- 50%. При токе в 6 ампер такой шунт справляется очень даже не плохо.Силовой дроссель…  Сердечник взят из выходного дросселя групповой стабилизации компьютерного блока питания, обмотка состоит из 30 витков, намотана двойным проводом, диаметр каждого составляет 1 мм. Тут важен один момент, количество нужно будет подобрать в зависимости от рабочей частоты генератора и материалов магнитопровода. Не верно подобранный дроссель приведёт к сильному нагреву силового ключа при больших токах, это легко понять по характерному свисту при токах в 2-3 ампера, если свист присутствует, то нужно увеличить рабочую частоту генератора.Для этих целей сопротивление резистора R2 снижается до 1 ком и последовательно ему подключается многооборотный подстроечный резистор на 10 ком, таким образом частоту генератора можно менять в пределах от 50 до 550 кГц.

Введите электронную почту и получайте письма с новыми поделками.

После настройки на нужную частоту, подстроечный резистор выпаивается, измеряется его сопротивление, прибавляется к полученному числу сопротивление дополнительного резистора в 1 ком и сборка заменяется одним постоянным резистором близкого сопротивления. Этим настройка завершена…

Силовой диод VD1 очень советую — шотки, с напряжение не менее 60 вольт и током от 10 ампер. При токах в 3-4 ампера тепловыделения почти не наблюдается, если же собираетесь гонять схему на больших токах, то нужен радиатор. Возможно и применение обычных импульсных диодов с нужным током.В качестве источника питания может быть задействован либо импульсный блок питания, либо сетевой трансформатор дополненный диодным выпрямителем и сглаживающим конденсатором. В обоих случаях постоянное напряжение с источника питания должно быть не менее 16\17 вольт и ток до 10 ампер.

Я использовал обыкновенный трансформатор с диодным мостом. Ну вот вроде и всё, всем спасибо за внимание, печатка находиться в архиве.Архив к статье; скачать…

Автор; АКА Касьян

xn--100–j4dau4ec0ao.xn--p1ai

Зарядное устройство автомат для автомобильных АКБ

Это зарядное устройство верой и правдой служит уже года 4, причём оно в отличии от многих других самодельных и промышленных автозарядок имеет несколько преимуществ, которые и сподвигли на создание сего девайса. Во-первых простота и надёжность схемы (без всяких процессоров) и наглядный простой светодиодный индикатор — полоска по вольтам. Псевдо-аналоговый вольтметр на 12 светодиодах был сделан на микросхеме UAA180, которую выпаял с какого-то тахометра. А к контактам АС подключаем трансформатор ~14 В / 5 А.

Схема автоматической зарядки для батарей авто

Автоматизация зарядки основана на так называемом компараторе — система, взятая из старых схем по заряду батареек + немного собственных модификаций. Задача модуля состоит в том, чтобы управлять реле (с контактами на 10 А), которое в свою очередь подает 12 В выпрямленного напряжения от основной вторичной обмотки на свинцовый АКБ.

Контроллер имеет вентилятор на достойном кулере из старого источника питания ПК. В качестве датчика температуры использовались 4 диода 1N4148, соединенных последовательно, получив изменение напряжения примерно 10 мВ / С. Установлен порог переключения примерно 40C, но вентилятор редко включается даже летом.

Корпус готовый из набора. Лицевая панель напечатана на желтой клейкой бумаге, на которой также прикрепил самоклеющуюся пленку. Решение оказалось надёжным и сохранилось в течение 4-х лет в самых трудных условиях (гаражи, подвалы) без повреждений. Под трансформатором, на задней панели и в верхней части, просверлил несколько десятков вентиляционных отверстий. Вентилятор был установлен таким образом, чтобы он вытягивал теплый воздух наружу. В течение многих часов работы корпус зарядного лишь слегка теплый.

Принцип действия автоматического ЗУ

Выпрямитель для заряда АКБ имеет 3 режима работы, выбранных переключателем:

  1. Автоматическая зарядка — заряд начнется только после подключения батареи, если ее напряжение будет больше 10 В и закончится, когда оно достигнет 15 В;
  2. Нет зарядки — переключатель в среднем положении — полезен для замера фактического напряжения батареи;
  3. Непрерывная зарядка — на клеммах постоянно подается напряжение, независимо от того, подключена ли батарея и каково ее реальное напряжение.

Вольтметр имеет нижнюю пороговую настройку измеряемого напряжения и верхнюю. Там использованы потенциометры, чтобы точно установить пороговые значения. Диапазон измеряемого напряжения составляет 6 вольт, поэтому 6 [В] / 12 [LED] = 0,5 В / LED, и на практике оно так и есть. Задача вольтметра — показать, какое примерно напряжение находится на клеммах аккумулятора.

За последние годы это самодельное зарядное устройство зарядило десятки батарей, в том числе у соседей по гаражному массиву. Начиная от новых 80 Ач — до старых 36 Ач и собрало очень лестные отзывы. Несмотря на отсутствие регулировки тока зарядки, схема работает отлично. Чем выше емкость аккумулятора, тем выше начальный зарядный ток (низкое внутреннее сопротивление батареи). Самый высокий ток составляет 6 А при зарядке аккумулятора емкостью 80 Ач. Типичный начальный ток 3-5 А, в зависимости от типа батареи. По завершении процесса система отключается, что слышно щелчком реле.

Какой вольтаж должен быть на авто АКБ

Обратите внимание что газы (то есть разделение воды на кислород и водород), являются признаком окончания зарядки аккумулятора, этот процесс начинается когда напряжение батареи превышает 14,4 В (2,4 В на ячейку). Производители аккумуляторов рекомендуют зарядку до 15 В (2,5 В на ячейку). Превышение этого напряжения может привести к повреждению аккумулятора. Также, по словам производителей, напряжение в установке автомобиля должно составлять 13,9-14,5 В. В конце зарядки ток составляет около 1 А.

Превышение значения 14,5 В приводит к довольно быстрому увеличению электролиза, в случае неоткрытых батарей — это реальная проблема. Для AGM и GEL еще хуже, потому что, если системы рекомбинации не справятся, то даже инвазивная заливка не является вариантом. Возможен уход активной массы и проблемы с АКБ в более позднее время, если не сразу.

Типичный автомобильный аккумулятор, состоящий из 6 ячеек, имеет:

  • электродвижущая сила: приблизительно 12,6 В
  • номинальное напряжение одной ячейки: 2,105 В
  • минимальное зарядное напряжение 10,8 В
  • после окончания заряда минимум: 13,9 В, максимум 14,5 В
  • коэффициент саморазряда аккумулятора : 3-20% в месяц
  • типичный зарядный ток 1 / 10 С
  • долговечность: 500 — 800 циклов.

Напряжение батареи должно быть измерено через 12 часов после зарядки, чтобы обеспечить точные данные. После полной зарядки напряжение быстро падает до 13,2 В, а затем медленно до 12,6 вольт. В случае глубокой разрядки аккумулятора, целесообразно зарядить его постоянным током до напряжения 16 вольт.

2shemi.ru

Автоматическое ЗУ своими руками — DRIVE2

Однажды зимой сел аккумулятор и я решил сделать АЗУ, можно было бы купить новый, но для меня это не интересно))) Нашел в интернете схему и немного переделал её, а именно добавил сигнальную арматуру, кулер для охлаждения, предохранители на 10А, двухполюсный выключатель, вольтметр с амперметром и получилась такая схемка)))

Полный размер


А вот и готовое АЗУ

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Полный размер

Ну и немного фото АЗУ в действии

Полный размер

Полный размер

Полный размер

АКБ заряжен(но не полностью), поэтому ток зарядки не большой


Тест с автомобильной лампочкой 55Вт

Полный размер

Полный размер

Список деталей:
R1 = 4,7 кОм (не меньше 2Вт)
R2 = 10K подстроечный (не меньше 2Вт)
T1 = BC547B (или аналог)
Реле = 12В, 400 Ом, SPDT (я использовал обычное реле от авто на 70А(такое нашел у себя))
TR1 = напряжение вторичной обмотки 14 В, ток 1/10 от емкости АКБ;
Диодный мост = на ток равный номинальному току трансформатора (я использовал на 50А, по той же причине как с реле)
Диоды D1, D2 и D3 = 1N4007;
C1 = 100uF/25V.

www.drive2.ru

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для консульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т.д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером. Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Введите электронную почту и получайте письма с новыми поделками.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

xn--100–j4dau4ec0ao.xn--p1ai

Самодельное зарядное устройство для аккумулятора автомобиля

На фотографии представлено самодельное автоматическое зарядное устройство для зарядки автомобильных аккумуляторов на 12 В током величиной до 8 А, собранного в корпусе от милливольтметра В3-38.

Почему нужно заряжать аккумулятор автомобиля


зарядным устройством

АКБ в автомобиле заряжается с помощью электрического генератора. Для защиты электрооборудования и приборов от повышенного напряжения, которое вырабатывает автомобильным генератором, после него устанавливают реле-регулятор, который ограничивает напряжение в бортовой сети автомобиля до 14,1±0,2 В. Для полной же зарядки аккумулятора требуется напряжение не менее 14,5 В.

Таким образом, полностью зарядить АКБ от генератора невозможно и перед наступлением холодов необходимо подзаряжать аккумулятор от зарядного устройства.

Анализ схем зарядных устройств

Для зарядки автомобильного аккумулятора служат зарядные устройства. Его можно купить готовое, но при желании и небольшом радиолюбительском опыте можно сделать своими руками, сэкономив при этом немалые деньги.

Схем зарядных устройств автомобильных аккумуляторов в Интернете опубликовано много, но все они имеют недостатки.

Зарядные устройства, сделанные на транзисторах, выделяют много тепла, как правило, боятся короткого замыкания и ошибочного подключения полярности аккумулятора. Схемы на тиристорах и симисторах не обеспечивают требуемой стабильность зарядного тока и издают акустический шум, не допускают ошибок подключения аккумулятора и излучают мощные радиопомехи, которые можно уменьшить, одев на сетевой провод ферритовое кольцо.

Привлекательной выглядит схема изготовления зарядного устройства из блока питания компьютера. Структурные схемы компьютерных блоков питания одинаковые, но электрические разные, и для доработки требуется высокая радиотехническая квалификация.

Интерес у меня вызвала конденсаторная схема зарядного устройства, КПД высокий, тепла не выделяет, обеспечивает стабильный ток заряда вне зависимости от степени заряда аккумулятора и колебаний питающей сети, не боится коротких замыканий выхода. Но тоже имеет недостаток. Если в процессе заряда пропадет контакт с аккумулятором, то напряжение на конденсаторах возрастает в несколько раз, (конденсаторы и трансформатор образуют резонансный колебательный контур с частотой электросети), и они пробиваются. Надо было устранить только этот единственный недостаток, что мне и удалось сделать.

В результате получилась схема зарядного устройства без выше перечисленных недостатков. Более 16 лет заряжаю ним любые кислотные аккумуляторы на 12 В. Устройство работает безотказно.

Принципиальная схема автомобильного зарядного устройства

При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов.

Если схема для повторения Вам показалась сложной, то можно собрать более простую, работающую на таком же принципе, но без функции автоматического отключения при полной зарядке аккумулятора.

Схема ограничителя тока на балластных конденсаторах

В конденсаторном автомобильном зарядном устройстве регулировка величины и стабилизация силы тока заряда аккумулятора обеспечивается за счет включения последовательно с первичной обмоткой силового трансформатора Т1 балластных конденсаторов С4-С9. Чем больше емкость конденсатора, тем больше будет ток заряда аккумулятора.

Практически это законченный вариант зарядного устройства, можно подключить после диодного моста аккумулятор и зарядить его, но надежность такой схемы низкая. Если нарушится контакт с клеммами аккумулятора, то конденсаторы могут выйти из строя.

Емкость конденсаторов, которая зависит от величины тока и напряжения на вторичной обмотке трансформатора, можно приблизительно определить по формуле, но легче ориентироваться по данным таблицы.

Для регулировки тока, чтобы сократить количество конденсаторов, их можно подключать параллельно группами. У меня переключение осуществляется с помощью двух галетного переключателя, но можно поставить несколько тумблеров.

Схема защиты

от ошибочного подключения полюсов аккумулятора

Схема защиты от переполюсовки зарядного устройства при неправильном подключении аккумулятора к выводам выполнена на реле Р3. Если аккумулятор подключен неправильно, диод VD13 не пропускает ток, реле обесточено, контакты реле К3.1 разомкнуты и ток не поступает на клеммы аккумулятора. При правильном подключении реле срабатывает, контакты К3.1 замыкаются, и аккумулятор подключается к схеме зарядки. Такую схему защиты от переполюсовки можно использовать с любым зарядным устройством, как транзисторным, так и тиристорным. Ее достаточно включить в разрыв проводов, с помощью которых аккумулятор подключается к зарядному устройству.

Схема измерения тока и напряжения зарядки аккумулятора

Благодаря наличию переключателя S3 на схеме выше, при зарядке аккумулятора есть возможность контролировать не только величину тока зарядки, но и напряжение. При верхнем положении S3, измеряется ток, при нижнем – напряжение. Если зарядное устройство не подключено к электросети, то вольтметр покажет напряжение аккумулятора, а когда идет зарядка аккумулятора, то напряжение зарядки. В качестве головки применен микроамперметр М24 с электромагнитной системой. R17 шунтирует головку в режиме измерения тока, а R18 служит делителем при измерении напряжения.

Схема автоматического отключения ЗУ

при полной зарядке аккумулятора

Для питания операционного усилителя и создания опорного напряжения применена микросхема стабилизатора DA1 типа 142ЕН8Г на 9В. Микросхема это выбрана не случайно. При изменении температуры корпуса микросхемы на 10º, выходное напряжение изменяется не более чем на сотые доли вольта.

Система автоматического отключения зарядки при достижении напряжения 15,6 В выполнена на половинке микросхемы А1.1. Вывод 4 микросхемы подключен к делителю напряжения R7, R8 с которого на него подается опорное напряжение 4,5 В. Вывод 4 микросхемы подключен к другому делителю на резисторах R4-R6, резистор R5 подстроечный для установки порога срабатывания автомата. Величиной резистора R9 задается порог включения зарядного устройства 12,54 В. Благодаря применению диода VD7 и резистора R9, обеспечивается необходимый гистерезис между напряжением включения и отключения заряда аккумулятора.

Работает схема следующим образом. При подключении к зарядному устройству автомобильного аккумулятора, напряжение на клеммах которого меньше 16,5 В, на выводе 2 микросхемы А1.1 устанавливается напряжение достаточное для открывания транзистора VT1, транзистор открывается и реле P1 срабатывает, подключая контактами К1.1 к электросети через блок конденсаторов первичную обмотку трансформатора и начинается зарядка аккумулятора.

Как только напряжение заряда достигнет 16,5 В, напряжение на выходе А1.1 уменьшится до величины, недостаточной для поддержания транзистора VT1 в открытом состоянии. Реле отключится и контакты К1.1 подключат трансформатор через конденсатор дежурного режима С4, при котором ток заряда будет равен 0,5 А. В таком состоянии схема зарядного устройства будет находиться, пока напряжение на аккумуляторе не уменьшится до 12,54 В. Как только напряжение установится равным 12,54 В, опять включится реле и зарядка пойдет заданным током. Предусмотрена возможность, в случае необходимости, переключателем S2 отключить систему автоматического регулирования.

Таким образом, система автоматического слежения за зарядкой аккумулятора, исключит возможность перезаряда аккумулятора. Аккумулятор можно оставить подключенным к включенному зарядному устройству хоть на целый год. Такой режим актуален для автолюбителей, которые ездят только в летнее время. После окончания сезона автопробега можно подключить аккумулятор к зарядному устройству и выключить только весной. Даже если в электросети пропадет напряжение, при его появлении зарядное устройство продолжит заряжать аккумулятор в штатном режиме

Принцип работы схемы автоматического отключения зарядного устройства в случае превышения напряжения из-за отсутствия нагрузки, собранной на второй половинке операционного усилителя А1.2, такой же. Только порог полного отключения зарядного устройства от питающей сети выбран 19 В. Если напряжение зарядки менее 19 В, на выходе 8 микросхемы А1.2 напряжение достаточное, для удержания транзистора VT2 в открытом состоянии, при котором на реле P2 подано напряжение. Как только напряжение зарядки превысит 19 В, транзистор закроется, реле отпустит контакты К2.1 и подача напряжения на зарядное устройство полностью прекратится. Как только будет подключен аккумулятор, он запитает схему автоматики, и зарядное устройство сразу вернется в рабочее состояние.

Конструкция автоматического зарядного устройства

Все детали зарядного устройства размещены в корпусе миллиамперметра В3-38, из которого удалено все его содержимое, кроме стрелочного прибора. Монтаж элементов, кроме схемы автоматики, выполнен навесным способом.

Конструкция корпуса миллиамперметра, представляет собой две прямоугольные рамки, соединенные четырьмя уголками. В уголках с равным шагом сделаны отверстия, к которым удобно крепить детали.

Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. Силовой трансформатор ТН61-220 закреплен на четырех винтах М4 на алюминиевой пластине толщиной 2 мм, пластина в свою очередь прикреплена винтами М3 к нижним уголкам корпуса. На этой пластине установлен и С1. На фото вид зарядного устройства снизу.

К верхним уголкам корпуса закреплена тоже пластина из стеклотекстолита толщиной 2 мм, а к ней винтами конденсаторы С4-С9 и реле Р1 и Р2. К этим уголкам также прикручена печатная плата, на которой спаяна схема автоматического управления зарядкой аккумулятора. Реально количество конденсаторов не шесть, как по схеме, а 14, так как для получения конденсатора нужного номинала приходилось соединять их параллельно. Конденсаторы и реле подключены к остальной схеме зарядного устройства через разъем (на фото выше голубой), что облегчило доступ к другим элементам при монтаже.

На внешней стороне задней стенки установлен ребристый алюминиевый радиатор для охлаждения силовых диодов VD2-VD5. Тут также установлен предохранитель Пр1 на 1 А и вилка, (взята от

ydoma.info

Автоотключение любого ЗУ автомобиля при завершении зарядки, схема

Всем привет, сегодня рассмотрим несколько универсальных схем, которые позволят отключить зарядное устройство при полной зарядке аккумулятора, иными словами внедрением этих схем можно построить автоматическое зарядное устройство или доработать функцию автоотключения промышленной зарядки.

Сразу хочу пояснить один момент, если зарядное устройство работает по принципу стабильный ток — стабильное напряжение, то нет смысла использовать функцию автоотключения, поскольку естественным образом по мере заряда батареи ток в цепи будет падать и в конце заряда он равен нулю.Схемы, которые мы сегодня рассмотрим, предназначены для работы с автомобильными свинцово — кислотными аккумуляторами, хотя они могут работать с любыми зарядными устройствами, без всякой переделки последних.

Начнём с простых схем…

Первый вариант построен всего на одном транзисторе, переключающим элементом в схеме является реле с напряжением катушки 12 вольт.

Использованы те контакты, которые замкнуты без подачи питания на реле

Резистивный делитель или переменный резистор, задает нужное напряжение, смещение на базе транзистора, тот срабатывая подаёт питание на обмотку реле, вследствие чего реле включается размыкая контакт, который в состоянии покоя был замкнут и через который протекал ток заряда.Используя подстроечный резистор мы можем выставить то напряжение при котором сработает транзистор.

Для настройки схемы удобно использовать регулируемый источник питания, на котором нужно выставить напряжение около 13.5-13.7 вольт, что равноценно напряжению полностью заряженного автомобильного аккумулятора.

Затем медленно вращая подстроечный резистор добиваемся срабатывания транзистора, а следовательно и реле при выставленном напряжении.Теперь проверяем схему еще раз, допустим в начале заряда напряжение на аккумуляторе 12 вольт, по мере заряда оно увеличивается и по достижению порога 13.5 вольт реле срабатывает, отключив зарядное устройство от сети.

Кстати, можно подключить реле следующим образом, в этом случае зарядка не отключается от сети, а просто пропадает выходное напряжение и процесс заряда прекратиться, в этом случае контакты реле должны быть рассчитаны на токи в полтора раза больше максимального выходного тока зарядного устройства.

Транзистор буквально любой обратной проводимости, советую взять транзисторы средней мощности наподобие BD139, диоды в эмиттерной цепи транзистора тоже особо не критичны, ток потребления схемы всего 10-20 миллиампер, но схема имеет несколько недостатков.

Например, низкая помехоустойчивость, из-за которых возможно ложное срабатывание реле и невысокая точность работы, из-за отсутствия источника опорного напряжения и прочих стабилизирующих узлов.

Добавив в базовую цепь ключа стабилитрон, мы решим указанные проблемы и появится возможность довольно точно выставить нужное напряжение срабатывания.

Для настройки советую использовать многооборотный подстроечный резистор. Диод VD1 защищает транзистор от самоиндукции в случае размыкания реле.

Настраиваем схему точно так, как в первом варианте, лампочка имитирует процесс заряда и подключена вместо аккумулятора, при превышении определенного порога, реле срабатывает и лампа потухает.

Вторая схема построена на базе любого таймера NE555, этот вариант похож на предыдущие, микросхема NE555 в своей конструкции содержит два компаратора, пониженное опорное напряжение формирует стабилитрон, порог срабатывания устанавливается подстроечным резистором, как только напряжение на батарее будет равна пороговому, на выходе таймера получим высокий уровень, вследствие чего сработает транзистор.

В этом варианте использовать те контакты реле, которые находятся в разомкнутом состоянии без подачи питания. Во время настройки точку «А» размыкают от выходного контакта и подключают к плюсу зарядного устройства. К выходному контакту реле подключают лампу, второй вывод лампы подключают к массе питания.

В обеих схемах порог срабатывания можно выставить в пределах от 13.5 до 14 вольт, напряжение полностью заряженного автомобильного аккумулятора составляет от 12.6 до 12.8 вольт но при заведенном двигателе напряжение доходит до 14.5 вольт, так что небольшой перезаряд аккумулятора никак не повредит.

Аналогичную схему можно собрать на базе компаратора или операционного усилителя в компараторном включении, принцип работы тот же, что и в случае внедрения таймера NE555. В этой же статье, приведены наиболее простые и доступные варианты.

Все печатки в формате .lay можно скачать для повторения.

Автор; Ака Касьян

xn--100–j4dau4ec0ao.xn--p1ai

Схема самодельного зу для автомобильного аккумулятора

Канал “автомобильные аккумуляторы” представил простую и надежную схему зу для автомобильного акб. Не сложно повторить своими руками, собирается из доступных деталей. Эту схему разработал Сергей Власов.

Купить готовое устройство или радиодетали и модули можно в этом китайском магазине.

Все радиокомпоненты можно взять от старых телевизоров, радиоприемников. Можно заказать и купить, обойдется в 2-3 доллара. Возможно, на рынке дешевле, но надежность нередко вызывает сомнения. Бывали случаи, когда у пользователей портились автомобильные аккумуляторы.

Описание схемы

Схема состоит из 14 резисторов, 5 транзисторов, 2 стабилитронов, диода, потенциометра (часто в телевизорах встречается потенциометр на 10 килоом), подстроечного сопротивления. Нам понадобится тиристор Q 202 и тумблер. Для индикации тока амперметр, для напряжения – вольтметр.

Схема зу работает в двух режимах. Ручной и автоматический. Когда включаем ручной режим, выставляем ток 3 ампера заряда. Он постоянно душит 3 амперами, неважно какое время. Когда переключаем на автоматический заряд, выставляем тоже три ампера. Когда заряд аккумулятора доходит до установленного вами параметра, например 14,7 вольта, стабилитрон закрывается и прекращает заряд аккумулятора.

Понадобится 3 транзистора КТ 315. Два КТ 361. На двух КТ 315 собран триггер. На КТ 361 собран ключевой транзистор. Два транзистора работают как тиристоры. Дальше стоит конденсатор. На 0,47 микрофарада. Любой диод.
Проблема была найти три сопротивления. Два по 15 Ом, один на 9 Ом.
По ссылкам:

Скачать плату.
Схема зу.

остается распечатать и собрать себе такое же автомобильное зу.

Размеры печатной платы. 3,6x36x77 мм.

Чем хорошо это зарядное устройство?

Автоматический режим. Когда автор видеоролика заряжает свой аккумулятор в автомобиле, выставляет на минимум, установив 2 ампера. Можно спокойно ложиться отдыхать. Ничего не кипит, акб полностью заряжается. Ставит нагрузку на акб еще лампочку на несколько Ватт. Для чего это небольшая нагрузка? Это хорошо помогает от сульфатации пластин, которая губит аккумуляторы. Схема настроена на порог отключения 14,7 вольта. Когда батарея набрала емкость до этого параметра, ЗУ отключается. Тем временем лампочка садит аккумулятор, он немного разряжается. Когда он доходит до 14 12 вольт, схема снова включается и акб снова переходит в режим зарядки. Этим способом мы предотвращаем сульфатацию.

В данной схеме автор использует амперметр от магнитофона Весна. Подойдет и другой.

Видео, на котором показано зу для акб авто.

izobreteniya.net

Самодельное зарядное устройство для автомобильного аккумулятора из БП АТХ, схемы

Многие автолюбители отлично знают, что для продления срока службы аккумуляторной батареи требуется периодическая ее подзарядка именно от зарядного устройства, а не от генератора автомобиля.

И чем больше срок службы аккумулятора, тем чаще его нужно заряжать, чтобы восстанавливать заряд.

Без зарядных устройств не обойтись

Для выполнения данной операции, как уже отмечено, используются зарядные устройства, работающие от сети 220 В. Таких устройств на автомобильном рынке очень много, они могут обладать различными полезными дополнительными функциями.

Однако все они выполняют одну работу – преобразуют переменное напряжение 220 В в постоянное – 13,8-14,4 В.

В некоторых моделях сила тока при зарядке регулируется вручную, но есть и модели с полностью автоматической работой.

Из всех недостатков покупных зарядных устройств можно отметить высокую их стоимость, и чем «навороченней» прибор, тем цена на него выше.

 

А ведь у многих под рукой есть большое количество электроприборов, составные части которых вполне могут подойти для создания самодельного зарядного устройства.

Да, самодельный прибор выглядеть будет не так презентабельно, как покупной, но ведь его задача – заряжать АКБ, а не «красоваться» на полке.

Одними из важнейших условий при создании зарядного устройства – это хоть начальное знание электротехники и радиоэлектроники, а также умение держать в руках паяльник и уметь правильно им пользоваться.

Далее рассмотрим несколько схем зарядных устройств для АКБ, которые можно создать из старых электроприборов или составных частей электроники.

ЗУ из лампового телевизора

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9\’.

А к выводам 10 и 10\’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1\’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2\’. На этом с трансформатором работы завершены.

Далее нужно сделать диодный мост. Для этого потребуется 4 диода, способных работать с током в 10 А и выше. Для этих целей подойдут диодные мосты Д242 или аналоги Д246, Д245, Д243.

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10\’, а также провода, которые будут идти к АКБ.

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

ЗУ из микроволновой печи

Некоторые автолюбители используют трансформатор от сломанной микроволновой печи. Но этот трансформатор нужно будет переделывать, поскольку он является повышающим, а не понижающим.

Необязательно, чтобы трансформатор был исправен, поскольку в нем зачастую сгорает вторичная обмотка, которую в процессе создания устройства все равно придется удалять.

Переделка трансформатора сводится к полному удалению вторичной обмотки, и намотки новой.

В качестве новой обмотки используется изолированный провод сечением не менее 2,0 мм. кв.

При намотке нужно определиться с количеством витков. Можно сделать это экспериментально – намотать на сердечник 10 витков нового провода, после чего к его концам подсоединить вольтметр и запитать трансформатор.

По показаниям вольтметра определяется, какое напряжение на выходе обеспечивают эти 10 витков.

К примеру, замеры показали, что на выходе есть 2,0 В. Значит, 12В на выходе обеспечат 60 витков, а 13 В – 65 витков. Как вы поняли, 5 витков добавляет 1 вольт.

Схема.

Ну а далее все делается, как описано выше – изготавливается диодный мост, производится соединение всех составных элементов и проверяется работоспособность.

Стоит указать, что сборку такого зарядного устройства лучше производить качественно, затем все составные части поместить в корпус, который можно изготовить из подручных материалов. Или смонтировать на основу.

Обязательно следует пометить где «плюсовой» провод, а где — «минусовой», чтобы не «переплюсовать», и не вывести из строя прибор.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500. Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК.

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Далее изготовленная плата устанавливается в корпус и производится подключение всех выводов согласно схеме.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Итог

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

autotopik.ru

СХЕМА АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА

   Применение надёжных зарядных устройств является одним из главных условий стабильной и продолжительной работы автоаккумулятора. Зарядное устройство Кедр заслужило доверие у большого количества пользователей. Простое в эксплуатации и многофункциональное, это недорогое автоматизированное ЗУ пользуется стабильным спросом у бывалых водителей и у новичков-автомобилистов.

   Характеристики зарядного устройства Кедр-Авто 4А

 – Номинальное напряжение питающей сети, В 220 

 – Частота сети, Гц 50 

 – Номинальное напряжение заряжаемой батареи, В 12 

 – Зарядный ток, А (макс.) 4 A 

 – Номинальная потребляемая мощность, Вт 85


Принципиальная электрическая схема АЗУ


 Печатная плата и подключение АЗУ

   Более подробно в можете прочитать в инструкции к нему:


   Если нет возможности купить его, можно без проблем собрать самому. Что я и сделал. Транзисторы применил импортные вс556b (pnp) и bc337-40 (npn) вместо кт315 и кт361. На фото заводская плата зарядного и моя самодельная.



Заводская плата автоматического зарядного


Самодельная сборка платы

   Собрал данное устройство, проверил – работает отлично, мне нравится. Это зарядное устройство имеет: 

 – режим автомат 

 – режим десульфат 

 – режим постоянного заряда (до полной емкости) 

 – защиту при неправильном подключении и коротком замыкании. 

 – при цикличном режиме после 45 секунд заряда следует 15 сек разряда.


   Будет полезным провести небольшое усовершенствование ЗУ. Полное отключение от сети 220В по окончании заряда, так сказать на “всякий пожарный”. Отключение ЗУ Кедр-М от сети при зажигании светодиода “конец зарядки” можно выполнить на симисторе или реле. Команду на включение/отключение можно взять с коллектора транзистора VT1, добавив еще один транзистор, включенный в ключевом режиме, и коммутировать им питание обмотки реле или ток через светодиод оптрона, управляющего симистором. Схему собрал и проверил: vovcanchin.

   Форум по АЗУ КЕДР-М

   Обсудить статью СХЕМА АВТОМАТИЧЕСКОГО ЗАРЯДНОГО УСТРОЙСТВА

radioskot.ru

Схема и описание автоматического зарядного устройства на микросхеме и транзисторах

 

Схема и описание самодельного автоматического зарядного десульфатирующего устройства для зарядки и восстановления автомобильных аккумуляторов.


Устройство позволяет не только заряжать, но и восстанавливать аккумуляторы с засульфатированными пластинами за счет использования ассиметричного тока при зарядке в режиме заряд (5 А) – разряд (0,5 А) за полный период сетевого напряжения. В устройстве предусмотрена также возможность при необходимости ускорить процесс заряда.

Данное устройство имеет ряд дополнительных функций, способствующих удобству их использования. Так, при окончании заряда схема автоматически отключит аккумулятор от зарядного устройства. А при попытке подключить неисправный аккумулятор (с напряжением ниже 7 В) или же аккумулятор с неправильной полярностью схема не включится в режим заряда, что предохранит зарядное устройство и аккумулятор от повреждений.

В случае короткого замыкания клемм Х1 (+) и Х2 (-) при работе устройства перегорит предохранитель FU1.

Электрическая схема (рис. 1) состоит из стабилизатора тока на транзисторе VT1, контрольного устройства на компараторе D1, тиристора VS1 для фиксации состояния и ключевого транзистора VT2, управляющего работой реле К1.

Рис. 1. Нажмите на рисунок для просмотра.

При включении устройства тумблером SA1 загорится светодиод HL2, и схема будет ждать, пока подсоединим аккумулятор к клеммам Х1, Х2. При правильной полярности подключения аккумулятора небольшой ток, протекающий через диод VD7 и резисторы R14, R15 в базу VT2, будет достаточным, чтобы транзистор открылся и сработало реле К1.

При включении реле транзистор VT1 начинает работать в режиме стабилизатора тока – в этом случае будет светиться светодиод HL1. Ток стабилизации задается номиналами резисторов в эмиттерной цепи VT1, а опорное напряжение для работы получено на светодиоде HL1 и диоде VD6 .

Стабилизатор тока работает на одной полуволне сетевого напряжения. В течение второй полуволны диоды VD1, VD2 закрыты и аккумулятор разряжается через резистор R8. Номинал R8 выбран таким, чтобы ток разряда составлял 0,5 А. Экспериментально установлено, что оптимальным является режим заряда током 5 А, разряда – 0,5 А.

Пока идет разряд, компаратор производит контроль напряжения на аккумуляторе, и при превышении значения 14,7 В (уровень устанавливается при настройке резистором R10) он включит тиристор. При этом начнут светиться светодиоды HL3 и HL2. Тиристор закорачивает базу транзистора VT2 через диод VD9 на общий провод, что приведет к выключению реле. Повторно реле не включится, пока не будет нажата кнопка СБРОС (SB1) или же не отключена на некоторое время вся схема (SA1).

Для устойчивой работы компаратора D1 его питание стабилизировано стабилитроном VD5. Чтобы компаратор сравнивал напряжение на аккумуляторе с пороговым (установленным на входе 2) только в момент, когда производится разряд, пороговое напряжение цепью из диода VD3 и резистора R1 повышается на время заряда аккумулятора, что исключит его срабатывание. Когда происходит разряд аккумулятора, эта цепь в работе не участвует.

При изготовлении конструкции транзистор VT1 устанавливается на радиатор площадью не менее 200 кв. см.

Силовые цепи от клемм Х1, Х2 и трансформатора Т1 выполняются проводом с сечением не менее 0,75 кв. мм.

В схеме применены конденсаторы С1 типа К50-24 на 63 В, С2 – К53-4А на 20 В, подстроечный резистор R10 типа СП5-2 (многооборотный).

постоянные резисторы R2…R4 типа С5-16МВ, R8 типа ПЭВ-15, остальные – типа С2-23. Реле К1 подойдет любое, с рабочим напряжением 24 В и допустимым током через контакты 5 А; тумблеры SA1, SA2 типа Т1, кнопка SB1 типа КМ1-1.

Для регулировки зарядного устройства потребуется источник постоянного напряжения с перестройкой от 3 до 15 В. Удобно воспользоваться схемой соединений, показанной на рис. 2

Рис. 2. Нажмите на рисунок для просмотра.

Настройку начинаем с подбора номинала резистора R14. Для этого от блока питания А1 подаем напряжение 7 В и изменением номинала резистора R14 добиваемся, чтобы реле К1 срабатывало при напряжении не менее 7 В. После этого увеличиваем напряжение с источника А1 до 14,7 В и настраиваем резистором R10 порог срабатывания компаратора (для возврата схемы в исходное состояние после включения тиристора надо нажать кнопку SB1). Может также потребоваться подбор резистора R1.

В последнюю очередь настраиваем стабилизатор тока. Для этого в разрыв цепи коллектора VT1 в точке “А” временно устанавливаем стрелочный амперметр со шкалой 0…5 А. Подбором резистора R4 добиваемся показаний по амперметру 1,8 А (для амплитуды тока 5 А), а после этого при включенном SA2 настраиваем R4, значение 3,6 А (для амплитуды тока 10 А).

Разница в показании стрелочного амперметра и фактической величины тока связана с тем, что амперметр усредняет измеряемую величину за период сетевого напряжения, а заряд производится только в течение половины периода.

В заключение следует отметить, что окончательную настройку тока стабилизатора лучше проводить на реальном аккумуляторе в установившемся режиме – когда транзистор VT1 прогрелся и эффект роста тока за счет изменения температуры переходов в транзисторе не наблюдается. На этом настройку можно считать законченной.

По мере заряда аккумулятора напряжение на нем будет постепенно возрастать, и, когда оно достигнет значения 14,7 В, схема автоматически отключит цепи заряда. Автоматика также отключит процесс зарядки в случае каких-то других непредвиденных воздействий, например при пробое VT1 или же исчезновении сетевого напряжения. Режим автоматического отключения может также срабатывать при плохом контакте в цепях от зарядного устройства до аккумулятора. В этом случае надо нажать кнопку СБРОС (SB1).

Читать далее – Самодельное зарядное устройство на симисторе

Популярные схемы зарядных устройств:

Схема тиристорного зарядного устройства

Десульфатирующее зарядное устройство

Простое зарядное устройство

Схема автомата включения-выключения зарядного устройства


Зарядные устройства

Источники питания

Устройство предназначено для заряда аккумуляторов током, содержащим отрицательную составляющую (асимметричным током). Как показывает практика, при таком зарядном токе заметно повышается емкость батареи (до 15%), сокращается время, формовки активного вещества аккумуляторов и повышается стабильность разрядного тока.

Источники питания

“Сели” батарейки, и как всегда ─ не вовремя :- (, скорее всего, у каждого, имеющего дело с мобильными устройствами, возникала такая проблема. Что многие в таком случае делают: выбрасывают отработанный источник питания, покупают новый, и история повторяется.

Источники питания

 

В статье рассматривается схема несложного устройства, дополнив которым ваше зарядное устройство (ЗУ), процесс зарядки может быть автоматизирован. Так же оно поможет содержать ваш аккумулятор в заряженном состоянии в период длительного хранения, что способствует значительному увеличению его срока службы.

Источники питания

Устройство имеет простую схему, позволяет питать маломощную низковольтную аппаратуру и заряжать аккумуляторы. Это именно то, что нужно радиолюбителю-новичку.

Источники питания

 

Предлагаемое зарядное устройство разработано для зарядки стабильным током. Устройство несложно доработать и для зарядки 12-вольтовых аккумуляторов(вариант), подходит оно (без доработки) и для зарядки 6-вольтовых аккумуляторов. Схема зарядного устройства очень проста (см. рисунок).

Источники питания

 

В статье описано зарядное устройство для автомобильных аккумуляторов, позволяющее устанавливать зарядный ток до 10 А и автоматически отключать зарядку аккумулятора при достижении установленного напряжения на нем. В статье приведены принципиальные схемы, рисунки монтажа деталей, печатной платы, конструкции устройства и дана методика его наладки.

Источники питания

Очень часто маломощные аккумуляторы необходимо зарядить в полевых условиях, где отсутствует питающая сеть 220 В/50 Гц. В этом случае выход из положения — использование энергии автомобильного генератора. Схема, предназначенная для этого, описывается в данной статье.

Источники питания

 

В данной статье представленна схема автономного зарядного устройство для мобильных телефонов. В нем может быть испозован любой тип аккумуляторов: пальчиковых типоразмера АА или ААА, дисковых аккумуляторов типа Д-0,5 или Д-0,25 и т.п.

Источники питания

В холодное время года старые автомобильные аккумуляторы начинают “капризничать” и их приходится подзаряжать. В большинстве случаев автолюбителю нужно к утру подзарядить слабый аккумулятор и для этого не обязательно иметь сложное зарядное устройство (ЗУ).

Источники питания


Давно уже известен тот факт, что заряд электрохимических источников питания асимметричным током, при соотношении Iзар: Iразр = 10:1, в частности кислотных аккумуляторов, приводит к устранению сульфатации пластин в батарее, т.е. к восстановлению их емкости, что, в свою очередь, продлевает срок службы батареи. Не вcегда есть вероятность находиться около зарядного устройства и все время контролировать процесс зарядки, поэтому зачастую либо систематически недозаряжают батареи, либо перезаряжают их, что, конечно же, не продлевает срок их службы.

Цепи зарядного устройства

| CircuitDiagram.Org

Вот схема контроля батареи, которую можно использовать для контроля напряжения свинцово-кислотных батарей 12 В, таких как автомобильные. Схема построена на микросхеме LM3914 …

Это проект автомобильного зарядного устройства mini USB. Схема может заряжать USB-устройства от автомобильного аккумулятора …

Схема полностью автоматического зарядного устройства для никель-металлгидридных аккумуляторов с использованием интегрального стабилизатора положительного напряжения IC 7805, обеспечивающего постоянный ток для зарядки аккумуляторов…

Очень интересная и полезная схема зарядного устройства для нескольких аккумуляторов nicd & nimh, которая может заряжать аккумуляторы многих электронных устройств, например радио, mp3-плееров, сотовых телефонов …

Это портативная схема зарядного устройства USB с питанием от батареи. Эта схема может заряжать ваши КПК, iPod, MP3-плееры и любое устройство, подключаемое к USB-порту компьютера для зарядки …

Это схема зарядного устройства для никель-кадмиевых аккумуляторов. Эта схема может заряжать аккумуляторную батарею 12 В nicd.Но вы также можете заряжать аккумуляторы 6 В и 9 В …

Схема зарядного устройства для свинцово-кислотных аккумуляторов

с использованием известной микросхемы IC LM 317. Схема обеспечивает правильное напряжение для зарядки герметичных свинцово-кислотных аккумуляторов 12 В или аккумуляторов SLA 12 В …

Вот схема зарядного устройства для солнечных батарей, которое может заряжать 12-вольтовые батареи SLA. Эта схема зарядного устройства для солнечных батарей имеет функцию автоматического отключения, поэтому она автоматически прекращает зарядку, когда батарея полностью заряжена …

Это схема простого зарядного устройства для одноячеечной литий-ионной батареи.В этой схеме зарядного устройства для литий-ионных аккумуляторов используется стабилизатор LP2931 IC …

.

Это принципиальная схема полностью автоматического зарядного устройства 12 В для зарядки аккумуляторов автомобилей и т. Д. Эта схема имеет максимальную скорость зарядки 2 ампера …

Схема может заряжать никель-кадмиевые батареи 2,4 В, 4,8 В и 9,6 В. Микросхема LM317T, показанная на схеме зарядного устройства для никель-кадмиевых аккумуляторов, используется для регулирования …

Вот схема зарядного устройства 6 В, 4,5 Ач, которая способна заряжать 6 В 4.Свинцово-кислотные аккумуляторы 5 Ач. Схема очень проста и состоит всего из нескольких компонентов …

Показанный здесь проект представляет собой схему резервного питания от батареи 6 В. Схема проста в сборке и работает как мини-ИБП для устройств на 6 В.

Хорошая схема зарядного устройства для щелочных батарей. Интересная особенность этой схемы заключается в том, что в ней используется светодиод, который будет показывать заряд батареи миганием, когда вы подключаете полностью разряженную батарею, светодиод мигает быстрее, но когда начинается процесс зарядки аккумулятора, скорость мигания светодиода уменьшается медленно и полностью прекращается. когда аккумулятор будет полностью заряжен.

Это схема преобразователя постоянного тока в постоянный, это универсальная схема, которая может использоваться для многих целей на этой схеме. LT1073 используется для преобразования 1,5 В в 5 В, напряжение может быть взято от батареи 1,5 В любого размера, например. AA или AAA.

Миниатюрная схема зарядного устройства для литий-ионных аккумуляторов с малым падением напряжения с использованием LTC1731.

Полезная схема солнечного зарядного устройства, схема заряжает батареи типа AA или AAA. Наилучшая мощность зарядки достигается при помещении схемы под прямыми солнечными лучами.Эту схему также можно использовать для питания любого оборудования, например радио, дискового манипулятора, пальмы и т. Д., В котором используются батареи типа AA или AAA.

Эта цепь резервного аккумулятора на 9 В будет работать как мини-ИБП. Схема мгновенно перейдет на питание от батареи, если входное напряжение отсутствует …

Вот схема простого DIY-телефона на солнечных батареях или зарядного устройства USB. Эта схема зарядного устройства USB на солнечной батарее может использоваться для зарядки …

Вот проект простой схемы монитора батареи.Схема будет контролировать напряжение батарей 12 и 9 В и указывать с помощью светодиода, когда уровень заряда батареи будет …

Это проект универсальной схемы таймера автоматической зарядки аккумулятора. Схема способна заряжать многие типы аккумуляторов от 5 до 12 вольт …

На рисунке ниже показан очень полезный проект монитора уровня заряда батареи с использованием микросхемы TL071. Схема проста и удобна в сборке и использовании …

Вот очень полезный проект отключения низкого напряжения аккумулятора или цепи отключения.Аккумуляторы обеспечивают очень хорошую производительность и долговечность, если мы позаботимся о …

Это очень полезный проект простой схемы индикатора состояния батареи 12 В. Схема будет отображать уровень напряжения АКБ 12В четырьмя светодиодами …

Чтобы батареи прослужили дольше, необходимо заботиться о них, одним из основных факторов, ослабляющих аккумуляторные батареи, является их глубокая разрядка …

В этой статье описывается очень простая схема автоматического зарядного устройства 12, 9 В, 6 В.Схема может быть настроена на зарядку аккумуляторов разного напряжения …

Вот очень простая схема автоматического зарядного устройства 12 В и 6 В с реле автоматического отключения. Термин “автоматическое отключение” означает, что цепь автоматически …

Мы часто чувствуем потребность в автоматическом ИБП (источник бесперебойного питания) или в цепи обратной батареи для наших проектов на 5 В, 6 В и 9 В. Итак, здесь мы разработали хороший …

Этот блок аккумуляторов для сотовых телефонов своими руками можно использовать в качестве резервного зарядного устройства для ваших мобильных телефонов и других устройств, например MP3-плееров, iPad, iPod и любых других устройств…

Очень полезный проект простого аварийного сотового телефона или мобильного зарядного устройства. Схема также может использоваться для зарядки других устройств, которым для зарядки требуется вход 5 В …

Проект простой схемы автоматического резервного батарейного питания 12В. Схема автоматически переключает нагрузку на аккумулятор при отсутствии сетевого питания …

На рисунке ниже показан очень простой и полезный проект индикатора низкого напряжения для батарей 12 В с использованием микросхемы таймера 555.Схема укажет на включение светодиода …

Вот очень простой и легкий проект индикатора разряда батарей 555 для 6В батарей. Каждый раз, когда батарея полностью разряжается, она теряет часть своей емкости из-за …

Вот очень простой и легкий проект индикатора разряда батарей 555 для 6В батарей. Схема автоматически отключит аккумулятор от нагрузки при напряжении …

.

Схема может быть настроена для автоматической зарядки любого типа аккумуляторной батареи от 6 В до 24 В и подачи максимального тока 10 А…

Схема может быть с батареями 12 В, размещенными где угодно, например, на солнечных установках, ИБП и т. Д. Она может использоваться с любыми типами батарей, такими как герметичные свинцово-кислотные, свинцово-кислотные, …

Эта простая двухступенчатая схема контроля разряда батареи может использоваться с различными батареями от 6 В до 12 В. Схема довольно проста в сборке и использовании невысокой стоимости …

Простой недорогой и точный монитор напряжения батареи с 4 светодиодами, использующий две рабочие ИС lm358 …

Это интеллектуальное зарядное устройство позаботится о вашей перезаряжаемой батарее и автоматически начнет зарядку, когда напряжение вашей батареи упадет…

Хороший 4-х светодиодный индикатор батареи LM324. Схема универсальна и может применяться от АКБ любого типа и напряжения …

Вот проект схемы монитора батареи, использующей LM339 IC. Схема может использоваться для контроля любых типов батарей от 6В до 12В …

На рисунке ниже показан проект монитора автомобильного аккумулятора с функцией отключения разряда аккумулятора. Схема может использоваться с любым транспортным средством …

Это проект недорогого 8-светодиодного монитора батареи, использующего LM324 IC.Схема может использоваться для контроля различных напряжений и типов батарей. Используются два LM324 …

Выход велосипедного динамо-машины можно использовать для питания различных устройств, в этой статье мы обсуждаем схему зарядного устройства USB для велосипеда своими руками …

Вот очень интересный и полезный проект схемы автоматической велосипедной динамо-фары и зарядного устройства …

Эта схема обеспечивает раннее предупреждение или индикацию отказа автомобильного аккумулятора путем включения зуммера на несколько секунд, чтобы вы могли понять, что аккумулятор сейчас…

Вот очень полезный проект схемы сигнализации полного заряда аккумулятора. Схема может использоваться с разными типами аккумуляторов с разным напряжением …

На рисунке показана цепь аварийной сигнализации индикатора низкого уровня заряда батареи, схему можно настроить для контроля любого типа батареи от 6 В до 24 В. Он подаст звуковой сигнал …

Резервный аккумуляторный источник питания необходим в ситуациях, когда требуется непрерывная работа оборудования без отключения питания во время перебоев в подаче электроэнергии…

Солнечные панели являются хорошим источником бесплатной энергии, солнечные системы обычно используются для зарядки высокоамперных аккумуляторов 12 В, в некоторые дни аккумуляторы заряжаются целый день …

Это проект простого транзисторного зарядного устройства для солнечных батарей с функцией автоматического отключения, которое будет заряжать батарею от солнечной панели и отключать ее при заполнении …

Микросхема

LM3914 предназначена для измерения уровней напряжения источников питания и аккумуляторов, но ее можно легко превратить в очень интеллектуальное автоматическое зарядное устройство, которое можно использовать…

Вот проект автоматического зарядного устройства 12 В и 6 В с функцией автоматического определения заряда батареи. Обычно зарядные устройства предназначены для зарядки батарей с одним напряжением …

На рисунке ниже показана регулируемая цепь отключения разряда батареи для всех аккумуляторных батарей. Аккумуляторы очень дороги, будь то свинцово-кислотные батареи, …

Зарядное оборудование для автомобильных аккумуляторов

(Ваша корзина пуста)

Портативные зарядные устройства – ручное управление Портативные зарядные устройства для аккумуляторов – автоматический режим
Портативные настольные автомобильные зарядные устройства на 6 и 12 В с ручным управлением.Зарядные устройства с ручным управлением требуют, чтобы пользователь либо контролировал цикл зарядки по силе тока, либо выбирал синхронизированную зарядку. Необходимо соблюдать осторожность, чтобы предотвратить перезарядку.
Портативные настольные автомобильные зарядные устройства на 6 и 12 вольт с автоматическим управлением. Автоматические зарядные устройства не требуют контроля и обычно могут оставаться включенными на неопределенный срок и отключатся по завершении цикла зарядки.
Зарядные устройства для колесных аккумуляторов – ручное управление Зарядные устройства для колесных аккумуляторов – автоматический режим
Автомобильные колесные зарядные устройства на 6 и 12 В с ручным управлением.Зарядные устройства с ручным управлением требуют, чтобы пользователь либо контролировал цикл зарядки по силе тока, либо выбирал синхронизированную зарядку. Необходимо соблюдать осторожность, чтобы предотвратить перезарядку. Эти зарядные устройства обычно называют БЫСТРЫМИ зарядными устройствами из-за их высокой скорости зарядки.
Автомобильные колесные зарядные устройства на 6 и 12 В с автоматическим управлением.Автоматические зарядные устройства не требуют контроля и обычно могут оставаться включенными на неопределенное время и отключатся по завершении цикла зарядки. Эти зарядные устройства обычно называют FAST-зарядными устройствами из-за их высокой скорости зарядки и высокой скорости наддува.
Зарядное устройство для аккумулятора – блоки питания Тендеры на аккумуляторные батареи – ремонтники
Блоки зарядного устройства / источника питания обеспечивают питание для поддержания напряжения бортовой сети на заданном уровне, увеличивая выходную мощность в ответ на увеличение нагрузки системы, чтобы поддерживать стабильную энергетическую среду для успешного перепрограммирования.Характеристики блоков включают диапазон выходного напряжения 13,1–14,9 В, регулируемый с шагом 0,1 В.
Устройства для восстановления зарядных устройств для аккумуляторов Выполняют те же функции, что и автоматические зарядные устройства, с дополнительным преимуществом восстановления аккумуляторов. Удаляя вредное сульфатирование, эти устройства могут даже восстановить глубоко разряженную батарею, сэкономив сотни долларов на замене батарей.
Зарядные устройства для солнечных батарей Специальные зарядные устройства для аккумуляторов 16-24-36-48 Вольт
Зарядное устройство на солнечной батарее, 12-вольтовые батареи с непрерывной подзарядкой.Поддерживайте заряд аккумуляторной батареи, когда автомобили простаивают в течение длительного времени. Для аккумуляторов автомобилей, морских судов и жилых автофургонов. Подключается к разъему для прикуривателя на 12 В постоянного тока или напрямую подключается к клеммам аккумулятора с помощью прилагаемого набора зажимов аккумулятора.
Специальные зарядные устройства для аккумуляторов 16-24-36-48 Volt Идеально подходят для гольф-каров, транспортных средств для перевозки персонала, автомобилей технического обслуживания, ножничных подъемников, инвалидных колясок и любых других применений.Также отлично подходит для всех морских применений. Эти устройства оснащены выходным шнуром без разъема из-за многократного использования.
Зарядные устройства для аккумуляторов Параллельные зарядные устройства для нескольких аккумуляторов – серия
Промышленные зарядные устройства для всех типов / классов погрузчиков.Полная линейка зарядных устройств для трехфазных, однофазных и односменных аккумуляторных батарей.
Зарядные устройства для нескольких аккумуляторов заряжаются последовательно или параллельно, что значительно сокращает время зарядки нескольких аккумуляторов. Их можно закрепить на стене или использовать на стационарном столе, они имеют несколько уровней зарядки для точной зарядки.Разработан так, что начальная высокая скорость заряда снижается до безопасного уровня отделки. Идеально для автопарков.
Морские, глубокого цикла, AGM, зарядные устройства для гелевых аккумуляторов Системные протекторы и защита от взрыва
Морские зарядные устройства, зарядные устройства Deep Cycle, AGM, GEL обладают теми же функциями и преимуществами, что и автоматические зарядные устройства, но отличаются схемотехникой, которая позволяет им заряжать различные типы аккумуляторов.Другие особенности включают микропроцессорную технологию, которая заряжает батареи до двух раз быстрее, чем обычные линейные зарядные устройства.
Защитные устройства системы на 12 и 24 В, защита от обратной полярности и защита от запирания сохранят ваши автомобили в целости и сохранности во время зарядки аккумулятора, технического обслуживания или ремонта.
Аккумуляторные ручные инструменты и оборудование Системы локализации и комплекты для разливов
Инструменты и оборудование для конкретных аккумуляторов обеспечивают простой и безопасный способ установки, снятия или ремонта аккумуляторов для большинства приложений.В комплект входят очистители клемм аккумулятора, полировщики для полировки клемм аккумулятора и клемм аккумулятора, гаечные ключи с храповым механизмом, клещи для клемм аккумулятора, латунные щетки, съемники столбов и разъединители питания.
Системы локализации разливов кислоты для небольших площадей, системы локализации под аккумуляторными стеллажами и комплекты для разливов, от комплектов для разливов на 2 галлона до комплектов для разливов на 25 галлонов.
Химия и безопасность
Пакеты для утилизации аккумуляторов, поддоны и комплекты для обвязки, химикаты для аккумуляторов, моечные машины для аккумуляторов, средства для мытья глаз и защитная одежда, а также настенные знаки безопасности.

Чтобы выбрать подходящий, выполните следующие пять шагов:

Большинство зарядных устройств предназначены для зарядки различных аккумуляторов. Но когда на рынке так много разных зарядных устройств, как выбрать подходящее?

1.Какие типы батарей вы используете?

Все зарядные устройства для аккумуляторов могут заряжать обычные и не требующие обслуживания аккумуляторы, обычно используемые в легковых автомобилях, легких грузовиках, жилых автофургонах, мотоциклах, тракторах для газонов и т. Д. Эти батареи подают большой ток (ампер) в течение нескольких минут на пусковой двигатель двигателя. Глубокая разрядка этих аккумуляторов более двух раз может привести к их необратимому повреждению. Батареи глубокого разряда или «морские / жилые» бывают разными. Они обеспечивают стабильный небольшой ток в течение длительного периода для таких работ, как питание троллингового двигателя или оборудования на борту жилого автофургона.Батареи глубокого разряда предназначены для полной разрядки, а затем для полной зарядки снова и снова.

Вот почему мы составили это удобное руководство для покупателя, чтобы помочь вам выбрать лучшее соотношение цены и качества для вашего конкретного приложения для зарядки.

2. Какое напряжение у аккумулятора?

Автомобильные аккумуляторы обычно 12 вольт. В небольшом оборудовании для газонов и мотоциклах используются 6-вольтовые батареи. В больших грузовиках, некоторых лодках, инвалидных колясках и другом оборудовании используются 24-вольтовые батареи.Большинство зарядных устройств работают как от батарей на 6, так и на 12 вольт, а одно из наших профессиональных устройств заряжает батареи на 24 вольта.

Во-первых, подумайте, какие типы батарей вы используете, как они используются и как часто их нужно заряжать.

3. Нужен быстрый старт?

Некоторые зарядные устройства для аккумуляторов способны выдавать высокий ток силы тока, необходимый для запуска вашего автомобиля. Настольные стартеры / зарядные устройства обеспечивают дополнительный «импульс» к выходу автомобильного аккумулятора.(Вот почему мы рекомендуем зарядить аккумулятор перед попыткой завести автомобиль.) Чем больше пусковой ток обеспечивает зарядное устройство, тем меньшую мощность должна обеспечивать аккумулятор для запуска автомобиля. Большинство профессиональных стартеров / зарядных устройств обеспечивают достаточный ток для запуска большинства автомобилей и легких грузовиков без предварительной зарядки аккумулятора.

Ответы на вопросы на этой странице помогут вам. Затем сопоставьте свои потребности с характеристиками и характеристиками наших зарядных устройств.

4.Как быстро нужно зарядить аккумулятор?

Зарядное устройство с высокой мощностью заряжает аккумулятор быстрее, чем модель с низким током. Высокая скорость заряда 10 или 15 ампер позволит зарядить средний автомобильный аккумулятор менее чем за четыре часа. Низкая скорость заряда 2 или 1 ампер идеально подходит для зарядки аккумуляторов мотоциклов и газонокосилок. Низкий ток в 1 ампер также хорош для разогрева аккумулятора автомобиля перед его запуском холодным утром.

Большинство зарядных устройств бывают двух типов: Портативные «настольные» зарядные устройства идеально подходят для большинства домашних нужд, использования водного транспорта и небольшого оборудования.

5. Автоматический или ручной?

Самый простой способ подзарядить аккумулятор – использовать автоматические зарядные устройства. Эти устройства автоматически отключаются, когда аккумулятор полностью заряжен. Большинство автоматических моделей также имеют индикаторы завершения зарядки и предупреждающие индикаторы обратного подключения. При использовании ручного зарядного устройства внимательно следите за индикатором уровня заряда (амперметром), чтобы определить, когда аккумулятор полностью заряжен.Чрезмерная зарядка может повредить аккумулятор из-за чрезмерного нагрева и выделения газов.

Более крупные, профессиональные или «колесные» зарядные устройства разработаны для автомагазинов, ферм и ранчо, отделов технического обслуживания и продвинутых автолюбителей.


Теперь, когда вы знаете, что искать, загляните внутрь, чтобы узнать о полной линейке зарядных устройств для аккумуляторов

Советы по безопасности при зарядке аккумулятора

Самый важный совет по безопасности – внимательно прочитать руководство пользователя, прилагаемое к зарядному устройству для солнечных батарей.Вы можете безопасно зарядить свинцово-кислотные аккумуляторы самостоятельно, если внимательно прочтете и будете соблюдать все инструкции по безопасности и эксплуатации. Несоблюдение этого правила может нанести серьезный вред себе и окружающим.

1. Всегда надевайте защитные очки при работе с батареями.

2. Работайте в открытом, хорошо вентилируемом и затененном месте. Снимите личные металлические предметы, такие как кольца, браслеты, ожерелья и часы. Будьте особенно осторожны при использовании металлических инструментов вокруг батареи – они могут вызвать искрение или короткое замыкание батареи, что может вызвать взрыв.

3. Никогда не заряжайте замерзший аккумулятор.

4. Морские (лодочные) аккумуляторы необходимо снимать и заряжать на берегу.

5. Следуйте инструкциям производителя аккумулятора по зарядке.

6. Разместите зарядное устройство как можно дальше от аккумулятора, насколько позволяют кабели зарядного устройства. Держите портативные / настольные зарядные устройства на высоте не менее 18 дюймов над полом или землей. Убедитесь, что автомобиль и все аксессуары выключены. ПРИМЕЧАНИЕ: в настоящее время электрическая система большинства автомобилей имеет отрицательное заземление.Если ваш автомобиль имеет положительное заземление, ознакомьтесь с инструкциями по зарядке аккумулятора в руководстве пользователя. Следующая основная процедура зарядки предназначена для автомобилей с отрицательным заземлением.

7. При подключении зарядного устройства к аккумулятору важно, чтобы последнее подключение выполнялось подальше от аккумулятора. Сначала подключите положительный кабель зарядного устройства к плюсовой клемме аккумулятора. Затем прикрепите заземляющий зажим зарядного устройства к шасси автомобиля в стороне от аккумулятора. Не зажимайте карбюратор, топливные форсунки, топливопроводы или любую часть топливной системы.

8. При зарядке снятого с автомобиля аккумулятора не подключайте оба кабеля зарядного устройства напрямую к аккумулятору. Опять же, сделайте последнее подключение подальше от батареи. Сначала подключите положительный кабель зарядного устройства к плюсовой клемме аккумулятора. Затем подсоедините стандартный кабель усилителя к отрицательной клемме аккумулятора. Наконец, подключите кабель заземления зарядного устройства к свободному концу кабеля усилителя, завершив цепь, не присоединяя кабель заземления напрямую к отрицательной клемме.Этот метод подключения гарантирует отсутствие искры на аккумуляторе.

4 способа зарядки автомобильного аккумулятора

Об этой статье

Соавтор:

Мастер-механик

Соавтором этой статьи является Майк Парра.Майк Парра – главный механик из Аризоны. Он имеет сертификат ASE (Automotive Service Excellence), степень AA в области технологий ремонта автомобилей и более 20 лет опыта работы механиком. Эту статью просмотрели 636 013 раз (а).

Соавторы: 26

Обновлено: 13 марта 2021 г.

Просмотры: 636,013

Резюме статьиX

Если автомобильный аккумулятор разряжен, его можно зарядить с помощью автомобильного зарядного устройства.Для начала найдите аккумулятор вашего автомобиля под капотом или в багажнике. Найдите положительную клемму, которая будет отмечена знаком плюс, и отрицательную клемму, которая будет отмечена знаком минус. Выключив зарядное устройство и отсоединив его от сети, подсоедините красный зажим на зарядном устройстве к положительной клемме аккумулятора, а черный зажим – к отрицательной клемме. Затем подключите зарядное устройство и включите его. Если зарядное устройство оснащено цифровым дисплеем, позволяющим установить желаемое напряжение, установите его на значение, указанное на аккумуляторе или в руководстве по эксплуатации вашего автомобиля.Полная зарядка автомобильного аккумулятора может занять как минимум несколько часов. После зарядки выключите зарядное устройство и отсоедините его от розетки. Отсоедините отрицательный кабель от аккумулятора, а затем положительный кабель. Если аккумулятор не держит заряд или снова умирает вскоре после зарядки, отнесите его в магазин автозапчастей и проверьте, нужна ли вам новая. Чтобы узнать, как зарядить автомобильный аккумулятор, подключив его к другому автомобилю, продолжайте читать!

  • Печать
  • Отправить письмо поклонника авторам
Спасибо всем авторам за создание страницы, которую прочитали 636 013 раз.

Сколько времени нужно, чтобы зарядить электромобиль?

Точное представление о том, сколько времени требуется для зарядки электромобиля, похоже на вопрос: «Сколько времени нужно, чтобы пересечь страну?» Это зависит от того, находитесь ли вы в самолете или пешком. Время перезарядки зависит от множества переменных, многие из которых имеют нюансы (даже длина зарядного кабеля может повлиять на это), что делает невозможным дать точный ответ. Но мы можем дадут вам несколько надежных рекомендаций

Игнорируя некоторые второстепенные переменные, время зарядки автомобиля сводится к двум основным факторам: источнику питания и емкости зарядного устройства автомобиля.Окружающие условия играют меньшую роль, а экстремальные погодные условия увеличивают время зарядки.

Источник питания

Начнем с источника питания. Не все электрические розетки одинаковы. Обычная розетка на 120 вольт и 15 ампер на кухне подключена к розетке на 240 вольт, которая питает электрическую сушилку, как распылитель для садового шланга. Теоретически все электромобили могут заряжать свои большие батареи от стандартной кухонной розетки, но представьте, что вы пытаетесь наполнить 55-галлонную бочку из пистолета-распылителя.Зарядка аккумуляторной батареи электромобиля от источника на 120 вольт – они классифицируются как уровень 1 в соответствии с SAE J1772, стандартом, который инженеры используют для проектирования электромобилей – измеряется в днях, а не часах.

Если вы являетесь владельцем или планируете владеть электромобилем, разумно будет рассмотреть возможность установки в вашем доме зарядного устройства уровня 2 – минимум 240 Вольт. Типичное соединение уровня 2 – 240 вольт и 40 ампер. Хотя меньшее количество ампер по-прежнему считается уровнем 2, схема на 40 ампер, вероятно, максимизирует встроенные зарядные устройства электромобиля (подробнее об этом через минуту).Потому что, если вы не максимизируете эффективность бортовых зарядных устройств автомобиля, источник питания ниже оптимального – это, по сути, ограничительная пластина, которая увеличивает время зарядки.

Время зарядки автомобиля зависит от двух основных факторов: емкости зарядного устройства и источника питания

Для максимально быстрой зарядки подключите зарядное устройство постоянного тока. Это эквивалент заполнения бочки пожарным шлангом для электромобилей.В аккумуляторную батарею автомобиля подается гарантированно смертельный ток постоянного тока, и за короткое время увеличивается запас хода. Нагнетатели Tesla V3 развивают мощность до 250 кВт, а автомобильные дефибрилляторы Electrify America вырабатывают до 350 кВт мощности, от которой останавливается сердце. Но, как и при любой зарядке, поток снижается, когда уровень заряда аккумулятора транспортного средства низкий или высокий. А способность транспортных средств принимать зарядку постоянным током сильно различается. Например, Porsche Taycan может заряжать до 270 кВт, а Chevy Bolt EV может управлять только 50 кВт (и добавление этой возможности стоит дополнительных 750 долларов).

Когда SoC автомобильного аккумулятора ниже 20 процентов или выше 80 процентов, скорость зарядки быстрого зарядного устройства постоянного тока значительно снижается; это продлевает срок службы батареи и снижает риск перезарядки. Вот почему, например, производители часто заявляют, что быстрая зарядка доведет вас до «80 процентов за 30 минут».

Эти последние 20 процентов могут удвоить время подключения к быстрой зарядке. Трудоемкое дело полной зарядки аккумулятора с помощью зарядного устройства постоянного тока позволяет использовать их лучше всего в те дни, когда вы беспокоитесь о превышении дальности действия вашего автомобиля или когда вы путешествуете и вам нужно заправиться, чтобы добраться до места назначения.Зарядка дома на ночь – лучшее решение для получения заряда, необходимого для ежедневных поездок по окрестностям.

Емкость зарядного устройства

Существует распространенное заблуждение, что вещь, которую вы подключаете к электромобилю, является «зарядным устройством», хотя на самом деле в машине есть зарядное устройство, которое преобразует электричество переменного тока от стены в постоянный ток для зарядки аккумулятор. Бортовые зарядные устройства безопасно подают энергию в аккумуляторную батарею и имеют собственные номинальные мощности, обычно в киловаттах.Если в автомобиле есть зарядное устройство на 10 кВт и аккумулятор на 100 кВтч, теоретически для зарядки полностью разряженного аккумулятора потребуется 10 часов.

Чтобы определить оптимальное время зарядки конкретного электромобиля, необходимо разделить значение емкости аккумулятора в кВтч на номинальную мощность бортового зарядного устройства, а затем добавить 10 процентов к потерям, связанным с зарядкой. Это, конечно, при условии, что источник питания может максимально использовать зарядные устройства.

Типичные бортовые зарядные устройства имеют мощность не менее 6,0 киловатт, но некоторые производители предлагают почти вдвое больше.Текущая версия Tesla Model 3 Performance, например, оснащена зарядным устройством на 11,5 кВт, которое может в полной мере использовать 240-вольтную 50-амперную схему для зарядки своей батареи на 80,5 кВтч, в то время как Model 3 Standard Plus оснащен зарядным устройством 7,6 -квт зарядное устройство. Выполнение математических расчетов времени перезарядки показывает, что для заполнения батарей двух автомобилей потребуется примерно одинаковое время, хотя модель Performance на 50 процентов больше. Прелесть хорошо спаренного источника электроэнергии и бортового зарядного устройства заключается в том, что вы можете подключить свой электромобиль дома с почти разряженной батареей, и утром вас ждет полностью заряженный конь.

Примерное время зарядки можно также найти на веб-сайтах некоторых производителей электромобилей. Mini, например, перечисляет время перезарядки своего будущего Mini Cooper Electric несколькими разными способами. Он требует 36-минутной перезарядки до 80 процентов на станции быстрой зарядки постоянного тока уровня 3 мощностью до 50 кВт; 20 процентов в час на домашней или общественной зарядной станции уровня 2 мощностью до 7,4 кВт; а также 15–25 миль диапазона в час на станции Уровня 2. Но нигде не говорится, на каком SoC находится аккумулятор, когда начинается зарядка.

Несомненно, когда-нибудь производители остановятся на единой метрике для выражения времени зарядки. Но пока знайте, что заправка аккумулятора электромобиля по-прежнему занимает значительно больше времени, чем заправка бензобака автомобиля, независимо от того, как и где вы это делаете.

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на пианино.io

От чего умирает автомобильный аккумулятор?

Ваш автомобиль полагается на аккумулятор, который помогает запускать двигатель и питать все электрические компоненты, когда вы счастливо едете по дороге и поете свою любимую песню. Хотя ваше счастье может быть подавлено, когда ваша машина не заводится из-за разряженного аккумулятора. Часто разряженная батарея неожиданно застает нас врасплох. Хотя вы не можете предотвратить естественную разрядку аккумулятора, есть способы продлить срок его службы.Не попадайтесь на мель с разряженным аккумулятором! Следуйте нашим советам о том, как определить признаки неисправной батареи и причины ее разряда.

Каковы признаки неисправного автомобильного аккумулятора?

Хотя было бы неплохо, если бы наша машина могла сказать нам: «Эй, я думаю, мой аккумулятор умирает. Можете ли вы помочь мне?” Машины еще не такие сложные. Но есть надежда на будущее, правда? Хотя ваша машина может не сразу сказать вам, что батарея разряжена, есть признаки, указывающие на то, что батарея изо всех сил пытается сделать свое дело.К наиболее частым признакам разряда аккумулятора относятся:

  • Щелчок при повороте ключа или при нажатии кнопки пуска
  • Медленный кривошип
  • Тусклые фары
  • Вздутый аккумуляторный отсек
  • Горит индикатор проверки двигателя или аккумулятора на приборной панели
  • Проблемы с использованием электрических компонентов
  • Влажные участки на батарее или вокруг нее
  • Коррозия на выводах аккумуляторной батареи и вокруг них

От чего умирает автомобильный аккумулятор?

Есть несколько виновников, которых можно обвинить в разрядке аккумулятора.Однако причиной большинства отказов батареи является ошибка пользователя, неисправность электрической системы или плохая работа батареи. Причиной неисправности аккумулятора, который продолжает доставлять вам неприятности, является:

  • Корродированные или плохие контакты аккумулятора – Система зарядки не может продолжать подавать питание во время движения из-за корродированных или ослабленных контактов.
  • Фары остались включенными – Хотя некоторые фары запрограммированы на выключение через 30–60 секунд, в случае неисправности системы свет может не погаснуть.Включенные фары и внутреннее освещение могут разрядить аккумулятор.
  • Неудачная система зарядки – Батарея, которая умирает во время движения автомобиля, скорее всего, связана с системой зарядки. Генератор изо всех сил пытается подать достаточно энергии на аккумулятор, в результате чего автомобиль останавливается. Ослабленные или растянутые ремни и натяжители – частые причины, по которым генератор перестал выполнять свою работу.
  • Батарея разряжена – Батарея, которая уже пытается поддерживать заряд, вероятно, разрядится.Даже незначительное потребление электроэнергии, такое как часы, которые продолжают работать даже при выключенном двигателе, может вывести аккумулятор из строя.
  • Сильные температуры – Чрезвычайно высокие или низкие температуры могут отрицательно повлиять на вашу батарею. Хотя высокие температуры не убьют хороший аккумулятор, они могут снизить заряд и со временем привести к их ослаблению. Экстремальные температуры не подходят для слабой батареи и могут стать причиной их выхода из строя.
  • Паразитный сток – Постоянное питание потребляется после выключения двигателя, обычно в результате короткого замыкания или оставления включенного электрического устройства, например, освещения багажника, освещения перчаточного ящика или компьютерного модуля.

Предотвращение разрядки аккумулятора

Техническое обслуживание автомобильного аккумулятора – ваша лучшая защита, когда дело доходит до предотвращения преждевременного выхода аккумулятора из строя. Вот как разрядить аккумулятор еще на несколько миль:

  1. Следите за тем, чтобы область была чистой, убедившись, что в ней нет грязи или мусора. Протрите верхнюю часть аккумулятора и очистите ржавые кабели аккумулятора, включая клеммы и соединения, стальной щеткой.
  2. Избегайте использования каких-либо электрических компонентов, когда двигатель не работает , таких как радио и т. Д.Прежде чем отходить от машины, убедитесь, что все фары выключены или выключились автоматически.
  3. Убедитесь, что аккумулятор закреплен и не может двигаться. Любые ненужные вибрации или движения могут вызвать сотрясение аккумулятора. Это особенно опасно, если вы попали в аварию, резко остановились или налетели на большую кочку. Толчок может вызвать короткое замыкание аккумулятора и потенциально вызвать возгорание.
  4. Держите аккумулятор в тепле зимой и в прохладе летом. Вне зависимости от сезона, по возможности, припаркуйте машину в гараже, чтобы защитить аккумулятор от непогоды. Зимой, когда температура опускается ниже 32 градусов, подумайте о том, чтобы использовать одеяло для батареи, чтобы батарея не теряла слишком много заряда. В дополнение к теплу, вызванному жарким днем, вы можете защитить аккумулятор от тепла двигателя с помощью , используя изолятор , поскольку вода в аккумуляторе может испаряться. Сильная жара только увеличивает испарение.
  5. Свинцово-кислотные батареи теряют около 1% заряда каждый день ; хотя это число увеличивается, когда температура поднимается выше 85 градусов по Фаренгейту.Если вы не планируете использовать автомобиль более недели, используйте приспособление для батареи, чтобы поддерживать заряд батареи, когда она не используется.
  6. Избегайте многократных коротких поездок. Во время движения аккумулятор постоянно заряжается. Однако, если вы ведете машину только короткое время, аккумулятор не получает достаточно энергии для подзарядки. Если вы продолжите эту схему, через некоторое время напряжение вашей батареи будет настолько низким, что она не сможет завести автомобиль. Машины любят, когда ими водят.Подумайте о том, чтобы сгруппировать все свои дела в одну поездку, чтобы ваш автомобиль мог естественным образом зарядить аккумулятор , или используйте зарядное устройство, чтобы поддерживать напряжение аккумулятора. Кроме того, генератор предназначен для поддержания напряжения батареи, а не для зарядки разряженной батареи. Генератор может быть поврежден, если он часто заряжается с высокой скоростью.

Как зарядить автомобильный аккумулятор

Срок службы свинцово-кислотных аккумуляторов сокращается, если их оставить полностью или частично разряженными.Полностью заряженный аккумулятор должен иметь напряжение 12,7 В и более. Если напряжение упадет ниже этого числа, аккумулятор следует зарядить. Аккумулятор заряжается всего на четверть всего при 12 вольт. Как только оно упадет до 11,9 вольт, аккумулятор считается разряженным. Имейте в виду, что большинству современных автомобилей требуется больше энергии, чем когда-либо, потому что для работы электроники требуется вся мощность.

Чтобы зарядить аккумулятор с помощью зарядного устройства, следуйте приведенным ниже инструкциям. Примечание. Соблюдайте максимальное расстояние между аккумулятором и зарядным устройством.Чтобы предотвратить протекание тока раньше, чем это необходимо, убедитесь, что зарядное устройство не подключено к розетке и находится в положении «выключено» до шага 3.

  1. Найдите аккумулятор вашего автомобиля и определите положительную (+) и отрицательную (-) клеммы.
  2. Присоедините красный зажим к положительной клемме аккумулятора, а черный зажим к отрицательной клемме, убедившись, что соединение хорошее.
  3. Подключите зарядное устройство и включите его. Некоторые зарядные устройства автоматически отключаются после зарядки аккумулятора, а другие могут указывать на индикаторе, когда аккумулятор заряжен.Для достижения наилучших результатов ознакомьтесь с инструкциями, прилагаемыми к зарядному устройству.

Зарядка электромобиля | HowStuffWorks

Любой электромобиль, использующий аккумуляторы, нуждается в зарядной системе для подзарядки аккумуляторов. Система зарядки преследует две цели:

  • Подавать электричество в аккумуляторы так быстро, как это позволяют аккумуляторы
  • Отслеживать аккумуляторы и избегать их повреждения в процессе зарядки

Самые сложные системы зарядки контролируют напряжение аккумулятора, ток расход и температура аккумулятора для минимизации времени зарядки.Зарядное устройство передает столько тока, сколько может, без слишком сильного повышения температуры батареи. Менее сложные зарядные устройства могут отслеживать только напряжение или силу тока и делать определенные предположения о средних характеристиках батареи. Такое зарядное устройство может подавать максимальный ток на батареи до 80 процентов их емкости, а затем уменьшать ток до некоторого заданного уровня на последние 20 процентов, чтобы избежать перегрева батарей.

Электромобиль Джона Мони на самом деле имеет две разные системы зарядки.Одна система принимает мощность 120 или 240 вольт от обычной электрической розетки. Другой – индукционная система зарядки Magna-Charge, популяризированная автомобилем GM / Saturn EV-1. Рассмотрим каждую из этих систем отдельно.

Обычная бытовая система зарядки имеет то преимущество, что ее можно подзарядить везде, где есть розетка. Минус – время зарядки.

Обычная бытовая розетка на 120 В обычно имеет автоматический выключатель на 15 А, что означает, что максимальное количество энергии, которое может потреблять автомобиль, составляет примерно 1500 Вт, или 1.5 киловатт-часов в час. Поскольку для полной зарядки аккумуляторной батареи в машине Джона обычно требуется от 12 до 15 киловатт-часов, полная зарядка автомобиля с использованием этого метода может занять от 10 до 12 часов.

При использовании 240-вольтовой цепи (например, розетки для электрической сушилки) автомобиль может получать 240 вольт при 30 ампер или 6,6 киловатт-часов в час. Такое расположение обеспечивает значительно более быструю зарядку и может полностью зарядить аккумулятор за четыре-пять часов.

В машине Джона горловина заправочной горловины была удалена и заменена заглушкой для зарядки.Простое подключение к стене с помощью удлинителя для тяжелых условий эксплуатации запускает процесс зарядки.

В этом автомобиле зарядное устройство встроено в контроллер. В большинстве самодельных автомобилей зарядное устройство представляет собой отдельную коробку, расположенную под капотом, или даже может быть отдельно стоящим устройством, отдельным от автомобиля.

В следующем разделе мы рассмотрим систему Magna-Charge.

Как зарядить автомобильный аккумулятор

Безопасная зарядка автомобильного аккумулятора

Аккумулятор обычно разряжается по нескольким причинам, и в этом случае аккумулятор необходимо будет зарядить.Одна из наиболее частых причин разряженная батарея что это испортилось и аккумулятор необходимо заменить. Самостоятельно нанесенная батарея draw разряжает аккумулятор, например, если оставить включенными фары или одна из дверей открывается. An с ночевкой разряжается аккумулятор из-за отсутствия электричества где-то в машине приведет к разрядке аккумулятора, даже если он находится в хорошем состоянии. Наконец, если генератор двигателя не выдает нужное количество заряда напряжение аккумулятор разряжается.Если ваша машина простояла в течение длительного времени батарея также может терять заряд, что естественно.

Резервную зарядку аккумулятора можно выполнить с помощью устройства для смены струйки, которое можно приобрести на Amazon по цене около 26 долларов США. Есть множество зарядные устройства и цены, которые будут определять скорость и качество зарядного устройства. Однако более дорогие зарядные устройства обычны для магазинов. мы действительно знаем некоторых людей, которым нравится держать их в своем домашнем гараже.

СПОНСИРУЕМЫЕ ССЫЛКИ

Как работает зарядное устройство?

Зарядное устройство для аккумуляторов преобразует переменный ток из обычной сетевой розетки в постоянное напряжение постоянного тока и усилители, имитирующие генератор переменного тока, когда двигатель вашего автомобиля Бег. Когда к аккумулятору подключено постоянное зарядное устройство, оно выдает около 15 вольт. примерно на 3 ампера смородины. В зависимости от состояния аккумулятора он будет Зарядка занимает от 30 минут до трех часов.Зарядное устройство большего размера может выдавать до 30 ампер и заряжать аккумулятор около 15 минут.

Стоимость услуг

При зарядке аккумулятора в ремонтной мастерской он может стоить от 25 до 25 долларов. 35 долларов США (США). Преимущество того, что это будет сделано в магазине, – у них, вероятно, будет более мощное зарядное устройство, которое выполнит работу быстрее.

Как долго длится заряд аккумулятора?

Если генератор вашего автомобиля вырабатывает правильное напряжение и сила тока без сигнальной лампы батареи при заряде батареи – одноразовая операция.Если аккумулятор разряжен, зарядка поможет вам разогнать машину до тех пор, пока вы не сможете замените аккумулятор.

Приступим!

При работе с аккумуляторами всегда надевайте перчатки и защитные очки.

1. Осмотрите зарядное устройство: Это важно использовать зарядное устройство в хорошем состоянии, чтобы избежать коротких замыканий что может вызвать искру на аккумуляторе. Ищите сломанные провода или поврежденный подключите и при необходимости замените или отремонтируйте зарядное устройство.

СПОНСИРУЕМЫЕ ССЫЛКИ

2. Подключите зарядное устройство: Поднимите капюшон автомобиля и найдите аккумулятор, в некоторых случаях он будет в сундук. В перчатках откройте положительный полюс аккумуляторной батареи. Эти клеммы будут обозначены знаком + или -. Перед подключением зарядного устройства убедитесь, что это отключен или выключен. Затем подключите красный подпружиненный зажим к положительной стороне и черный зажим к отрицательной стороне (неважно в каком порядке).После подключения покачивайте зажимы, чтобы убедиться, что они получают хорошую связь. Не подключайте зарядное устройство задом наперед. Этот может привести к электрическому повреждению автомобиля и зарядного устройства.

3. Включите зарядное устройство: Включите зарядное устройство или просто подключите его. Некоторые зарядные устройства не имеют переключателя, что является нормальным явлением. На этом этапе вам следует слышите жужжащий звук, указывающий на то, что зарядное устройство начинает работу.

4.Следите за индикатором зарядного устройства: После включения зарядного устройства датчик на передней панели зарядного устройства выполняет одно из трех действий;

СПОНСИРУЕМЫЕ ССЫЛКИ

  • Не двигаться, это означает, что у вас плохое соединение на одной из клемм или зарядное устройство не работает. В этом случае выключите зарядное устройство или отключите его от сети. его, а затем переставьте зажимы или возьмите новое зарядное устройство.
  • Игла подпрыгнет к верхнему краю шкалы и медленно опускается вниз по мере того, как аккумулятор заряжается.Это нормальная картина разряженной батареи.
  • Игла немного сдвинется, что означает, что батарея, вероятно, разряжена. хорошо из-за внутреннего короткого замыкания.

5. Зарядка аккумулятора: В зависимости от уровня заряда и Состояние аккумулятора (насколько он новый) время зарядки может отличаться. Как аккумулятор зарядки игла опускается ниже, пока она не перестанет двигаться, что говорит о у вас аккумулятор полностью заряжен.Если вы попытаетесь завести машину с подключенное зарядное устройство может отключить автоматический выключатель внутри зарядного устройства, которое предотвращает перегрузку зарядного устройства. Когда автоматический выключатель остынет, он сбросится, и зарядное устройство снова будет готово к работе. Когда это произойдет, датчик упадет до нуля.

6. Отключите зарядное устройство: После завершения зарядки аккумулятора. выключите зарядное устройство или отключите его от сети. Это остановит поток смородины электрически и поможет вам не вызвать искру возле батареи, которая редко может вызвать взрыв.Батарея есть наиболее подвержен взрыву после перезарядки из-за выделяемых водородных газов во время зарядки. Для проверки состояния аккумуляторов после зарядки рекомендуется идея выполнить нагрузочный тест. Это позволит вам узнать, исправна ли батарея или нет.

Посмотрите видео!

СПОНСИРУЕМЫЕ ССЫЛКИ

Осторожно

Никогда не прикасайтесь к металлическим предметам между двумя выводами аккумулятора, чтобы убедиться, что он не поврежден. заряжен, это может привести к взрыву.Соблюдайте осторожность при работе с батареями.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *