Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Двухполупериодный мостовой выпрямитель. Принцип действия, схема, расчет

Главная » Справочник » Двухполупериодный мостовой выпрямитель. Принцип действия, схема, расчет

Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, построенная на основе конфигурации с четырьмя диодами. Такая конструкция известна как двухполупериодный мостовой выпрямитель или просто мостовой выпрямитель.

Преимущество этого типа выпрямителя по сравнению с версией выпрямителя с центральным отводом заключается в том, что для него не требуется сетевой трансформатор с центральным отводом во вторичной обмотке, что резко снижает его размер и стоимость.

Также эта конструкция использует полностью все вторичное напряжение в качестве входного. Используя тот же трансформатор, мы получаем вдвое больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным отводом. Именно поэтому мостовые выпрямители используются гораздо чаще, чем двухполупериодные со средней точкой.

Двухполупериодный мостовой выпрямитель

Чтобы выпрямить оба полупериода синусоидальной волны, как мы уже говорили ранее, в мостовом выпрямителе используются четыре диода, соединенных вместе в конфигурации «моста». Вторичная обмотка трансформатора подключена с одной стороны диодного моста, а нагрузка — с другой.

На следующем рисунке показана схема мостового выпрямителя.

Во время положительного полупериода переменного напряжения диоды D1 и D2 смещены в прямом направлении, в то время как диоды D3 и D4 смещены в обратном направлении. Это создает положительное напряжение на нагрузочном резисторе (обратите внимание на плюс-минус полярности на нагрузочном резисторе).

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь диоды D3 и D4 смещены в прямом направлении, а диоды D1 и D2 — в обратном. Это также создает положительное напряжение на нагрузочном резисторе, как и раньше.

Обратите внимание, что независимо от полярности напряжения на входе, полярность на нагрузке постоянная, а ток в нагрузке течет в одном направлении.

Таким образом, схема преобразует входное переменное напряжение в пульсирующее постоянное напряжение.

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Если вам трудно запомнить правильное расположение диодов в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы. Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении.

Значение постоянного напряжение выходного сигнала

Здесь формула для расчета среднего значения напряжения такая же, как и для двухполупериодного выпрямителя со средней точкой:

Это уравнение говорит нам, что значение постоянного напряжения составляет около 63,6 процента от пикового значения. Например, если пиковое переменное напряжение составляет 10 В, то постоянное напряжение будет 6,36 В.

Когда вы измеряете напряжение на выходе мостового выпрямителя с помощью вольтметра, показание будет равно среднему значению.

Аппроксимация второго порядка

В действительности мы не получаем идеальное  напряжение на нагрузочном резисторе. Из-за потенциального барьера, диоды не включаются, пока источник напряжение не достигнет около 0,7 В.

И поскольку в мостовом выпрямителе работают по два диода за раз, то падение напряжения составит 0,7 x 2 = 1,4 В. Таким образом, пиковое выходное напряжение определяется следующим образом:

Выходная частота

Полноволновой выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого у такого выпрямителя на выходе в два раза больше циклов, чем на входе. Поэтому частота полноволнового сигнала в два раза превышает входную частоту.

Например, если частота на входе составляет 50 Гц, выходная частота будет 100 Гц.

Фильтрация постоянного напряжения

Сигнал на выходе, который мы получаем от двухполупериодного мостового выпрямителя, является по сути пульсирующим постоянным напряжением, которое вырастает до максимума, а затем снижается до нуля.

Для того чтобы избавиться от пульсаций, нам необходимо отфильтровать двухволновой сигнал. Один из способов сделать это — подключить сглаживающий конденсатор.

Первоначально конденсатор разряжен. На протяжении первой четверти цикла диоды D1 и D2 смещены в прямом направлении и из-за этого сглаживающий конденсатор начинает заряжаться. Процесс заряда длится до тех пор, пока напряжение с мостового выпрямителя не достигнет своего пикового значения. В этот момент напряжение на конденсаторе будет равно Vp.

После того, как напряжение с выпрямителя достигает своего пика, оно начинает уменьшаться. Как только напряжение снизиться ниже Vp соответствующая пара диодов (D1 и D2) не будет проводить.

Когда диоды выключены, конденсатор разряжается через нагрузку, пока не будет достигнут следующий пик. Когда наступает следующий пик, конденсатор заряжается уже через диоды D3 и D4  до пикового значения.

Недостатки мостового выпрямителя

Единственным недостатком мостового выпрямителя является то, что выходное напряжение меньше, чем входное напряжение на 1,4 В, в результате падения на двух диодах.

Этот недостаток ощутим только в источниках питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, то  напряжение нагрузки будет иметь только 3,6 В.

Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению и влияние падения на диодах будет не значительным.

Блок питания 0…30В/3A

Набор для сборки регулируемого блока питания…

Подробнее

Схема двухполупериодного (полноволнового) выпрямителя напряжения

Содержание

  • 1 Полуволновой выпрямитель
  • 2 Полноволновой выпрямитель
    • 2.1 Полноволновой выпрямитель с нулевым выводом
    • 2.2 Диодный мост
    • 2.3 Сглаживание пульсаций
  • 3 Трехфазный выпрямитель
  • 4 Использование двухполупериодного выпрямителя
  • 5 Видео

Обычное питание от распределительной сети предполагает переменное напряжение. Это напряжение можно легко настроить на желаемый уровень, пользуясь встроенными или внешними трансформаторами. Однако многие электронные компоненты, например, электролитические конденсаторы, светодиоды, диодные элементы и транзисторы не предназначены для работы на переменном токе. Для управления цепями с такими компонентами переменное напряжение необходимо преобразовывать в соответствующее постоянное. Для этого служат выпрямители.

Выпрямитель тока

Полуволновой выпрямитель

Для создания выпрямителей требуются элементы, пропускающие ток в одном направлении и блокирующие в другом. Раньше для этой цели использовались электронные лампы. Сейчас повсеместно применяются полупроводниковые диоды.

Простейший однофазный однополупериодный выпрямитель представляет собой обычный диод, подключенный последовательно с нагрузкой. Когда положительная полуволна синусоидального сигнала проходит через диод, он ее пропускает. Однако при перемене направления тока в другой полупериод диод запирается. В результате отрицательный полупериод токового сигнала блокируется, и остается пульсирующий ток, состоящий из положительных полуволн. Часть энергии будет потеряна. Кроме того, высокая пульсация сигнала часто становится неприемлемой для работы электронных схем.

Однофазный полуволновой выпрямитель

Можно использовать усовершенствованную схему однополупериодного выпрямителя, включив параллельно нагрузке конденсатор. Схема работает следующим образом:

  1. Если на полюсе источника присутствует положительное напряжение, диод проводит ток. Конденсатор заряжается полностью, а ток проходит через сопротивление нагрузки;
  2. Когда на полюсе источника появляется отрицательное напряжение, диод блокирует протекание тока. В этот момент конденсатор разряжается, поддерживая на короткий временной промежуток ток через сопротивление нагрузки.

Важно! Если резистор обладает большим сопротивлением, то ток будет маленький. Конденсатор разряжается медленно и поддерживает напряжение в основном до следующей смены полярности.

Полуволновое выпрямление с конденсатором

Такой однофазный однополупериодный выпрямитель с конденсатором имеет меньший уровень пульсации, однако его эффективность все равно оставляет желать лучшего.

Полноволновой выпрямитель

Выпрямитель тока

Преимущества двухполупериодного выпрямителя:

  1. Полуволновой выпрямитель обеспечивает только половину доступной энергии в волне переменного тока. Во время отрицательной части цикла напряжение может падать до нуля. Двухполупериодный выпрямитель сохраняет до 90% энергии;
  2. Диод работает как односторонний переключатель, позволяя току протекать только в одном направлении. Однако высокое обратное напряжение может разрушить диод. Из-за этого диоды откалиброваны на обратное напряжение. Полноволновой выпрямитель снижает требования по обратному пробою наполовину. Диоды с более низкой калибровкой дешевле, снижается стоимость всей схемы. Это относится к мостовым схемам;
  3. При применении двухполупериодного выпрямителя сигнал более плавный из-за лучшего сглаживания пульсаций.

Полноволновой выпрямитель с нулевым выводом

Двухполупериодная схема выпрямителя преобразует оба полуцикла переменного сигнала в импульсный сигнал однонаправленного тока.

Для выпрямления сигнала используется трансформатор, вторичная обмотка которого поделена пополам. От средней точки сделан вывод и заземлен, то есть потенциал ее равен нулю. Промежуточный отвод является одним из выходов мощности, а другой выход образуется соединением каждого конца обмотки через соответствующие диоды.

Полноволновой выпрямитель с нулевой точкой

  1. Во время положительного полупериода входного переменного сигнала на одном конце обмотки появляется «плюс», а на другом – «минус». Диод, подключенный анодным выводом к «плюсу», пропускает токовый сигнал. А другой диод, на анодном выводе которого «минус», оказывается запертым. Ток, протекая по нагрузке, возвращается к центральной точке;
  2. Когда появляется отрицательная полуволна, полярность концов обмоток меняется. Соответственно, первый диод запирается, а второй – пропускает сигнал.

В результате по нагрузке проходит ток и в положительные полуциклы, и в отрицательные, но результирующий сигнал будет протекать в одном направлении. Величина постоянного напряжения будет составлять 0,9 от входного среднеквадратичного показателя и 0,637 – от максимального. Частота выходного сигнала увеличивается в два раза.

Можно получать другие значения выходного напряжения, если изменять коэффициент трансформации.

Важно! Двухполупериодный выпрямитель со средней точкой позволяет получить выпрямленный ток с низкими потерями мощности и с невысокой пульсацией, но применяемые трансформаторы дороги и имеют большие габариты по сравнению с диодными мостами.

Диодный мост

Схема двухполупериодного выпрямителя, называемая диодный мост, использует четыре диода, соединенных с образованием замкнутого контура, к одной стороне которого подсоединяется источник питания переменного тока, к другой – нагрузка.

Применяемая конфигурация позволяет работать поочередно на пропуск сигнала парам диодов, находящимся в противоположных плечах моста. В каждом случае создается положительная полуволна, а ток через нагрузку остается однонаправленным.

Диодный мост

Коэффициент пульсаций мостового выпрямителя составляет 0,48, аналогично другой схеме, с применением трансформатора.

Мостовая схема выпрямления проста и эффективна. Недостатком ее является падение напряжения на диодных элементах. Один из них обеспечивает падение напряжения в 0,7 В, второй – в 1,4 В. Этот дефект может существенно сказаться только на работе низковольтных схем.

Сглаживание пульсаций

Возможно улучшить сигнал двухполупериодного выпрямителя, применяя конденсаторы, которые повышают средний уровень выходного напряжения и делают его более плавным.

Во время первой полуволны конденсатор заряжается до максимума, а при снижении сигнала напряжение на нем не может быстро упасть. Разряд конденсатора происходит до определенного уровня, на котором поддерживается напряжение до зарядного импульса второй полуволны. При большей емкости конденсатора уровень поддерживаемого напряжения растет.

Трехфазный выпрямитель

Если вместо однофазного трансформатора использовать трехфазный, коэффициент пульсаций может быть уменьшен в значительной степени.

Важно! Существенным преимуществом трехфазной схемы является то, что выпрямленное напряжение не падает до нуля, даже если не используется сглаживающее устройство.

Мостовая схема однофазного двухполупериодного выпрямителя легко преобразуется в трехфазную. Схема выпрямления использует шесть диодов. Каждая фаза включается между парами диодов. Ток, протекающий через один диод, равен 1/3 нагрузочного тока. Выпрямленное напряжение превышает аналогичный показатель для трехфазного полуволнового выпрямителя, использующего три диодных элемента.

Трехфазная выпрямительная схема

Трехфазный тип расположения мостов является предпочтительным в различных применениях, хотя существуют схемы и с использованием разделенных вторичных обмоток трансформатора.

Использование двухполупериодного выпрямителя

Что представляет собой сварочный выпрямитель

Полноволновой выпрямитель широко используется в электронных схемах: радиоприемниках, телевизорах, компьютерах, видеооборудовании и других, где необходим источник питания с минимальным уровнем пульсаций.

Независимо от существования других форм выпрямителей, самый простой и часто применяемый – мостовой выпрямитель с четырьмя диодами и конденсатором. Два из них пропускают положительные половины циклов, другие два – отрицательные, а конденсатор отвечает за поддержание результирующего напряжения до момента изменения полярности ИП.

В схемах выпрямителей диоды могут быть полностью или частично заменены тиристорами, так что можно получить управляемую или полууправляемую систему выпрямления. Эти системы позволяют регулировать среднее значение напряжения на нагрузке. Замена диода на тиристор позволяет задержать открытие элемента, который пропускает ток, при подаче импульса на его управляющий электрод.

Выпрямительные схемы на мощных элементах применяют для установок электролиза, сварочных аппаратов, питания электротранспорта, прокатных станов, систем передачи электрической энергии на постоянном токе.

Видео

Что такое диод

Оцените статью:

Двухполупериодный выпрямитель — Выпрямители — Основы электроники

Выпрямители

Двухполупериодный выпрямитель представляет собой устройство, в котором два или более диода расположены чтобы ток нагрузки протекал в одном и том же направлении в течение каждого полупериода подача переменного тока.

Обычный двухполупериодный выпрямитель

Схема базового двухполупериодного выпрямителя показана на виде А рисунка ниже. Трансформатор Tr обеспечивает питание двух диодных выпрямителей, Д

1 и Д 2 . Этот трансформатор имеет вторичная обмотка с отводом от середины, разделенная на две равные части (W1 и W2). W1 обеспечивает напряжение источника для D 1 , а W2 обеспечивает напряжение источника для D 2 . Напряжения на встречке концы вторичных обмоток сдвинуты по фазе на 180 градусов друг к другу. Например, когда напряжение в точке В положительно относительно земли, напряжение в точке А отрицательно относительно земли. Соединения с диодами расположены так, что диоды проводят на чередование полупериодов. Рассмотрим работу схемы в течение одного полного цикла.

Обычный двухполупериодный выпрямитель.

В течение первого полупериода (указано сплошными стрелками) напряжение в точке А положительно по отношению к земле, а напряжение в точке B отрицательно относительно земли.

Во время этого чередования анод D 2 становится отрицательным. и D 2 не может проводить. За время, в течение которого анод D 2 отрицательный, анод D 1 это положительный, разрешающий D 1 проводить. Как показано, ток течет из точки А трансформатор, через диод D 1 , вниз через нагрузочный резистор ( R L ) на массу (центральный отвод). Когда D 1 проводит, он действует как замкнутый переключатель, так что положительный полупериод ощущается через нагрузку ( R L ).

Во время второго полупериода (обозначено пунктирными линиями) полярность приложенное напряжение изменилось на противоположное. Теперь анод Д 2 есть положительный относительно земли и анод D 1 отрицательный. Теперь только D 2 могут проводить. Ток теперь течет, как показано, от точки B трансформатора, через диод

D 2 , вниз через нагрузочный резистор ( R L ) к заземление (центральный кран). Обратите внимание, что ток течет через нагрузочный резистор ( R L ) в одном направлении для обоих половины входного цикла.

Вид B на приведенном выше рисунке представляет форму выходного сигнала полноволнового выпрямитель. Форма сигнала состоит из двух импульсов тока (или напряжения) для каждого цикл входного напряжения. Частота пульсаций на выходе Таким образом, двухполупериодный выпрямитель в два раза превышает частоту сети.

Более высокая частота на выходе двухполупериодного выпрямителя дает отчетливую Преимущество: из-за более высокой частоты пульсаций выход близко приближается к чистому DC. Более высокая частота также значительно упрощает фильтрацию. чем на выходе однополупериодного выпрямителя.

По пиковому значению среднее значение тока и напряжения на выходе двухполупериодного выпрямителя вдвое больше, чем на выходе полупериодный выпрямитель. Соотношение между пиковым значением и средним значение показано на рисунке ниже. Поскольку форма выходного сигнала по существу синусоидальная волна с обоими чередованиями одной и той же полярности, средний ток или напряжение составляет 63,7 процента (или 0,637) от пикового тока. I пиковое или напряжение В пик .

Пиковые и средние значения для двухполупериодного выпрямителя.

В виде уравнения:

Пример:
Общее напряжение на высоковольтной вторичной обмотке трансформатор, используемый для питания двухполупериодного выпрямителя, составляет 300 вольт. Найдите среднее напряжение нагрузки (не учитывать небольшое падение напряжения на диоде).

Решение:
Поскольку общее вторичное напряжение ( В S ) составляет 300 вольт, каждый на диод подается половина этого значения, или 150 вольт. Потому что вторичка напряжение является среднеквадратичным значением, пиковое напряжение нагрузки равно:

Среднее напряжение нагрузки:

Каждая электрическая цепь имеет преимущества и недостатки. Полная волна выпрямитель не исключение. При изучении двухполупериодного выпрямителя у вас может возникнуть обнаружил, что при удвоении выходной частоты среднее напряжение удваивается, и результирующий сигнал намного легче фильтровать из-за высокой пульсации частота. Единственным недостатком является то, что пиковое напряжение в полной волне выпрямителя составляет только половину пикового напряжения в однополупериодном выпрямителе. Это потому что вторичная обмотка трансформатора в двухполупериодном выпрямителе центр постучал; поэтому на каждый диод поступает только половина напряжения источника.

К счастью, есть выпрямитель, который выдает такое же пиковое напряжение. как однополупериодный выпрямитель и с той же частотой пульсаций, что и двухполупериодный выпрямитель. Эта схема, известная как мостовой выпрямитель , будет предметом нашего рассмотрения. следующее обсуждение.

Мостовой выпрямитель

Когда четыре диода подключены, как показано на рисунке ниже, схема называется мостовым выпрямителем . Вход в схему подается на диагонально противоположные углы сети, а выход берется из оставшихся двух углов.

Мостовой выпрямитель.

Один полный цикл операции будет обсуждаться, чтобы помочь вам понять, как эта схема работает.

Допустим, есть положительный потенциал в точке A и отрицательный потенциал в точке B. Положительный потенциал в точке A произойдет прямое смещение D 3 и обратное смещение Д 4 . Отрицательный потенциал в точке B вызовет смещение вперед D 1 и обратное смещение D 2 . В на этот раз D 3 и D 1 смещены вперед и позволит току проходить через них; Д 4 и D 2 смещены в обратном направлении и блокируют ток. путь тока течет из точки А через D 3 , вниз через R L , через D 1 до точки B. Этот путь обозначен сплошными стрелками.

Через полпериода полярность на вторичной обмотке трансформатора реверс, смещение вперед Д 2 и Д 4 и обратное смещение D 1 и D 3 . Текущий поток теперь будет из точки B через

D 2 , вниз через R L , через D 4 до точки А. Этот путь обозначено ломаными стрелками. Вы должны были заметить, что текущий поток через R L всегда в одном направлении. Протекая через R L этот ток создает напряжение соответствует тому, что показано на выходном сигнале. Поскольку ток течет через нагрузку ( R L ) в обе половины циклов приложенного напряжения, этот мостовой выпрямитель является двухполупериодным выпрямителем.

Одно из преимуществ мостового выпрямителя перед обычным двухполупериодным выпрямителем заключается в том, что с данным трансформатором мостовой выпрямитель производит выходное напряжение это почти в два раза больше, чем у обычной двухполупериодной схемы.

Двухполупериодный мостовой выпрямитель | DevXplained

Он используется во многих продуктах и ​​фактически является стандартным выпрямителем: двухполупериодным мостовым выпрямителем. Давайте узнаем, как это работает.

Двухполупериодный мостовой выпрямитель

Двухполупериодный мостовой выпрямитель фактически является стандартной схемой выпрямителя.

Это позволяет нам использовать как отрицательную, так и положительную полуволну сигнала переменного тока. Как это возможно? Давай выясним!

ПРЕДУПРЕЖДЕНИЕ
Эксперименты в этом учебном пособии проводились с генератором сигналов при размахе напряжения 9 В. При проведении экспериментов используйте напряжения ниже 24 В переменного тока. Эксперименты с сетевым напряжением могут привести к серьезным травмам или смерти.

Схема выпрямителя

Стандартный двухполупериодный выпрямитель состоит из четырех диодов, которые используются в мостовой конфигурации: два одинаковых плеча с двумя диодами в каждом соединены нагрузкой между ними.

  • Макет
  • Схема

Во время положительной полуволны диоды D1 и D3 проводят ток и питают нагрузку. D1 соединяет положительный верхний рельс с положительным полюсом нагрузки. D3 делает то же самое для нижней направляющей и отрицательного полюса.

Во время отрицательной полуволны два других диода проводят ток. D2 подводит положительное напряжение от нижнего рельса к положительному полюсу нагрузки, а D4 соединяет отрицательный полюс с верхним рельсом.

В демонстрационных целях я заменил диоды на светодиоды и снизил частоту сигнала переменного тока до 1 Гц. Это позволяет нам наблюдать схему выпрямителя в действии. Ваш браузер не поддерживает видео тег.

Два альтернативных пути тока позволяют питать цепь постоянного тока в обеих полуволнах. Если мы посмотрим на сигнал, то увидим, что отрицательная полуволна превращается в положительную, а не отсекается, как это делает однополупериодный выпрямитель.

Как и в случае с однополупериодным выпрямителем, выпрямленный сигнал имеет примерно ту же амплитуду, что и сигнал переменного тока. Опять же, есть потери на диодах, которые можно уменьшить, используя диоды Шоттки. Поскольку теперь у нас есть два диода на путь, потери в два раза выше, чем в однополупериодном выпрямителе только с одним диодом. Однако, поскольку мы можем использовать обе полуволны, теперь мы имеем более высокую выходную мощность при том же сопротивлении нагрузки. Среднеквадратичное напряжение теперь равно \(V_{RMS} = {V_{p}\over \sqrt{2}}\). Это не случайно идентично общему определению среднеквадратичного напряжения для синусоидальных сигналов переменного тока. За исключением небольших потерь, мы можем использовать всю мощность источника переменного тока с этим выпрямителем.

Добавление конденсаторного фильтра

Чтобы стабилизировать выходное напряжение, мы снова можем использовать конденсатор, как мы использовали для однополупериодного выпрямителя:

  • Макет
  • Схема

Конденсатор стабилизирует напряжение, но вызывает скачки тока во время зарядки. Как и в случае с однополупериодным выпрямителем, вам необходимо увеличить значение емкости для больших нагрузок или уменьшения пульсаций. Большая разница в том, что конденсатору больше не нужно обеспечивать энергию для полной полуволны. Это уменьшает пульсации и упрощает использование большей нагрузки без необходимости использования неоправданно большого конденсатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *