Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Импульсный трансформатор принцип работы

Современные электронные и электрические приборы имеют достаточно сложное устройство. Их эффективную и бесперебойную работу обеспечивает большое количество составляющих. Одной из них является импульсный трансформатор, принцип работы которого основывается на активном преобразовании электрического тока.

  • Основная функция
  • Механизм действия и виды устройств
  • Импульсный трансформатор: принцип действия и функциональные особенности
  • Преимущества импульсного трансформатора
  • Схемы импульсных блоков питания

Основная функция

Устройства, работа которых зависит от электрического тока, оснащаются импульсными трансформаторами. Делается это для того, чтобы обеспечить защиту от короткого замыкания, слишком высокого напряжения, исходящего от сети, и перегревания корпуса электроприборов.

Он присутствует как в технике, используемой в быту (цветных телевизорах, компьютерных мониторах), так и в специальном оборудовании, в основе которого заложено действие импульса (газовых лазерах, магнетронах, триодных генераторах, дифференцирующих трансформаторах).

Механизм действия и виды устройств

Работа импульсного трансформатора обеспечивается за счёт пары катушек, соединённых магнитоводом и имеющих обмотку различной конфигурации. Количество витков на обмотке определяет мощность электрической энергии, получаемой на выходе.

Первичный контур обмотки принимает на себя однополярные импульсные сигналы. На ней же определяются импульсы с коротким временным интервалом, имеющие прямоугольную форму. Затем эти же импульсы находят отражение на вторичной обмотке. Принцип отражения является основным в работе всех ИТ.

Трансформаторы могут иметь различное устройство. В зависимости от типа обмотки выделяют следующие разновидности прибора:

  • тороидальный,
  • стержневой,
  • броневой,
  • бронестержневой.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях.
    С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь.
    Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Преимущества импульсного трансформатора

Он имеет небольшие габариты, более стабилен в работе, дает качественное напряжение и независящее от параметров исходной синусоиды.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания на входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. 

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Схемы импульсных блоков питания

Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя. 

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, Dh421,  TL431, IR2151, IR2153 и др).  К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей.

Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

 

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором  TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 12 чел.
Средний рейтинг: 3.5 из 5.

Импульсный трансформатор | принцип работы, отличия

Виды трансформаторовИмпульсные трансформаторы, Устройство трансформаторов12 комментариев к записи Как работает импульсный трансформатор

Содержание:

Импульсный трансформатор (ИТ) — это трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе.

Особенностью работы импульсных трансформаторов является то, что на их первичную обмотку поступают однополярные импульсы, которые содержат постоянную составляющую тока, поэтому сердечник работает с постоянным подмагничиванием.

Импульсные трансформаторы применяются в устройствах связи, автоматики, вычислительной техники, при работе короткими импульсами, для изменения их амплитуды и полярности, исключения постоянной.

Принцип работы импульсных трансформаторов   заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

схема работы импульсного трансформатора. Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е(t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала tu, после чего наблюдается ее спад в интервале (Т-tu).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τp=L0/Rн

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=Вmax – Вr

  • Вmax – уровень максимального значения индукции;
  • Вr –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

График смещения

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр iu).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до tu остается неизменным, его значение еt=Um. Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

при этом:

  • Ψ – параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром tu , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке импульсного трансформатора, необходимо обе части предыдущей формулы умножить на tu. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

Um x tu=S x W1 x ∆В

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, – перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

Здесь:

  • L0 – перепад индукции;
  • µа – магнитная проницаемость сердечника;
  • W1 – число витков первичной обмотки;
  • S – площадь сечения сердечника;
  • l – длинна (периметр) сердечника (магнитопровода)
  • Вr – величина остаточной индукции;
  • Вmax – уровень максимального значения индукции.
  • Hm – Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности импульсного трансформатора полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µа, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра Вr, отображающий остаточную индукцию, должен быть минимальным.

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным импульсным трансформатором идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Видео: Как работает импульсный трансформатор / трансформатор своими руками / демонстрация

У импульсного трансформатора (ИП) в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.

Основные отличия:

  1. Размер — импульсного трансформатора  обратно пропорционален его рабочей частоте.
  2. Работает трансформатор импульсный от обычного в другой частоте входного напряжения.

В настоящее время большинство блоков питания выполняют на импульсных трансформаторах. Здесь снижение затрат на производство, удешевление стоимости изделия, экономия размеров и веса.

Наиболее важной функцией импульсников является стабилизация напряжения выхода в рабочем режиме.

Другой областью их использования является защита от короткого замыкания на нагрузке при холостом ходе, и защита от чрезмерного возрастания напряжения, а также перегрева устройств.

Особенности конструкций

Основной особенностью конструкции импульсных трансформаторов является малое число витков. Наиболее экономичными стали тороидальные устройства, а менее экономными – бронестержневые. См. Виды магнитопроводов 

Цилиндрическая обмотка обладает свойством малой индуктивности рассеяния, имеет простую конструкцию и технологична в изготовлении. Расположение и число слоев может быть различным, так же, как и схемы их соединений.

Виды обмоток импульсных трансформаторов

Спиральные

Применяются для трансформаторов с наименьшей индуктивностью рассеяния. Их применение целесообразно при автотрансформаторном подключении. Намотка производится тонкой и широкой фольгой или лентой.

Конические

Предназначены для снижения индуктивного рассеяния с незначительным повышением емкости обмоток. Их особенностью является толщина изоляции слоев, которая прямо зависит от напряжения между витками первичной и вторичной обмотки. Толщина изоляции повышается от начала к концу обмоток по линейной зависимости.

Цилиндрические

Имеют низкую индуктивность рассеяния, хорошую технологичность и простую конструкцию.

Потери энергии

Важной проблемой при создании конструкции импульсных трансформаторов является снижение потерь энергии и повышение его КПД.

Потери складываются из:

  • Потери от гистерезиса.
  • Магнитной вязкости.
  • Некачественная изоляция.
  • Вихревые токи.

Кроме простого расчета потерь, для магнитопровода используют высоколегированные марки стали. Это позволяет уменьшить потери и приблизить форму петли гистерезиса к форме прямоугольника. Такие материалы предназначены для обеспечения значительных параметров индукции.

Вихревые токи искусственно разъединяют. А также применяют конструкции магнитных систем с наибольшей магнитной проницаемостью. Такими способами добиваются стабильных параметров вихревого тока в магнитопроводе.

Применяемые материалы

Вид магнитного материала значительно влияет на показатели качества и работу импульсного режима. Материал изготовления сердечника магнитопровода оценивается по значениям величин, которые определяют качество свойств:

  • Удельное сопротивление применяемых материалов прибора.
  • Индукция насыщения.
  • Возможность применения самых тонких листов стали или лент.
  • Коэрцитивная сила.
Электротехническая сталь

Импульсные трансформаторы предпочтительно оснащать магнитопроводами, изготовленными из электротехнической стали марок от 3405 до 3425, которые имеют наиболее высокие значения индукции насыщения и низкие параметры коэрцитивной силы, а также наибольшее значение величины прямоугольности формы петли гистерезисного цикла. Такой материал в настоящее время приобрел большую популярность.

Пермаллой

Этот материал является прецизионным сплавом, обладающим магнито-мягкими свойствами. Он чаще всего состоит из железа и никеля, с добавлением легирующих элементов.

Ферриты

Другим очень востребованным материалом для изготовления импульсных трансформаторов, а точнее, его сердечника являются ферритовые материалы. Они имеют малую длительность трансформируемых импульсов. Такие магнитопроводы обладают повышенным удельным сопротивлением и не имеют потерь от вихревых токов. Они применяются для импульсных трансформаторов с интервалом импульсов, который измеряется несколькими наносекундами.

Система обозначений и маркировки импульсных трансформаторов включает в себя следующие элементы:

  • Первый – буква – Т,
  • Второй – буква И (импульсный) или сочетание букв ИМ. Буква И соответствует трансформаторам с длительностью входного импульса от 0,5 до 100 мкс, а ИМ – от 0,02 до 100 мкс.
  • Третий – число порядковый номер разработки.

Например: обозначение ТИ-5 – трансформатор импульсный с длительностью входного импульса от 0,5 до 100 мкс, номер разработки 5

Видео: Импульсный трансформатор

 

Что такое импульсный трансформатор » Electronics Notes

Импульсные трансформаторы

используются для передачи импульсов, часто для управления цепями или передачи данных, а также обеспечивают гальваническую или резистивную изоляцию между двумя цепями.


Трансформаторы Включает:
Трансформаторы, типы, области применения Импульсные трансформаторы Автотрансформаторы и вариаторы

См. также: Типы индукторов Характеристики индуктора


Импульсные трансформаторы — это форма трансформатора, предназначенная для передачи импульсов с хорошим уровнем точности, а не синусоидальных волн.

Большинство трансформаторов используются для передачи энергии, как в случае с линейными или сетевыми трансформаторами, и даже аудиотрансформаторы передают мощность звука, а радиочастотные трансформаторы передают мощность радиочастоты. Вместо этого импульсные трансформаторы используются для передачи информации с использованием цифровых сигналов или импульсов.

Эти цифровые сигналы или импульсы могут использоваться для передачи данных или для управления схемой, которая управляется импульсами.

Обычно входной и выходной сигнал или импульсный трансформатор представляет собой прямоугольную волну напряжением в несколько вольт и часто имеет частоту, превышающую 100 кГц.

Тип характеристик, требуемый для импульсных трансформаторов, требует несколько иного подхода к проектированию, чем тот, который используется для более стандартных трансформаторов, хотя основные концепции остаются прежними.

Понимание импульсных трансформаторов: основы

Целью импульсного трансформатора является передача импульсов от входа к выходу с минимальным уровнем искажений.

Для этого трансформатор должен передавать приложенный к нему сигнал с минимальным уровнем падения напряжения, при котором плоская вершина импульса падает после того, как он прошел через импульсный трансформатор.

Время нарастания также должно быть быстрым, чтобы приспосабливаться к передним фронтам импульса и, аналогичным образом, оно должно также приспосабливаться к крутизне спада сигнала.

Конструкция этих трансформаторов не так проста, как конструкция стандартного трансформатора переменного тока. Для этих трансформаторов поток будет чередоваться вперед и назад.

Типовой импульсный трансформатор работает в так называемом униполярном режиме, когда импульсы чередуются между двумя уровнями, но с одним и тем же уровнем намагниченности, т.е. не пересекают нулевую линию.

Импульсные трансформаторы

обычно работают на высоких частотах, а это означает, что необходимо использовать сердечники с малыми потерями, поэтому ферриты широко используются в качестве сердечников для импульсных трансформаторов.

Импульсные трансформаторы

можно разделить на две основные категории: силовые трансформаторы и сигнальные трансформаторы.

  •   Силовой импульсный трансформатор

Как следует из названия, силовые импульсные трансформаторы используются для подачи питания на различные предметы в виде импульсов. Например, их можно использовать для обеспечения контролируемого уровня мощности устройства, которое может представлять собой нагревательный элемент какой-либо формы или, возможно, другой элемент, который управляется цифровым источником драйвера мощности с использованием широтно-импульсной или периодической модуляции.

Для этих трансформаторов вполне возможно, что соотношение витков будет не 1:1, а изменено для обеспечения требуемого напряжения на управляемом элементе.

Трансформатор обеспечивает электрическую резистивную или гальваническую развязку между входной и выходной цепями, что позволяет изолировать обе цепи друг от друга.

  •   Преобразователь импульсов сигнала

Как следует из названия, трансформаторы сигнальных импульсов используются для передачи управляющих сигналов, а уровни мощности совсем не высоки. Уровни мощности, как правило, довольно низкие, и эти трансформаторы сосредоточены на обеспечении хорошего импульса низкого уровня в цепи, которая управляется.

Часто эти импульсные трансформаторы можно использовать для управления другими цепями управления, возможно, с использованием полевых транзисторов или тринисторов, а также там, где требуется изоляция. Мощные полевые транзисторы и тиристоры могут быть управляющими цепями с высокими уровнями напряжения, поэтому может потребоваться обеспечить изоляцию между источником управляющего сигнала и управляемой схемой.

Импульсные трансформаторы

также могут использоваться в различных приложениях в системах связи и цифровых сетях, где может быть необходимо изолировать различные участки для улучшения целостности сигнала или общего обеспечения изоляции.

Во многих из этих приложений трансформатор должен минимизировать уровни искажений, поэтому это будет важным элементом спецификации.

Требования к импульсным трансформаторам

Фактические характеристики и рабочие параметры импульсных трансформаторов во многом зависят от конкретной схемы и приложений, для которых они используются.

Параметры, включая размер, индуктивность, импеданс и множество других показателей, будут варьироваться в зависимости от требований.

Обычно полоса пропускания должна быть широкой, чтобы форма импульса соответствовала минимальному уровню искажений.

Кроме того, трансформаторы обычно минимизируют уровни паразитных элементов, таких как индуктивность рассеяния и емкость обмоток, за счет использования конфигураций обмоток, которые оптимизируют связь между обмотками, сохраняя при этом паразитные элементы небольшими. Часто они имеют только две обмотки, поскольку это также сводит к минимуму утечку потока.

Другие общие черты включают материал сердечника, который может работать на высоких частотах, и часто, хотя и не всегда, их соотношение витков составляет 1: 1, поскольку их основная цель – не изменение напряжения, а создание изолирующего барьера. Сигналы часто доводятся до нужных уровней схемой драйвера. Таким образом, можно использовать стандартные трансформаторы.

Импульсные трансформаторы

— это форма трансформатора, которая чаще используется в коммерческих целях, и поэтому она может быть не так широко распространена, как другие типы. Тем не менее, импульсные трансформаторы являются очень полезным электронным компонентом, который используется во многих приложениях.

Другие электронные компоненты:
Батарейки конденсаторы Соединители Диоды полевой транзистор Индукторы Типы памяти Фототранзистор Кристаллы кварца Реле Резисторы ВЧ-разъемы Переключатели Технология поверхностного монтажа Тиристор Трансформеры Транзистор Клапаны/трубки
    Вернуться в меню “Компоненты”. . .

Импульсный трансформатор

Рабочий пример подходящих испытаний

Обзор импульсов и сигналов

Импульсные трансформаторы представляют собой разнообразное семейство трансформаторов, предназначенных для передачи цифрового управляющего сигнала от цепи управления к нагрузке.
Они обеспечивают гальваническую развязку цепи, позволяя быстро передавать управляющие сигналы без искажения формы сигнала.
Входной и выходной сигнал обычно представляет собой прямоугольную волну в несколько вольт с частотой выше 100 кГц, а не синусоидальную волну, как у обычных трансформаторов. емкость (чтобы профиль сигнала сохранялся на вторичной обмотке как можно более чистым.)
Поскольку они работают с высокочастотными сигналами, материал сердечника должен выдерживать многократное и быстрое намагничивание и размагничивание.
Соотношение витков обычно составляет 1:1, поскольку их основная цель — не увеличивать или преобразовывать напряжение, а поддерживать его через изолирующий барьер.

Импульсные трансформаторы

Хорошим примером импульсного трансформатора являются устройства серии Murata 786.

Серия Murata 786 доступна с различными схемами обмотки, с центральными отводами на обмотках или без них. Для целей этого примера мы сосредоточимся на 78601/1C, который имеет 1 первичный и 1 вторичный

78601/1C производит схему

Предлагаемое тестирование импульсов и сигналов

Импульс — схема редактора АТ

Приведенную выше схему можно легко преобразовать в программу тестирования АТ с помощью программного обеспечения AT EDITOR.
Здесь показана простая схема

Схема редактора AT

Pulse — AT Fixturing

Импульсные трансформаторы серии 786 можно легко подключить с помощью крепления на штырьках Кельвина.
Поскольку сопротивление обмотки низкое (<1 Ом), при проведении испытаний будет повышена точность, обеспечиваемая 4-проводными измерениями.

Простое крепление штифта Кельвина

Импульс — программа испытаний АТ

Сначала проверяется сопротивление двух катушек, чтобы оно было ниже указанного максимума в 0,6 Ом для каждой обмотки.
Затем проверяется индуктивность, чтобы подтвердить работу ядра,
Пределы здесь указывают минимальную индуктивность, а не номинал и допуск, поэтому выполняется только проверка более 2 мГн (хотя AT в любом случае запишет фактическое измеренное значение)

Получить PDF тестовой программы Получить в редакторе файл ATP для программы Получить программное обеспечение AT Series Editor

Затем проверяется соотношение оборотов, чтобы проверить соотношение 1:1 в пределах +/- 1%.
Если фактическое число витков известно, то рекомендуется использовать его как номинальное с допуском +/- 0,5 витка.

Далее проверяются межобмоточная емкость и индуктивность рассеяния, опять же в соответствии с опубликованными данными.
Поскольку и то, и другое в значительной степени определяется дизайном, некоторые пользователи могут предпочесть запускать эти тесты как случайные контрольные тесты, чтобы сэкономить время тестирования, сохраняя при этом качество аудита.

Наконец, изоляция проверяется с помощью стандартного теста AC HI-POT.

Индуктивность серии

#

Тест

Описание

Контакты и условия

Причина

1 Р Сопротивление постоянному току Контакты 1–3, проверка < 600 мОм Проверить сопротивление обмотки ниже максимума. Также действует как проверка правильного сечения провода и правильности подключения.
2 Р Сопротивление постоянному току Контакты 6–4, проверка < 600 мОм Проверить сопротивление обмотки ниже максимума. Также действует как проверка правильного сечения провода и правильности подключения.
3 ЛС Контакты 4–6, 1 кГц, 100 мВ, проверка пределов L >2 мГн Для проверки правильного количества витков и правильной работы материала сердечника
4 ТР Передаточное отношение Подайте питание на первичные контакты 1 и 3 с частотой 1 кГц, 100 мВ, на вторичные контакты 4 и 6, проверьте соотношение 1:1, +/- 1%, положительная полярность. Для проверки правильности поворотов и фазировки от первичного к вторичному
5 С Межобмоточная емкость 5 В, 100 кГц, контакты 1 и 3 Hi, контакты 4 и 6 Lo, пределы 49 пФ +/-10% Емкость обычно зависит от конструкции, расположения и топологии обмотки, поэтому обычно определяется конструкцией. Тем не менее, вы можете иногда захотеть проверить это во время производства.
6 ЛЛ Индуктивность рассеяния 50 мА, 300 кГц Контакты 1–3 с закороченными контактами 6–4, пределы ; лучше 470 нГн Проверяет, чтобы соединение между обмотками не приводило к чрезмерной потере передачи магнитного потока
7 HPAC Hi-Pot AC 1 кВ, 50 Гц переменного тока, 1 секунда, контакты 1 и 6 High, контакты 2,3,4 и 5 Lo. Проверить ток <1 мА Чтобы проверить изоляцию между первичными и вторичными.
        Время работы AT5600 1,77 с
        (время работы AT3600 3,68 с)


ПРИМЕЧАНИЕ:
Многие импульсные трансформаторы также определяют «произведение напряжения на время», чтобы определить энергоемкость трансформатора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *