Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Стабилизатор напряжения на LM317 | AUDIO-CXEM.RU

Стабилизатор LM317 является очень популярным компонентом в построении стабилизированных источников питания. Чаще всего его называют регулятором напряжения, потому что выходное напряжение LM317 можно задавать в широком диапазоне. И все-таки, правильнее называть регулируемый линейный стабилизатор напряжения.

Помимо стабилизации напряжения, LM317 может включаться как стабилизатор тока, этому посвящена целая статья “Стабилизатор тока на LM317”.

Как говорилось выше, элемент является линейным, а это важное преимущество, в плане качества питания, перед импульсными стабилизаторами, но увы, линейные компоненты уступают импульсным по КПД.

Стабилизатор выполняется в разных корпусах, соответственно характеристики у всех разные. Я преимущественно буду писать про исполнение в корпусе TO-220.

Основные технические характеристики LM317

Входное напряжение….. до +40В

Выходное напряжение….. от +1.25В до +37В

Разница Vin-Vout….. от 3В до 40В

Максимальный выходной ток при:

(Vin-Vout)<15В ….. 2.2А

(Vin-Vout)=40В ….. 0.4А

Другие характеристики и графики можно посмотреть в технических описаниях разных производителей (Datasheet).

Хочу обратить внимание, что максимально допустимый выходной ток стабилизатора будет зависеть от разницы входного и выходного напряжений. Таким образом, если на вход LM317 подано 40В, а на выходе будет установлено 3В, то максимально допустимый ток не должен превышать 400мА, при условии установки на фланец LM317 теплоотвода с большой охлаждающей поверхностью. Смысл в том, что чем больше разница входного и выходного напряжений, тем больше рассеивается на регуляторе тепла, так как эта разница падает именно на нем. Минимальная разница не должна быть меньше 3В.

Ниже представлен график зависимости тока на выходе, от разницы напряжений.

Схема стабилизатора напряжения на LM317

Как видно из схемы, за установку напряжения стабилизации отвечает делитель напряжения R1R2, средняя точка которого соединена с выводом обратной связи (регулировки).

Сопротивление резистора R1 постоянно и равняется 240Ом.

Подставляя в нижеприведенную формулу определенное значение сопротивления R2, можно посчитать напряжение стабилизации LM317. И наоборот, зная напряжение стабилизации можно рассчитать значение резистора R2.

Вот небольшая табличка (памятка) с уже посчитанными номиналами элементов.

Для наглядного опыта я собрал схему навесным монтажом, без емкостей, чтобы они не отвлекали. Резистора на 240Ом у меня не было, поэтому я установил на 220Ом. Соответственно, для выходного напряжения 15В сопротивление R2 должно быть примерно 2.4кОм.

При изменении входного напряжения, выходное остается стабильным.

Нагрузив выход резистором с сопротивлением 6.2Ома, ток нагрузки составил чуть более 2А.

Установив вместо постоянного резистора R2 подстроечный, получим схему регулируемого стабилизатора напряжения на LM317.

Схема регулируемого стабилизатора напряжения на LM317 с защитными диодами.

Данная схема применяется при выходном напряжении более 25В и выходных емкостей более 10мкФ.

При замыкании входа заряды емкостей могут вывести из строя LM317. Защитные диоды позволяют разрядить эти емкости, обеспечив протекание тока разряда, минуя линейный регулятор.

При замыкании входа на землю, конденсатор Co разрядится через диод D1, а Cadj через D2 и D1.

При выходном напряжении менее 25В и конденсаторов менее 10мкФ, при замыкании входа, разряд конденсаторов происходит через встроенный резистор сопротивлением 50Ом.

Datasheet на LM317 СКАЧАТЬ

Регулируемый стабилизатор напряжения

Технические характеристики

Uвх.max (для LM317)       …………….. 40v

Uвх.max (для остальных)  ……………. 30v

Uвых.max (для LM317)  ……………..    37v

Uвых.max (для остальных) ……………  29v

Uвых.min  ……………………………. 1,25v

Uвых. (нестабильность) ………….       0,1 %

S теплоотвода  (при Imax.) ……. 200 кв.см.

Параметры по типам ИМС

LM317T

КРЕН12А

LD1085

LD1084

КРЕН22

LT1083

КРЕН22А

Iвых.max

1,5A

3A

5A

7,5A

Pрас.max

15W

30W

30W

30W

Uпад.min

2,5V

1,3V

1,3V

1,3V

Принципиальная схема

C1, C2, C3………….10μFx50V

DA1 …………LM317 (SD1083, 84, 85)

R1 ………………..4,7 kOm

R2 ………………….150 Om

Печатная плата

со стороны деталей.

 

Печатная плата со стороны пайки.

СФ1, СФ2, VD1 устанавливаются вне платы, их номинал выбирается исходя из рабочего тока и напряжения.

VD1 обязательно устанавливать при подключении индуктивной нагрузки !

При работе сбольшими токами использовать провода максимально возможного сечения.

Корпус микросхемы находится под потенциалом  Uвых., она должна быть установлена на теплоотвод.

<<< Схемы электрические

Регулируемые стабилизаторы LM317 и LM337. Особенности применения

В радиолюбительской практике широкое применение находят микросхемы регулируемых стабилизаторов LM317 и LM337. Свою популярность они заслужили благодаря низкой стоимости, доступности, удобного для монтажа исполнению, хорошим параметрам. При минимальном наборе дополнительных деталей эти микросхемы позволяют построить стабилизированный блок питания с регулируемым выходным напряжением от 1,2 до 37 В при максимальном токе нагрузки до 1,5А.

Но! Часто бывает,  при неграмотном или неумелом подходе радиолюбителям не удаётся добиться качественной работы микросхем, получить заявленные производителем параметры. Некоторые умудряются вогнать микросхемы в генерацию.

Как получить от этих микросхем максимум и избежать типовых ошибок?

Об этом по-порядку:

Микросхема LM317 является регулируемым стабилизатором ПОЛОЖИТЕЛЬНОГО напряжения, а микросхема LM337  – регулируемым стабилизатором ОТРИЦАТЕЛЬНОГО напряжения.

Обращаю особое внимание, что цоколёвки у этих микросхем различные!

Даташит производителя: datasheet LM317 (pdf-формат 1041 кб),  datasheet lm337 (pdf-формат 43кб).

Цоколёвка LM317 и LM337:

Типовая схема включения LM317

:

Увеличение по клику

Выходное напряжение схемы зависит от номинала резистора R1 и рассчитывается по формуле:

Uвых=1,25*(1+R1/R2)+Iadj*R1

где Iadj ток управляющего вывода. По даташиту составляет 100мкА, как показывает практика реальное значение 500 мкА.

Для микросхемы LM337 нужно изменить полярность выпрямителя, конденсаторов и выходного разъёма.

Но скудное даташитовское описание не раскрывает всех тонкостей применения данных микросхем.

Итак, что нужно знать радиолюбителю, чтобы получить от этих микросхем МАКСИМУМ!
1. Чтобы получить максимальное подавление пульсаций входного напряжения необходимо:

  • Увеличить (в разумных пределах, но минимум до 1000 мкФ) емкость входного конденсатора C1. Максимально подавив пульсации на входе, мы получим минимум пульсаций на выходе.
  • Зашунтировать управляющий вывод микросхемы конденсатором на 10мкФ . Это увеличивает подавление пульсаций на 15-20дБ.  Установка емкости больше указанного значения ощутимого эффекта не даёт.

Схема примет вид:

Увеличение по клику

2. При выходном напряжении больше 25В в целях защиты микросхемыдля быстрого и безопасного разряда конденсаторов необходимо подключить защитные диоды:

увеличение по клику

Важно: для микросхем LM337 полярность включения диодов следует поменять!

3. Для защиты от высокочастотных помех электролитические конденсаторы в схеме необходимо зашунтировать плёночными конденсаторами небольшой ёмкости.

Получаем итоговый вариант схемы:

Увеличение по клику

4. Если посмотреть внутреннюю структуру микросхем, можно увидеть, что внутри в некоторых узлах применены стабилитроны на 6,3В. Так что нормальная работа микросхемы возможна при входном напряжении

не ниже 8В!

Хотя в даташите и написано, что разница между входным и выходным напряжениями должна составлять минимум 2,5-3 В, как происходит стабилизация при входном напряжении менее 8В, остаётся только догадываться.

5. Особое внимание следует уделить монтажу микросхемы. Ниже приведена схема с учётом разводки проводников:

Увеличение по клику

Пояснения к схеме:

  1. длинна проводников (проводов) от входного конденсатора C1 до входа микросхемы (А-В) не должна превышать 5-7 см. Если по каким-то причинам конденсатор удалён от платы стабилизатора, в непосредственной близости от микросхемы рекомендуется установить конденсатор на 100 мкФ.
  2. для снижения влияния выходного тока на выходное напряжение (повышение стабильности по току) резистор R2 (точка D) необходимо подсоединять непосредственно к выходному выводу микросхемы или
    отдельной дорожкой
    /проводником ( участок C-D). Подсоединение резистора R2 (точка D) к нагрузке (точка Е) снижает стабильность выходного напряжения.
  3. проводники до выходного конденсатора (С-E) также не следует делать слишком длинными. Если нагрузка удалена от стабилизатора, то на стороне  нагрузки необходимо подключить байпасный конденсатор (электролит на 100-200 мкФ).
  4. так же с целью снижения влияния тока нагрузки на стабильность выходного напряжения «земляной» (общий) провод необходимо развести «звездой» от общего вывода входного конденсатора (точка F).

Выполнив эти нехитрые рекомендации, Вы получите стабильно работающее устройство, с теми параметрами, которые ожидались.

Удачного творчества!

Похожие статьи:


Схема простого стабилизатора с регулировкой по напряжению

Здравствуйте друзья!

Лабораторный блок питания необходим радиолюбителю, без него как без рук. Для начинающих радиолюбителей я предлагаю собрать схему простого стабилизатора с регулировкой по напряжению на микросхеме LM317, на очень распространенных и не дорогих радиоэлементах. Диапазон выходного напряжения от 1,5 до 37В. Ток может достигать 5А, зависит от используемого силового транзистора и теплоотвода. Входной трансформатор можно использовать любой выдающий нужный вам ток и  напряжение до 37В. Стабилизатор не боится короткого замыкания, однако держать длительное время выводы замкнутыми не рекомендуется, так как КТ818 и LM317 при этом начинают достаточно ощутимо греться и при неэффективном теплоотводе могут выйти из строя.

Принципиальная  схема стабилизатора с регулировкой по напряжению

Печатная плата стабилизатора с регулировкой по напряжению

Достоинства данного стабилизатора.

  • простота в изготовлении
  • надежность
  • дешевизна
  • доступность компонентов

Недостатки

  • низкий КПД.
  • необходимость использования массивных радиаторов.
  • не смотря на компактность самой платы. Размеры стабилизатора с радиатором достаточно внушительного размера.

Для изготовления данного устройства Вам понадобится:

  • Стабилизатор LM317 -1шт.
  • Транзистор КТ818 -1шт. в пластиковом корпусе (TO-220)
  • Диод КД522 или аналогичный -1шт.
  • Резистор R1 -47ОМ желательно от 1Вт -1шт.
  • Резистор R3 220Ом от 0.25 Вт -1шт.
  • Переменный резистор линейный — 5кОм -1шт.
  • Конденсатор электролитический 1000мФ от 50В -1шт.
  • Конденсатор электролитический 100мФ от 50В -1шт.
  • Диодный мост током от 5А

Данная схема не критична к точному соблюдению номиналов радио элементов. Например резистор R1 может быть от 30 до 50 Ом, резистор R3 от 200 до 240Ом. Диод можно не ставить.

Фильтрующие конденсаторы можно поставить и большей емкостью, однако стоит учитывать, что конденсатор дает небольшой прирост по напряжению.

Транзистор КТ818 можно заменить аналогичными импортного производства 2N5193, 2N6132, 2N6469, 2N5194, 2N6246, 2N6247.

Сборка стабилизатора на LM317

Сборка стабилизатора выполняется на одностороннем стеклотекстолите и выглядит примерно так.

Диодную сборку следует выбирать исходя из максимального тока способного дать трансформатор.

Транзистор и микросхему я установил на радиатор через изолирующие прокладки. Радиатор выбрал максимально большой из имеющихся и подходящий под мой корпус. Закрепил его двумя болтами к нижней крышке корпуса.

На радиатор установил кулер от старой видеокарты, для более эффективного охлаждения. В верхней и задней крышке просверлил вентиляционные отверстия.

У выбранного мной трансформатора для стабилизатора на LM317 только одна вторичная обмотка на 27В. По этому для питания вольтметра и вентилятора я использовал плату от зарядного устройства мобильного телефона. Она выдает напряжение 5В и ток до 900мА.

Готовый блок питания выглядит так.

Простой двух полярный стабилизатор напряжения на LM317.

За основу устройства взята схема описанная в выше, и добавлено плечо стабилизации отрицательного напряжения.

Характеристики и достоинства двух полярного стабилизатора

  • напряжение стабилизации от 1,2 до 30 В;
  • максимальный ток до 5 А;
  • используется малое количество элементов;
  • простота в выборе трансформатора, так как можно использовать вторичную обмотку без центрального отвода;

Детали устанавливаются на односторонний стеклотекстолит. Транзистор VT1, VT2 и микросхемы LM317 и LM337 следует устанавливать на радиаторы. При установке на общий радиатор следует использовать изолирующие прокладки и втулки.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Успехов!

Линейный стабилизатор напряжения с регулировкой на LM317 и PNP транзисторе

Всем привет!
В данной статье я расскажу об ещё одном линейном стабилизаторе напряжения, который собрал относительно недавно. Построен он на популярной микросхеме LM317 и биполярном PNP транзисторе. Готовый модуль выглядит следующим образом:

Видео по теме:

В прошлой статье я рассказал о похожем линейном стабилизаторе напряжения на TL431 и NPN транзисторах.

Данная схема в отличие от вышеупомянутой содержит немного меньше деталей, и способна выдерживать более высокие токи, благодаря более мощному транзистору.

Основные характеристики:
• Входное напряжение до 30В (в моем варианте т.к. конденсатор на входе на 35В)
• Выходное напряжение 3-25В (зависит от тока, чем больше ток, тем меньше максимальное выходное напряжение)
• Ток до 9А (с транзистором TIP36C при входном напряжении 18В и выходном 12В, а вообще зависит от выбранного транзистора и рассеиваемой мощности )
• Стабилизация выходного напряжения при изменении входного
• Стабилизация выходного напряжения при изменении тока нагрузки
• Отсутствие защиты от КЗ
• Отсутствие защиты по току

Модуль собран по следующей схеме:

Пояснения по схеме:
Микросхема LM317 куплена на АлиЭкспресс (скорее всего не оригинальная) имеет 3 вывода. Выводы обозначены на схеме и картинке в нижнем правом углу.

Микросхема управляет мощным биполярным PNP транзистором VT1. Я для этой цели использовал TIP36С. Основные характеристики транзистора: напряжение – 100В, ток коллектора – 25А (на самом деле 8-9А, т.к. транзистор не оригинальный и куплен на АлиЭкспресс), статический коэффициент передачи тока от 10.

Очень важно следить за мощностью, которую рассеивает транзистор, чтобы она не превышала 50-55 Ватт (для транзистора в корпусе ТО-247 или похожих по габаритам, а для транзисторов в корпусе ТО-220 – не более 25-30 Ватт) . Рассчитать можно по формуле:

P = (U выход -U вход)*I коллектора

Например входное напряжение – 18 В, мы выставили выходное напряжение – 12 В, ток у нас 9 А:
Р = (18В-12В) *9А = 54 Ватт

Резисторы R1, R2, R3 задают напряжение, которое наша схема будет стабилизировать. Резистор R1 берется стандартно на 240 Ом (мощность любая). Резистор R2 переменный, лучше брать в районе 2-3к Ом. Изначально я поставил на 4,7к Ом, в результате где-то в середине диапазона вращения ручки напряжение достигает максимального значения и дальше не меняется. Я припаял параллельно потенциометру резистор на 3,9к Ом, регулировка стала более плавной и стал использоваться весь диапазон вращения ручки. 2*R = 1*1*10 = 10 Ватт

Но т.к. ток проходит ещё и через базу транзистора VT1, в обход резистора, можно взять резистор R4 и на 5Ватт.

Указанные выше компоненты составляют ядро схемы, всё остальное – дополнительные элементы для улучшения стабильности и обеспечения некоторых защит.

Конденсатор C2 (керамический 1-10 мкФ) – припаивается параллельно переменному резистору и улучшает стабильность регулировки.Чтобы при разряде конденсатора C2 защитить микросхему LM317 ставится диод D2. Они вместе с диодом D1 защищают микросхему и транзистор от обратного тока. Диод D3 служит для защиты схемы от ЭДС самоиндукции при питании электродвигателей. Конденсаторы C4 (электролитический 35В 470-1000 мкФ) и C5 (керамический 1-10 мкФ) образуют входной фильтр, а конденсаторы C1 (электролитический 35В 1000-3300 мкФ) и C3 (керамический 1-10 мкФ) образуют выходной фильтр. Резистор R5 на 10к Ом (мощность любая) создает небольшую нагрузку для стабильности работы схемы на холостом ходу и помогает быстрее разрядить конденсаторы в случае отключения питания схемы.

Процесс сборки:
Сначала всё собрал навесным монтажом и протестировал.


Далее спаял схему на макетной плате в виде модуля.


Добавил небольшой радиатор.

С таким радиатором схема может долго работать только на небольших токах. Для того, чтобы схема работала долго на полную мощность нужен более массивный радиатор.

LM317 и транзистор можно крепить на радиатор без изолирующих прокладок, т.к. по схеме эти выводы (выход LM317 и коллектор транзистора) соединены.

Протестировал готовый модуль и проверил характеристики.


В целом схема мне понравилась: довольно простая и ток можно получить приличный. Не хватает только защит от КЗ и по току. Ну и кончено КПД не высокий и тепла выделяет не мало. Но это особенность всех подобных линейных схем, которая лично меня не очень беспокоит.

Всем спасибо за внимание! Надеюсь, статья была для Вас полезной.

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

БП НА LM317 С БЛОКОМ ЗАЩИТЫ

Блок питания – одно из самых важных устройств, в мастерской радиолюбителя. Тем более с батарейками и с аккумуляторами каждый раз мучиться как-то надоело. Рассмотренный здесь БП Регулирует напряжение от 1.2 вольта до 24 вольта. И нагрузку до 4 А. Для большей силы тока, было решено установить два одинаковых трансформатора. Трансформаторы подключаются параллельно.

Детали для регулируемого блока питания

  1. Стабилизатор LM317 ТО-220 корпусе.
  2. Кремниевый транзистор, p-n-p КТ818.
  3. Резистор 62 Ом.
  4. Конденсатор электролитический 1 мкф*43В.
  5. Конденсатор электролитический 10 мкф*43В.
  6. Резистор 0,2 Ом 5W.
  7. Резистор 240 Ом.
  8. Подстроечный резистор 6.8 Ком.
  9. Конденсатор электролитический 2200 мкф*35В. 
  10. Любой светодиод.

 

Схема блока питания

Схема блока защиты

Схема блока выпрямителя

Детали для построения защиты от КЗ

  1. Кремниевый транзистор, n-p-n КТ819.
  2. Кремниевый транзистор, n-p-n КТ3102.
  3. Резистор 2 Ом.
  4. Резистор 1 Ком.
  5. Резистор 1 Ком.
  6. Любой светодиод.

Для корпуса регулируемого блока питания, были использованы два корпуса, от обычного компьютерного блока питания. В места из под кулера, были поставлены вольтметр и амперметр.

Для дополнительного охлаждения, был установлен кулер.

Печатная плата была нарисована в Sprint layout v6.0.

Но можно спаять схему просто навесным монтажом. Соединяются корпуса, с помощью двух болтов.

Гайки были приклеены, к крышке корпуса термо клеем. Для охлаждения стабилизатора и транзисторов был использован радиатор от компьютера, который обдувал кулер.

Для удобства переноса блока питания, была прикручена ручка от шуфлядки письменного стола. В общем, получившийся блок питания очень нравится. Мощности его хватает для питания почти всех схем, проверки микросхем, и зарядки небольших аккумуляторов.

Схема ИП не нуждается в настройке, и при правильной спайке она заработает сразу. Автор статьи 4ei3 e-mail [email protected] 

   Форум по БП

   Форум по обсуждению материала БП НА LM317 С БЛОКОМ ЗАЩИТЫ


РадиоДом – Сайт радиолюбителей

Стабилизатор напряжения КР142ЕН12А (LM317T) имеет полную защиту от перегрузок, включающую внутрисхемное ограничение по току, защиту от перегрева и защиту выходного транзистора. Максимальное напряжение на входе не может превышать 40 вольт.

Добавлено: 01.04.2018 | Просмотров: 7460 | Стабилизатор напряжения

Не всегда в распоряжении радиолюбителя оказываются нужные микросхемы, и тогда на помощь приходит схема на отечественном составном транзисторе, проверенная многолетней практикой. Переменное напряжение с вторичной обмотки трансформатора выпрямляется диодным мостом VD1—VD4, фильтруется конденсатором С1 и поступает на компенсационный стабилизатор напряжения Rl, VD5, C1.

Добавлено: 24.03.2018 | Просмотров: 11706 | Стабилизатор напряжения

В статье описывается простая схема стабилизатора напряжения от 0 до 12 вольт и током нагрузки до 1,5 ампера. Прибор пригодится для получения точного стабилизированного напряжения для самых различных опытов, неплохо будет установить цифровым вольтметром и амперметром, которых полно в радиолюбительских магазинах.

Добавлено: 21.02.2018 | Просмотров: 7176 | Стабилизатор напряжения

Стабилизатор обеспечивает на выходе два напряжения: 5 вольт, при токе 0,75 ампер; 12 вольт при токе около 200 мА. Основное напряжение, формируемое импульсным стабилизатором, является напряжение +5 вольт. Второе напряжение получается за счёт автотрансформаторного включения обмотки II трансформатора Т1.

Добавлено: 17.02.2018 | Просмотров: 2481 | Стабилизатор напряжения

Схема мощного стабилизатора, обеспечивающих ток нагрузки до 5 Ампер. Что очень подходит для питания фабричных и самодельных бытовых конструкции. Когда нагрузка на устройстве малая, транзистор VT1 закрыт и работает только микросхема, но как нагрузочный ток будет увеличиваться, то напряжение, выделяемое на R2 и VD5, открывается транзистор VT1, и основная часть тока нагрузки начинает проходить через него. 

Добавлено: 25.12.2016 | Просмотров: 19348 | Стабилизатор напряжения

В некоторых радиолюбительских конструкциях требуются маломощные стабилизаторы, потребляющие в режиме стабилизации микроамперы. Ниже приведена принципиальная схема такого стабилизатора с внутренним током потребления всего 10 мкА и током стабилизации 100 мА.

Добавлено: 24.12.2016 | Просмотров: 4367 | Стабилизатор напряжения

LM1578A, LM2578A, LM3578A — могут работать в качестве импульсного понижающего стабилизатора, импульсного повышающего стабилизатора, инверсного стабилизатора. Ниже представлены несколько наиболее популярных схем включения импульсного стабилизатора.

Добавлено: 22.12.2016 | Просмотров: 3175 | Стабилизатор напряжения

Представлены две принципиальные схемы простых стабилизаторов на 5 вольт. Напряжение переменной сети 220 вольт пониженное трансформатором Т1 до 9…10 вольт через выпрямительный диодный мост подается на стабилизатор напряжения.

Добавлено: 11.12.2016 | Просмотров: 8035 | Стабилизатор напряжения

Регулируемый импульсный стабилизатор напряжения LM2576 имеет довольно широкий диапазон регулируемого выходного напряжения от 1,2 вольт до 50 вольт с нагрузкой на выходе до 3 ампер.

Добавлено: 29.09.2016 | Просмотров: 4502 | Стабилизатор напряжения

Энергия , запасенная в катушке, питает нагрузку. Когда напряжение на С4 падает ниже напряжения стабилизации, открывается DA1 и ключевой транзистор. Каждый цикл повторяется с частотой 20000-30000 герц.

Добавлено: 06.05.2016 | Просмотров: 3476 | Стабилизатор напряжения

Микросхемные стабилизаторы фиксированного напряжения постоянного тока КР142ЕН8А—КР142ЕН8Е, КР142ЕН5А— КР142ЕН5Г были популярны в радиолюбительских и промышленных конструкциях 10—25 лет назад. Сейчас эти стабилизаторы устарели, уступив место экономичным импульсным или линейным с малым собственным падением напряжения.

Добавлено: 23.04.2016 | Просмотров: 5554 | Стабилизатор напряжения

LM317 метод испытания регулируемого регулятора напряжения

Некоторое время назад я получил вопрос от участника, чтобы показать, как тестировать регулируемый стабилизатор напряжения LM317. Я решил сделать простой тестер и показать свой метод тестирования этого небольшого, но очень удобного компонента.

LM317 – это трехконтактный стабилизатор напряжения, который поставляется в другом корпусе и с разным током нагрузки до 1.5А. Для более высокой нагрузки регулятор должен быть оснащен пассивным или активным радиатором для охлаждения ИС.

Я обычно провожу два теста, когда мне нужно проверить тот или иной тип регулятора IC:

– испытание на короткое замыкание

– испытание регулятора напряжения

Самый лучший и самый эффективный метод тестирования этой ИС – вне печатной платы. Чтобы узнать о выводе этой микросхемы, обратитесь к таблице данных микросхемы, которую вы должны проверить. В этом документе я буду использовать регулятор LM317T, а расположение выводов обычно такое же, как и у других LM317 семейства.

Вот вывод LM317T:

Испытание на короткое замыкание:

Выньте из печатной платы LM317 и используйте свой хорошо зарекомендовавший себя цифровой мультиметр, чтобы проверить наличие коротких контактов между всеми контактами. Никакие штифты не должны быть короткими. В противном случае ИС закорочена и неисправна. Замените ИС на новую с такой же нагрузочной способностью.

Испытание регулирования напряжения:

Это самая сложная часть. Вот формула расчета регулируемого резистора, как рассчитать соотношение между регулирующим резистором и Vout:

Если вы построите вышеуказанную простую схему, вы легко сможете протестировать свой LM317.Замкните один желаемый переключатель, считайте выходное напряжение и сравните с этой таблицей.

Если в одно и то же время замыкается более одного переключателя, сначала необходимо вручную вычислить значение R2 с помощью уравнения параллельного сопротивления, а затем использовать приведенное выше уравнение для расчета выходного напряжения и сравнения результата с выходным напряжением, показанным вашим цифровым мультиметром . В ваших расчетах и ​​измерениях вы увидите небольшие отличия, это связано с допуском резисторов, LM317 и точностью цифрового мультиметра.Не беспокойтесь об этом, это нормально и составляет около + -5%.

Кто-то сказал бы, что установка потенциометра вместо R2 была бы более простым способом регулировки напряжения. Да, но тогда я предлагаю последовательно подключить еще один резистор около 100 Ом с потенциометром. Это связано с тем, что в некоторых технических данных они обращают внимание на то, чтобы не закоротить контакт Adj, и это произойдет, если вы установите потенциометр в положение 0 Ом. I-Adj может подняться над Iadj_max и убить IC.

ВНИМАНИЕ!

Никогда не используйте испытательную схему для внутрисхемных испытаний. Входное напряжение тестера может повредить некоторые компоненты на печатной плате. Каждый раз, когда вы тестируете LM317, вынимайте его из печатной платы и подключайте к тестовой цепи.
Надеюсь, вам понравится этот урок, и вы сэкономите много времени на ремонт.

Эту статью для вас подготовил Кристиан Роберт Аджич из Нови Кнежевац, Сербия.

Пожалуйста, поддержите, нажав на кнопки социальных сетей ниже.Ваш отзыв о публикации приветствуется. Пожалуйста, оставьте это в комментариях.

P.S- Если вам понравилось это читать, щелкните здесь , чтобы подписаться на мой блог (бесплатная подписка). Так вы никогда не пропустите сообщение . Вы также можете переслать ссылку на этот сайт своим друзьям и коллегам – спасибо!

Примечание: вы можете проверить его предыдущий пост по ссылке ниже:

PC Intel D 326 cooling problem solved

Нравится (174) Не нравится (0)

Как использовать LM317 для создания схемы переменного источника питания

В этом посте мы подробно обсудим, как построить простую схему регулируемого источника питания на основе LM317, используя минимальное количество внешних компонентов.

Как следует из названия, регулируемая схема источника питания предоставляет пользователю диапазон линейно изменяющихся выходных напряжений посредством вращения потенциометра с ручным управлением.

LM317 – это универсальное устройство, которое помогает любителю электроники быстро, дешево и очень эффективно создать источник питания переменного напряжения.

Введение

Независимо от того, является ли он электронным новичком или опытным профессионалом, регулируемый блок питания требуется каждому в этой области.Это основной источник питания, который может потребоваться для различных электронных процедур, начиная от питания сложных электронных схем и заканчивая надежными электромеханическими устройствами, такими как двигатели, реле и т. Д.

Регулируемый источник питания необходим для каждого электрического и электронного рабочего места. и он доступен в различных формах и размерах на рынке, а также в виде схем.
Они могут быть построены с использованием дискретных компонентов, таких как транзисторы, резисторы и т. Д., Или включать одну микросхему для активных функций.Независимо от типа, блок питания должен обладать следующими характеристиками, чтобы стать универсальным и надежным по своей природе:

Основные характеристики

  • Он должен быть полностью и плавно регулируемым с помощью выходов напряжения и тока.
  • Функция переменного тока может рассматриваться как дополнительная функция, поскольку она не является абсолютным требованием для источника питания, если только ее использование не находится в диапазоне критических оценок.
  • Получаемое напряжение должно идеально регулироваться.

С появлением микросхем или ИС, таких как LM317, L200, LM338, LM723, настройка цепей питания с переменным выходным напряжением с вышеуказанными исключительными качествами в настоящее время стала очень простой.

Как использовать LM317 для создания переменного выходного сигнала

Здесь мы попытаемся понять, как построить простейшую схему источника питания с использованием IC LM317. Эта ИС обычно выпускается в корпусе TO-220 и имеет три вывода.

Выводы очень просты для понимания, так как они состоят из входа, выхода и регулировочных штифтов, которые просто необходимо соединить соответствующими соединениями.

Входной вывод используется с выпрямленным входом постоянного тока, предпочтительно с максимально допустимым входным напряжением, то есть 24 В в соответствии со спецификациями IC. Выходной сигнал поступает от вывода «out» ИС, в то время как компоненты установки напряжения соединены вокруг регулировочного вывода.

Как подключить LM317 к источнику питания с регулируемым напряжением

Как видно из схемы, для сборки практически не требуются какие-либо компоненты, и на самом деле это детская игра, чтобы установить все на свои места.

Регулировка потенциометра создает линейно изменяющееся напряжение на выходе, которое может быть от 1,25 В до максимального уровня, подаваемого на вход Ic.

Хотя показанная конструкция является самой простой и, следовательно, включает только функцию управления напряжением, функция управления током также может быть включена в ИС.

Добавление функции управления током

На рисунке выше показано, как можно эффективно использовать IC LM317 для создания переменных напряжений и токов по желанию пользователя.Потенциал 5 кОм используется для регулировки напряжения, в то время как резистор измерения тока 1 Ом выбирается соответствующим образом, чтобы получить желаемый предел тока.

Расширение с помощью устройства для сильноточного вывода

ИС можно дополнительно усовершенствовать для создания токов, превышающих номинальные значения. На приведенной ниже диаграмме показано, как IC 317 можно использовать для выработки тока более 3 ампер.

LM317 Регулятор переменного напряжения, тока

Наша универсальная микросхема IC LM317 / 338/396 может использоваться в качестве регулируемого регулятора напряжения и тока в простых конфигурациях.

Идея была разработана и протестирована одним из заядлых читателей этого блога г-ном Стивеном Чивертоном и использовалась для управления специальными лазерными диодами, которые, как известно, имеют строгие рабочие характеристики и могут управляться только через специализированные схемы драйверов.

Обсуждаемая конфигурация LM317 настолько точна, что становится идеально подходящей для всех таких специализированных приложений с регулируемым током и напряжением.

Работа схемы

Ссылаясь на показанную принципиальную схему, конфигурация выглядит довольно простой, можно увидеть две микросхемы LM317, одна из которых настроена в стандартном режиме регулятора напряжения, а другая – в режиме управления током.

Если быть точным, верхний LM317 образует ступень регулятора тока, а нижняя действует как ступень регулятора напряжения.

Входной источник питания подключен между Vin и землей верхней цепи регулятора тока, выход этого каскада поступает на вход нижнего каскада регулируемого регулятора напряжения LM317. По сути, оба каскада соединены последовательно для реализации полного надежного регулирования напряжения и тока для подключенной нагрузки, которой в данном случае является лазерный диод.

R2 выбран для получения диапазона максимального предела тока около 1,25 А, минимально допустимое значение составляет 5 мА, когда на пути установлены полные 250 Ом, что означает, что ток лазера может быть установлен по желанию в диапазоне от 5 мА до 1 усилитель

Расчет выходного напряжения

Выходное напряжение цепи источника питания LM317 можно определить по следующей формуле:

VO = VREF (1 + R2 / R1) + (IADJ × R2)

где = VREF = 1.25

Current ADJ обычно составляет около 50 мкА, поэтому в большинстве приложений его можно пренебречь. Вы можете игнорировать это.

Расчет предела тока

Вышеупомянутое вычисляется по следующей формуле:

R = 1,25 / макс. Допустимый ток

Текущее контролируемое напряжение, полученное от верхней ступени, затем подается на нижнюю цепь регулятора напряжения LM317, что позволяет желаемое напряжение должно быть установлено в пределах от 1,25 В до 30 В, здесь максимальный диапазон составляет 9 В, поскольку источником является батарея 9 В.Это достигается регулировкой R4.

Обсуждаемая схема предназначена для обработки не более 1,5 ампер, если требуется более высокий ток, обе микросхемы могут быть заменены LM338 для получения максимального тока 5 ампер или LM396 для максимального тока 10 ампер.

Следующие прекрасные фотографии были присланы мистером Стивеном Чивертоном после того, как схема была построена и успешно им проверена.

Изображения прототипа

Обновление LM317 с помощью кнопочного управления напряжением

До сих пор мы узнали, как настроить LM317 для создания регулируемого выхода с помощью потенциометра, теперь давайте разберемся, как можно использовать кнопки для включения выбора напряжения с цифровым управлением.Мы исключаем использование механического потенциометра и заменяем его парой кнопок для выбора желаемых уровней напряжения вверх / вниз.

Нововведение преобразует традиционную конструкцию источника питания LM317 в конструкцию цифрового источника питания, устраняя низкотехнологичный потенциометр, который может быть подвержен износу в долгосрочной перспективе, что приведет к неустойчивой работе и неправильным выходным напряжениям.

Модифицированная конструкция LM317, которая позволила бы ему реагировать на выбор кнопки, можно увидеть на следующей диаграмме:

Сопутствующие резисторы R2 необходимо рассчитать относительно R1 (240 Ом) для настройки предполагаемого нажатия. кнопка выбирает выходы напряжения.

Сильноточный источник питания LM317 Bench Power Suuply

Этот сильноточный источник питания LM317 можно универсально использовать в любых приложениях, требующих высококачественного регулируемого сильноточного источника постоянного тока, таких как автомобильные сабвуферные усилители, зарядка аккумуляторов и т. Д. чтобы быть максимально универсальным, а также гарантировать, что количество запчастей остается низким и доступным.

Этот простой источник питания LM317 с фиксированной ОС и регулируемым напряжением идеально удовлетворяет требованиям и способен обеспечить до 10 ампер.Выходное напряжение регулируется каскадом цепи, содержащим R4, R5 и S3; обратите внимание, что переключатель S3 является частью R4.

Для получения фиксированного выходного напряжения необходимо определить резистор R4 для получения нулевого сопротивления (полностью против часовой стрелки). В этой ситуации переключатель S3 должен находиться в разомкнутом положении.

В этом случае предустановку R5 следует настроить так, чтобы схема генерировала выходное напряжение 12 В (или все, что требуется для вашего личного приложения). Чтобы иметь переменный выход, R4 можно перевернуть по часовой стрелке, при этом S3 находится в закрытом положении, и избавиться от R5 из схемы.

Теперь выходное напряжение может управляться только резистором R4. Когда переключатель S2 SPDT находится в положении 1, максимальный выходной ток может быть достигнут, если две половины T1 подают ток на каскад фильтра, чтобы увеличить общий выходной ток в 2 раза.

При этом максимальное выходное напряжение будет уменьшено на 50% в этом положении. Это действительно очень продуктивная настройка, учитывая, что силовой транзистор не должен терять значительный потенциал.

В положении 2 максимальное напряжение практически равно силовым характеристикам T1. Здесь мы использовали трансформатор с центральным отводом на 24 В для T1. Наконец, D1 и D2 были включены для защиты LM317 IC в случае отключения питания с индуктивной нагрузкой на выходе

Ссылки: http://www.ti.com/lit/ds/symlink/lm317.pdf

https://en.wikipedia.org/wiki/LM317

О Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель.Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемами, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Схема регулируемого стабилизатора напряжения LM317 »Источники питания

LM317 – это ИС регулируемого стабилизатора напряжения. В этом проекте мы сделаем схему регулируемого стабилизатора напряжения LM317 от 1,25 В до 37 В. Эта ИС может обеспечить выходной ток до 1 Ампер.Это трехконтактная микросхема стабилизатора положительного напряжения.

Для этого регулятора напряжения требуется только два внешних резистора для установки напряжения питания. Он имеет линейное регулирование около 0,01% и регулировку нагрузки около 0,1%. Также он имеет ограничитель тока и тепловую защиту.

Особенности LM317:

Вот некоторые важные особенности стабилизатора положительного напряжения LM317:

  • Регулируемый диапазон выходного напряжения от 1,25 В до 37 В
  • Выходной ток более 1.5 А
  • Внутренний ограничитель тока короткого замыкания
  • Тепловая защита от перегрузки
  • Выходная компенсация безопасной зоны

Регулятор напряжения LM317 Принципиальная схема:

Описание схемы:

Эта схема состоит из следующих компонентов

Трансформаторов:

Понижает 220 В переменного тока до 24 В переменного тока с меньшей амплитудой.

Выпрямитель:

Преобразует входной синусоидальный переменный ток в однонаправленное пульсирующее напряжение постоянного тока, которое нестабильно и содержит пульсации.

Емкостный фильтр:

Емкостной фильтр 1000 мкФ отфильтровывает большую часть пульсаций на выходе мостового выпрямителя.

LM317 Регулятор положительного напряжения:

Эта трехконтактная ИС может регулировать выходное напряжение от 1,25 В до 37 В. Выходное напряжение зависит от схемы делителя напряжения, образованной резистором 220 Ом и резистором 12 кОм. Потенциометр 10 кОм используется для изменения напряжения на регулирующем выводе IC. Контакт номер 3 – это входной контакт, а 2 – выходной контакт, а первый контакт – это регулировочный штифт.

Схема защиты:

Два диода 1N4007 подключены к ИС в обратном направлении. Если на микросхему подается неправильное высокое напряжение, она может быть повреждена. Эти два диода защищают ИС от повреждений, обеспечивая альтернативный путь к сильному току.

Наконец, конденсатор емкостью 470 мкФ используется параллельно, чтобы сделать выход более стабильным.

Схема регулируемого регулятора напряжения LM317

LM317 Учебное пособие:

должен посмотреть это видео

Работа цепи регулируемого регулятора напряжения LM317:

LM317 – линейный регулятор напряжения.Понижающий трансформатор дает на выходе 24 Вольт, 2 А. Этот выходной сигнал нестабилен, поэтому используется конденсатор емкостью 1000 мкФ, чтобы сделать его плавным и стабильным, удалив рябь.

Это напряжение затем подается на входной контакт ИС регулируемого стабилизатора напряжения LM317. Эта ИС выдает выходное напряжение в зависимости от клеммы настройки.

Постоянное напряжение на резисторе обратной связи R1 составляет около 1,25 В. Из-за этого опорное напряжение, постоянный ток 100uA протекает через настроить терминал.В связи с опорным напряжением 1.25V, ток протекает через резистор R2.

Выходное напряжение пропорционально падению напряжения на резисторах R1 и R2.

 Vout = Vref x {1+ (Rp / R1) 
 Здесь Vref = 1.25V 

Rp = VR || R2, банк 10k и R2 идут параллельно

Когда мы устанавливаем потенциометр на наименьшее нулевое сопротивление, выходное напряжение становится 1,25 В. Поскольку Rp = 0 Ом из приведенной выше формулы,

 Vout = 1,25 x {1+ (0/220)} 
 = 1.25В 

Когда мы устанавливаем потенциометр на максимальное сопротивление, параллельное сопротивление становится

.
 Rp = 5,4545 кОм 

Таким образом, выходное напряжение из-за этого сопротивления становится равным

.
 Vout = 1,25 x {1+ (5454,5 / 220)} 
 = 32,2 В 

Бухта, выбрав правильное значение сопротивления, можно установить выходное напряжение.

Как заставить работать от 0В?

Если вы хотите управлять выходом от 0 вольт, вы должны подключить два диода последовательно к выходу схемы.Поскольку общее падение напряжения на диоде 1N4007 составляет около 0,7 В, вы получите падение от 1,3 до 1,4 В. Используя эту технику, вы можете контролировать выходное напряжение от 0 вольт, но ток будет уменьшаться.

Также, если вы хотите настроить точное напряжение, подключите потенциометр 1 кОм последовательно с потенциометром 10 кОм.

Используйте радиатор:

Необходимо использовать радиатор, поскольку LM317 IC является линейным стабилизатором напряжения. Падение напряжения на этой ИС составляет около 2,5 вольт.Это падение напряжения вызывает сильный нагрев. Этот нагрев может превысить тепловой порог ИС, что может привести к повреждению ИС. Поэтому для защиты ИС необходимо использовать хороший радиатор и охлаждающее средство.

Итак, это схема источника питания с переменным напряжением, способная подавать более 32 В при выходном токе 1,5 А.

Применения цепи регулируемого регулятора напряжения LM317:

  • Блок питания ПК
  • Внешний аккумулятор
  • Лабораторный блок питания
  • Схема зарядного устройства
  • Регулятор скорости двигателя
  • Генератор сигналов или осциллограмм
  • Электроника и бытовая техника

Регулируемый регулятор напряжения

LM317 1.25-37 В / 1,5 А

Описание

LM317 – это регулируемый линейный стабилизатор напряжения, который может выдавать 1,25–37 В при токе до 1,5 А с диапазоном входного напряжения 3–40 В.

В ПАКЕТЕ:

  • Регулируемый регулятор напряжения LM317

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ РЕГУЛИРУЕМОГО РЕГУЛЯТОРА НАПРЯЖЕНИЯ LM317:
  • Линейный стабилизатор напряжения
  • Диапазон входного напряжения 3-40 В
  • Выходное напряжение 1,25 – 37 В
  • 1. Постоянный ток 5A с возможностью скачков напряжения 2,2A
  • ТО-220 упаковка

LM317 – самый популярный и один из старейших доступных регулируемых линейных регуляторов. Входное напряжение может составлять от 3 до 40 В, а выходное напряжение – от 1,25 до 37 В с выходным током до 1,5 А. Они имеют встроенное ограничение тока и защиту от перегрева и, как правило, являются довольно надежными устройствами.

LM317 может использоваться для замены ряда различных стабилизаторов постоянного напряжения при использовании в целях прототипирования.Их также можно легко подключить, чтобы сделать простой недорогой регулируемый источник питания для использования в прототипировании. Мы предлагаем простой небольшой модуль, созданный на основе LM317, который можно использовать для той же цели.

Основные операции

LM317 – это трехконтактный стабилизатор с плавающей точкой, не имеющий контакта заземления, как у большинства регуляторов. Это позволяет регулировать потенциально очень высокие напряжения до тех пор, пока не превышается максимальное номинальное напряжение между входом и выходом, равное 40 В.

Вместо контакта заземления он имеет контакт регулировки, который использует цепь резисторного делителя между выходным контактом и землей для установки выходного напряжения.Это могут быть два постоянных резистора, если требуется фиксированное выходное напряжение, или один из резисторов может быть регулируемым потенциометром, позволяющим регулировать выход в определенном диапазоне.

В отличие от типичных регуляторов типа 78XX, LM317 требует минимального тока нагрузки для полного регулирования. Обычно это менее 10 мА, поэтому для большинства приложений это не проблема. На выходе можно разместить небольшой нагрузочный резистор, чтобы гарантировать потребление 10 мА, если возникнет проблема.

Базовая система не обязательно требует байпасных конденсаторов, но если они используются на достаточном расстоянии от источника питания, обеспечивающего входное напряжение, тогда 0. Следует добавить керамический конденсатор входного фильтра 1 мкФ. При желании можно также добавить танталовый конденсатор емкостью 1,0 мкФ или электролитический выходной конденсатор емкостью 20 мкФ или больше для улучшения переходной характеристики.

Базовая схема подключения LM317 к регулируемому выходу показана ниже.

Рассеиваемая мощность

Линейные регуляторы

имеют меньшую пульсацию на своих выходах по сравнению с преобразователями постоянного тока в постоянный, которые можно использовать для той же основной цели, но компромисс заключается в том, что линейные регуляторы также имеют тенденцию рассеивать больше тепла в процессе.Причина в том, что линейный регулятор использует на выходе последовательно проходной транзистор для снижения избыточного напряжения.

Рассеиваемая мощность линейного регулятора зависит от разницы между входным напряжением (Vin) и выходным напряжением (Vout), а также от величины тока, потребляемого регулятором. Чем больше разница в напряжении между Vin и Vout, тем выше будет рассеиваемая мощность, что ограничивает ток, который может потребляться от устройства.

Рассеиваемая мощность устройства LM317 легко рассчитывается как Рассеиваемая мощность = (Vin – Vout) * Iout .

Если вход LM317 составляет 15 В, а выход настроен на 10 В и обеспечивает ток 1 А, тогда рассеиваемая мощность = (15 В – 10 В) * 1 А = 5 Вт. Корпус LM317 TO-220 должен рассеивать 5 Вт мощности. В типичных условиях устройство может рассеивать около 1–1,25 Вт, прежде чем потребуется радиатор, поэтому в нашем примере здесь устройству определенно потребуется радиатор. Максимальный выходной ток без радиатора в этом случае будет ограничен примерно 250–300 мА, а устройство будет работать в диапазоне 85–95 ° C.

Если вместо этого вы запустили LM317 от входа 12 В, рассеиваемая мощность = (12 В – 10) * 1 А = 2 Вт. Все еще довольно теплый, но гораздо более управляемый, чем 5 Вт. Без радиатора можно было потреблять 500-700 мА.

Как правило, вы всегда хотите использовать как можно более низкое входное напряжение, чтобы минимизировать потери мощности через устройство и максимально увеличить доступный выходной ток.

Примечания:

  1. Язычок LM317 является общим с выходным контактом.
  2. При сильноточных нагрузках или при больших перепадах входного и выходного напряжения устройство может сильно нагреваться, поэтому будьте осторожны при обращении.

Технические характеристики

Максимальные характеристики
V IN Макс. Вход – выход, дифференциальное напряжение 40 В
I O Максимальный выходной ток 1,5 А (типовой)
I МАКС Пиковый импульсный ток (тип.) 2.2A
Эксплуатационные характеристики
В О Выходное напряжение 1.25В – 37В
V I – V O Отключение напряжения 3,0 В (макс.) 1,75 В (тип.)
Упаковка К-220
Тип корпуса Пластиковый язычок, 3-выводный, сквозное отверстие
Производитель ON Semiconductor
Лист данных LM317

1.Цепь регулируемого регулятора переменного напряжения постоянного тока 5A с использованием LM317

1,5 A Регулируемый регулятор напряжения с использованием LM317

1,5 A Регулируемый регулятор переменного напряжения постоянного тока с использованием LM317 ic

LM317T – регулируемый трехконтактный стабилизатор положительного напряжения. Эта микросхема регулятора способна подавать более 1,5 А в диапазоне выходного напряжения от 1,25 В до 37 В. Для установки выходного напряжения требуется всего два внешних резистора.

Резисторы R1 и R2 устанавливают на выходе любое желаемое напряжение в диапазоне регулировки 1.От 2 до 37 В. Он имеет ограничение по току, защиту от тепловой перегрузки и защиту рабочей зоны. Защита от перегрузки остается работоспособной, даже если клемма ADJUST отключена. Это устройство также можно использовать в качестве программируемого выходного регулятора или, подключив постоянный резистор между регулировкой и выходом, LM317 можно использовать в качестве прецизионного регулятора тока.

, LM317 развивает и поддерживает номинальное напряжение 1,25 В между его выходными и регулировочными клеммами, называемое опорным напряжением (Vref).Это опорное напряжение преобразуется в ток программирования (IPROG) с помощью R1, и этот постоянный ток протекает через R2 на землю. Требуемое выходное напряжение можно рассчитать с помощью.

(IAdj) представляет собой ток ошибки с клеммы настройки. При типичном значении IC LM317
Iadj меньше 100 мкА и должно оставаться постоянным. Vref = 1,25 В. Если ток нагрузки меньше этого минимума, выходное напряжение возрастет. Поскольку LM317 представляет собой плавающий стабилизатор, для рабочих характеристик важна только разница напряжений в цепи, и возможна работа при высоких напряжениях относительно земли.

Iadj – очень маленькая сумма, и ее можно игнорировать при практическом применении

Пример

Определите регулируемое выходное напряжение цепи, которая имеет R1 = 240 Ом и R2 = 2,4 кОм

Решение = Мы знаем, что Vout = 1,25 (1 + 2,4 кОм / 240 Ом)

= 13,75 В

Для выхода 12 В – R1 = 220 Ом, R2 = 1,8 кОм

Для выхода 8 В – R1 = 220 Ом, R2 = 1.2к

Для выхода 9 В – R1 = 220 Ом, R2 = 1,3 кОм

Для выхода 5 В – R1 = 220 Ом, R2 = 680 Ом

Для выхода 3 В – R1 = 220 Ом, R2 = 330 Ом

Характеристики LM317

Диапазон выходного напряжения, регулируемый от 1,25 В до 37 В
Выходной ток более 1,5 A
Внутреннее ограничение тока короткого замыкания
Защита от тепловой перегрузки
Компенсация выходной безопасной зоны

Недостатки LM317

Основным недостатком LM317 является напряжение, которое аж 2.5 вольт падает или теряется, поскольку нагревается через регулятор. например, если нам нужно 9 В на выходе, тогда входное напряжение должно быть минимум 12 В или больше, чтобы выходное напряжение оставалось стабильным в условиях максимальной нагрузки. Это падение напряжения на регуляторе называется «выпадением». Для охлаждения регулятора требуется радиатор.

Загрузить LM317 Datasheet

Должна считываться цепь регулируемого регулятора высокого тока 10 А

Об авторе

Админ

Привет, меня зовут Аман Бхарти, я интересуюсь изготовлением и изучением электроники, принципиальной схемы, проектированием и компоновкой печатных плат и т. Д.Мне нравится делиться знаниями и всеми идеями с людьми, которые я получаю из «Моего эксперимента» и из разных источников. Я стараюсь максимально подробно описать детали схемы с результатами испытаний. Если вы хотите что-то предложить или прокомментировать, оставьте свой комментарий в поле для комментариев на соответствующей странице.

Регулируемый источник питания

с использованием LM317 (Часть 7/13)

LM317 обычно используется для регулирования напряжения в цепях постоянного тока. IC является одним из популярных регулируемых регуляторов положительного напряжения, который имеет такие функции, как защита от перенапряжения, внутреннее ограничение тока, защита от перегрузки, низкий ток покоя (для более стабильного выхода) и компенсация безопасной зоны (его внутренняя схема ограничивает максимальное рассеивание мощности, поэтому он не самоуничтожается).Помимо множества функций, для его работоспособности требуется меньшее количество компонентов. Итак, регулятор LM317 прост в использовании и собрать по схеме.

В этом проекте разработан регулируемый источник питания с использованием LM317, который вводит основные источники переменного тока (220-230 В переменного тока) и выводит напряжение постоянного тока ниже 12 В. LM317 имеет регулируемое выходное напряжение от 1,28 В до 11 В и потребляет максимум 1,5 А.

При сборке этой схемы выполняются стандартные этапы проектирования силовой цепи, включая понижение напряжения переменного тока, преобразование напряжения переменного тока в напряжение постоянного тока, сглаживание напряжения постоянного тока, компенсацию переходных токов, регулирование напряжения, изменение напряжения и защиту от короткого замыкания.

Необходимые компоненты –

Рис.1: Список компонентов, необходимых для регулируемого источника питания на основе LM317 IC

Блок-схема –

Рис. 2: Блок-схема регулируемого источника питания на базе микросхемы LM317

Схема соединений –

Схема собирается в соответствии с обычными этапами проектирования силовой цепи. Для понижения напряжения 230 В переменного тока используется трансформатор 12 В – 0 – 12 В.Один конец вторичной обмотки трансформатора и центральная лента на ней соединены с мостовым выпрямителем. Полный мостовой выпрямитель создается путем соединения друг с другом четырех диодов SR560, обозначенных на схемах как D1, D2, D3 и D4. Катод D1 и анод D2 соединены с одной из вторичной обмотки, а катод D4, а анод D3 соединен с центральной лентой. Катоды D2 и D3 подключены, из которых одна клемма выведена для выхода выпрямителя, а аноды D1 и D4 подключены, из которых другая клемма снята для выхода двухполупериодного выпрямителя.

Конденсатор 0,1 мкФ (обозначенный на схеме как C1) подключен между выходными клеммами двухполупериодного выпрямителя для сглаживания. Для регулирования напряжения LM317 подключается параллельно сглаживающему конденсатору. Переменное сопротивление подключено в конфигурации резистивного делителя напряжения к стабилизатору IC для регулировки напряжения, а конденсатор 1 мкФ (обозначенный на схеме как C2) подключен параллельно на выходе для компенсации переходных токов. Для защиты от короткого замыкания между клеммами входного и выходного напряжения микросхемы регулятора напряжения подключен диод.

Нарисуйте схематическую диаграмму или распечатайте ее на бумаге и тщательно выполняйте каждое соединение. Только после проверки правильности каждого подключения подключите силовую цепь к источнику переменного тока.

Как работает схема –

Спроектированная здесь силовая цепь принимает входные сигналы от основных источников переменного тока и имеет схему, собранную на следующих этапах –

1. Преобразование переменного тока в переменный

2. Преобразование переменного тока в постоянный – полноволновое выпрямление

3.Сглаживание

4. Компенсация переходного тока

5. Регулирование напряжения

6. Регулировка напряжения

7. Защита от короткого замыкания

Преобразование переменного тока в переменный

Напряжение основных источников питания составляет приблизительно 220–230 В переменного тока, которое необходимо дополнительно снизить до уровня 12 В. Для понижения напряжения 220 В переменного тока до 12 В переменного тока используется понижающий трансформатор с центральной обмоткой. Использование трансформатора с центральным ответвлением позволяет генерировать как положительное, так и отрицательное напряжение на входе, однако от трансформатора будет поступать только положительное напряжение.В схеме наблюдается некоторое падение выходного напряжения из-за резистивных потерь. Поэтому необходимо использовать трансформатор с высоким номинальным напряжением, превышающим требуемые 12 В. Трансформатор должен обеспечивать на выходе ток 1,5 А. Наиболее подходящий понижающий трансформатор, отвечающий указанным требованиям по напряжению и току, – 12 В-0-12 В / 2 А. Эта ступень трансформатора понижает сетевое напряжение до +/- 12 В переменного тока, как показано на рисунке ниже.

Рис.3: Обозначение цепи трансформатора 12-0-12 В

Преобразование переменного тока в постоянный – полноволновое выпрямление

Пониженное напряжение переменного тока необходимо преобразовать в напряжение постоянного тока путем выпрямления.Выпрямление – это процесс преобразования переменного напряжения в постоянное. Есть два способа преобразовать сигнал переменного тока в сигнал постоянного тока. Один – это полуволновое выпрямление, а другое – полноволновое выпрямление. В этой схеме используется двухполупериодный мостовой выпрямитель для преобразования 24 В переменного тока в 24 В постоянного тока. Двухполупериодное выпрямление более эффективно, чем полуволновое выпрямление, поскольку оно обеспечивает полное использование как отрицательной, так и положительной стороны сигнала переменного тока. В конфигурации двухполупериодного мостового выпрямителя четыре диода соединены таким образом, что ток течет через них только в одном направлении, что приводит к появлению сигнала постоянного тока на выходе.Во время двухполупериодного выпрямления одновременно два диода смещаются в прямом направлении, а еще два диода – в обратном.

Рис. 4: Принципиальная схема полноволнового выпрямителя

Во время положительного полупериода питания диоды D2 и D4 проходят последовательно, в то время как диоды D1 и D3 смещены в обратном направлении, и ток протекает через выходной контакт, проходя через D2, выходной контакт и D4. Во время отрицательного полупериода питания диоды D1 и D3 проходят последовательно, но диоды D4 и D2 смещены в обратном направлении, и ток течет через D1, выходную клемму и D3.Направление тока в обоих направлениях через выходную клемму в обоих условиях остается неизменным.

Рис.5: Изображение, показывающее отрицательный цикл в полноволновом выпрямителе

Рис. 6: Изображение, показывающее положительный цикл в полнополупериодном выпрямителе

Диоды SR560 выбраны для создания двухполупериодного выпрямителя, поскольку они имеют максимальный (средний) номинальный прямой ток 2 А и в состоянии обратного смещения они могут выдерживать пиковое обратное напряжение до 36 В.Поэтому в этом проекте для двухполупериодного выпрямления используются диоды SR560.

Сглаживание

Сглаживание – это процесс фильтрации сигнала постоянного тока с помощью конденсатора. Выходной сигнал двухполупериодного выпрямителя не является постоянным напряжением постоянного тока. Выходной сигнал выпрямителя в два раза превышает частоту основного источника питания, но содержит пульсации. Следовательно, его необходимо сгладить, подключив конденсатор параллельно выходу двухполупериодного выпрямителя.Конденсатор заряжается и разряжается в течение цикла, давая на выходе постоянное напряжение постоянного тока. Итак, конденсатор (обозначенный на схеме как C1) большой емкости подключен к выходу схемы выпрямителя. Поскольку постоянный ток, который должен быть выпрямлен схемой выпрямителя, имеет много всплесков переменного тока и нежелательных пульсаций, для уменьшения этих выбросов используется конденсатор. Этот конденсатор действует как фильтрующий конденсатор, который пропускает через него весь переменный ток на землю. На выходе среднее оставшееся постоянное напряжение более плавное и без пульсаций.Конденсатор емкостью 0,1 мкФ используется для сглаживания сигнала переменного тока.

Рис.7: Принципиальная схема сглаживающего конденсатора

Компенсация переходных токов

К выходным клеммам силовой цепи параллельно подключен конденсатор (обозначенный на схеме как C2). Этот конденсатор помогает быстро реагировать на переходные процессы нагрузки. Всякий раз, когда ток выходной нагрузки изменяется, возникает начальная нехватка тока, которая может быть восполнена этим выходным конденсатором.

Изменение выходного тока можно рассчитать по

.

Выходной ток, Iout = C (dV / dt), где

dV = Максимально допустимое отклонение напряжения

dt = переходное время отклика

С учетом dv = 100 мВ

dt = 100 мкс

В этой схеме используется конденсатор емкостью 1 мкФ, так что,

C = 1 мкФ

Iout = 1 мк (0,1 / 100 мк)

Iout = 1 мА

Таким образом, можно сделать вывод, что выходной конденсатор будет реагировать на изменение тока 1 мА при переходном времени отклика 100 мкс.

Рис. 8: Принципиальная схема компенсации переходных токов

Регулирование напряжения

LM317 используется для регулирования напряжения. LM317 – это монолитная микросхема стабилизатора положительного напряжения. Будучи монолитными, все компоненты встроены в один и тот же полупроводниковый чип, что делает ИС небольшими по размеру, меньшим энергопотреблением и низкой стоимостью. ИС имеет три контакта: 1) входной контакт, на который может подаваться максимум 40 В постоянного тока, 2) выходной контакт, обеспечивающий выходное напряжение в диапазоне 1.От 25 В до 37 В и 3) Отрегулируйте контакт, который используется для изменения выходного напряжения, соответствующего приложенному входному напряжению. Для входа до 40 В выход может изменяться от 1,25 В до 37 В.

На ИС имеется встроенный OPAM (операционный усилитель), инвертирующий вход которого соединен с регулировочным штифтом. Неинвертирующий вход задается опорным напряжением в запрещенной зоне, напряжение которого не зависит от температуры, источника питания и нагрузки схемы. Таким образом, LM317 дает стабильное опорное напряжение 1.25 В через его регулировочный штифт. Опорное напряжение 317 может составлять от 1,2 В до 1,3 В. Выходное напряжение 317 можно регулировать в заданном диапазоне с использованием схемы резистора делителя между выходом и землей.

Для установки желаемого напряжения на выходе LM317 используется схема резистивного делителя напряжения между выходным контактом и землей. Благодаря этой конфигурации можно регулировать напряжение на выходном контакте. Номинал резистивного делителя напряжения нужно выбирать таким образом, чтобы он мог обеспечивать требуемый диапазон напряжений на выходе.В схеме делителя напряжения есть программирующий резистор с фиксированным сопротивлением (на схемах обозначен как R1), а другой – переменный резистор (обозначенный на схемах как R2). Установив идеальное соотношение резистора обратной связи (постоянного резистора) и переменного резистора, можно получить желаемое выходное напряжение, соответствующее входному напряжению.

317 обеспечивает стабильное опорное напряжение 1,25 В через регулировочный штифт. Это означает, что на R1 тоже есть постоянное падение напряжения.Ток на регулировочном штифте также постоянный и находится в диапазоне от 50 до 100 мкА. Следовательно, постоянный ток течет как через R1, так и через R2. Следовательно, сумма падений напряжения на R1 и R2 дает Vout:

.

Vout = Vref * (1+ (R2 / R2))

Некоторое количество тока покоя также течет от регулировочного штифта, этот ток добавляет некоторую погрешность в приведенное выше уравнение, что делает выход нестабильным. Вот почему ИС спроектирована таким образом, что ток покоя должен оставаться в микроамперах, чтобы выход был стабильным.

Vout = Vref * (1 + (R2 / R2)) + Iq * R2

Где,

Iq = ток покоя – это ток, который течет от регулировочного штифта, когда цепь не управляет нагрузкой.

Поскольку Iq выражается в 100 мкА, член Iq * R2 очень мал и им можно пренебречь в уравнении.

LM317 обеспечивает минимальный ток нагрузки 10 мА. Следовательно, для поддержания постоянного опорного напряжения 1.25V, минимальное значение сопротивления обратной связи

R1 = 1.25 / Имин

R1 = 1,25 В / 0,010 = 125 Ом

Диапазон переменного резистора R1 составляет от 125 Ом до 1000 Ом, а типичное значение R1 составляет от 220 Ом до 240 Ом для лучшей стабильности. Используя приведенное выше уравнение, можно также рассчитать значение R2.

LM317 имеет следующую внутренне допустимую рассеиваемую мощность –

Pout = (Максимальная рабочая температура IC) / (Тепловое сопротивление, переход от окружающей среды + тепловое сопротивление, переход от корпуса к корпусу)

Pout = (150) / (65 + 5) (значения согласно паспорту)

Pout = 2 Вт

Следовательно, LM317 внутренне может выдерживать до 2 Вт рассеиваемой мощности.При мощности выше 2 Вт микросхема не переносит выделяемое количество тепла и начинает гореть. Это также может вызвать серьезную опасность возгорания. Поэтому радиатор необходим для отвода чрезмерного тепла от ИС.

Регулировка напряжения

Выходное напряжение можно изменять с помощью регулировочного контакта LM317 IC. Переменный резистор R1 используется для изменения напряжения на выходе от 1,28 В до 11 В.

Защита от короткого замыкания

Диод D5 подключен между клеммами входа и выхода напряжения 317 IC, чтобы предотвратить разряд внешнего конденсатора через IC во время короткого замыкания на входе.Когда вход закорочен, катод диода находится под потенциалом земли. Анодный вывод диода находится под высоким напряжением, поскольку C2 полностью заряжен. Следовательно, в таком случае диод смещен в прямом направлении, и весь разрядный ток от конденсатора проходит через диод на землю. Это избавляет микросхему LM317 от обратного тока.

Рис.9: Принципиальная электрическая схема защиты от короткого замыкания

Тестирование и меры предосторожности –

При сборке схемы следует соблюдать следующие меры предосторожности –

• Номинальный ток понижающего трансформатора, мостовых диодов и ИС регулятора напряжения должен быть больше или равен требуемому току на выходе.В противном случае он не сможет подавать требуемый ток на выходе.

• Номинальное напряжение понижающего трансформатора должно быть больше максимального требуемого выходного напряжения. Это связано с тем, что микросхема 317 принимает падение напряжения примерно от 2 до 3 В. Таким образом, входное напряжение должно быть на 2–3 В больше максимального выходного напряжения и находиться в пределах входного напряжения LM317.

• Конденсаторы, используемые в цепи, должны иметь более высокое номинальное напряжение, чем входное напряжение.В противном случае конденсаторы начнут пропускать ток из-за превышения напряжения на их пластинах и вырвутся наружу.

• На выходе выпрямителя следует использовать конденсатор, чтобы он мог справляться с нежелательными сетевыми шумами. Аналогичным образом рекомендуется использовать конденсатор на выходе регулятора для обработки быстрых переходных процессов и шума на выходе. Емкость выходного конденсатора зависит от отклонения напряжения, колебаний тока и переходного времени отклика конденсатора.

• При использовании конденсатора после ИС регулятора напряжения всегда следует использовать защитный диод, чтобы предотвратить обратный ток ИС во время разряда конденсатора.

• Для работы с высокой нагрузкой на выходе необходимо установить радиатор в отверстия регулятора. Это предотвратит сдувание микросхемы из-за рассеивания тепла.

• Поскольку ИС регулятора может потреблять ток только до 1,5 А, предохранитель 1.Необходимо подключить 5 А. Этот предохранитель ограничивает ток в регуляторе до 1,5 А. При токе выше 1,5 А предохранитель сгорит, и это отключит входное питание от цепи. Это защитит микросхему схемы и регулятора от тока более 1,5 А.

После того, как схема собрана, самое время ее протестировать. Подключите цепь к основному источнику питания и измените переменное сопротивление. Снимите показания напряжения и тока на выходной клемме силовой цепи с помощью мультиметра.Затем подключите фиксированные сопротивления в качестве нагрузки и снова проверьте показания напряжения и тока.

На выходных клеммах входное напряжение составляло 12 В, а при регулировке переменного сопротивления выходное напряжение находилось в пределах от 1,28 до 11 В при отсутствии нагрузки.

После установки выходного напряжения на 11 В и подключения нагрузки 20 Ом, выходное напряжение считывается 10,4 В, а выходной ток измеряется 520 мА, поэтому рассеиваемая мощность при нагрузке с сопротивлением 20 Ом составляет –

Pout = (Vin – Vout) * Iout

Pout = (12-11) * 0.520

Pout = 0,52 Вт

Во время тестирования схемы было обнаружено, что когда потребление тока на выходе увеличивается, выходное напряжение начинает уменьшаться. По мере увеличения потребности в токе микросхема 317 начинает нагреваться, и на нее падает большее падение напряжения, что снижает выходное напряжение. Хотя из приведенного выше практического опыта видно, что рассеиваемая мощность в ИС находится в допустимых внутренних пределах, все же рекомендуется использовать радиатор для охлаждения ИС и увеличения срока ее службы.

Силовая цепь, разработанная в этом проекте, может использоваться как стабилизатор источника постоянного тока или регулируемый источник питания от 1,25 В до 37 В постоянного тока.

Схемы соединений


LM317 / LM338 / LM350 Калькулятор и схемы регуляторов напряжения


LM317 / LM338 / LM350 Регуляторы напряжения

Семейство регулируемых 3-контактных регуляторов положительного напряжения LM317 / LM338 / LM350 может принимать входное напряжение от 3 до 40 В постоянного тока и обеспечивать стабилизированное напряжение выше 1.Выходной диапазон от 2 В до 37 В. Стабилизаторы напряжения LM317 могут обеспечивать выходной ток до 1,5 А (А). Там, где требуется больший выходной ток, регуляторы серии LM350 подходят до 3 А, а регуляторы напряжения серии LM338 – до 5 А.

Стабилизаторы напряжения LM317 / LM338 / LM350 исключительно просты в использовании, им требуется всего два внешних резистора для установки регулируемого выходного напряжения. При использовании регулируемых регуляторов напряжения LM317 / LM338 / LM350 вы можете рассчитывать на производительность как линейного регулирования, так и регулирования нагрузки по сравнению со стандартным фиксированным стабилизатором напряжения.Стабилизаторы напряжения LM317 / LM338 / LM350 обеспечивают полную защиту от перегрузки. Обычно конденсаторы не требуются, если только устройство не расположено на расстоянии более 150 мм (6 дюймов) от конденсаторов входного фильтра, и в этом случае требуется входной байпасный конденсатор. Для улучшения переходной характеристики можно добавить дополнительный выходной конденсатор. Клемма регулировки регулятора может быть отключена для достижения очень высокого подавления пульсаций. Дополнительные сведения о регулируемых регуляторах напряжения LM317 / LM338 / LM350 см. В таблицах данных регулируемых регуляторов ниже.

Фотография 1: Регулятор напряжения LM317 (пластиковый корпус TO-220)


Калькулятор регулятора напряжения LM317 / LM338 / LM350

Вы можете использовать этот калькулятор регуляторов напряжения, чтобы изменить значение программного резистора (R 1 ) и выходного резистора (R 2 ) и рассчитать выходное напряжение для семейства LM317 / LM338 / LM350, состоящего из трех клеммных регулируемых регуляторов напряжения. . Этот калькулятор регуляторов напряжения будет работать со всеми регуляторами напряжения с опорным напряжением (V REF ), равным 1.25. Обычно программный резистор (R 1 ) устанавливается на 240 Ом для регуляторов LM117, LM317, LM138 и LM150. Для регуляторов LM338 и LM350 обычно используется 120 Ом для программного резистора R 1 . Однако другие значения, такие как 150 или 220 Ом, также могут использоваться для R 1 . Стабилизаторы напряжения серии LM317 / LM338 / LM350 также могут быть настроены для регулирования тока в цепи. Для получения информации о регулировании тока с помощью этих регуляторов на интегральных схемах (IC) см. Калькулятор регулятора тока LM317 / LM338 / LM350.

Рисунок 1: Схема калькулятора регулятора напряжения LM317 / LM338 / LM350

Калькулятор регулятора напряжения LM317 / LM338 / LM350

Для определения выходного напряжения введите значения для программы (R 1 ) и установите (R 2 ) резисторы и нажмите кнопку «Рассчитать».

ПРИМЕЧАНИЕ: для этого онлайн-калькулятора регулятора напряжения требуется, чтобы в вашем браузере был включен JavaScript.

Калькулятор регулятора напряжения LM317 / LM338 / LM350

ОБНОВЛЕНИЕ – калькулятор регулятора тока LM317 / LM338 / LM350 перемещен на свою страницу, калькулятор регулятора тока LM317 / LM338 / LM350.Пожалуйста, обновите свои закладки.


Лист данных – 3-контактный регулируемый регулятор LM317 / LM338 / LM350


Цепи регулятора напряжения LM317 / LM338 / LM350

На следующих схемах показаны типовые схемы применения регуляторов напряжения LM317 / LM338 / LM350. Примечание : Падение напряжения регулятора IC составляет от 1,5 до 2,5 В в зависимости от выходного тока (I OUT ). Следовательно, входное напряжение регулятора LM317 / LM338 / LM350 должно быть не менее 1.На 5–2,5 В больше желаемого выходного напряжения. Планируйте, что желаемое выходное напряжение будет примерно на 3 В. Вы не хотите использовать слишком высокое входное напряжение, так как избыток необходимо будет отводить в виде тепла через регулятор. Подробные сведения о падении напряжения и требованиях к радиатору см. В таблицах данных регуляторов напряжения выше.

Рисунок 2: Схема регулируемого стабилизатора напряжения от 1,2 до 25 В для LM317 / LM338 / LM350

Когда внешние конденсаторы используются с регулятором напряжения, может потребоваться использование защитных диодов, чтобы предотвратить разряд конденсаторов через точки с низким током в регулятор напряжения.Даже небольшие конденсаторы могут иметь достаточно низкое внутреннее последовательное сопротивление, чтобы обеспечивать выбросы 20 А при коротком замыкании. Хотя всплеск очень непродолжительный, энергии достаточно, чтобы повредить части регулятора IC. Для выходных напряжений менее 25 В или более 10 мкФ защитные диоды не требуются. На рисунке 3 показан LM317 / LM338 / LM350 с включенными защитными диодами для использования с выходным напряжением более 25 В и высокими значениями выходной емкости.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *