Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Электрическая схема по печатной плате

Самым распространенным вопросом при ремонте любого электронного прибора является «а есть ли схема?». Действительно, если прибор незнакомый или схематехника его ставит в тупик, то нужна схема. Конечно, если банально сгорел предохранитель или выгорел транзистор – тогда все понятно и без схемы. Но существует масса глюков, которые можно найти только при помощи отключения разных участков схемы или замены одних блоков другими заведомо исправными. Схемы обычно гуглятся благодаря огромной армии радиолюбителей, но встречаются платы по которые совсем ничего не удается найти. Метод который описан в этой статьи банален и неинтересен, но поможет тем, кто в лоб составляет принципиальную электрическую схему имея под рукой только плату с деталями. Сразу оговорюсь, что этот метод подходит для однослойных печатных плат. Самым распространенным методом составления схемы в лоб является верчение платы вокруг своей оси и постоянной зарисовкой дорожек и элементов.

Для людей с хорошей зрительной памятью и пространственным мышлением составление таких схем не представляет трудностей. Для всех остальных процесс верчения платы можно оптимизировать в программе photoshop.

Для образчика я взял небольшую схему управления скоростью комповского кулера. Схему нужно сфоткать с обеих сторон – это итак понятно. Проблемы возникающие при этом все же встречаются. Первая проблема – закрытость отдельных деталями либо другими деталями, либо радиаторами. Если это так, то придется снять радиаторы и подогнуть все элементы так, чтобы при взгляде они были все видны. Вторая проблема – сделать снимки с одинакового расстояния. Эту проблему можно обойти при помощи инструментов фотошопа, но нужно стараться фотографировать с одной высоты и под одним ракурсом. Это все нужно чтобы обе фотки наложились друг на друга достаточно точно.

Фотки получились вот такого вида. Когда фоткал, то смотрел чтобы плата влезала ровно в одну ячейку решетки на экране фотика.

Схема содержит немного деталей, один транзистор скрыт электролитическим конденсатором.

Вначале нужно немного подстроить под себя photoshop. Идея в том чтобы иметь под рукой инструменты, которые нужны для работы. У меня shop CS3 английский. Для тех у кого закладки на русском в скобках приведу порядковый номер закладок, а то русские переводчики часто вообще все никак переводят.

Windows(9)-tools(23) – слева отобразится вертикальная полоска с инструментами.

Windows(9)-layers(14) – справа отобразиться панель слоев.

После всех настроек можно перетянуть в окно программы две обрабатываемые фотки.

Одну из фоток нужно отобразить по горизонтали. Это необходимо чтобы наложить одну фотку на другую.

Теперь нужно перетянуть фотку с элементами на фотку печатной платы. При этом печатная плата будет внизу и просвечивать через верхнюю плату с элементами.

При этом образуется одна фотка с двумя слоями. При этом один слой оказывается заблокированным – в панели слоев напротив одного слоя светится замочек. Чтобы замочек убрать нужно в панели слоев мышой два раза тиснуть на слое и в открывшейся панели согласится с тем, что предлагает программа. После этого замочек пропадет, а слой разблокируется.

Получилось одна фотка с двумя слоями. При этом отображается та фотка, которая сверху. Задача в том, чтобы сделать прозрачной фотку с деталями, чтобы сквозь детали проступили дорожки нижней платы. Это можно сделать при помощи панели слоев (layers). Нужно выделить слой с элементами и при помощи ползунка Opacity меняем прозрачность слоя. Лучше выставить 50% Opacity.

При съемке размеры обоих плат могут плавать. Следовательно, при наложении не будет четкого соответствия. Для изменения размеров одного слоя нужно воспользоваться Edit(2)-free transform(15) {Ctrl+T}. Размеры самой платы будут плавать. Чтобы размеры подгонялись пропорционально нужно удерживать кнопку shift.

Для подтверждения изменений нужно нажать enter.

Когда оба платы наложены друг на друга и ножки элементов совпадают с точками на схеме, тогда можно перерисовать дорожки. Для этого нужно выставить opacity 0, отобразиться только слой с дорожками и на нем при помощи line tool {U} нарисовать линии и кружки.

Затем нужно вывести opacity 100%, отобразиться слой с элементами и нарисованными дорожками. После этого получившееся изображение можно сохранять и перерисовывать схему в более удобный для понимания вид.

Как создать плату из схемы в Altium Designer

Altium Designer

|&nbsp Создано: 18 Апреля, 2019 &nbsp|&nbsp Обновлено: 16 Марта, 2020

  

Вы завершили разработку схемы и готовы передать ее на печатную плату. Но в этот раз ситуация несколько изменилась. Возможно, отдел конструирования недоступен, либо вы, возможно, решили создать плату самостоятельно. Как бы то ни было, вы готовы начать работать над проектом со стороны платы, но вы не уверены, каким должен быть следующий шаг.

К счастью, следующий шаг в Altium Designer вполне прост и эффективен. Мы рассмотрим процесс на примере очень простой схемы и увидим, что необходимо для синхронизации данных с совершенно новой платой. Возможно, эта небольшая простая схема не похожа на те, с которыми привыкли работать вы, но основные шаги по передаче данных будут теми же самыми. Создание конструкции платы из схемы не должно быть сложным. Возьмите чашечку кофе (или чего-нибудь еще), и посмотрим на весь этот процесс.

Чего ожидать от редактора плат?

По существу, главное, чего следует ожидать при переходе в редактор плат, это то, что вы можете взаимодействовать с компонентами, размещать их, а также проводить трассировку для создания проводящих областей. После того, как конструкция стала удовлетворять начальным требованиям, вам необходимо сформировать выходные документы, такие как файлы Gerber и 3D-модели.

В идеальном случае, вы сначала разрабатываете устройство, формируя его схему в соответствующем редакторе. Затем вы передаете данные из схемы в плату, где работаете с компонентами, настройками проводящих областей и требованиями к механической части для оптимизации файлов конструкции платы и их максимально простой передачи в производство. К счастью, это самое малое, что может предложить Altium Designer.

Подготовка к синхронизации проекта

Прежде всего, посмотрите на схему еще раз и убедитесь, что она готова к передаче на плату для конструирования. Конечно, это не значит, что на данном этапе схема должна быть полностью завершена – скорее всего, еще будет много изменений перед тем, как проект можно будет отправлять в производство. Но следует убедиться в том, что на плате не появится каких-либо сюрпризов – посмотрите на схему и удалите лишние дублирующиеся части схем, компоненты и т. п.

Теперь убедимся, что со схемой все хорошо, выполнив процесс проверки редактора схем Altium Designer. Для этого необходимо скомпилировать проект. В процессе компиляции будет сформирована вся внутренняя информация о проекте, такая как связи между компонентами и цепями, а также будет проведен ряд проверок схемы на предмет ее соответствия правилам. Поэтому перед компиляцией посмотрим на настройку этих правил, активируя команду

Project » Project Options.

 

Настройки проекта в Altium Designer

 

На изображении выше показаны первые четыре вкладки диалогового окна настроек проекта. На первой из них, Error Reporting, вы можете управлять тем, какие нарушения в проекте следует находить и каким образом следует уведомлять о них. На второй вкладке, Connection Matrix, вы задаете, какие выводы могут соединяться между собой. На третьей вкладке, Class Generation, вы настраиваете формирование классов цепей и компонентов.

На четвертой вкладке, Comparator, вы видите настройки модуля сравнения (компаратора), которые задают отчет о различиях между схемой и платой. В большинстве случаев, здесь не нужно производить много изменений этих настроек, но вы можете узнать подробнее о них в документации Altium.

Теперь вы готовы к компиляции схемы. Активируйте команду Project » Compile PCB Project, чтобы запустить компилятор. Если в проекте нет нарушений, схема не отобразит каких-либо сообщений.

Чтобы показать, что представляют собой ошибки, мы удалили часть цепи, соединяющей R1 и Q1, как показано ниже, и запустили компилятор. Как видите Altium Designer сообщил, что цепь NetC1_1 содержит только один вывод. После восстановления цепи компилятор больше не сообщает о каких-либо ошибках.

 

Отчет компилятора об ошибках

 

Передача данных из схемы на плату

Теперь вы готовы передать данные схемы в плату, но сначала необходимо создать плату, в которую эти данные будут переданы. Щелкните ПКМ по проекту и выберите команду Add New to Project » PCB, как показано на изображении ниже. В дереве проекта будет создан документ платы. Щелкните по нему ПКМ и сохраните его под каким-либо именем. В этом примере название документа платы совпадает с названием схемы.

 

Добавление новой платы в проект Altium Designer

 

Когда документ платы создан, может понадобиться настроить плату для работы с ней необходимым образом. Сначала задайте сетку и начало координат. Команды для этого находятся в меню View » Grids и Edit » Origin. Также может понадобиться изменить существующий или создать новый контур платы, чтобы у нее были необходимые размеры и форма. Для этого перейдите в режим планирования платы с помощью меню

View (или горячей клавиши 1) и затем используйте подходящие команды меню Design.

Теперь вы готовы передать данные из схемы в плату. В редакторе плат выберите команду Design » Import Changes From…. Появится диалоговое окно Engineering Change Order, показанное ниже.

 

Добавление новой платы в проект Altium Designer

 

Сначала нажмите кнопку Validate Changes в левой нижней части этого диалогового окна. После того, как система закончит валидацию изменений, которые вы собираетесь применить для синхронизации схемы и платы, в столбце Check справа появятся зеленые галочки, указывающие, что проверка этих элементов и схемных символов прошла успешно. Элементы, не прошедшие проверку, необходимо изучить и исправить для того, чтобы добиться полной синхронизации проекта.

Затем нажмите кнопку Execute Changes. Применение изменений займет некоторое время, и этот процесс вы можете наблюдать в диалоговом окне. По завершении процесса в столбце Done появятся зеленые галочки, как показано ниже.

 

Диалоговое окно Engineering Change Order после валидации и применения изменений

 

Поздравляем, вы успешно передали данные из схемы на плату. Вы можете закрыть диалоговое окно и увидеть компоненты, размещенные рядом с платой, примерно как это показано на изображении ниже.

 

Данные со схемы были успешно переданы в плату, где компоненты готовы к размещению

 

Вы создали плату из схемы. Что дальше?

Перед тем, как начать конструирование, необходимо выполнить еще ряд задач. Необходимо настроить физическую структуру слоев платы, отображение этих слоев и правила проектирования.

 

Layer Stack Manager в Altium Designer

 

Выше изображен инструмент Layer Stack Manager для управления структурой слоев в Altium Designer. Его запуск осуществляется через меню Design. С его помощью вы можете добавлять, копировать, удалять и перемещать физические слои в структуре платы. Вы можете добавлять сигнальные, экранные и диэлектрические слои платы. Layer Stack Manager также позволяет рассчитывать импедансы.

Настройка правил проектирования осуществляется в диалоговом окне PCB Rules and Constraints Editor, доступного по команде Design » Rules. Настроить видимость слоев и объектов можно с помощью панели View Configuration. Ниже показана вкладка Layers & Colors этой панели.

 

Панель View Configuration в Altium Designer

 

Теперь данные из схемы переданы в плату, и вы готовы к завершению конструкции платы. Вы можете разместить компоненты, провести трассировку, изготовить плату и даже успеть выпить еще кофе до конца дня.

Altium Designer – это средство проектирования печатных плат, созданное на основе унифицированной среды проектирования, которая позволяет легко передавать данные из схемы на плату. Вы можете передать данные туда и обратно между этими инструментами, что делает процесс проектирования проще и эффективнее.

Простая передача данных из схемы на плату – это только малая часть преимуществ, обеспечиваемых Altium Designer. Если вы еще не начали использовать Altium Designer, узнайте больше, поговорив с экспертом Altium.

Проектирование печатных плат / Евроинтех

Pulsonix – система проектирования печатных плат

Программа Pulsonix рекомендуется для плат среднего уровня сложности и включает редактор схем многолистовых проектов, редактор печатных плат, средства автоматической и полуавтоматической трассировки, смешанного аналого-цифрового моделирования.

VisualCAM – подготовка производства печатных плат

Пакет VisualCAM предлагает пользователям максимальный набор инструментов для подготовки производства печатных плат, в то время как программа GerbTool имеет несколько конфигураций и представляет собой его упрощенную версию. Пакет полностью поддерживает форматы данных Gerber RS-274X, ODB++ и IPC-2581 и позволяет выполнять разнообразные проверки правил DRC и DFM и оптимизировать топологию.

VisualCAM Stencils – подготовка производства трафаретов для нанесения паяльной пасты

Продукт позволяет выполнять импорт данных в форматах Gerber, Barco DPF, HPGL, DXF, CAM350, IPC-2581, ODB++, Pads ASCII and GenCAD. Специальный макрос LayerPrep Macro позволяет автоматически подготовить данные, необходимые для изготовления трафарета, посредством выполнения команд Stacked Pad Removal, Drawn Pad Conversion и Custom to Intrinsic за один запуск.

GerbTool – подготовка производства печатных плат

Программа GerbTool имеет несколько конфигураций и представляет собой упрощенную версию пакета VisuaCAM. Пакет полностью поддерживает форматы данных Gerber RS-274X, ODB++ и IPC-2581 и позволяет выполнять разнообразные операции по редактированию подобных файлов.

Easy-PC – дешевый продукт для проектирования печатных плат

Компания Number One Systems предлагает набор недорогих программных продуктов для проектирования печатных плат. Решения компании обеспечивают сквозной цикл проектирования от разработки принципиальной схемы и ее моделирования, до трассировки топологии печатной платы и организаци ее производства.

LayoutEditor – универсальный редактор топологий интегральных схем

Редактор LayoutEditor представляет собой специализированное программное обеспечение для проектирования топологий интегральных устройств на основе толстопленочной и тонкопленочной технологии. Он позволяет разрабатывать обычные интегральные (IC), микроэлектромеханические (MEMS), многокристальные (Multi-Chip-Modules, MCM), гибридные (Chip-on-Board, COB), низкотемпературные керамические (LTCC), монолитные СВЧ (MMIC) устройства, а также обычные печатные платы.

ELECTRA – адаптивный бессеточный автотрассировщик

Бессеточный трассировщик ELECTRA бельгийской компании KONEKT SPRL предназначен для работы с большинством популярных систем проектирования (Allegro, OrCAD, Pulsonix, Mentor Boardstation, PADS, Ranger, CADint, Pantheon, UltiBoard, Eagle, P-CAD, Protel, Vutrax, IVEX, WinPCB) и использует традиционный shape-based алгоритм.

Каталог радиолюбительских схем. ПЕЧАТНЫЕ ПЛАТЫ.

Каталог радиолюбительских схем. ПЕЧАТНЫЕ ПЛАТЫ.

ПЕЧАТНЫЕ ПЛАТЫ

Простая технология изготовления печатных плат

Большинство промышленных способов изготовления плат с печатным монтажом требует сложного оборудования и дефицитных материалов.

В ремонтных и любительских условиях технология изготовления печатных плат может быть упрощена за счет введения ручных операций. Ниже предлагаются три способа изготовления печатного монтажа и печатных схем. Мастер или радиолюбитель может выбрать любой из этих способов и нужный ему материал.

Способ переноса. Проводники печатного монтажа, вырезанные из медной или латунной фольги и смонтированные на какой-либо временной подложке (например, на миллиметровой бумаге), наклеиваются на диэлектрик, после чего подложка удаляется. Этот способ ценен тем, что печатные проводники можно наклеить на любой плоский диэлектрик. Кроме того, не требуется сложной оснастки и дефицитных материалов.

Химический способ. На фольгированный гетинакс тем или иным способом наносится рисунок печатного монтажа,

после чего незащищенные места вытравляют. Этот способ менее трудоемок, но для него требуется раствор — хлорное железо, которое не всегда можно приобрести.

Механический способ. На фольгированный гетинакс наносится рисунок монтажа, а затем фольга с пробельных мест удаляется ножом, резаком, скальпелем или фрезой. Этот способ самый простой, но требует от мастера или радиолюбителя определенных навыков.

СПОСОБ ПЕРЕНОСА

Для изготовления печатной платы по этому способу требуется: гетинакс толщиной от 1 до 2 мм, медная фольга толщиной 0,05—0,06 мм, клей БФ-2, клей конторский универсальный казеиновый (можно использовать синдетикон), миллиметровка, пергамент, копировальная и писчая бумага. Из приспособлений требуются только две металлические пластины, между которыми зажимается плата при наклейке печатной схемы.

Под миллиметровку, на которой вычерчен в натуральную величину печатный монтаж, подкладывают последовательно: копировальную бумагу, кальку карандашную, фольгу и, наконец, какую-либо подложку, например несколько листов бумаги или картон. Все листы скрепляют по краям скрепками, после чего полученную пачку кладут на ровный металлический лист или стекло и остро заточенным твердым карандашом тщательно обводят контуры проводников печатного монтажа. После снятия скрепок получают пергамент, на котором будет виден четкий рисунок печатного монтажа; такой же рисунок будет и на фольге в виде рельефных линий.

Фольгу перед нанесением на нее рисунка надо обработать с одной стороны шлифовальной шкуркой, чтобы она лучше приклеивалась к гетинаксу. При копировке фольгу кладут шероховатой стороной вниз. По контурам печатного монтажа ножницами вырезают из фольги проводники и приклеивают их глянцевой стороной казеиновым клеем к пергаменту (рис. 99). Клей следует наносить тонким равномерным слоем и следить при наклейке проводников на пергамент за точным совмещением контуров проводников с рисунком на пергаменте. Для точного размещения проводников относительно краев гетинаксовой платы на пергамент наклеивают центрирующую рамку. Схему наклеивают на гетинаксовую плату сразу же после того, как проводники схемы смонтированы на пергаменте; если клей высохнет, проводники могут отделиться от пергамента. Плату обрезают так, чтобы она точно входила внутрь наклеенной на пергамент центрирующей рамки. Сторону гетинаксовой платы, где будут наклеены проводники, прошлифовывают шкуркой.

Проводники, смонтированные на пергаменте, а также гетинаксовую плату обезжиривают ацетоном, спиртом, грушевой эссенцией или любым другим растворителем. После этого обе склеиваемые поверхности (проводники и гетинаксовую плату) покрывают тонким слоем клея БФ-2, которому дают подсохнуть в течение 10—20 мин. Затем на поверхность проводников кисточкой вторично наносят слой клея и на смазанный клеем печатный монтаж кладут гетинаксовую плату шероховатой стороной вниз. Весь пакет зажимают между двумя металлическими пластинами, которые стягивают винтами и выдерживают в таком виде в течение часа при комнатной температуре. После этого пакет нагревают до 120°С и выдерживают при этой температуре 3 ч. Если печатная плата небольшая, то нагревать ее можно с помощью электрического утюга, прикрепив пакет к гладильной поверхности. Особенно удобен утюг с терморегулятором.

После остывания пакет разбирают и острым скальпелем или ножом соскабливают приклеенный к плате ‘пергамент подложку. Пергамент увлажняют горячей водой. Когда весь пергамент будет соскоблен с платы, последнюю шлифуют мелкой шкуркой и промывают растворителем. В плате сверлят отверстия для крепления деталей. Необходимо следить за тем, чтобы отверстия проходили через центры контактных площадок.

ХИМИЧЕСКИЙ СПОСОБ

На фольгированный гетинакс наносят рисунок печатных проводников кислотоупорным лаком или наклеивают полоски из липкой ленты, которые защищают от травящего раствора те места фольги, которые должны остаться на плате. Для изготовления любительских плат с печатным монтажом больше всего подходит заводской фольгированный гетинакс марки ГФ-1 (для односторонних печатных плат) и ГФ-2 (для двусторонних). Если заводской фольгированный гетинакс достать невозможно, радиолюбитель или мастер могут изготовить его сами, воспользовавшись советом 81.

Химический способ изготовления печатного монтажа имеет несколько разновидностей, отличающихся методом нанесения изображения печатного монтажа на фольгированную заготовку. Рисунок печатного монтажа может быть выполнен ручным (рисовальным) способом с помощью кисточки и рейсфедера; с помощью липкой ленты.

Способ ручного нанесения печатного монтажа. Через копировальную бумагу рисунок монтажа переносят на фольгированный гетинакс со стороны фольги.

В местах, где должны быть отверстия, керном набивают углубления (рис. 100, а), после чего миллиметровку и копировальную бумагу удаляют. Места фольги, которые должны остаться на плате, закрашивают нитролаком, цапонлаком, асфальтобитумным или каким-либо другим лаком. Сначала на все набитые керном углубления ставят лаком точки. Проще всего это сделать спичкой, обмакнув ее конец в лак. Нужно следить за тем, чтобы углубление, набитое керном, было в центре точки. Диаметр точки должен быть 2,5—3 мм (рис. 100,б). Когда все точки поставлены, их соединяют лаком между (Тобой согласно схеме. Соединительные кривые линии проводят кисточкой № 2 или 3, а прямые линии — рейсфедером (рис. 100, б).

Когда лак высохнет, плату ретушируют, т. е. подправляют рисунок скальпелем, лезвием безопасной бритвы или специальным скребком для ретуши фотографий (рис. 100, г). Отретушированную плату подвергают травлению в фарфоровой или пластмассовой фотографической ванночке с раствором хлорного железа плотностью 1,3 (для получения такого раствора в стакан емкостью 200 см3 кладут 150 г хлорного железа и заливают его до краев водой). Ванночку энергично и непрерывно покачивают, через каждые 5 мин, плату осторожно протирают ватным тампоном, который удерживают пинцетом, чтобы удалить продукты реакции с пробельных участков платы, замедляющие процесс травления. Полностью схема вытравливается за 40—50 мин. Если же раствор хлорного железа подогреть до 40° С, то плата вытравится за 10 мин.

Затем с вытравленной платы растворителем удаляют лак, хорошо ее промывают несколько раз попеременно холодной и горячей водой, сушат, а в местах, набитых керном, сверлят в плате отверстия для выводов радиодеталей (рис. 100,5). Во избежание отклеивания (отслаивания) проводников от материала платы отверстия сверлят со стороны фольги вначале сверлом диаметром 0,5—0,8 мм. Потом все отверстия с обеих сторон платы зенкуют сверлом, заточенным под углом 90° с таким расчетом, чтобы после рассверловки сверлом требуемого диаметра на отверстиях остались фаски примерно 0,1—0,2 X 90°.

Способ выполнения рисунка печатного монтажа с помощью липкой ленты. На фольгированный гетинакс наклеивают кружки и полоски, вырезанные из липкой полихлорвиниловой изоляционной ленты (синей). Кружки и полоски заготавливают следующим образом. На мотке изоляционной ленты делают надрез глубиной 1,5—2 мм (рис. 101, а), отделяют от круга несколько слоев ленты и острым ножом по линейке вырезают полоски, а высечкой вырубают кружки (рис. 101,6). Ширина полосок и диаметр зависят от чертежа печатного монтажа (обычно полоски имеют ширину 1—2 мм, а диаметр кружков 2,5—3 мм).

Высечку лучше всего выточить из стали и закалить (рис. 101,в). После вырубки получим стопку лежащих друг на друге кружков.

Подготовив детали из липкой ленты, приступают к изготовлению печатной платы.

Заготовку из фольгированного гетинакса обезжиривают (промывают каким-либо растворителем) и хорошо просушивают. На заготовку кладут миллиметровку с чертежом печатного монтажа и через миллиметровку набивают керном углубления в местах заготовки, где должны быть отверстия, после чего миллиметровку удаляют. Затем из стопки кружков липкой ленты с помощью скальпеля и пинцета отделяют один кружок (рис. 101, г) и наклеивают его на углубление, набитое керном таким образом, чтобы углубление было точно в центре кружка.

После наклейки всех кружков наклеивают липкие полоски, соединяя между собой контактные площадки (кружки) .согласно чертежу печатной платы, выполненному на миллиметровке. При этом надо придерживаться следующих правил: не касаться руками клеящей поверхности полоски, при наклейке не растягивать ленту, а укладывать ее без дополнительных продольных усилий; изгибы проводников делать возможно большего радиуса; соединять полоски с кружками гак, как показано на рис. 102, а, т. е. встык, и закрашивать промежуток между кружком и полоской кислотоупорной краской. Если же соединение делать внакладку (рис. 102,6), что кажется более простым, то при травлении травящий раствор попадет между полоской и кружком и после травления концы полосок подтравятся и будут иметь вид, показанный на рис. 102, б. Следовательно,- такое соединение все равно требует закраски мест стыка кружка и полоски (см. рис. 102, а). Затем плату травят в указанных выше растворах, промывают и сушат.

МЕХАНИЧЕСКИЙ СПОСОБ

Имеются две разновидности этого способа изготовления печатных плат: 1) удаление фольги с пробельных мест путем фрезеровки, 2) срезание и соскабливание фольги ножом или резаком.

Способ фрезерования. На фольгированный гетинакс наносят рисунок печатного монтажа, причем печатный монтаж должен быть спроектирован с узкими пробельными участками (ширина их должна равняться диаметру бора).

Металлическую фольгу с пробельных мест удаляют фрезой (зубным бором), закрепленной в патроне, сидящем на оси электромотора (рис. 103).

После фрезерования плату шлифуют мелкой шкуркой, сверлят в ней отверстия, и обрезают.

Способ вырезания фольги. Это, пожалуй, самый простой способ изготовления печатного монтажа, он не требует почти никакой оснастки. Из материалов необходим только фольгированный гетинакс.

Как и в ранее описанном способе, на плату наносят рисунок печатного монтажа н по контуру пробельных участков острым ножом по линейке прорезают фольгу. Затем край фольги ножом отделяют от. гетинакса и отрывают вдоль разрезов, сделанных на пробельных участках (рис. 104).

При прорезании фольги нож иногда срывается и прорезает схему. Чтобы избежать этого, на линейку устанавливают металлический ограничитель (рис. 105). На линейке ставят черточку, показывающую, до какого места доходит режущий конец ножа, когда последний упирается в ограничитель. Линейку кладут таким образом, чтобы риска показывала конец разреза, который делается в фольге.





Печатная схема – это… Что такое Печатная схема?

        узел электро- или радиоаппаратуры, выполненный на одной плате (См. Плата) в виде системы печатных электро- и радиоэлементов, соединённых между собой способом печатного монтажа (См. Печатный монтаж). В печатном исполнении изготавливают многие пассивные элементы (см. рис.): резисторы и конденсаторы, катушки индуктивности и трансформаторы, разъёмы и переключатели, СВЧ элементы (для работы на частотах от 500 до 2000 Мгц) полосковые линии, направленные ответвители, полосовые фильтры, аттенюаторы и т.д. Резисторы получают либо нанесением через трафарет на отдельные участки платы (полоски или площадки) резистивной смеси (пасты) (точность получения номинального значения сопротивления 20—40%), либо термовакуумным осаждением на плату тонкого слоя углерода, металла (тантал, ниобий), окисла металла (двуокись олова), сплава (нихром) (точность 5—10%). Конденсаторы получают путём образования металлизированных площадок на одной или на обеих сторонах платы. Из-за малой ёмкости (до нескольких десятков пф) и больших значений тангенса угла диэлектрических потерь применение их ограничено. Катушки индуктивности в виде одно- или многовитковых спиралей получают травлением (на фольгированных платах) или вжиганием серебра (на керамических платах). Обычно значения их индуктивности не превышают 7—10 мкгн, а при особо тонких проводниках — 50 мкгн. Подобным же образом получают и трансформаторы. При изготовлении разъёмов с пружинящим контактом на краю платы создают ряд печатных полосок с износоустойчивым покрытием из родия или платины, играющих роль вилки. Аналогично изготавливают контактную часть переключателей, имеющих сложную систему коммутации, например кодовые диски для цифровых устройств. Соединительные кабели (одно- и многослойные) в виде плоской многопроводной системы получают травлением гибкой фольгированной плёнки. Габариты и масса таких кабелей значительно (в 7—10 раз) меньше, чем, например, у обычных радиочастотных кабелей (См. Радиочастотный кабель). Печатные элементы СВЧ тракта, а иногда также и пассивные элементы электронных усилителей промежуточной и низкой частот создают в один приём на большой (до 500 Х 500 мм) плате из неполярного диэлектрика. П. с. обычно покрывают влаго- и термостойким лаком, после чего она представляет собой законченное изделие.          Применение П. с. существенно повышает плотность монтажа, технологичность изготовления и надёжность узлов радиоэлектронных устройств (например, ЭВМ, телевизоров, радиоприёмников) и служит основой их микроминиатюризации и комплексной миниатюризации, особенно при крупных масштабах производства (см. также Микромодуль, Микроэлектроника).

         Лит.: Печатные схемы в приборостроении, вычислительной технике и автоматике, М., 1973.

         Б. П. Лиховецкий.

        Печатная схема: 1 — конденсаторы; 2 — катушки индуктивности; 3 — электропроводящие полоски, соединяющие элементы; 4 — контактные площадки; 5 — контактные площадки переключателей.

Как пройти путь от принципиальной схемы до печатной платы

Несмотря на то, что сегодня к услугам конструкторов и изобретателей есть масса специализированных технических изделий, без создания печатной платы зачастую не обойтись. И обратиться при этом лучше к профессионалам.

Можно, конечно, ее сделать самостоятельно. Но если вы не мастер с золотыми руками, который клепает ПП каждый день, вы, во-первых, потратите немало времени, во-вторых, плата будет не оптимизирована по размеру, числу дорожек и отверстий, в-третьих, вряд ли вы сможете сделать многослойную ПП.

Поэтому трассировку печатных плат лучше доверить специалистам. Они называют этот процесс «разработкой топологии электрических соединений между посадочными местами электронных компонентов, устанавливаемых на печатную плату». Все это можно сделать через интернет.

Для начала нужно подготовить принципиальную электрическую схему. Лучше, если вы сделаете это в одной из программ — системе автоматического проектирования (PCAD, ORCAD, Protel). Конечно, вы можете подготовить схему в виде чертежа в электронном виде или на бумаге. Но это будет стоить дороже, так как сначала чертеж придется переводить в специализированный электронный формат.

Затем нужно предоставить спецификацию — перечень электронных компонентов (BOM), который планируется установить на эту печатную плату. Список можно предоставить как в электронном виде (Word, Excel), так и в бумажном.

Третий документ — габаритный чертеж печатной платы, где нужно указать размеры ПП, крепежные отверстия, а также разъемы, радиаторы и другие фиксированные элементы. Опять-таки, чертеж можно предоставить в любом виде, но лучше это сделать в одной из популярных систем автоматического проектирования.

Наконец, в техздании нужно указать требования и пожеланию по тому, как будут располагаться электронные компоненты на плате, как трассировать цепи, какую ширину проводников использовать и т.д.

В свою очередь трассировка печатной платы подразделяется на несколько этапов: от создания библиотеки электронных компонентов до предварительной комопновки. После согласования компоновки происходит разводка цепей на печатной плате. Затем происходит окончательное подтверждение с заказчиком.


Как быстро собрать схему на беспаечных макетных платах

Как быстро собрать схему на беспаечных макетных платах

Макетная плата — универсальная печатная плата для сборки и моделирования прототипов электронных устройств. Макетные платы подразделяются на два типа: для монтажа посредством пайки и без таковой.

Давайте рассмотрим устройство и назначение беспаечных макетных плат. В чем их преимущество перед другими видами сборки, и как с ними работать, а также какие схемы можно быстро собрать на них новичку.

Предыстория

Первой проблемой с которой сталкивается радиолюбитель это даже не отсутствие теоретических знаний, а отсутствия средств и знаний о способах монтажа электронных устройств. Если вы не знаете как работает та или иная деталь, это не помешает вам подключить её по схеме электрической принципиальной, а вот чтобы наглядно и качественно собрать схема нужна печатная плата. Чаще всего их изготавливают по методу ЛУТ, но лазерный принтер есть не у всех. Наши отцы и деды рисовали платы вручную лаком для ногтей или краской, а потом их вытравливали.

Здесь новичка настигает вторая проблема — отсутствие реактивов для травления. Да, безусловно, хлорное железо продается в каждом магазине радиоэлектронных компонентов, но на первых порах и так нужно много всего приобрести и изучить, что уделить внимания технологии травления плат из фольгированного текстолита или гетинакса просто сложно. Да и не только новичкам, но и опытным радиолюбителям порой нет смысла травить плату и тратить средства на недоработанное изделие на этапах его наладки.

Чтобы избежать проблем с поиском хлорного железа, текстолита, принтера и не получить от жены (мамы) за несанкционированное использование утюга, можно практиковаться в монтаже электронных устройств на беспаечных макетных платах.

Что такое беспаечная макетная плата?

Как видно из названия это такая плата, на которой можно собрать макет устройства без использования паяльника. Макетка – так её называют в народе – в магазинах присутствует разных размеров и модели несколько отличаются по компоновке, но принцип действия и внутреннее их устройство одинаковы.

Макетная плата состоит из корпуса из ABS пластика, в котором расположены разъёмные соединения, которые напоминают сдвоенные металлические шины между которыми зажимается проводник. На лицевой части корпуса отверстия, пронумерованные и промаркированные, в них можно вставлять провода, ножки микросхема, транзисторов и других радиодеталей в корпусах с выводами. Взгляните на картинку ниже, на ней я всё это изобразил.

На рассмотренной печатной плате крайние два столбца отверстий с каждой из сторон объединили вертикально общими шинами, из которых обычно формируют шину плюсового контакта источника питания и минусовую (общую шину). Обычно обозначаются красной и синей полосой по краю платы плюс и минус соответственно.

Средняя часть платы разделена на две части, каждая из частей объедены по строчно по пять отверстий в ряд на данной конкретной плате. На рисунке изображено схематическое соединение отверстий (черными сплошными линиями).

Внутренняя структура платы изображена на рисунке ниже. Сдвоенные шины зажимают проводники, что и проиллюстрированно. Жирными линиями обозначены внутренние соединения.

Такие платы в англоязычной среде называются Breadboard именно по такому названию вы сможете найти её на aliexpress и подобных интернет магазинах.

Как с ней работать?

Просто в отверстия вставляете ножки электронных компонентов, соединяя между собой детали по горизонтальным линиям, а с крайних вертикальных подаёте питание. Если нужна перемычка часто используют специальные с тонкими штекерами на конца, в магазинах их можно встретить под название «перемычки dupont» или перемычки для ардуино, её кстати тоже можно вставить в такую макетку и собирать свои проекты.

Если вам не хватило размеров одной макетной платы вы можете совместить несколько, он словно пазлы вставляются друг в друга, обратите внимание на первой картинке в статье схема собрана на двух соединенных платах. На одной из них есть шип, а на другой выемка, скошенные от наружной части к корпусу платы, чтобы конструкция не развалилась.

Сборка простых схем на макетной плате

Начинающему радиолюбителю важно быстро собрать схему чтобы убедиться в работоспособности и понять как она работает. Давайте рассмотрим как выглядят разные схемы на макетной плате.

Схема симметричного мультивибратора советуется как первая многим новичкам, она позволяет научиться соединять детали последовательно и параллельно, а также определять цоколевку транзисторов. Её можно собрать навесным монтажом или развести печатную плату, но это требует пайки, а навесной монтаж несмотря на свою простоту, на самом деле очень сложен для начинающих и чреват замыканиями или плохим контактом.

Посмотрите как просто она выглядит на беспаечной макетной плате.

Кстати обратите внимание здесь не использовались перемычки Dupont. Вообще, их не всегда можно найти в радиомагазинах, а особенно в магазинах маленьких городов. Вместо них можно использовать жилы от интернет-кабеля (Витая пара) они в изоляции, а жила не покрыта лаком, что позволяет быстро оголить конец кабеля, сняв небольшой слой изоляции и вставить в разъём на плате.

Соединять вы можете детали как угодно, лишь бы обеспечить нужную цепь, вот та же схема, но собрана слегка иначе.

Кстати для описания соединений вы можете пользоваться маркировкой платы, столбцы обозначают буквами, а строки цифрами.

Для ваших конструкций встречаются такие блоки питания, на них есть штекера которые монтируются в беспаечную плату подключаясь к шинам «+» и «-». Это удобно, на нём есть выключатель и линейный малошумящий стабилизатор напряжения. В целом вам не составит труда развести такую плату самому и собрать её.

Вот так можно подключить светодиод, например для его проверки. На картинке изображена более “продвинутая” версия печатной платы с зажимными клеммами для подключения источника питания. Анод светодиода подключен к плюсу питания (красная шина) а катод на горизонтальную шину рабочей области, где и соединен с токоограничительным резистором.

Источник питания на линейном стабилизаторе типа L7805, или любой другой микросхеме серии L78xx, где хх – нужное вам напряжение.

Собранная схема пищалки на логике. Правильное название такой схемы – Генератор импульсов на логических элементах типа 2и-не. Сначала ознакомьтесь со схемой электрической принципиальной.

В качестве логической микросхемы подойдет отечественная К155ЛА3, либо иностранная типа 74HC00. Элементы R и C задают рабочую частоту. Вот её реализация на плате без пайки.

Справа заклееный белой бумажкой – буззер. Его можно заменить светодиодом, если уменьшить частоту.

Чем больше Сопротивление ИЛИ ёмкость – тем меньше частота.

А вот так выглядит типовой проект Ардуинщика на стадии тестирования и разработки (а иногда и в конечном виде, зависит от того насколько он ленив).

Собственно благодаря проекту Arduino в последнее время популярность “бредбордов” существенно возросла. Они позволяют быстро собирать схемы и проверять их работоспособность, а также использовать в качестве разъёма при перепрошивке микросхем в DIP корпусе, и в других корпусах, если есть переходник.

Ограничения беспаечной макетной платы

Несмотря на свою простоту и очевидные преимущества перед пайкой, беспаечные макетки имеют и ряд недостатков. Дело в том что не все цепи нормально работают в такой конструкции, давайте рассмотрим подробнее.

Перегрузка и паразитные составляющие

На беспаечных макетных платах не рекомендуется собирать мощные преобразователи, а особенно импульсные схемы. Первые не будут нормально работать по причине токовой пропускной способности контактных дорожек. Не стоит залазить за токи более 1-2 Ампер, хотя в интернете встречаются и сообщения о том что включают и 5 Ампер, делайте сами выводы и экспериментируйте.

Импульсные схемы могут и вовсе не заработать по причине большого числа паразитных емкостей и индуктивностей в схеме. Расположение шин такое, что они проходят вдоль друг друга и имеют достаточно большую площадь. Это вызывает лишние наводки и не улучшает стабильность работы импульсных и прецизионных схем.

Электробезопасность

Не стоит забывать и о том, что высокое напряжение опасно для жизни. Макетирование устройств работающих, например от 220 В ЗАПРЕЩЕНО категорически. Хоть и выводы закрыты пластиковой панелью, но куча проводников и перемычек могут привести к случайному замыканию или поражению электрическим током!

Заключение

Беспаечная макетная плата годится для простых схем, аналоговых схем которые не предъявляют высоких требованиям к электрическим соединениям и точности, автоматики и цифровых схем, которые не работают на высоких скоростях (ГигаГерцы и десятки МегаГерц – это уже слишком). При этом высокое напряжение и токи опасны и в таких целях лучше использовать навесной монтаж и печатные платы, при этом новичку не следует производить и навесного монтажа таких цепей. Стихия беспаечных макетных плат — простейшие схемы до десятка элементов и любительские проекты на Ардуино и других микроконтроллерах.

Ранее ЭлектроВести писали, что на главном автошоу Европы во Франкфурте Volkswagen наконец официально представит свой первый серийный электромобиль, спроектированный и построенный с нуля. ID.3 будет выпускаться с тремя вариантами аккумуляторов, обеспечивающими запас хода от 330 до 550 км.

По материалам: electrik.info.

Печатная плата

Дизайн, схема и сборка

Дизайн печатной платы, схема и процесс сборки.

Конструкция печатной платы

или печатная плата ( PCB ) или печатная плата ( PWB ) – это плата, изготовленная из изоляционного и очень термостойкого изоляционного материала, такого как стекловолокно. Эти доски еще называют подложками. Подложка или плата может иметь только один однослойный ( однослойная печатная плата ) или более одного слоя (многослойная печатная плата ).Проводящий металл, такой как медь, используется для создания проводящих путей или дорожек для облегчения прохождения электричества. Когда эти токопроводящие дорожки вытравлены на подложке, она обозначается как «печатная плата ».

Дизайн печатной платы

История печатных плат

История печатных плат восходит к середине 1930-х годов, когда австрийский инженер Пауль Эйслер изобрел плату PCB при проектировании радиоприемника. Позднее эти радиоприемники широко использовались Соединенными Штатами во время Второй мировой войны.После этого использование и применение печатных плат, потому что коммерческое в электронных компаний .

Эти печатные платы бесполезны, пока электронные компоненты не припаяны. Электронные компоненты могут быть сквозными или SMD. Опять же, технология, используемая для пайки этих компонентов на печатной плате, может быть технологией сквозного монтажа или Технология поверхностного монтажа .

Паяльный материал может включать припой в виде припойной проволоки, паяльной пасты, шариков припоя для BGA ( Ball Grid Array ) и паяльного флюса.

PCB (Печатная плата)

Проектирование печатных плат: рекомендации, правила и инструменты

Как объяснено выше, печатная плата – это плата, сделанная из одного или нескольких слоев изоляционного материала печатной платы (стекловолокно , керамика, высокотермостойкий пластик или любой другой диэлектрический материал ) с проводящими дорожками, протравленными проводящим металлом, например медью. .

В процессе производства печатной платы следы меди или любого другого проводника вытравливаются с платы, оставляя только следы, необходимые для монтажа / пайки электронных компонентов.После того, как все основные электронные компоненты припаяны к печатной плате и плата готова к использованию, она называется Printed Circuit Assembly (PCA) или Printed Circuit Board Assembly (PCBA).

Текущий общий стандарт проектирования печатных плат – IPC-2221A. Общий стандарт IPC 2221A на конструкцию печатных плат содержит правила изготовления печатных плат и рекомендации по качеству.

Эта информация и рекомендации применимы для всех типов печатных плат, включая однослойные печатные платы и многослойные печатные платы, и информация включает информацию о подложке, свойствах материалов, критериях покрытия поверхности, толщине проводника, размещении компонентов, правилах определения размеров и допусков и т. Д.

Другими стандартами проектирования печатных плат являются IPC-2220 и IPC-9592. Следует отметить, что IPC и другие стандарты предоставят информацию о том, как правильно развести плату.

Для идеальной и надежной конструкции печатной платы необходимо хорошее знание и понимание методов компоновки печатной платы и базовое понимание работы схемы. При разработке прототипа печатной платы необходимо должным образом позаботиться о материале подложки в зависимости от типа технологии пайки и используемых компонентов.

Ширину дорожек на печатной плате ( проводов цепи ) следует выбирать с умом, исходя из ожидаемого максимального повышения температуры при номинальном токе и допустимом сопротивлении. При проектировании печатной платы следует также учитывать также КТР, стоимость и диэлектрические свойства. Разработчику необходимо тщательно сбалансировать ограничения стоимости с потребностями в надежности и производительности. Кроме того, следует тщательно выбирать паяльную маску и сквозные отверстия.

Прототип печатной платы

Схема печатной платы

Принципиальная схема – это схема , показывающая и объясняющая, как и где будут установлены электронные компоненты для достижения целевого продукта.Каждый компонент на схеме печатной платы представлен символом цепи. Создание принципиальной схемы перед производством имеет решающее значение. Это дает представление о том, как схема будет работать и как достичь целевого продукта. Принципиальная схема необходима для любого нового электронного продукта, устройства или гаджета.

Условное обозначение электронных компонентов

Как нарисовать принципиальную схему?

Нарисовать принципиальную схему не так уж и сложно, если вы знаете основы.Вот несколько советов, руководств и инструкций:

  1. Выучите и поймите все общие символы и сокращения электронных компонентов, которые используются на схеме.
  2. Используя линейку, проведите соединительные провода в виде прямых линий. Используйте следующие символы: ‘blob’ () на каждом стыке между проводами, пометьте компоненты (резисторы, конденсаторы, диоды и т. Д.) С их значениями, положительный ( + ) источник питания должен быть вверху, а отрицательный () подача снизу.Отрицательное питание обычно обозначается как 0 В, ноль вольт.
  3. Для сложных принципиальных схем начните слева направо. Таким образом, сигналы текут слева направо ( входов и элементов управления должны быть слева, выходы – справа ).

Схема расположения печатной платы

Печатная плата в сборе

Сборка печатной платы

Монтаж электронных компонентов на печатной плате и подготовка ее к использованию – это то, что называется сборкой печатной платы.Процесс сборки печатной платы может использовать технологию сборки в сквозные отверстия или технологию поверхностного монтажа (SMT) или их сочетание.

После того, как печатная плата собрана с компонентами, она готова к тестированию и, наконец, к сборке с изделием. Но не гарантируется, что сборка печатной платы даст 100% нулевое количество дефектов. Будут обнаружены дефекты, и эти дефекты необходимо переделать / отремонтировать.

Видео: процесс сборки печатной платы SMT

Блок-схема сборки печатной платы (процесс PCBA)

Блок-схема сборки печатной платы (процесс PCBA)

Видео

: Как сделать печатную плату (ПП) – Пошаговое руководство