Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

инструкция мегаомметр | Советы электрика

03 Фев 2012 База знаний электрика, Видео, Новости, Советы специалиста, Электрика для дома

Как говорится “по многочисленным просьбам…” записал сегодня на видео пример измерения мегаомметром сопротивления изоляции токоведущих частей.

Мегаомметр- электромеханический, то есть с “крутилкой”, надо вращать ручку как на шарманке))

Лично мне такой больше по душе чем электронный, с тем у меня как то не сложились отношения…

На видео рассказываю как устроен мегаомметр, основные технические характеристики и правила применения- что куда подключать. как крутить и т.д.

Получилась своеобразная краткая инструкция по мегаомметру в видеоформате.

С видео опять у меня не очень… Когда уже начал просматривать- оказалось что стрелочный указатель совсем не видно. Эх, что ж делать, фотоаппарат у меня не справляется с поставленой задачей)))

В статье на фото все прекрасно видно- можно посмотреть.
macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,40,0″>

У кого нет возможности смотреть видео- читайте статью.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей.  На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс.МОм.

Это было небольшое вступление, а сейчас про мегаомметр.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

По нижней- от 0 до 50 МОм

Скорость вращения рукоятки- 120-140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

Если экран не нужен- эту клемму провода просто не подключаем.

Как работать мегаомметром?

Для начала надо убедиться что токоведущие части где будем измерять отключены- проверяем отключенные автоматы, рубильники и т.п.

Дальше проверяем отсутствие напряжения предварительно проверенным индикатором или прибором.

Затем заземляем токоведущие части и снимаем заземление только после подключения мегаомметра.

Измерительные щупы мегаомметра брать только за изолирующие рукоятки (при напряжении выше 1000Вольт кроме этого еще используют диэлектрические перчатки)

Когда измеряем- нельзя касаться токоведущих частей!

Делаем измерение изоляции и по окончании- снимаем заряд с токоведущих частей прикасаясь к ним кратковременно проводом заземления.

Снимаем заряд и с самого мегаомметра- прикасаемся измерительными щупами друг к другу.

Не забываем снять заземление с токоведущих частей! Иначе будет конкретное КЗ!

Основу вроде всю написал, если у вас есть что добавить- пишите в комментарии.

Узнайте первым о новых материалах сайта!

Просто заполни форму:

Теги: измерение сопротивления, мегаомметр

Рекомендации по работе с мегаомметром ЭСО-210

Этот прибор компактный, запитывается от сети. Данный мегаомметр может использоваться для следующих целей:

  • Измерение сопротивления изоляции
  • Определение величины напряжения

Определение величины напряжения присутствует для того, чтобы убедиться в отсутствии напряжения на испытуемом объекте.

Измерение Rx данным прибором производится только на обесточенном оборудовании.

Как замерить сопротивление изоляции мегаомметром ЭСО

Первым делом необходимо правильно подключить измерительные провода к самому устройству. На данном этапе могут возникнуть вопросы. Это происходит из за того, что на панели подключения есть четыре отверстия (хотя встречается и три). Рассмотрим их подробнее слева-направо:

  • “Минус” – сюда одинарный конец измерительного провода
  • “Rx” – сюда второй конец двойного провода
  • Данное отверстие в описываемой модели мной не опознано. Однако в ЭС0210/2 сюда перебрасывается провод с Rx при измерениях на пределе 0-5 МОм (отверстие подписано 0,1Rx).
  • “Э” – экран; сюда вставляется штырь двойного провода. А нужен он для устранения влияния тока утечки на измерения. Используется при измерении между фазами.

Подача напряжения осуществляется при нажатии кнопки “сеть”. Провод питания подключается в нижней части прибора. Напряжение питания составляет 220В. Берем от розетки или, если она далеко, от удлинителя. Порой кроме компактного мегаомметра надо брать с собой на объект и удлинитель. Хотя, можно и одолжить у местных.

Перед началом измерений надо проверить исправность измерительных проводов, необходимо проверить их целостность. Для этого надо подключить провода и далее:

  • При соединенных проводах сопротивление изоляции должно быть равно нулю
  • При разведенных проводах значение Rx должно быть максимально возможным (говорим, бесконечность – сопротивление воздуха бесконечно, проводимость равна нулю)
  • Если бесконечность при замкнутых, значит провод обломан и надо его заменить
  • Если ноль при разведенных, значит либо они касаются, либо внутри прибора пробой или другая неисправность (не встречал такую ситуацию)

Лично я испытывал следующее оборудование мегаомметром: кабель (жилы, оболочка), турбогенератор (статор, ротор, подстуловая, патрубков), трансформатор, шины, электродвигатель, релейные цепи, трансформаторы тока и ТН.

Таблица пределов измерения мегаомметров ЭСО

Разные модели мегаомметров ЭСО отличаются:

  • регулируемыми пределами измерений (разные шкалы для разных величин измеряемого сопротивления изоляции )
  • подаваемым напряжением постоянного тока (100, 250, 500, 1000, 2500 В)
  • а также способом подачи напряжения (либо просто нажатие кнопки, либо вращение ручки генератора со скоростью 120-144 об/мин, о чем говорит наличие буквы Г в названии модели, ну и ручки собственно).

Характеристики мегаомметров ЭС0210

Основными элементами прибора являются: генератор или трансформатор, преобразователь и электронный измеритель. Электронный измеритель в моделях ЭС0210/1(Г) и ЭС0210/3(Г) выполнен на двух логарифмических усилителях. А в моделях ЭС0210/2(Г) – на двух логарифмических усилителях и повторителе напряжения на операционном усилителе – но эта информация, скорее всего, мало кому пригодится.

Также стоит отметить, что при использовании прибора рекомендуется использовать прерывистый характер работы – одну минуту измерение, две минуты перерыв.

Класс точности прибора 2,5, относительная погрешность 15% от измерененного сопротивления изоляции. То есть намерили 100МОм, а на самом деле это будет сто плюс минус пятнадцать мегаомм. Но и это не точно, так как существуют и другие влияющие факторы – это подробно описано в руководстве мегаомметра по экспуатации…

Как не запутаться в шкалах стрелочного мегаомметра ЭС0210

При работе с данным прибором чаще всего путаются какие концы куда вставлять, а также не сразу ориентируются на какую шкалу смотреть. Но с опытом глаз наметывается и трудностей не возникает.

Шкалы подписаны справа римскими цифрами I и II. Также и на крутилке на фото снизу синей (аналогичный цвет как у шкал) видно, какой предел мы выбираем – первый, второй или второй умножить на десять.

У первой шкалы нуль справа, у второй и второй умножить на десять нули слева. Не путайте никогда. Нижняя черная шкала, как легко догадаться используется при измерении напряжения, и судя по надписи – как постоянного, так и переменного.

Возможно неопытного юнца испугает логарифмическая шкала, но бояться не стоит. Главное не торопиться и перепроверить несколько раз перед записью в протокол.

Например, первая шкала идет справа налево

0

… 0,1-0,2-0,3-0,4-0,5-0,6-0,7-0,8-0,9 …

1

… 2-3-4-5-6-7-8-9 …

10

… 20-30-40 …

50

К этому привыкаешь) На второй шкале максимум десять в четвертой – это 10 000 МОм или же 10 ГОм.

50

… 60-70-80-90 …

100

… 200-300-400-500-600-700-800-900 …

1000 (1к)

… 2к-3к-4к-5к-6к-7к-8к-9к …

10000 (10к)

А на “второй умножить на десять” – 100 000 МОм или 100 ГОм.

Некоторые пишут, но никогда не говорят, не ЭСО, а ЭС0. Расшифровки на просторах интернета я не нашел, но кажется мне, что правильно писать букву о, а не ноль. Если вдруг знаете аргументированный ответ как правильно, отпишитесь на почту.

upd – внимательные посетители сайта отметили, что правильно всё же использовать ЭС0210 – и хоть в яндексе встречаются оба варианта, вариант с нулем люди чаще спрашивают. Хотя на моей прошлой работе все говорили эсо =)

Самое популярное


Схема подключения щитового мегаомметра f96 bm. Как проверить изоляцию кабеля мегаомметром

Мегаомметр– специализированный прибор, предназначенный для выполнения замеров сопротивления. В отличие от омметра, данное устройство получило название вследствие особенностей функционального назначения устройства. «Мега» означает тысяча, а это значит, что прибор применяется с целью нахождения сопротивлений высоких значений. Поэтому устройство обеспечивает генерацию напряжений, благодаря которым и осуществляется измерение.

В большинстве случаев мегаомметр необходим для выяснения величин сопротивления в электроизоляции кабелей, электроцепей, трансформаторных установок, электродвигателей и других электрических установок. Изоляция представляет материал, который препятствует протеканию электротока в ненужном направлении. Необходимость проверки изоляции токопроводящих частей вызвана тем, чтобы не было короткого замыкания, возгорания, а также поражения людей электротоком.

Виды
Мегаомметр бывает двух основных видов, они различаются методом измерения, а также типом источника питания.
  • Аналоговые . Их часто именуют стрелочными устройствами. Главная их особенность в том, что в них встроена индивидуальная динамо-машина, которая запускается с помощью кругового движения рукоятки. Также предусмотрена шкала со стрелкой. Сопротивление измеряется благодаря магнитоэлектрическому действию. Стрелка крепится на оси, на которой также находится рамочная катушка, на которую действует магнитное поле постоянного магнита. Когда ток протекает по катушке, то наблюдается отклонение стрелки на некоторый угол. Величина угла зависит от напряжения и силы тока. Возможность подобного измерения определяется законом электромагнитной индукции.

К преимуществам стрелочного устройства относятся надежность и неприхотливость. В то же время прибор является морально устаревшим, ведь данный агрегат имеет существенные размеры и большую массу.

  • Цифровые . Данные измерители наиболее распространены. В них установлен мощный генератор импульсов, который работает с помощью полевых транзисторов. Подобные устройства оснащаются источником питания, они производят преобразование переменного тока в постоянный. В качестве источника тока может использоваться сеть либо аккумулятор. Измерение сопротивления осуществляется с помощью усилителя посредством сравнения падения напряжения в электроцепи с сопротивлением эталона.

Показатели отражаются на экране. В большинстве случаев предусмотрено сохранение результатов в памяти, дабы в дальнейшем была возможность сравнить данные. Электронное устройство имеет малый вес и небольшие габариты, благодаря чему можно выполнять разные электрические измерения. Но, чтобы работать с таким устройством, требуется достаточно высокая квалификация пользователя.

Кроме того, устройства отличаются друг от друга генерируемым напряжением и пределами измерений:
  • Рабочее напряжение достигает 500 Вольт и предела в 500 МОм;
  • 1000 Вольт и предела в 1000 МОм.
  • 2500 Вольт и предела в 2500 МОм.

Также устройства отличаются классом точности. Например, устройство М4100, которое пользуется значительной популярностью у профессионалов, функционирует с погрешностью максимум 1%. Ф4101 выделяется погрешностью не выше 2,5%. Данные показатели следует учитывать в особенности там, где нужна большая точность определения сопротивления. Подбирать средство для испытаний и тестирования электросистемы следует с учетом сопротивления и иных показателей.

Устройство
Мегаомметрлюбого вида имеет следующие элементы:

В стрелочных устройствах напряжение создается динамомашиной, которая заключена в корпус. Динамомашина запускается благодаря пользователю, который крутит ручку устройства с установленной частотой. В большинстве случаев частота вращении должна составлять двум оборотам в секунду. Цифровые устройства питаются от электросети, но в то же время могут работать от или . Функционирует устройство благодаря закону Ома, который определяет силу тока как отношение напряжения к сопротивлению. Устройство мерит электроток, протекающий между двумя включенными объектами, к примеру, жила-земля, 2 жилы и так далее. Измерения осуществляются эталонным напряжением, оно известно наперед. Мегаомметр, учитывая напряжение и ток, легко определяет сопротивление изоляционного слоя, которое измеряет.

В качестве источника постоянного напряжения выступает генератор постоянного тока. Чтобы менять пределы измерения, предусмотрен тумблер-переключатель, который дает возможность коммутировать разные резисторы. Благодаря этому можно менять режим работы и выходное напряжение.

Принцип действия

Каждый материал, который не проводит ток, имеет сопротивление изоляции. Со временем она устаревает, либо повреждается. При этом повреждения могут возникать внезапно, иногда их невозможно увидеть. Однако процесс может привести к выходу из строя применяемого оборудования, могут возникнуть замыкания и пожары. К тому же отсутствие изоляции может повлечь появлению на электрическом оборудовании напряжения, которое будет опасно для жизни человека.

Именно для таких измеренй применяется мегаомметр, он создает на измерительных выводах напряжение необходимой величины, чтобы измерить ток, который проходит по цепи. Изначально для генерации напряжений применялись электромеханические машины. Необходимо было вращать рукоятку, дабы генератор вырабатывал напряжение. Главное достоинство таких устройств в том, что им не нужна сеть либо батарея. Измерительная система здесь аналоговая, применяется стрелка, которая демонстрирует показания на шкале.

Также существуют электронные приборы и микропроцессорные устройства. Последние включают измерители тока и напряжения, жидкокристаллический дисплей, микроконтроллер, клавиатуру, источник питания, импульсный преобразователь напряжения. С клавиатуры задается значение испытательного напряжения, после чего генератор создает импульсы тока. Проводятся измерения, полученное значение применяется для вычисления измеряемого сопротивления. Устройство имеет несколько диапазонов измерений, которые переключаются автоматически с помощью изменения коэффициента передачи.

Активный выпрямитель выполняет преобразование переменного тока в постоянный. Напряжение постоянного тока при измерении сопротивления преобразуется в дискретную форму посредством преобразователя частоты напряжения, после чего оно направляется в микроконтроллер. В микроконтроллере происходит обработка команд, которые идут с клавиатуры. Далее идет управление генератором, автоматическим переключением диапазонов. Микроконтроллер вычисляет и запоминает значения измеряемых сопротивлений.

В большинстве случаев в устройстве применяется двухстрочный жидкокристаллический дисплей. Стандартные сервисные функции экрана включают индикатор разряда батареи и выключателя питания в случае отсутствия манипуляций. Корпус выполняется из прочного диэлектрического пластика, на панели спереди располагается клавиатура и индикатор гнезда, куда подключается измерительные щупы. На торце корпуса находится разъем, предназначенный для подключения адаптера. Питание устройства осуществляется от встроенного аккумулятора. Подзарядка батареи осуществляется от бытовой электрической сети в 220 вольт.

Применение

Мегаомметрнаходит следующее применение:
  • Измерение изоляции электрических приборов, а также установок во время наладки и обслуживания в промышленных и лабораторных условиях.
  • Измерение сопротивления разъемов, изоляционных материалов, в том числе обмоток электромашин. В большинстве случаев устройство используется для проверки изоляции.
  • Измерение сопротивлений с целью проведения расчетов коэффициентов абсорбции, а также поляризации.

При работе мегаомметр создает напряжение, которое может быть опасным для пользователя. Поэтому следует проявлять осторожность. Для начала нужно обесточить оборудование или кабели, в которых нужно провести измерение сопротивления. В промышленности для работы с устройством допускаются только специалисты, которые имеют группу электробезопасности не меньше третьей. Во время измерения изоляции оборудования, к примеру, электрических двигателей, необходимо отключить их от сети. Затем цепи нужно заземлить. С этой целью к шине заземления подключается многожильный провод с хорошей изоляцией.

В электрических цепях важнейшую роль играет сопротивление изоляции. Особенно это важно для высоковольтных установок. Напряжение промышленного тока 230/400В (220/380В по устаревшим стандартам) можно без сомнений считать высоким с точки зрения безопасности. Поэтому проверка сопротивления изоляции электроустановок всегда выполняется:

  • при вводе электроустановки в эксплуатацию;
  • после окончания ремонтных работ;
  • периодически, для профилактики.

Для таких испытаний используется специальный прибор — мегаомметр. Из его названия следует, что он измеряет сопротивление в миллионах Ом. Поэтому работа с мегаомметром проводится с использованием высокого напряжения. Иначе нельзя получить электрического поля, близкого к реальным условиям, и слабый ток утечки невозможно измерить существующими приборами.

Необходимо знать, как пользоваться мегаомметром, этот прибор требует группу допуска 3 и выше по электробезопасности. На выходных клеммах прибора в момент измерений присутствует высокое напряжение порядка 500-2500В. При измерении сопротивления изоляции мегаомметром кабельных и других линий, или когда измеряется коэффициент абсорбции, в проводнике накапливается существенный заряд, так как емкость длинных проводников может достигать нескольких мФ.

Изолирующий материал имеет диэлектрическую проницаемость, которая увеличивает емкость. Неосторожное прикосновение к такому проводнику ПОСЛЕ проверки изоляции может быть смертельно опасным! Так как не все, даже электрики, являются любителями и знатоками физики, то буквальное знание инструкций по работе с мегаомметром является обязательным и проверяется независимо от образования и квалификации у всех работников, получающих допуск на право проводить измерения.

Правила определяют, как измерить сопротивление изоляции в каждом конкретном случае. Измерение сопротивления изоляции мегаомметром — это действие, для которого он и предназначен. Например, измерение сопротивления изоляции электродвигателя или коэффициента абсорбции. С другой стороны, измерение сопротивления обмоток постоянному току предпочтительно проводить другим прибором (омметром, а лучше мостом постоянного тока), хотя мегаомметр может работать в диапазоне низких сопротивлений, результаты будут грубыми. Можно лишь прозвонить проводник мегаомметром — в этом случае он покажет нулевое сопротивление или очень близкое к нему.

Устройство мегаомметра

Современные мегаомметры имеют устройство, существенно отличающееся от приборов ранних образцов, однако, принцип их действия остается тем же: подача в измерительную цепь повышенного напряжение и измерение малых токов, которые протекают в этой цепи. Вместо динамо-машинки и стрелочного гальванометра, помещенных в массивный карболитовый корпус, современный прибор содержит импульсный высоковольтный генератор, выпрямитель, цифровой микроамперметр, управляющий контроллер и дисплей для вывода результатов измерений.

Для питания используются щелочные или литий-ионные элементы, общим напряжением 9-12 В. Именно такие приборы сейчас получили распространение. Приборы устаревших типов из-за физического старения могут просто не пройти поверку и не получат сертификата. Без этого документа измерения считаются недействительными.

Режимы и нормы измерений

Для бытовой проводки и электроустановок испытания сопротивления изоляции проводов производятся напряжением 500 В, а для промышленных напряжением 1-2,5 кВ. Минимальное сопротивление изоляции бытовых сетей и установок должно быть не менее 0.5 МОм, а промышленных не менее 1.0 МОм, отсюда такая разница в напряжениях, которые требуются для мегаомметра.

Изоляция кабелей и проводки

Измерение сопротивления изоляции кабеля выполняют между его проводниками и между отдельнымипроводниками и землей или экраном (кожухом), если он имеется. Если кабель имеет экран или оплетку, то ее присоединяют к клемме «Э» мегаомметра для компенсации токов утечки при измерении изоляции между проводниками. Если испытуемое устройство представляет шкаф, то с клеммой «Э» соединяется корпус. Экран кабеля, оплетка, кожух или корпус электроустановки всегда заземляются. Для подключения прибора применяют только изолированный провод. Трогать его руками во время измерений запрещается. Проверяемый проводник после испытаний заземляется проводником при помощи изолирующей штанги.

Изоляция электродвигателей и трансформаторов

Поскольку и электродвигатель и трансформатор считаются электрическими машинами, то существует много общего в том, как выполняется измерение сопротивления изоляции трансформатора и мотора. Электродвигатель (трансформатор) испытывается на сопротивление межобмоточной изоляции — изоляции между фазами, а также на сопротивление изоляции между каждой из обмоток и корпусом. В случае, если обмотки соединены в звезду или треугольник внутренним образом, то испытывается только сопротивление между обмотками и корпусом. В электродвигателях дополнительно могут проводиться испытания подшипниковой изоляции.

Безопасность при измерениях

Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.

Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.

Измерение изоляции на линиях

При подготовке к измерениям кабельных линий необходимо удалить из всех мест, где возможен доступ к проводникам, посторонних людей и животных. Вывесить предупреждающие таблички и поставить дежурных.

Линия должна быть полностью обесточена и отключена от всех нагрузок: автоматов, УЗО, вставок, должны быть вынуты все вилки из розеток и т.п. иначе померить сопротивление изоляции кабеля окажется невозможным, а некоторые приборы, оказавшиеся в нагрузке, могут быть повреждены.

Выбрав цепь для измерения сначала на некоторое время закорачивают ее проводники на землю или корпус (если уже известно, что сопротивление заземления корпуса в норме). Это требуется для снятия остаточных зарядов и точности измерений.

Измерительный прибор (мегаомметр) надежно подключается к выбранным точкам, между которыми испытывается изоляция. Экраны, оплетки и корпуса подключаются к клемме «Э». Изоляционный материал проводов мегаомметра должен быть целым по всей их длине.

Нажимают кнопку «Пуск» и в линию подается напряжение. Через 15 секунд автоматически делается первый отсчет сопротивления изоляции. Еще через 45 делается второй. Прибор рассчитывает коэффициент абсорбции. Это отношение второго отсчета к первому. Коэффициент абсорбции показывает меру влажности изоляции.

Коэффициент поляризации измеряют в течении 600 секунд. Это третий отсчет. Отношение третьего отсчета ко второму является коэффициентом поляризации. Это мера качества изоляции.

Проведенный измерительный процесс запоминается в мегаомметре и все данные можно вывести на дисплей или сохранить в памяти (это зависит от марки прибора).

Мегаомметр отключают, при помощи изолированных штанг и специального проводника разряжают линейные проводники по цепи измерения и на землю. Действия повторяют для всех необходимых цепей.

Оценка результатов

Для небольших объектов за сопротивление изоляции считают данные, полученные через 15 секунд. Экраном не пользуются, так как емкость невелика (например, электродвигатель, который не подключен к длинному кабелю.) Коэффициент абсорбции также не измеряют. Во всех остальных случаях, и для кабельных линиях сопротивлением изоляции считают данные, полученные после 60 секунд. Индекс поляризации измеряют при комплексных испытаниях электроустановок.

Читателям этой статьи, скорее всего, придется измерять небольшие объекты, где измерение изоляции производится по упрощенному варианту. Мегаомметры дают возможность выбирать требуемые режимы измерений в своем меню, поскольку все измерительные процедуры более-менее стандартизованы. Несмотря на это, нельзя ни на секунду забывать о соблюдении мер безопасности, которые перечислены в статье!

Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке. Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:


Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

и нового образца – электронные:

Рассмотрим работу этих устройств.

Правила безопасности

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

Подготовительные работы

Испытуемый кабель перед проверкой необходимо подготовить.

Для этого:

  • проверяете отсутствие напряжения на жилах кабеля
  • на длинных кабелях может быть наведенное или остаточное напряжение
    Поэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • отсоединяете кабель от подключенного оборудования.
    Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

  1. первым делом проверяете отсутствие напряжения на кабеле
  2. заземляете все жилы
  3. прибор размещаете на ровную поверхность
  4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству. После чего снимаете заземление только с измеряемой жилы;
  5. равномерно вращаете ручку в течение 60 секунд. Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;
  6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт. Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Работа с электронным мегаомметром

Как часто проводится проверка изоляции кабеля мегаометром?

  1. Первый замер делается на заводе изготовителе
  2. Перед монтажом на объекте
  3. После монтажа перед подачей напряжения
  4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.
  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала. В электроустановках напряжением выше 1000 В измерения производятся по

наряду, кроме работ, указанных в пунктах 6.12, 6.14 Правил, в электроустановках напряжением до 1000 В и во вторичных цепях – по распоряжению или по перечню работ, выполняемых в порядке текущей эксплуатации.

(6.12. Один наряд для одновременного или поочередного выполнения работ на разных рабочих местах одной электроустановки допускается выдавать в следующих случаях:

при прокладке и перекладке силовых и контрольных кабелей, испытаниях электрооборудования, проверке устройств защиты, измерений, бло-кировки, электроавтоматики, телемеханики, связи;

при ремонте коммутационных аппаратов одного присоединения, в том числе когда их приводы находятся в другом помещении;

при ремонте отдельного кабеля в туннеле, коллекторе, колодце, траншее, котловане;

при ремонте кабелей (не более двух), выполняемом в двух котлованах или РУ и находящемся рядом котловане, когда расположение рабочих мест позволяет производителю работ осуществлять надзор за бригадой.

При этом разрешается рассредоточение членов бригады по разным рабочим местам. Оформление в наряде перевода с одного рабочего ме-ста на другое не требуется.

6. 14. Допускается выдавать один наряд для поочередного проведения однотипной работы на нескольких электроустановках, предназначен-ных для преобразования и распределения электрической энергии (далее – подстанциях) или нескольких присоединениях одной подстанции.

К таким работам относятся: протирка изоляторов; подтяжка контактных соединений, отбор проб и доливка масла; переключение от-ветвлений обмоток трансформаторов; проверка устройств релейной защиты, электроавтоматики, измерительных приборов; испытание повышенным напряжением от постороннего источника; проверка изоляторов измерительной штангой; отыскание места повреждения КЛ. Срок действия такого наряда – 1 сутки.

Допуск на каждую подстанцию и на каждое присоединение оформляется в соответствующей графе наряда.

Каждую из подстанций разрешается включать в работу только после полного окончания работы на ней.)

Разрешается измерение мегаомметром сопротивления изоляции электрооборудования выше 1000 В, включаемого в работу после ремонта, выполнять по распоряжению двум работникам из числа оперативного персонала, имеющим группу IV и III при условии выполнения технических мероприятий, обеспечивающих безопасность работ со снятием напряжения.

Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей

следует снимать только после подключения мегаомметра

При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг), при этом следует пользоваться

Как говорится “по многочисленным просьбам…” записал сегодня на видео пример измерения мегаомметром сопротивления изоляции токоведущих частей.

Мегаомметр- электромеханический, то есть с “крутилкой”, надо вращать ручку как на шарманке))

Лично мне такой больше по душе чем электронный, с тем у меня как то не сложились отношения…

На видео рассказываю как устроен мегаомметр, основные технические характеристики и правила применения- что куда подключать. как крутить и т.д.

Получилась своеобразная краткая инструкция по мегаомметру в видеоформате.

С видео опять у меня не очень… Когда уже начал просматривать- оказалось что стрелочный указатель совсем не видно. Эх, что ж делать, фотоаппарат у меня не справляется с поставленой задачей)))

В статье на фото все прекрасно видно- можно посмотреть.

У кого нет возможности смотреть видео- читайте статью.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей. На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс. МОм.

Это было небольшое вступление, а сейчас про мегаомметр.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

По нижней- от 0 до 50 МОм

Скорость вращения рукоятки- 120-140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

Если экран не нужен- эту клемму провода просто не подключаем.

Как работать мегаомметром?

Для начала надо убедиться что токоведущие части где будем измерять отключены- проверяем отключенные автоматы, рубильники и т.п.

Затем заземляем токоведущие части и снимаем заземление только после подключения мегаомметра.

Измерительные щупы мегаомметра брать только за изолирующие рукоятки (при напряжении выше 1000Вольт кроме этого еще используют диэлектрические перчатки)

Когда измеряем- нельзя касаться токоведущих частей!

Делаем измерение изоляции и по окончании- снимаем заряд с токоведущих частей прикасаясь к ним кратковременно проводом заземления.

Снимаем заряд и с самого мегаомметра- прикасаемся измерительными щупами друг к другу.

Не забываем снять заземление с токоведущих частей! Иначе будет конкретное КЗ!

Основу вроде всю написал, если у вас есть что добавить- пишите в комментарии.

Узнайте первым о новых материалах сайта!

Проверка изоляции кабеля мегаомметром

Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке. Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:

  • атмосферные условия
    Зимой изоляция может внезапно улучшиться, т. к. имеющаяся внутри влага попросту превратится в лед.
  • процесс укладки кабеля
    Неосторожные движения при монтаже могут вызвать излом или повредить оболочку.
  • физический износ с течением времени
  • воздействие агрессивной среды
  • завышенное напряжение при эксплуатации

Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

и нового образца – электронные:

Рассмотрим работу этих устройств.

Правила безопасности

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

  • работать с прибором имеет право персонал с 3-й группой по электробезопасности
  • при испытании удалите всех посторонних от испытуемого кабеля
  • перед работой прибора внимательно осмотрите его корпус, провода и измерительные щупы. Они не должны иметь сколы, повреждения;
  • проводить замеры изоляции кабеля рекомендуется при положительных температурах
  • не прикасайтесь к проводам прибора при измерениях

Подготовительные работы

Испытуемый кабель перед проверкой необходимо подготовить.

Для этого:

  • проверяете отсутствие напряжения на жилах кабеля
  • на длинных кабелях может быть наведенное или остаточное напряжение
    Поэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • отсоединяете кабель от подключенного оборудования.
    Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля.  Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

  1. первым делом проверяете отсутствие напряжения на кабеле
  2. заземляете все жилы
  3. прибор размещаете на ровную поверхность
  4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству. После чего снимаете заземление только с измеряемой жилы;
  5. равномерно вращаете ручку в течение 60 секунд. Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;
  6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт. Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Работа с электронным мегаомметром

 

Как часто проводится проверка изоляции кабеля мегаометром?

  1. Первый замер делается на заводе изготовителе
  2. Перед монтажом на объекте
  3. После монтажа перед подачей напряжения
  4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.

Советы по работе с мегаомметром:

  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

Статьи по теме

работа с мегаомметром. Мегаомметр бывает двух основных видов, они различаются методом измерения, а также типом источника питания

Мегаомметр – это прибор для измерения сопротивления изоляции, который подает постоянное напряжение величиной 100, 250, 500, 1000, 2500, 5000В. Это универсальный переносной прибор, предназначенный также для испытаний повышенным напряжением. Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр. Данные приборы бывают ручные, цифровые, аналоговые, электронные, механические, высоковольтные.

Сопротивление изоляции, физика процесса

Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после ), обмотке , электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.

Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:

  • С1 – геометрическая емкость
  • С2- абсорбционная емкость
  • R1 – сопротивление изоляции
  • R2 – сопротивление, потери в котором вызываются абсорбционными токами

Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.

Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.

Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.

Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.

История развития мегаомметра

Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.

Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти .

Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).

Как правильно мегаомметр, мегометр, мегомметр, мегаометр или еще как?)

Внимание, говорю правду. Подробнее об этом писал вот , но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр – это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой – трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» – нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» – верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» – аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом “энтер” и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм – впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Как пользоваться мегаомметром

Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.

Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра

Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.

Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.

Замер сопротивления изоляции электродвигателей мегаомметром

Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.

Замер сопротивления изоляции кабелей мегаомметром

Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать повреждение. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.

Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.

Безопасность при работе мегаомметром

Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.

О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.

Фокусы с мегаомметром

Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание!!! Не советую вам это повторять!!! . Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.

В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего!!!

Последние статьи

Самое популярное

В электрических цепях важнейшую роль играет сопротивление изоляции. Особенно это важно для высоковольтных установок. Напряжение промышленного тока 230/400В (220/380В по устаревшим стандартам) можно без сомнений считать высоким с точки зрения безопасности. Поэтому проверка сопротивления изоляции электроустановок всегда выполняется:

  • при вводе электроустановки в эксплуатацию;
  • после окончания ремонтных работ;
  • периодически, для профилактики.

Для таких испытаний используется специальный прибор — мегаомметр. Из его названия следует, что он измеряет сопротивление в миллионах Ом. Поэтому работа с мегаомметром проводится с использованием высокого напряжения. Иначе нельзя получить электрического поля, близкого к реальным условиям, и слабый ток утечки невозможно измерить существующими приборами.

Необходимо знать, как пользоваться мегаомметром, этот прибор требует группу допуска 3 и выше по электробезопасности. На выходных клеммах прибора в момент измерений присутствует высокое напряжение порядка 500-2500В. При измерении сопротивления изоляции мегаомметром кабельных и других линий, или когда измеряется коэффициент абсорбции, в проводнике накапливается существенный заряд, так как емкость длинных проводников может достигать нескольких мФ.

Изолирующий материал имеет диэлектрическую проницаемость, которая увеличивает емкость. Неосторожное прикосновение к такому проводнику ПОСЛЕ проверки изоляции может быть смертельно опасным! Так как не все, даже электрики, являются любителями и знатоками физики, то буквальное знание инструкций по работе с мегаомметром является обязательным и проверяется независимо от образования и квалификации у всех работников, получающих допуск на право проводить измерения.

Правила определяют, как измерить сопротивление изоляции в каждом конкретном случае. Измерение сопротивления изоляции мегаомметром — это действие, для которого он и предназначен. Например, измерение сопротивления изоляции электродвигателя или коэффициента абсорбции. С другой стороны, измерение сопротивления обмоток постоянному току предпочтительно проводить другим прибором (омметром, а лучше мостом постоянного тока), хотя мегаомметр может работать в диапазоне низких сопротивлений, результаты будут грубыми. Можно лишь прозвонить проводник мегаомметром — в этом случае он покажет нулевое сопротивление или очень близкое к нему.

Устройство мегаомметра

Современные мегаомметры имеют устройство, существенно отличающееся от приборов ранних образцов, однако, принцип их действия остается тем же: подача в измерительную цепь повышенного напряжение и измерение малых токов, которые протекают в этой цепи. Вместо динамо-машинки и стрелочного гальванометра, помещенных в массивный карболитовый корпус, современный прибор содержит импульсный высоковольтный генератор, выпрямитель, цифровой микроамперметр, управляющий контроллер и дисплей для вывода результатов измерений.

Для питания используются щелочные или литий-ионные элементы, общим напряжением 9-12 В. Именно такие приборы сейчас получили распространение. Приборы устаревших типов из-за физического старения могут просто не пройти поверку и не получат сертификата. Без этого документа измерения считаются недействительными.

Режимы и нормы измерений

Для бытовой проводки и электроустановок испытания сопротивления изоляции проводов производятся напряжением 500 В, а для промышленных напряжением 1-2,5 кВ. Минимальное сопротивление изоляции бытовых сетей и установок должно быть не менее 0.5 МОм, а промышленных не менее 1.0 МОм, отсюда такая разница в напряжениях, которые требуются для мегаомметра.

Изоляция кабелей и проводки

Измерение сопротивления изоляции кабеля выполняют между его проводниками и между отдельнымипроводниками и землей или экраном (кожухом), если он имеется. Если кабель имеет экран или оплетку, то ее присоединяют к клемме «Э» мегаомметра для компенсации токов утечки при измерении изоляции между проводниками. Если испытуемое устройство представляет шкаф, то с клеммой «Э» соединяется корпус. Экран кабеля, оплетка, кожух или корпус электроустановки всегда заземляются. Для подключения прибора применяют только изолированный провод. Трогать его руками во время измерений запрещается. Проверяемый проводник после испытаний заземляется проводником при помощи изолирующей штанги.

Изоляция электродвигателей и трансформаторов

Поскольку и электродвигатель и трансформатор считаются электрическими машинами, то существует много общего в том, как выполняется измерение сопротивления изоляции трансформатора и мотора. Электродвигатель (трансформатор) испытывается на сопротивление межобмоточной изоляции — изоляции между фазами, а также на сопротивление изоляции между каждой из обмоток и корпусом. В случае, если обмотки соединены в звезду или треугольник внутренним образом, то испытывается только сопротивление между обмотками и корпусом. В электродвигателях дополнительно могут проводиться испытания подшипниковой изоляции.

Безопасность при измерениях

Измерения мегаомметром всегда сообщают изолированным проводникам заряды, и чем лучше качество изоляции, тем дольше держится заряд. В целях безопасности обязательно снимают эти заряды при помощи проводов с изолированными рукоятками. Закорачивают точки подсоединения проводов от прибора и каждый из проводников дополнительно замыкают на землю. Цель одна — снять все остаточные заряды для безопасности людей.

Измерение изоляции электроустановок выполнить легче, чем линий и сетей, по причине сосредоточенности и близости к персоналу. Ниже приводится пошаговый порядок действий при измерениях на линиях.

Измерение изоляции на линиях

При подготовке к измерениям кабельных линий необходимо удалить из всех мест, где возможен доступ к проводникам, посторонних людей и животных. Вывесить предупреждающие таблички и поставить дежурных.

Линия должна быть полностью обесточена и отключена от всех нагрузок: автоматов, УЗО, вставок, должны быть вынуты все вилки из розеток и т.п. иначе померить сопротивление изоляции кабеля окажется невозможным, а некоторые приборы, оказавшиеся в нагрузке, могут быть повреждены.

Выбрав цепь для измерения сначала на некоторое время закорачивают ее проводники на землю или корпус (если уже известно, что сопротивление заземления корпуса в норме). Это требуется для снятия остаточных зарядов и точности измерений.

Измерительный прибор (мегаомметр) надежно подключается к выбранным точкам, между которыми испытывается изоляция. Экраны, оплетки и корпуса подключаются к клемме «Э». Изоляционный материал проводов мегаомметра должен быть целым по всей их длине.

Нажимают кнопку «Пуск» и в линию подается напряжение. Через 15 секунд автоматически делается первый отсчет сопротивления изоляции. Еще через 45 делается второй. Прибор рассчитывает коэффициент абсорбции. Это отношение второго отсчета к первому. Коэффициент абсорбции показывает меру влажности изоляции.

Коэффициент поляризации измеряют в течении 600 секунд. Это третий отсчет. Отношение третьего отсчета ко второму является коэффициентом поляризации. Это мера качества изоляции.

Проведенный измерительный процесс запоминается в мегаомметре и все данные можно вывести на дисплей или сохранить в памяти (это зависит от марки прибора).

Мегаомметр отключают, при помощи изолированных штанг и специального проводника разряжают линейные проводники по цепи измерения и на землю. Действия повторяют для всех необходимых цепей.

Оценка результатов

Для небольших объектов за сопротивление изоляции считают данные, полученные через 15 секунд. Экраном не пользуются, так как емкость невелика (например, электродвигатель, который не подключен к длинному кабелю.) Коэффициент абсорбции также не измеряют. Во всех остальных случаях, и для кабельных линиях сопротивлением изоляции считают данные, полученные после 60 секунд. Индекс поляризации измеряют при комплексных испытаниях электроустановок.

Читателям этой статьи, скорее всего, придется измерять небольшие объекты, где измерение изоляции производится по упрощенному варианту. Мегаомметры дают возможность выбирать требуемые режимы измерений в своем меню, поскольку все измерительные процедуры более-менее стандартизованы. Несмотря на это, нельзя ни на секунду забывать о соблюдении мер безопасности, которые перечислены в статье!

Как говорится “по многочисленным просьбам…” записал сегодня на видео пример измерения мегаомметром сопротивления изоляции токоведущих частей.

Мегаомметр- электромеханический, то есть с “крутилкой”, надо вращать ручку как на шарманке))

Лично мне такой больше по душе чем электронный, с тем у меня как то не сложились отношения…

На видео рассказываю как устроен мегаомметр, основные технические характеристики и правила применения- что куда подключать. как крутить и т.д.

Получилась своеобразная краткая инструкция по мегаомметру в видеоформате.

С видео опять у меня не очень… Когда уже начал просматривать- оказалось что стрелочный указатель совсем не видно. Эх, что ж делать, фотоаппарат у меня не справляется с поставленой задачей)))

В статье на фото все прекрасно видно- можно посмотреть.

У кого нет возможности смотреть видео- читайте статью.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей. На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс.МОм.

Это было небольшое вступление, а сейчас про мегаомметр.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

По нижней- от 0 до 50 МОм

Скорость вращения рукоятки- 120-140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

Если экран не нужен- эту клемму провода просто не подключаем.

Как работать мегаомметром?

Для начала надо убедиться что токоведущие части где будем измерять отключены- проверяем отключенные автоматы, рубильники и т.п.

Затем заземляем токоведущие части и снимаем заземление только после подключения мегаомметра.

Измерительные щупы мегаомметра брать только за изолирующие рукоятки (при напряжении выше 1000Вольт кроме этого еще используют диэлектрические перчатки)

Когда измеряем- нельзя касаться токоведущих частей!

Делаем измерение изоляции и по окончании- снимаем заряд с токоведущих частей прикасаясь к ним кратковременно проводом заземления.

Снимаем заряд и с самого мегаомметра- прикасаемся измерительными щупами друг к другу.

Не забываем снять заземление с токоведущих частей! Иначе будет конкретное КЗ!

Основу вроде всю написал, если у вас есть что добавить- пишите в комментарии.

Узнайте первым о новых материалах сайта!

Сопротивление изоляционного слоя кабеля один из самых главных параметров его работоспособности. Если вы купили кабель, и он у вас хранился некоторое время на складе, не думайте что изоляция его будет такой же, как и при покупке. Изоляция может ухудшаться как при неудовлетворительных условиях хранения, так и в процессе работы и монтажа. Для того, чтобы выявить все возможные проблемы и осуществляется проверка изоляции кабеля мегаомметром.

Причины плохой изоляции кабеля

Есть несколько факторов влияющих на изоляционные свойства кабелей:


Для того чтобы вовремя выявить проблему с изоляцией, потребуется специальный прибор – мегаомметр. Данные приборы бывают старого образца (механические, где нужно вращать ручку):

и нового образца – электронные:

Рассмотрим работу этих устройств.

Правила безопасности

Проверка изоляции кабеля мегаомметром производится только на отключенном и обесточенном оборудовании.

Мегаомметр способен выдать высокое напряжение (отдельные виды до 5000 Вольт), поэтому при работе с ним строго соблюдайте следующие правила:

Подготовительные работы

Испытуемый кабель перед проверкой необходимо подготовить.

Для этого:

  • проверяете отсутствие напряжения на жилах кабеля
  • на длинных кабелях может быть наведенное или остаточное напряжение
    Поэтому перед каждым замером, с помощью отдельного кусочка провода или переносного заземления, в диэлектрических перчатках необходимо коснуться жилы и заземленного корпуса или контура заземления, чтобы снять этот заряд;
  • отсоединяете кабель от подключенного оборудования.
    Это необходимо сделать, чтобы при проверке изоляции кабеля мегаомметром, в испытании участвовал только сам кабель, без того оборудования или автоматов к которым он подключен. Отключение необходимо выполнить с двух сторон кабеля. Иногда для ускорения работы этого не делают. Сначала проводят замер, и если он показал отрицательный результат, то только после этого откидывают жилы.

Проверка мегаомметра

Перед проверкой изоляции кабеля мегаомметром, необходимо испытать на работоспособность сам аппарат.
Вот как это делается на мегаомметре М4100. Прибор имеет 2 шкалы: верхнюю для измерения в мегаомах и нижнюю для замеров в килоомах.

Для работы в мегаомах:

  • подключаете концы провода щупов к двум левым клеммам. Щупы должны быть разомкнуты;
  • вращаете ручку и смотрите показания стрелки. При исправности прибора она будет стремиться в левую сторону — к бесконечности;
  • замыкаете щупы между собой. При вращении ручки стрелка должна отклониться вправо до нуля.

Для работы в килоомах:

  • на 2 левые клеммы ставите между собой перемычку и один из концов подключаете туда. Второй конец подключается на правую крайнюю клемму. Щупы разомкнуты;
  • Вращаете ручку и смотрите показания. При исправности прибора стрелка отклоняется максимально вправо;
  • После замыкания щупов и вращении ручки, стрелка будет стремиться к нулю по нижней шкале (т.е. в левую сторону).

Работа с мегаомметром М4100

  1. первым делом проверяете отсутствие напряжения на кабеле
  2. заземляете все жилы
  3. прибор размещаете на ровную поверхность
  4. при замере изоляции жилы на “землю” один из щупов присоединяется к проводу, другой к броне или заземляющему устройству. После чего снимаете заземление только с измеряемой жилы;
  5. равномерно вращаете ручку в течение 60 секунд. Скорость вращения – два оборота в секунду. На 60 секунде отмечайте показания прибора;
  6. после каждого замера снимайте остаточный заряд с жилы и с проводов мегаомметра, путем их прикосновения к заземлению.

Бытовые сети и домашние проводки достаточно испытывать напряжением 500 Вольт. Минимальное значение, которое должна показать проверка изоляции кабеля мегаомметром в этом случае — 0,5мОм.

В промышленных эл.сетях кабели испытываются мегаомметрами на 2500 Вольт. Сопротивление изоляции при этом должно быть не меньше 10 мОм.

Работа с электронным мегаомметром

Как часто проводится проверка изоляции кабеля мегаометром?

  1. Первый замер делается на заводе изготовителе
  2. Перед монтажом на объекте
  3. После монтажа перед подачей напряжения
  4. В течение эксплуатации при выявлении дефектов или при техобслуживании один раз в три года.
  • некоторые путаются со шкалами прибора М4100. Где расположена шкала измерения в мегаомах, а где в килоомах? Чтобы не запамятовать воспользуйтесь подсказкой: мегаом (мОм) как единица измерения выше, чем килоом (кОм), соответственно и ее шкала находится выше!
  • перед измерением очищайте концы жил кабеля от грязи. Грязная изоляция может дать плохие результаты, хотя сам кабель будет исправным;
  • измерительные провода самого мегаомметра должны иметь изоляцию минимум 10мОм. Не используйте непонятные обрезки или куски старых проводов. Вы только ухудшите показания измерений и не узнаете точных результатов;
  • когда проверяете кабель, в цепи которого присутствует счетчик, обязательно отсоединяйте все фазные жилы и нулевую жилу от корпуса или шинки. Иначе из-за прибора учета, у вас будут показания мегаомметра, как будто жилы кабеля дают короткое замыкание между собой;
  • если вы последовательно проводите измерения отдельных участков проводки, всегда отключайте нулевые жилы от общей шины. В противном случае получите одинаковые замеры на всех кабелях. И эти результаты будут равны худшему сопротивлению одного из подключенных кабелей;
  • если кабель протяженный (более 1 км), с большой емкостью, то снимать остаточный заряд необходимо с помощью специальной штанги. А то можно создать большой ”бум” прямо перед глазами;
  • при измерениях в сетях освещения выкручивайте лампочки накаливания со светильников, сами выключатели оставляйте включенными. Для газоразрядных ламп замеры можно проводить не вытаскивая лампочек из корпусов, но с обязательным выкручиванием стартера.

Мегаомметр – крайне полезный прибор, используемый для измерения сопротивления изоляции электрических кабелей, обмоток трансформаторов, а также для проверки электроинструментов.

Параметры сопротивления изоляции имеют важнейшее значение для находящихся в эксплуатации электросистем и установок. Проверка данной характеристики входят в состав обязательных электроизмерений, проводимых для определения состояния, работоспособности и безопасности электрических сетей.

Виды и особенности мегаомметров

Сегодня на рынке представлены мегаомметры различных марок и типов, предназначенные для измерения изоляции с напряжением до 100, 500, 1000 и 2500 В, установленная величина напряжения генерируется самим измерительным устройством. На рисунке ниже представлена принципиальная схема мегаомметра ЭС0202.

Различаются между собой не только генерируемым напряжением, но также классом точности. К примеру, пользующийся большой популярностью у профессиональных специалистов прибор марки М4100, работает с погрешностью не более 1%. Для устройств Ф4101 нормальная погрешность составляет не более 2,5%. Чем выше значение исследуемой электросети или установки, тем более точным должен быть используемый для измерения мегаомметр. Питание измерительных средств может осуществляться от встроенных аккумуляторов или от сетей переменного тока напряжением 127-220 В.

Выбирать средство для испытаний электрической системы необходимо с учетом номинального сопротивления в сети, напряжения и других индивидуальных особенностей.

Чаще всего проводят испытания в сетях и устройствах с номинальным напряжением до 1000 В (электрические двигатели, цепи вторичной коммутации и другие). Для измерений в таких условиях необходимо использовать мегаомметры, рассчитанные на работу в цепях от 100 В до 1000 В. Если номинальные параметры сети выше 1000 В, необходимо использовать измерительные средства, работающие с напряжением до 2500 В.

Порядок проведения измерений

Измерения мегаомметром проводятся в несколько этапов. На рисунке ниже представлена схема подключения устройства в трехфазной цепи.

Сначала необходимо измерить сопротивление изоляции соединительных проводников, полученный результат должен соответствовать верхнему пределу измерительного устройства.

  • установка наибольшего из возможных значений в случаях неизвестных параметров сопротивления изоляции;
  • устанавливать предел измерений следует с учетом того, что наибольшая точность полученных результатов достигается за счет отсчета показаний в пределах рабочей шкалы устройства.

При испытаниях электрики обязательно следует убедиться в отсутствии напряжения на проверяемом участке электрической цепи.

Когда все предварительные работы и проверки выполнены, необходимо закоротить или отключить от цепи все элементы и устройства с пониженными значениями сопротивления изоляции и с пониженным напряжением, к примеру, полупроводники, конденсаторы и другие.

Цепь на время проведения электроизмерительных работ необходимо заземлить.

Теперь можно подключить устройство к исследуемой цепи. Испытания проводятся путем вращения ручки генератора мегаомметра с постоянной скоростью в 120 оборотов в минуту. Измерения длятся в течение 60 секунд, после чего можно записать результаты.

При проведении электроизмерительных работ на приборах и системах с большой ёмкостью, фиксировать показания мегаомметра необходимо после того, как стрелка полностью успокоится.

В целях безопасности, после проведения испытаний, перед отсоединением мегаомметра от электрической цепи, необходимо снять остаточный электрический заряд с устройства путем его кратковременного заземления. На рисунке ниже представлена схема подключения цифрового измерителя для проверки изоляции проводки.

При проведении электроизмерений следует учитывать, что результаты исследования могут быть искажены из-за различных внешних факторов, к примеру, из-за увлажнения изолированных частей электросети или электрической установки, что приводит к возникновению токов утечки. В этом случае на изоляцию необходимо наложить токоотводящий проводник, присоединив его к зажиму «Э» мегаомметра.

Правила соединения мегаомметра с цепью через зажим «Э»:

  • при проверке изоляции электрического кабеля, изолированного от земли, зажим соединяют с броней провода через проводник;
  • при проверке сопротивления изоляции между обмоток зажим «Э» соединяют с корпусом электрической машины;
  • при измерении на обмотках трансформатора, зажим «Э» подключают к устройству под юбкой выходного изолятора.

Важно помнить, что измерение сопротивления изоляции в осветительных и силовых системах должно проводиться при включенных выключателях, отключенных электрических приемниках, отключенных плавких вставок и вывернутых лампах.

Ни в коем случае нельзя проводить испытания мегаомметром сетей, отдельные элементы которых располагаются в непосредственной близости от других электрических систем, находящихся под напряжением. Также запрещено проводить измерения на воздушных линиях электропередач при грозе.

Измерения мегаомметром – как пользоваться мегаомметром?

Мегаомметр – крайне полезный прибор, используемый для измерения сопротивления изоляции электрических кабелей, обмоток трансформаторов, а также для проверки электроинструментов.

Параметры сопротивления изоляции имеют важнейшее значение для находящихся в эксплуатации электросистем и установок. Проверка данной характеристики входят в состав обязательных электроизмерений, проводимых для определения состояния, работоспособности и безопасности электрических сетей.

Виды и особенности мегаомметров

Сегодня на рынке представлены мегаомметры различных марок и типов, предназначенные для измерения изоляции с напряжением до 100, 500, 1000 и 2500 В, установленная величина напряжения генерируется самим измерительным устройством. На рисунке ниже представлена принципиальная схема мегаомметра ЭС0202.

Мегаомметры различаются между собой не только генерируемым напряжением, но также классом точности. К примеру, пользующийся большой популярностью у профессиональных специалистов прибор марки М4100, работает с погрешностью не более 1%. Для устройств Ф4101 нормальная погрешность составляет не более 2,5%. Чем выше значение исследуемой электросети или установки, тем более точным должен быть используемый для измерения мегаомметр. Питание измерительных средств может осуществляться от встроенных аккумуляторов или от сетей переменного тока напряжением 127-220 В.

Выбирать средство для испытаний электрической системы необходимо с учетом номинального сопротивления в сети, напряжения и других индивидуальных особенностей.

Чаще всего проводят испытания в сетях и устройствах с номинальным напряжением до 1000 В (электрические двигатели, цепи вторичной коммутации и другие). Для измерений в таких условиях необходимо использовать мегаомметры, рассчитанные на работу в цепях от 100 В до 1000 В. Если номинальные параметры сети выше 1000 В, необходимо использовать измерительные средства, работающие с напряжением до 2500 В.

Порядок проведения измерений

Измерения мегаомметром проводятся в несколько этапов. На рисунке ниже представлена схема подключения устройства в трехфазной цепи.

Сначала необходимо измерить сопротивление изоляции соединительных проводников, полученный результат должен соответствовать верхнему пределу измерительного устройства.

Далее следует установить предел измерений в соответствии со следующими рекомендациями:

  • установка наибольшего из возможных значений в случаях неизвестных параметров сопротивления изоляции;
  • устанавливать предел измерений следует с учетом того, что наибольшая точность полученных результатов достигается за счет отсчета показаний в пределах рабочей шкалы устройства.

При испытаниях электрики обязательно следует убедиться в отсутствии напряжения на проверяемом участке электрической цепи.

Когда все предварительные работы и проверки выполнены, необходимо закоротить или отключить от цепи все элементы и устройства с пониженными значениями сопротивления изоляции и с пониженным напряжением, к примеру, полупроводники, конденсаторы и другие.

Цепь на время проведения электроизмерительных работ необходимо заземлить.

Теперь можно подключить устройство к исследуемой цепи. Испытания проводятся путем вращения ручки генератора мегаомметра с постоянной скоростью в 120 оборотов в минуту. Измерения длятся в течение 60 секунд, после чего можно записать результаты.

При проведении электроизмерительных работ на приборах и системах с большой ёмкостью, фиксировать показания мегаомметра необходимо после того, как стрелка полностью успокоится.

В целях безопасности, после проведения испытаний, перед отсоединением мегаомметра от электрической цепи, необходимо снять остаточный электрический заряд с устройства путем его кратковременного заземления. На рисунке ниже представлена схема подключения цифрового измерителя для проверки изоляции проводки.

При проведении электроизмерений следует учитывать, что результаты исследования могут быть искажены из-за различных внешних факторов, к примеру, из-за увлажнения изолированных частей электросети или электрической установки, что приводит к возникновению токов утечки. В этом случае на изоляцию необходимо наложить токоотводящий проводник, присоединив его к зажиму «Э» мегаомметра.

Правила соединения мегаомметра с цепью через зажим «Э»:

  • при проверке изоляции электрического кабеля, изолированного от земли, зажим соединяют с броней провода через проводник;
  • при проверке сопротивления изоляции между обмоток зажим «Э» соединяют с корпусом электрической машины;
  • при измерении на обмотках трансформатора, зажим «Э» подключают к устройству под юбкой выходного изолятора.

Важно помнить, что измерение сопротивления изоляции в осветительных и силовых системах должно проводиться при включенных выключателях, отключенных электрических приемниках, отключенных плавких вставок и вывернутых лампах.

Ни в коем случае нельзя проводить испытания мегаомметром сетей, отдельные элементы которых располагаются в непосредственной близости от других электрических систем, находящихся под напряжением. Также запрещено проводить измерения на воздушных линиях электропередач при грозе.

Ремонт мегаомметра м4100 своими руками

Самое подробное описание: ремонт мегаомметра м4100 своими руками от профессионального мастера для своих читателей с фотографиями и видео из всех уголков сети на одном ресурсе.

Мегаомметр М4100 выпускался с 1976 года, очень широко использовался для измерения сопротивления изоляции. Это надежный практический вечный мегомметр, не требующий источников питания. До сих пор сохранилось много рабочих приборов.

Мегаомметр можно использовать не только для измерения сопротивления изоляции, с его помощью можно проверить любой проводник на обрыв. Например, целостность жил кабеля или обмотки электродвигателя.

Мегаомметр М4100 выпускался в пяти модификациях которые различались по выходному напряжению:

  • М4100/1 выходное напряжение 100 В;
  • М4100/2 выходное напряжение 250 В;
  • М4100/3 выходное напряжение 500 В;
  • М4100/4 выходное напряжение 1000 В;
  • М4100/5 выходное напряжение 2500 В.

Наиболее распространены были мегаомметры на 500 и 1000 вольт.

Мегаомметр М4100 является двух предельным прибором, имеет две шкалы для измерений разных уровней изоляции.

Верхняя «М Ω» предназначена, для измерения больших сопротивлений изоляции. Градуируется в мегомах. Наиболее часто используемая.

При измерении изоляции на пределе «М Ω», проводники измерительных щупов подключаются к зажимам «ЗЕМЛЯ» и «ЛИНИЯ».

Нет видео.

Видео (кликните для воспроизведения).

Нижняя шкала «К Ω» имеет предел измерения 1000 кОм, что равно одному мегому. При измерении изоляции на пределе «К Ω», проводник измерительного щупа имеющий на своем конце перемычку подключается к зажимам «ЗЕМЛЯ» и «ЛИНИЯ» одновременно. Второй подключается к зажиму «К Ω».

При этом используется нижняя шкала «К Ω».

Проверку производим на пределе «М Ω». Подключаем проводники измерительных щупов подключаются к клеммам «ЗЕМЛЯ» и «ЛИНИЯ». Замыкаем между собой щупы.

Начинаем вращать ручку генератора со скоростью примерно 120 оборотов в минуту (генератор имеет встроенный регулятор, обеспечивающий постоянство выходного напряжения даже при превышении скорости вращения генератора). В исправном приборе, стрелка должна установиться на отметке «0» верхней шкалы «М Ω».

Размыкаем щупы, вращаем рукоятку В исправном приборе, стрелка должна установиться на отметке «∞» верхней шкалы «М Ω».

После чего, подключаем щупы к измеряемому сопротивлению. Вращаем рукоятку до тех пор, пока стрелка не перестанет перемещаться по шкале, и установится на значении соответствующем величине измеряемого сопротивления.

На фото показано измерение сопротивления изоляции обмоток статора электродвигателя на корпус. Почему это не рекомендуется делать простым тестером можно прочитать на этой странице.

  • Перед подключением щупов к измеряемому сопротивлению убедиться, что на нем отсутствует напряжение.
  • Во время измерения не дотрагиваться до щупов.
  • После измерения нельзя снимать щупы не убедившись, что на измеряемом сопротивлении не осталось остаточного заряда. Особенно осторожным нужно быть при измерении сопротивления изоляции между жилами длинных кабельных линий. Близко расположенные проводники накапливают заряд как конденсатор.

Как говорится “по многочисленным просьбам…” записал сегодня на видео пример измерения мегаомметром сопротивления изоляции токоведущих частей.

Мегаомметр- электромеханический, то есть с “крутилкой”, надо вращать ручку как на шарманке))

Лично мне такой больше по душе чем электронный, с тем у меня как то не сложились отношения…

На видео рассказываю как устроен мегаомметр, основные технические характеристики и правила применения- что куда подключать. как крутить и т.д.

Получилась своеобразная краткая инструкция по мегаомметру в видеоформате.

С видео опять у меня не очень… Когда уже начал просматривать- оказалось что стрелочный указатель совсем не видно. Эх, что ж делать, фотоаппарат у меня не справляется с поставленой задачей)))

В статье на фото все прекрасно видно- можно посмотреть.

У кого нет возможности смотреть видео- читайте статью.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей. На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс.МОм.

Это было небольшое вступление, а сейчас про мегаомметр.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

Скорость вращения рукоятки- 120-140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

Если экран не нужен- эту клемму провода просто не подключаем.

Как работать мегаомметром?

Нет видео.
Видео (кликните для воспроизведения).

Для начала надо убедиться что токоведущие части где будем измерять отключены- проверяем отключенные автоматы, рубильники и т.п.

Дальше проверяем отсутствие напряжения предварительно проверенным индикатором или прибором.

Затем заземляем токоведущие части и снимаем заземление только после подключения мегаомметра.

Измерительные щупы мегаомметра брать только за изолирующие рукоятки (при напряжении выше 1000Вольт кроме этого еще используют диэлектрические перчатки)

Когда измеряем- нельзя касаться токоведущих частей!

Делаем измерение изоляции и по окончании- снимаем заряд с токоведущих частей прикасаясь к ним кратковременно проводом заземления.

Снимаем заряд и с самого мегаомметра- прикасаемся измерительными щупами друг к другу.

Не забываем снять заземление с токоведущих частей! Иначе будет конкретное КЗ!

Основу вроде всю написал, если у вас есть что добавить- пишите в комментарии.

Измерение электрического сопротивления может выполняться разными приборами. Среди них довольно часто применяется мегаомметр, название которого состоит из трех частей. «Мега» означает миллион или 10 6 , «ом» – соответствует сопротивлению, а частица «метр» эквивалентна слову «измерять». Таким образом, диапазоном измерений этого прибора служат мегаомы. Начинающим электрикам рекомендуется, прежде чем пользоваться мегаомметром, изучить принцип работы, устройство и технические характеристики данного измерительного прибора.

Работа мегаомметра основана на законе Ома для участка цепи, отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.

В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается зажимами – «крокодилами».

Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.

Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.

Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» – земля, «Л» – линия и «Э» – экран.

Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».

Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.

Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие – сразу в нескольких.

Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.

В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.

В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.

Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.

Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.

Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.

Пристальное внимание к наведенному напряжению объясняется реальной возможностью электрического травматизма. Поэтому все работники должны строго соблюдать установленные правила безопасности.

При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает разность потенциалов. Это приводит к образованию емкости, наделенной определенным зарядом.

После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует использовать переносное заземление. Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.

Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.

Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с контуром заземления. В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.

Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.

С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.

Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.

Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.

Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.

Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение. В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер. В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.

Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.

На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.

Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном. Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме. В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.

При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.

Количество просмотров на Youtube 28953

Ссылка на страницу с видео:

HTML-ссылка на страницу с видео:

Последние комментарии на сайте

NEW! VibeX 497 Софт по Вайбер Рассылке – Теперь Проходит Капчу (captcha) – Смотреть/скачать
⇒ ““Дмитрий Шешин мошенник, остерегайтесь! Предлагает услуги по рассылки рекламных сообщений Viber, берет деньги и ничего не рассылает. При этом говорит, что услуга оказана. Также предлагает купить нерабочие программы по VIber. Все скрины у меня есть, все доказательства обмана тоже. Не ведитесь и не покупайте ничего по предоплате у данного лица”
Добавлено – 19.10.2018 Тесто для пиццы как в пиццерии за 10 минут. – Смотреть/скачать
⇒ “Хороший видео рецепт, главное все четко, понятно, наглядно и доступно ничего лишнего. Очень простой и быстрый рецепт. Люблю рецепты с пошаговым выполнением действий.Спасибо автору за наглядное видео. Залог вкусной пиццы это вкусное тесто, а начинка может быть разнообразной и зависит от фантазии и предпочтений готовившкго. Тесто получается очень вкусным, все готовится очень быстро, давно искала рецепт быстрого приготовления теста для пиццы, теперь он записан у меня в кулинарной книге и добавлен в закладки.
Добавлено – 19.10.2018 Отель Элеон – 3 серия 3 сезон (45 серия) – комедия HD – Смотреть/скачать
⇒ “Смотрю сериал с самого начала, даже с сериала “Кухня”. Актеры здорово играют, за столько серий уже привык к ним
Добавлено – 19.10.2018 “Быки тротуарные” или хозяева жизни в Краснодаре? Часть 1 (18+) – Смотреть/скачать
⇒ “клевое видео.. только ребятам не хватает биты, бить лобовые стекла мудаков.. это было бы справедливо. в след. у мудака включится мозжечок..
Добавлено – 19.10.2018 Три богатыря и морской царь – Смотреть/скачать
⇒ “очень хороший мультфильм
Добавлено – 19.10.2018

подготовка к работе и проверка работоспособности мегаомметра М4100/3

Почему вы так быстро вращаете ? По инструкции – 120 оборотов в мин., те 2 оборота в секунду.

На шкале написано М1101М 1000 v . Спасибо большое за разъяснения. Я запланировал постепенно стать электриком – самоучкой и уметь паять и ремонтировать бытовую технику. Возможно, с постепенным накоплением знаний мегаомметр мне понадобится. Если я пойму, что мне негде его использовать, то продам, в крайнем случае. Вроде, они дорогие относительно .

Для проверки изоляции в квартире нужен мегаомметр на 500В. Ваш я думаю на 100В. В любом случае при пробое изоляции должно выбить в щите автомат. А напряжение которое выдерживает проводка указывается в маркировке на проводе. Думаю и у вас он будет продолжать лежать в гараже

Честно говоря, пока что я не знаю, что я им буду мерять. Просто отец , когда я его спрашивал “что это за прибор” , он отвечал “это ценная вещь”, тем не менее, я не видел, что – бы он его использовал. Насколько я понимаю, мегаомметр нужен, например, что – бы оценить качество изоляции провода , узнать, какое напряжение выдержит проводка до возникновения короткого замыкания (т.е. пробъется изоляция)?

У каждого электрика в гараже лежит мегаомметр. ))) Для чего Вы им хотите пользоваться? Это прибор для измерения сопротивления изоляции кабельных линий и электрооборудования. В быту достаточно тестера

Ясно, спасибо. Признаюсь, что я только начинаю разбираться с электрикой. У меня есть примерно такой же прибор. Мегаомметр М1101М 1972 года. Я не электрик (пока что) , но пытаюсь вникнуть , что – бы уметь самому ремонтировать все дома. Как вы считаете, для бытовых нужд этот прибор нужен ? Или это только надо на производстве для электриков ? Этот прибор принадлежал отцу (он был электриком но я никогда не видел, что – бы он его использовал в быту ) . Просто лежал в гараже все время. Не подскажете, стоит ли таким пользоваться или он сейчас – каменный век ?

Алексей Кузнецов Hace 9 meses

У меня самого такой-же мегаомметр, только на 2500 В , а у Вас такой-же тип на 500 В. Практика показывает, что проверять сопротивление изоляции на напряжении меньше, чем 2500 В это самообман, так-как всё хоть условно и считается низковольтной аппаратурой всё равно подвержено при эксплуатации большим перенапряжениям за счёт разрыва индуктивных цепей, что плохую изоляцию может просто пробить и создать опасность. Кроме того когда я проверял сопротивление изоляции мегаомметром на 2500 В у меня начинало сразу бить по воздуху на корпус в местах проколов и трещин в изоляции проводов, что меня сразу заставляло исправлять и изолировать эти потенциально опасные повреждения и дефекты электромонтажа электроустановок и бытовых электроприборов, а при проверке сопротивления изоляции напряжением 1000 В , а тем более как у Вас 500 В , эти опасные дефекты с проколами и трещинами изоляции проводов электромонтажа просто не будут выявлены. Алексей.

Алексей Кузнецов Hace 8 meses

Я работаю на производстве более 20 лет в составе ЭТЛ и указанный Вами эффект наблюдал только при останове высоковольтных двигателей. Для борьбы с ним эффективно применяются ограничители перенапряжений (ОПН). Напомню, что мегаомметром мы просто измеряем сопротивление изоляции. Испытания оборудования до 1000В рекомендовано проводить напряжением 1кВ промышленной частоты в течении 1 мин. Лично для себя Вы можете проводить любые испытания, порой даже это и полезно, но подвергать излишним нагрузкам электрооборудование все и всегда не следует.

Алексей Кузнецов Hace 8 meses

Проблемой является то, что указанные нормы проверки сопротивления изоляции у меня вызывают слишком много споров, так-как в них не учитывается высокое напряжение самоиндукции в индуктивных цепях электроустановок во время их эксплуатации, возникающее при разрыве индуктивных цепей при резком прекращении в них тока. И любой Ваш трёхфазный асинхронный двигатель относится к такой индуктивной нагрузке. А в таких электроустановках в которых возникают высокие напряжения самоиндукции при разрывах индуктивных цепей я бы всегда рекомендовал использовать для проверки сопротивления изоляции в том числе и обмоток мегаомметры с номинальным напряжением проверки изоляции 2500 В. Иначе изоляция может быть пробита и это может создать опасность при разрыве индуктивной цепи при выключении контактора. И практика мне показала, что любая целая исправная, а не условно пригодная изоляция чего угодно успешно проходит проверку напряжением испытания мегаомметром на 2500 В , и меньшее напряжение испытания изоляции практически мне оказывается не нужным. И электропроводка в квартире мною проверялась на сопротивление изоляции мегаомметром на 2500 В , и всё равно у меня всегда получалась бесконечность, а не пробой. Алексей.

Алексей Кузнецов Hace 8 meses

Алексей Кузнецов у меня есть мегаомметры на любое напряжение. Практика тут ни при чем. Производя работы нужно следовать правилам. Так используя мегаомметр на 2500 В для проверки изоляции электродвигателя на 380В можно просто сжечь этот двигатель. На практике если изоляция кабеля при измерении мегаомметром не менее 1МОм то и измерение мегаомметром на 2500В она выдержит, лишь показания прибора чуть уменьшаться. Если же изоляция кабеля меньше допустимой то можно попробовать и мегаомметр использовать как это делаете вы для отыскания дефектов. Кроме того в правилах есть запись. Что испытания повышенным напряжением 1000В можно заменить на испытания мегаомметром на 2500В. Только это нужно и допустимо не для любого оборудования. Желаю удачи и ещё раз никакого самообмана нет а Правила есть

подготовка к работе и проверка работоспособности мегаомметра М4100/3

Почему вы так быстро вращаете ? По инструкции – 120 оборотов в мин., те 2 оборота в секунду.

На шкале написано М1101М 1000 v . Спасибо большое за разъяснения. Я запланировал постепенно стать электриком – самоучкой и уметь паять и ремонтировать бытовую технику. Возможно, с постепенным накоплением знаний мегаомметр мне понадобится. Если я пойму, что мне негде его использовать, то продам, в крайнем случае. Вроде, они дорогие относительно .

Для проверки изоляции в квартире нужен мегаомметр на 500В. Ваш я думаю на 100В. В любом случае при пробое изоляции должно выбить в щите автомат. А напряжение которое выдерживает проводка указывается в маркировке на проводе. Думаю и у вас он будет продолжать лежать в гараже

Честно говоря, пока что я не знаю, что я им буду мерять. Просто отец , когда я его спрашивал “что это за прибор” , он отвечал “это ценная вещь”, тем не менее, я не видел, что – бы он его использовал. Насколько я понимаю, мегаомметр нужен, например, что – бы оценить качество изоляции провода , узнать, какое напряжение выдержит проводка до возникновения короткого замыкания (т.е. пробъется изоляция)?

У каждого электрика в гараже лежит мегаомметр. ))) Для чего Вы им хотите пользоваться? Это прибор для измерения сопротивления изоляции кабельных линий и электрооборудования. В быту достаточно тестера

Ясно, спасибо. Признаюсь, что я только начинаю разбираться с электрикой. У меня есть примерно такой же прибор. Мегаомметр М1101М 1972 года. Я не электрик (пока что) , но пытаюсь вникнуть , что – бы уметь самому ремонтировать все дома. Как вы считаете, для бытовых нужд этот прибор нужен ? Или это только надо на производстве для электриков ? Этот прибор принадлежал отцу (он был электриком но я никогда не видел, что – бы он его использовал в быту ) . Просто лежал в гараже все время. Не подскажете, стоит ли таким пользоваться или он сейчас – каменный век ?

Алексей Кузнецов 9 meses atrás

У меня самого такой-же мегаомметр, только на 2500 В , а у Вас такой-же тип на 500 В. Практика показывает, что проверять сопротивление изоляции на напряжении меньше, чем 2500 В это самообман, так-как всё хоть условно и считается низковольтной аппаратурой всё равно подвержено при эксплуатации большим перенапряжениям за счёт разрыва индуктивных цепей, что плохую изоляцию может просто пробить и создать опасность. Кроме того когда я проверял сопротивление изоляции мегаомметром на 2500 В у меня начинало сразу бить по воздуху на корпус в местах проколов и трещин в изоляции проводов, что меня сразу заставляло исправлять и изолировать эти потенциально опасные повреждения и дефекты электромонтажа электроустановок и бытовых электроприборов, а при проверке сопротивления изоляции напряжением 1000 В , а тем более как у Вас 500 В , эти опасные дефекты с проколами и трещинами изоляции проводов электромонтажа просто не будут выявлены. Алексей.

Алексей Кузнецов 8 meses atrás

Я работаю на производстве более 20 лет в составе ЭТЛ и указанный Вами эффект наблюдал только при останове высоковольтных двигателей. Для борьбы с ним эффективно применяются ограничители перенапряжений (ОПН). Напомню, что мегаомметром мы просто измеряем сопротивление изоляции. Испытания оборудования до 1000В рекомендовано проводить напряжением 1кВ промышленной частоты в течении 1 мин. Лично для себя Вы можете проводить любые испытания, порой даже это и полезно, но подвергать излишним нагрузкам электрооборудование все и всегда не следует.

Алексей Кузнецов 8 meses atrás

Проблемой является то, что указанные нормы проверки сопротивления изоляции у меня вызывают слишком много споров, так-как в них не учитывается высокое напряжение самоиндукции в индуктивных цепях электроустановок во время их эксплуатации, возникающее при разрыве индуктивных цепей при резком прекращении в них тока. И любой Ваш трёхфазный асинхронный двигатель относится к такой индуктивной нагрузке. А в таких электроустановках в которых возникают высокие напряжения самоиндукции при разрывах индуктивных цепей я бы всегда рекомендовал использовать для проверки сопротивления изоляции в том числе и обмоток мегаомметры с номинальным напряжением проверки изоляции 2500 В. Иначе изоляция может быть пробита и это может создать опасность при разрыве индуктивной цепи при выключении контактора. И практика мне показала, что любая целая исправная, а не условно пригодная изоляция чего угодно успешно проходит проверку напряжением испытания мегаомметром на 2500 В , и меньшее напряжение испытания изоляции практически мне оказывается не нужным. И электропроводка в квартире мною проверялась на сопротивление изоляции мегаомметром на 2500 В , и всё равно у меня всегда получалась бесконечность, а не пробой. Алексей.

Алексей Кузнецов 8 meses atrás

Алексей Кузнецов у меня есть мегаомметры на любое напряжение. Практика тут ни при чем. Производя работы нужно следовать правилам. Так используя мегаомметр на 2500 В для проверки изоляции электродвигателя на 380В можно просто сжечь этот двигатель. На практике если изоляция кабеля при измерении мегаомметром не менее 1МОм то и измерение мегаомметром на 2500В она выдержит, лишь показания прибора чуть уменьшаться. Если же изоляция кабеля меньше допустимой то можно попробовать и мегаомметр использовать как это делаете вы для отыскания дефектов. Кроме того в правилах есть запись. Что испытания повышенным напряжением 1000В можно заменить на испытания мегаомметром на 2500В. Только это нужно и допустимо не для любого оборудования. Желаю удачи и ещё раз никакого самообмана нет а Правила есть

подготовка к работе и проверка работоспособности мегаомметра М4100/3

Сопротивление изоляции обмоток статора электродвигателя с рабочим напряжением до 500в проверяется напряжением мегаомметра 500в и должно быть не менее 0.5 Мом.Если сопротивление не доходит до 0.5 Мом,но держится близ этого значения, скорее всего в двигателе влага,если падает до нуля значит замыкание на корпус.

Из общения с одним из читателей моего сайта www.ceshka.ru Он попросил научить читать электрические схемы токарных станков, что бы объяснить немного- решил записать небольшое видео на базе электросхемы токарно- винторезного станка 1К62

Видео о том как проверить якорь електродвигателя не зависимо от того какой у вас двигатель. все это делается с помощью мультиметра или тестера на котором есть измерение сопротивления

Мегомметр,очень полезная штука,в производстве,помогает вовремя определить неисправность линий и машин.

Подключение трех фазного двигателя на 380в, к сети 220в. Схема подключения.

Когда у вас ржавая труба, или ещё хуже она подтекает, то вы это видите. А как же быть с электропроводкой? Утечек тока не видно, да и нагрев провода не всегда можно заметить (они же скрыты)…. Как же проверить электропроводку?

Порядок производства измерений сопротивления обмоток постоянному току. Конструкция и особенности работы микроомметра СА10 Chauvin Arrnoux. Принцип мостовой схемы измерения сопротивлений, достоинства четырехпроводной схемы. Практические советы по проведению подобного вида измерений на трансформаторах.

Помните пакет с древними приборами? Начинаем их обзор с мегаомметра М4100/3. Экземпляр 1974 года, не требующий какого-либо источника питания, полностью автономный прибор. В видео проверим как он работает, для чего нужен мегаомметр, проведем несколько опытов с мегаомметром и конечно же раскрутим его для осмотра внутренностей. Второй канал – https://www.youtube.com/channel/UCmFShoAkY07TBzOdHMsaO1w Группа ВК – https://vk.com/radioblogful Партнерская сеть BroadBatdTV – http://bbtv.go2cloud.org/SHzr Инстаграм – https://instagram.com/radioblogful

Метод прост . На другом конце кабеля соединяются вместе все жилы кабеля . Если на кабеле есть разьем – то лучше найти ответную часть разьема с замкнутыми выводами . Далее на ближнем конце провода прозваниваются мультиметром все жилы кабеля между собой . Если одна из жил не прозванивается – то данная жила оборвана . Если не прозваниваются все жилы кабеля – то либо кабель не тот либо кабель перебит .

Рассказ ЗАЧЕМ измеряют, принцип действия прибора, разберем. Проведем измерения.

В последнее время участились запросы на приборы выпускаемые в СССР, в частности мегомметры серии М4100, это понятно, наконец то вспомнили про ГОСТЫ, метрологию и нормативные документы регламентирующие различного рода измерения.
Ведь в технологической документации было прописано какими приборами измерять тот или иной параметр, но, к сожалению, технологические карты написаны давно и приборы в них указаны древние.
Отвечая на вопросы многих покупателей мы решили составить перечень возможной замены устаревших приборов – мегомметров серии М4100, выпускавшихся в Советское время.

Конечно, надо принимать во внимание такие параметры как тип питания мегомметра, возможность работы при отрицательных температурах, вес, габариты, связь с компьютером, в конце концов, его цена, но это уже скорее удобство пользования мегомметром, чем его параметры или характеристики.
Из находящихся в эксплуатации и производимых в настоящее время мегомметров хотелось бы остановить свое внимание на следующих отечественных сертифицированных приборах:
Е6-24, Е6-24/1, М4122, М4122U, М4122RS, М6-1, М6-4
Из импортных MI2177, MI3121, SEW 1832IN, SEW 1851IN, MIC-3, Fluke1507,APPA 607,MIC-10, АКИП8403
Найти подробные описания всех мегомметров, а также купить можно найти на нашем сайте http://megommetr.ru
Сводную таблицу по выбору мегаомметров с параметрами в том числе и по цене, можно посмотреть здесь Выбор мегаомметра – сравнительная таблица

Мегомметры,как ни какие другие приборы, чаще всего называют не всегда правильно и чаще всего можно встретить следующие наименования: мегоометр, мегометр, мегаометр, мегаомметр и так далее. Во всех словарях Русского языка это слово пишется так – мегомметр. Вообще слово мегомметр, сложное слово, состоящее из трех слов написанных вместе, а именно
мег-ом-ме́тр
мег – сокращенное от МЕГА- приставка к цифрам обозначающая 1 000 000ом – обозначение физической величины электрического сопротивления метр – в данной ситуации обозначает мерить, измерять Итого, получается что слово
МЕГОММЕТР это ИЗМЕРЯЕМ ЭЛЕКТРИЧЕСКОЕ СОПРОТИВЛЕНИЕ В МИЛЛИОНАХ ОМ, или еще проще прибор для измерения высоких сопротивлений , или в окончательном виде МЕГОММЕТР и ни как иначе!

Таблица возможной замены приборов предложенная производителем мегомметров М4100 – заводом «Мегомметр» г. Умань

Автор статьи: Антон Кислицын

Я Антон, имею большой стаж домашнего мастера и фрезеровщика. По специальности электрик. Являюсь профессионалом с многолетним стажем в области ремонта. Немного увлекаюсь сваркой. Данный блог был создан с целью структурирования информации по различным вопросам возникающим в процессе ремонта. Перед применением описанного, обязательно проконсультируйтесь с мастером. Сайт не несет ответственности за прямой или косвенный ущерб.

✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 3.9 проголосовавших: 10 Принципиальная схема мегомметра

| Конструкция и принципы работы

Схема Megger:

Другой распространенный метод измерения сопротивлений выше 50 МОм – это схема мегомметра (мегаомметр), показанная на рис. 10.23 (a). Этот прибор используется для измерения очень высоких сопротивлений, например, в изоляции кабелей, между обмотками двигателя, в обмотках трансформаторов и т. Д.

Конструкция и принципы работы:

Нормальные (магазинные) ВОМ не обеспечивают точных показаний выше 10 МОм из-за низкого напряжения, используемого в цепи омметра.Некоторые измерительные приборы для лабораторных испытаний имеют встроенный омметр с источником питания высокого напряжения. Высокое напряжение позволяет точно измерять высокое сопротивление, но такие измерители обычно непереносимы. По сути, Megger представляет собой портативный омметр со встроенным источником высокого напряжения. Схема мегомметра, показанная на рис. 10.23 (b), имеет два основных элемента: генератор постоянного тока магнитного типа для подачи тока для проведения измерений и омметр, который измеряет значение сопротивления. Якорь генератора поворачивается рукояткой, обычно через повышающую шестерню, для получения выходного напряжения 500 В.При повороте кривошипа шестерни вращают генератор на высокой скорости, чтобы генерировать выходное напряжение, которое может составлять 100, 500, 1000, 2500 или 5000 В, в зависимости от модели.

Используемый измеритель немного отличается от стандартного механизма D’Arsonval тем, что имеет две обмотки. Одна обмотка включена последовательно с обозначением R 2 на выходе генератора и намотана таким образом, чтобы перемещать указатель к концу шкалы с высоким сопротивлением, когда генератор работает.Катушка другой обмотки (A) и сопротивление R 1 включены последовательно между отрицательным полюсом генератора и линейным выводом. Эта обмотка намотана так, что, когда через нее протекает ток от генератора, она стремится сдвинуть стрелку к нулевому концу шкалы. Две катушки установлены на одном валу, но под прямым углом друг к другу. Ток подается на обе катушки с помощью гибких соединений, не препятствующих вращению элемента.

Катушка A – это токовая катушка, одна клемма которой подключена к отрицательному выходу, а другая подключена последовательно с R 1 к испытательному проводу P 2 .Измерительный провод P 1 подключен к положительному выходу генератора. Когда неизвестное сопротивление R x подключено к P 1 и P 2 , ток течет от генератора через катушку A, сопротивления R 1 и R x . Значение R 1 выбрано таким образом, чтобы гарантировать, что даже при коротком замыкании линейных выводов токовая катушка A не будет повреждена.

Катушка B представляет собой катушку напряжения и подключена к выходу генератора через сопротивление R 2 .Если измерительные провода остаются открытыми, ток в катушке A не течет, и только катушка B перемещает указатель. Катушка B занимает позицию на противоположной стороне сердечника, а стрелка указывает на бесконечность или открытость.

Когда на выводах появляется чрезвычайно высокое сопротивление, например, в разомкнутой цепи, указатель показывает бесконечность. С другой стороны, когда сопротивление относительно низкого значения появляется в контрольных точках, например, когда изоляция кабеля мокрая, ток через последовательную обмотку заставляет стрелку перемещаться к нулю (короткое замыкание сопротивления).Однако указатель останавливается в точке шкалы, определяемой током через последовательный резистор, который, в свою очередь, определяется значением измеряемого сопротивления.

Когда неизвестное сопротивление R x подключено к измерительным проводам, ток течет в катушке A. Соответствующий развиваемый крутящий момент перемещает указатель из положения бесконечности в поле постепенно нарастающей силы, пока поля крутящего момента между катушками A и B равны. Изменения скорости генератора с ручным заводом не влияют на показания мегаомметра, поскольку заряды в генераторе одинаково влияют на обе катушки.

Преимущества использования Megger: Принципиальная схема

мегомметра может считывать значения сопротивления в несколько сотен или даже тысяч мегаом. По сравнению с обычным омметром они имеют преимущество в том, что они прикладывают высокое напряжение к проверяемой цепи, и это напряжение вызывает ток, если существует какая-либо утечка тока.

Принципиальные схемы и принцип действия мегомметра

В большинстве омметров конструкции, показанной в предыдущем разделе, используется батарея с относительно низким напряжением, обычно девять вольт или меньше.Этого вполне достаточно для измерения сопротивлений ниже нескольких мегаом (МОм), но когда необходимо измерить чрезвычайно высокое сопротивление, 9-вольтовой батареи недостаточно для выработки тока, достаточного для приведения в действие электромеханического счетчика.

Кроме того, как обсуждалось в предыдущей главе, сопротивление не всегда является стабильной (линейной) величиной. Особенно это касается неметаллов. Напомним график перенапряжения тока для небольшого воздушного зазора (менее дюйма):

Хотя это крайний пример нелинейной проводимости, другие вещества демонстрируют аналогичные изолирующие / проводящие свойства при воздействии высоких напряжений.

Очевидно, что омметр, использующий в качестве источника энергии низковольтную батарею, не может измерить сопротивление при потенциале ионизации газа или при напряжении пробоя изолятора. Если необходимо измерить такие значения сопротивления, ничего, кроме высоковольтного омметра, не будет достаточно.

Омметр высоковольтный

Самый прямой метод измерения сопротивления высокого напряжения включает простую замену батареи более высокого напряжения в той же базовой конструкции омметра, исследованной ранее:

Простой высоковольтный омметр показан ниже.

Однако, зная, что сопротивление некоторых материалов имеет тенденцию изменяться с приложенным напряжением, было бы полезно иметь возможность регулировать напряжение этого омметра для измерения сопротивления в различных условиях:

К сожалению, это может вызвать проблемы с калибровкой измерителя. Если движение измерителя отклоняется на полную шкалу с определенным количеством тока, проходящего через него, полный диапазон измерителя в омах будет изменяться при изменении напряжения источника.

Представьте, что вы подключаете стабильное сопротивление к измерительным выводам этого омметра, изменяя напряжение источника: по мере увеличения напряжения через движение измерителя будет больше тока, следовательно, большее отклонение. Что нам действительно нужно, так это движение измерителя, которое будет обеспечивать постоянное, стабильное отклонение для любого стабильного измеренного значения сопротивления, независимо от приложенного напряжения.

мегомметр

Достижение этой цели проектирования требует специального измерительного механизма, который характерен для мегомметров или мегомметров, как их называют.

Инжир: механизм Megger

Пронумерованные прямоугольные блоки на приведенном выше рисунке представляют собой поперечные сечения катушек проводов.

Эти три катушки движутся вместе с игольчатым механизмом. Нет пружинного механизма для возврата иглы в заданное положение. Когда движение отключено, игла будет беспорядочно «плавать». Катушки электрически соединены следующим образом:

При бесконечном сопротивлении между измерительными проводами (разомкнутая цепь) ток не будет проходить через катушку 1, только через катушки 2 и 3.Под напряжением эти катушки пытаются центрироваться в зазоре между двумя полюсами магнита, перемещая стрелку полностью вправо от шкалы, где она указывает на «бесконечность».

Любой ток, протекающий через катушку 1 (через измеренное сопротивление, подключенное между измерительными проводами), стремится вернуть стрелку влево от шкалы, обратно к нулю. Значения внутреннего резистора движения измерителя откалиброваны таким образом, что, когда измерительные провода закорочены, стрелка отклоняется точно в положение 0 Ом.

Поскольку любые изменения напряжения батареи будут влиять на крутящий момент, создаваемый обоими наборами катушек (катушка 2 и 3, которая перемещает иглу вправо, и катушка 1, которая перемещает иглу влево), эти изменения не будут иметь никакого эффекта. калибровки движения.

Другими словами, на точность этого движения омметра не влияет напряжение батареи: заданная величина измеренного сопротивления вызовет определенное отклонение стрелки, независимо от того, какое напряжение батареи присутствует.

Единственное влияние, которое изменение напряжения будет иметь на показания счетчика, – это степень, в которой измеренное сопротивление изменяется с приложенным напряжением.

Итак, если бы мы использовали мегомметр для измерения сопротивления газоразрядной лампы, он бы показал очень высокое сопротивление (стрелка в крайнем правом углу шкалы) для низких напряжений и низкого сопротивления (стрелка перемещается влево от шкала) для высоких напряжений. Это именно то, что мы ожидаем от хорошего высоковольтного омметра: обеспечение точной индикации сопротивления объекта при различных обстоятельствах.

Для максимальной безопасности большинство мегомметров оснащено генераторами с ручным заводом для создания высокого постоянного напряжения (до 1000 вольт). Если оператор счетчика получит удар от высокого напряжения, состояние будет саморегулироваться, так как он или она, естественно, перестанет запускать генератор!

Иногда «скользящая муфта» используется для стабилизации скорости генератора при различных условиях запуска, чтобы обеспечить достаточно стабильное напряжение независимо от того, быстро он или медленно запускается. Множественные уровни выходного напряжения от генератора доступны путем установки селекторного переключателя.

Фотография Меггера

На этой фотографии показан простой ручной мегомметр:

Некоторые мегомметры питаются от батарей, чтобы обеспечить большую точность выходного напряжения. По соображениям безопасности эти мегомметры активируются кнопочным переключателем с мгновенным контактом, поэтому переключатель нельзя оставлять в положении «включено», и это создает значительную опасность поражения электрическим током для оператора счетчика.

Реальные меггеры

Настоящие мегомметры оснащены тремя соединительными клеммами, обозначенными как Line, Earth и Guard.Схема очень похожа на упрощенную версию, показанную ранее:

Сопротивление измеряется между клеммами линии и заземления, где ток будет проходить через катушку 1. Клемма «Guard» предназначена для особых ситуаций тестирования, когда одно сопротивление должно быть изолировано от другого.

Измерьте сопротивление изоляции

Возьмем, к примеру, следующий сценарий, в котором сопротивление изоляции должно быть проверено в двухпроводном кабеле:

Чтобы измерить сопротивление изоляции между проводником и внешней стороной кабеля, нам необходимо подключить «Линейный» вывод мегомметра к одному из проводов и подключить заземляющий провод мегомметра к проводу, намотанному на оболочку кабель:

В этой конфигурации мегомметр должен считывать сопротивление между одним проводником и внешней оболочкой.Или будет? Если мы нарисуем принципиальную схему, показывающую все сопротивления изоляции в виде обозначений резисторов, то мы получим следующее:

Вместо того, чтобы просто измерять сопротивление второго проводника к оболочке (R c2 − s ), мы фактически измеряем это сопротивление параллельно с последовательной комбинацией сопротивления проводника к проводнику (R c1− c2 ) и первый проводник к оболочке (R c1 − s ).

Если нас не волнует этот факт, мы можем продолжить тест в соответствии с настройками.Если мы хотим измерить только сопротивление между вторым проводником и оболочкой (R c2-s ), тогда нам нужно использовать клемму «Guard» мегомметра:

Теперь принципиальная схема выглядит так:

При подключении клеммы «Guard» к первому проводнику два проводника имеют почти равный потенциал. При небольшом напряжении между ними или его отсутствии сопротивление изоляции практически бесконечно, и, следовательно, между двумя проводниками не будет тока.

Следовательно, показания сопротивления мегомметра будут основываться исключительно на токе, протекающем через изоляцию второго проводника, через оболочку кабеля и обернутом вокруг него проводе, а не на токе, протекающем через изоляцию первого проводника.

Меггеры

являются полевыми приборами: то есть они разработаны так, чтобы быть портативными и эксплуатироваться техническим специалистом на стройплощадке с такой же легкостью, как и обычный омметр. Они очень полезны для проверки «коротких» замыканий между проводами с высоким сопротивлением, вызванных влажной или поврежденной изоляцией.

Поскольку в них используются такие высокие напряжения, на них не так влияют паразитные напряжения (напряжения менее 1 В, возникающие в результате электрохимических реакций между проводниками или «индуцированные» соседними магнитными полями), как на обычные омметры.

Тестер Hi-Pot

Для более тщательного тестирования изоляции проводов используется другой высоковольтный омметр, обычно называемый тестером hi-pot .

Эти специализированные приборы вырабатывают напряжение, превышающее 1 кВ, и могут использоваться для проверки изоляционной эффективности масляных, керамических изоляторов и даже целостности других высоковольтных приборов.

Поскольку они способны производить такое высокое напряжение, с ними необходимо обращаться с особой осторожностью и только обученным персоналом.

Следует отметить, что тестеры высокого напряжения и даже мегомметры (в определенных условиях) могут повредить изоляцию провода при неправильном использовании.

Если изоляционный материал подвергся разрушению из-за приложения чрезмерного напряжения, его электрическая изоляция будет нарушена. Опять же, эти инструменты должны использоваться только обученным персоналом.

Процедуры испытания сопротивления изоляции

или мегомметра с принципиальной схемой

мы перешли на MY SHIP APP, пожалуйста, нажмите здесь, чтобы загрузить

В этой статье мы рассмотрим тест мегомметра, прежде всего, я хочу сказать, что и тесты сопротивления изоляции, и тест мегомметра одинаковы. обычно выполняется для поиска изоляции обмоток различных машин, проводов, проводов, обмоток генератора и т. д.



Прибор для измерения мегомметра
    Прибор для измерения мегомметра
  • представляет собой омметр высокого сопротивления со встроенным генератором


  • Он оснащен тремя клеммами для подключения линии (L), клеммой заземления (E) и защитной клеммой (G)
  • Сопротивление измеряется между клеммами линии и заземления
  • Клемма «Guard» предназначена для специальных тестовых ситуаций, когда одно сопротивление должно быть изолировано от другого.
  • Генератор может запускаться вручную или работать от сети для выработки высокого постоянного напряжения, которое вызывает небольшой ток через поверхности проверяемой изоляции
  • То есть , измеренный омметром , имеющий шкалу индикатора
Важность испытания сопротивления изоляции или испытания мегомметром
  • Испытание изоляции проводится для проверки целостности изоляции между проводниками.
  • Что помогает найти проблемы с коротким замыканием в цепи
  • Он также служит лучшим ориентиром для определения исправности оборудования

Процедура испытания изоляции

  • Проверьте мегомметр перед использованием, дает ли он значение INFINITY , когда он не подключен, и НУЛЬ, когда два терминала соединены вместе и ручка вращается.
  • Для проведения теста убедитесь, что кабель отключен от любых устройств (мегомметр обычно работает с тестерами на 500 В, 1000 В для тестирования более высокого напряжения).
  • Убедитесь, что в устройстве нет вихревых токов, заземлив его. (Очень важно)
  • Прибор должен иметь нормальную рабочую температуру, поскольку сопротивление зависит от температуры.
  • Убедитесь, что оба конца кабелей отделены друг от друга (при необходимости подключите один конец к клеммной колодке).
  • Теперь подключите клеммы мегомметра к проводам, которые необходимо измерить.
  • Затем вручную проворачивайте генератор и генерирует высокое напряжение постоянного тока , которое вызывает небольшой ток через поверхности проверяемой изоляции.
  • Если показание показывает «Бесконечность», значит, проводники имеют хорошую изоляцию.
Здесь показана принципиальная схема мегомметра



Изображение предоставлено: tpub.com, electric-engineering-portal.com



Что такое тест Megger и как он проводится

Устройство используется с 1889 года, его популярность возросла в течение 1920-х годов, так как давно разработанное устройство не изменилось с точки зрения его использования и целей тестирования, в последние годы появилось мало реальных улучшений с его дизайном и качеством тестера.Теперь доступны качественные варианты, которые просты в использовании и достаточно безопасны.

Тест Меггера – это метод тестирования использования измерителя сопротивления изоляции, который поможет проверить состояние электрической изоляции.

Качество сопротивления изоляции электрической системы ухудшается со временем, условиями окружающей среды, т. Е. Температурой, влажностью, влажностью и частицами пыли. На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять IR (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

IR измеряет стойкость изолятора к рабочему напряжению без каких-либо путей утечки тока. Он дает представление о состоянии изолятора. Он измеряется с помощью прибора под названием Megger test, способного измерять напряжение постоянного тока между двумя датчиками, автоматически вычисляя и затем отображая значение IR.

Тест

Megger настолько популярен, что « Сопротивление изоляции » и « Megger Test » используются как синонимы.

Почему проводится тестирование Megger?

Сопротивление изоляции электрической системы со временем ухудшается, условия окружающей среды i.е. температура, влажность, влажность и частицы пыли. На него также оказывают негативное воздействие из-за наличия электрического и механического напряжения, поэтому стало очень необходимо регулярно проверять ИК (сопротивление изоляции) оборудования, чтобы избежать смертельного исхода или поражения электрическим током.

Другой сценарий: в вашем доме только что произошел пожар, и пожарная часть покинула место происшествия. Электрическая компания отключила у вас газ и электричество, и вы в темноте.По милости Божьей все, что повреждено, – это ваш дом, и вам нужно начать процесс восстановления. Ваша страховая компания сообщает вам, что местная юрисдикция или сама страховая компания требуют проведения «теста Megger» для проверки целостности системы электропроводки в вашем доме.

Когда происходит пожар или другое событие с высокой температурой (молния, взрыв и т. Д.), Проводка и соответствующие ей элементы (изоляция и т. Д.) Подвергаются сильному нагреву. Все металлы и физические соединения имеют точку плавления.Во время некоторых пожаров достигается эта точка плавления и нарушается целостность проводки по току. Изоляция могла расплавиться внутри, либо оплавились и провод, и изоляция. Когда это происходит, у вас есть карман сопротивления, который образуется, когда электрический ток пытается течь через эту расплавленную область. По мере того, как ток увеличивается, пытаясь пересечь карман, он выделяет тепло. Это тепло может создать достаточно температуры, чтобы вызвать еще один пожар. Именно то, что вам не нужно! Самое страшное в этих поврежденных проводах заключается в том, что вы можете не знать, что это произошло, поскольку провод может быть скомпрометирован за стенами или на вашем чердаке

Тестирование

Megger не вызывает каких-либо повреждений, что делает его хорошим вариантом, когда кто-то не хочет проделывать отверстия в стенах для проверки электрической изоляции на наличие каких-либо проблем или проблем.Тестовое устройство работает только от 500 до 1000 вольт, что относительно мало. Из-за низкого напряжения некоторые проколы в изоляции остаются незамеченными. Как правило, он предоставляет информацию о токе утечки и о том, есть ли на изоляционных участках чрезмерная грязь или влажность, а также о количестве влаги, износе и неисправностях обмотки.

Что делается во время тестирования Megger?

Мы можем протестировать ваши цепи на наличие существующих соединений и участков с расплавленными неисправностями, которые могли возникнуть во время пожара.Затем эти результаты анализируются, и определенные цепи могут быть изолированы и заменены, чтобы убедиться, что в затронутых цепях больше нет проблем. Если у вас был пожар, поговорите со своим Настройщиком и посмотрите, требуется ли тестирование мегомметром. Обычно это покрывается страховкой, поскольку последнее, что они хотят сделать, – это оплатить еще одну претензию через месяц после того, как вы сможете восстановить свое место жительства.

Carelabs располагает оборудованием и опытом для проведения тестирования Megger и регистрации результатов в вашей страховой компании, а также в местном отделе строительства.Мы здесь, чтобы помочь вам убедиться, что ваша существующая проводка безопасна, и, конечно же, при необходимости установить новую проводку. Мы готовы удовлетворить все ваши потребности в электричестве.

Как выполняется тестирование Megger?

Мультиметр используется в качестве измерителя сопротивления изоляции в некоторых условиях, и в большинстве случаев выполняется только проверка целостности цепи. Но для обнаружения и тестирования тока утечки в нормальных условиях или в условиях перегрузки используется специальный прибор, известный как тестер изоляции.

Мы измеряем утечку тока в проводе, и результаты очень надежны, так как мы будем пропускать электрический ток через устройство во время тестирования. Мы проверяем уровень электрической изоляции любого устройства, например двигателя, кабеля, обмотки генератора или общей электрической установки. Это очень важный тест, проводимый очень давно. Не обязательно, он показывает нам точную область электрического прокола, но показывает величину тока утечки и уровень влажности в электрическом оборудовании / обмотке / системе.

Порядок проверки сопротивления изоляции или мегомметра приведен ниже:

  • Сначала мы отключим все линейные и нейтральные клеммы трансформатора.
  • Измерительные провода мегомметра
  • подключаются к шпилькам вводов НН и ВН для измерения значения сопротивления изоляции IR между обмотками НН и ВН.
  • Измерительные провода мегомметра
  • подключаются к шпилькам высоковольтного ввода и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками высокого напряжения и землей.
  • Измерительные провода мегомметра
  • подключаются к шпилькам вводов НН и точке заземления бака трансформатора для измерения значения сопротивления изоляции IR между обмотками НН и землей.

Эмпирическое соотношение, приведенное ниже, дает рекомендуемое минимальное значение для IR, его единица измерения составляет мега Ом (МОм). . Показатели стоимости дают нам представление о прочности изоляции кабеля и о том, повреждена она или нет.

IRmin (в МОм) = кВ + 1

Где кВ = номинальное рабочее напряжение в кВ

Бывают случаи, когда измеренное значение IR почти в 10–100 раз превышает значение IRmin, полученное из приведенного выше уравнения.

Общая процедура измерения состоит из измерения IR между тремя фазами, а также между отдельной фазой и землей. IR также измеряется для корпуса оборудования. Процедура варьируется от оборудования к оборудованию. Существуют разные уровни напряжения, которые применяются к кабелям в зависимости от их номинала и размера. Для проведения теста мегомметром кабеля HT 33 кВ. Применяемый уровень напряжения составляет 5000 В, а значение IR может находиться в диапазоне от 1 Гига Ом до 200 Гига Ом.

Когда мы используем мультиметр, мы измеряем сопротивление, напряжение и ток.Исходя из этого, я надеюсь, что мы знакомы с термином «изоляция». Это означает, что ток не может проходить или течь через определенный проводящий провод, если он должным образом изолирован или защищен. Эти провода могут быть внутри здания, бытовой техники или электродвигателя.

Вы в основном проверяете сопротивление провода. Например, если вы хотите увидеть, неисправен ли двигатель, вы проведете его «тест мегомметром», проверяя каждую из трех фаз двигателя на землю и между собой, чтобы увидеть, не замкнут ли он на землю или на саму себя.

Принцип работы Megger Test
  • Напряжение для тестирования, произведенное ручным тестом мегомметра вращением кривошипа, в случае ручного типа, для электронного тестера используется батарея.
  • 500 В постоянного тока достаточно для проведения испытаний на оборудовании с напряжением до 440 Вольт.
  • от 1000 В до 5000 В используется для тестирования высоковольтных электрических систем.
  • Отклоняющая катушка или токовая катушка, подключенные последовательно и позволяющие пропускать электрический ток, принимаемый проверяемой цепью.
  • Управляющая катушка, также известная как катушка давления, подключена к цепи.
  • Токоограничивающий резистор (CCR и PCR), соединенный последовательно с управляющей и отклоняющей катушками для защиты от повреждений в случае очень низкого сопротивления во внешней цепи.
  • При ручном испытании мегомметром эффект электромагнитной индукции используется для создания испытательного напряжения, т. Е. Якорь перемещается в постоянном магнитном поле или наоборот.
  • Где, как и в электронном тестовом мегомметре, используются батареи для создания испытательного напряжения.
  • По мере увеличения напряжения во внешней цепи отклонение указателя увеличивается, а отклонение указателя уменьшается с увеличением тока.
  • Следовательно, результирующий крутящий момент прямо пропорционален напряжению и обратно пропорционален току.
  • Когда проверяемая электрическая цепь разомкнута, крутящий момент, создаваемый катушкой напряжения, будет максимальным, а стрелка показывает «бесконечность», что означает отсутствие короткого замыкания во всей цепи и максимальное сопротивление в тестируемой цепи.
  • Если есть короткое замыкание, указатель показывает «ноль», что означает «НЕТ» сопротивления в проверяемой цепи.

Типы тестов Megger

Это можно разделить в основном на две категории:

  1. Электронный (работает от батарей)
  2. Ручного типа (с ручным приводом)

A Преимущества электронного типа Megger Test
  • Уровень точности очень высокий.
  • ИК-значение цифрового типа, легко читаемое.
  • Один человек может работать очень легко.
  • Прекрасно работает даже в очень загруженном пространстве.
  • Очень удобный и безопасный в использовании.

Преимущества ручного Megger Test
  • По-прежнему играет важную роль в мире высоких технологий, поскольку это самый старый метод определения значения IR.
  • Для работы не требуется внешний источник.
  • На рынке дешевле.

Но есть и другие типы теста мегомметра, которые представляют собой тип с приводом от двигателя, который не использует батарею для создания напряжения. Для вращения электрического двигателя требуется внешний источник, который, в свою очередь, вращает генератор теста мегомметра.

Испытание сопротивления изоляции или инфракрасное излучение проводится инженерами по техническому обслуживанию для проверки работоспособности всей системы изоляции силового трансформатора. Он отражает наличие или отсутствие вредных загрязнений, грязи, влаги и грубого разложения. Для сухой системы изоляции ИК обычно будет высоким (несколько сотен МОм). Инженеры по техническому обслуживанию используют этот параметр как показатель сухости изоляционной системы.

Это испытание проводится при номинальном напряжении или выше него, чтобы определить, есть ли пути с низким сопротивлением к земле или между обмоткой и обмоткой в ​​результате ухудшения изоляции обмотки.На значения тестовых измерений влияют такие переменные, как температура, влажность, испытательное напряжение и размер трансформатора.

Это испытание следует проводить до и после ремонта или при выполнении технического обслуживания. Данные испытаний должны быть записаны для будущих сравнительных целей. Для сравнения значения испытаний следует нормализовать до 20 ° C.

Общее практическое правило, которое используется для приемлемых значений для безопасного включения питания: 1 МОм на 1000 В приложенного испытательного напряжения плюс 1 МОм.

Меры предосторожности при тестировании Megger

При выполнении теста мегомметром вы можете получить травму или повредить оборудование, с которым работаете, если не соблюдаете следующие МИНИМАЛЬНЫЕ меры безопасности.

  • Используйте тест мегомметром только для измерений высокого сопротивления, таких как измерения изоляции или для проверки двух отдельных проводов на кабеле.
  • Ни в коем случае не прикасайтесь к щупам во время поворота ручки.
  • Обесточьте и полностью разрядите цепь перед подключением теста мегомметром.
  • Отключите проверяемый элемент от других цепей, если возможно, перед использованием теста мегомметром.

Преимущества тестирования Megger
  • Профилактический анализ состояния оборудования
  • Снижение риска отказа системы аварийного электроснабжения
  • Застрахованная доступность
  • Профилактический ремонт
  • Управление активами
  • Прогнозируемый ожидаемый срок службы оборудования

Создание тестера изоляции низкого напряжения


Замыкания на землю – проклятие для систем пожарной сигнализации.Даже небольшая утечка тока на землю где-нибудь в здании может вызвать незапланированные пожарные учения. Что еще хуже, второе замыкание на землю в другом месте здания может привести к короткому замыканию всей системы. Вот почему все системы пожарной сигнализации имеют цепи обнаружения замыкания на землю, поэтому проводку в прилегающем здании можно отремонтировать до возгорания.

Это было недоумение. Я пытался отремонтировать пожарную сигнализацию в школе. Воздух снаружи был теплым и влажным, но внутри был кондиционер.Свет на панели пожарной сигнализации указывал на «замыкание на землю» где-то в проводке в здании, но мой цифровой омметр утверждал, что целостности заземления нет. Как мне найти этот токопроводящий путь, если омметр его не обнаружит?

Попробовав несколько способов обнаружения, я решил поднять напряжение на мой омметр. Это сделали пара 12-вольтовых батарей из моего запаса, соединенных последовательно с отрицательным проводом омметра. Теперь, когда для управления током моего омметра использовалось около 27 вольт в час, это указывало на целостность цепи, и я мог проследить за проводкой, чтобы найти замыкание на землю.Оказалось, что это вода конденсировалась на выносном посту пожарной сигнализации в спортзале. Влага от теплого воздуха, просачивающегося снаружи через стену, конденсировалась на выключателе кондиционирования воздуха внутри. Итак, почему мой омметр не показал непрерывности, пока не получил дополнительное повышение напряжения от батарей?

Я имел дело с нелинейным сопротивлением, основанным на напряжении; сопротивление, которое меняет значение при изменении напряжения, поэтому ток, похоже, не подчиняется закону Ома. Сопротивление водяного конденсата было почти бесконечным для трехвольтовой внутренней батареи моего омметра, но сопротивление упало до нескольких тысяч Ом, когда напряжение было увеличено за счет добавления дополнительных батарей (см. , рис. 1, ).


РИСУНОК 1. На этой диаграмме показано, как нелинейное сопротивление уменьшается при повышении напряжения. Показанное здесь напряжение будет напряжением батареи омметра.


Нелинейное сопротивление

Изоляция проводов не обязательно должна быть дымящей, прежде чем она будет признана плохой; он может медленно разрушаться. Согласно Megger, одному из многих производителей тестеров изоляции, причинами пробоя изоляции могут быть электрическое напряжение, механическое напряжение, химические воздействия, термическое напряжение и загрязнение окружающей среды (например, конденсация воды на изолированной стороне переключателя).

Все эти раздражители вызывают нелинейное сопротивление на основе напряжения – по крайней мере, при напряжениях ниже стадии курения. Низкое напряжение, характерное для цифровых омметров, показывает высокое сопротивление, потому что низкого напряжения недостаточно для пропускания тока через изоляцию. С другой стороны, более высокого напряжения в тестере изоляции достаточно, чтобы пропустить ток через частично поврежденную изоляцию, и измеренное сопротивление ниже. (См. Рисунок 1 .)


Тестер изоляции

То, что я придумал, не было новым изобретением.Это был испытательный прибор, используемый электриками, называемый тестером изоляции, который представляет собой омметр с внутренней высоковольтной батареей. В случае с прибором, который я придумал, напряжение всех батарей вместе составляло около 27 вольт: три вольта батареи внутри моего омметра плюс 24 вольта от двух добавленных 12-вольтных батарей.

Мне действительно нужно было иметь с собой одного из этих тестеров для такого рода устранения неполадок, но не было ничего из того, что я мог себе позволить.Придется создать свой собственный. Сначала я попробовал цифровой омметр, который обычно использовал для поиска и устранения неисправностей, и подключил батареи к его выводам. Когда я проверил сопротивление той же проблемы, с которой я столкнулся – вода на поверхности изолятора, – числа на дисплее постоянно менялись и их было трудно прочитать. Оказалось, что вода временная, поэтому сопротивление воды постоянно меняется вверх и вниз. Я занимаюсь устранением неполадок и хотел сосредоточиться на устранении неполадок, а не тратить время на считывание показаний счетчика, поэтому использование цифрового счетчика не помогло мне.

Затем я попробовал старый аналоговый измеритель, который у меня валялся. С дополнительными батареями числа на шкале Ом больше не были точными, но я мог с этим справиться. По крайней мере, стрелка на измерителе не очень сильно двигалась вперед и назад, и я мог получить несколько стабильные показания. Затем я подумал о напряжении. Обычно в системах пожарной сигнализации используется напряжение 24 В, и мне нужно было проверить проводку при более высоком напряжении. 36 вольт от четырех девятивольтных батарей казались разумным напряжением, и четыре батареи можно было привязать к задней части счетчика, так что я использовал именно это.

РИСУНОК 2. Недорогой мультиметр.


РИСУНОК 3. Батареи, зажимы для батарей и резистор, необходимые для проекта.


Единственная реальная проблема заключалась в том, что механизм измерителя может быть поврежден из-за чрезмерного тока, когда провода измерителя – вместе с добавленными батареями – будут закорочены вместе. Чтобы предотвратить это расплавление, ограничительный резистор еще неизвестного значения должен быть вставлен последовательно с добавленными батареями (см. рисунки 7 и 8 ).Чтобы упростить калибровку измерителя, значение этого резистора должно быть выбрано таким образом, чтобы измеритель показывал нулевое сопротивление, когда провода были закорочены вместе – как обычный омметр.

Строительство

Начните с зажимов аккумулятора. Припаяйте провода зажима батареи красный к черному, чтобы батареи были включены последовательно. Только не сокращайте поводки. Дополнительный провод позволит изгибаться, когда батареи изнашиваются и их необходимо заменить. По отдельности заклеивайте или термоусаживайте соединения.

Для аккуратности и организованности скрепите все четыре батареи вместе. Подсоедините зажимы к батареям и используйте изоленту, чтобы соединить свободные провода зажима батареи (снова см. , рис. 7, ).

Расчет номинала ограничивающего резистора

Ограничительный резистор (см. Рисунок 4 ) компенсирует дополнительное напряжение батарей. Таким образом, когда измерительные провода закорочены, омметр покажет ноль сопротивления (как обычный омметр). Прежде чем продолжить, убедитесь, что омметр установлен на самую высокую шкалу ом: RX100 или выше.Это шкала, которая будет использоваться для всех будущих измерений.

РИСУНОК 4. Упрощенная схема омметра, показывающая добавление 36-вольтовых батарей и ограничивающего резистора.


Существует два метода определения номинала ограничивающего резистора. Один из них – это измерение тока, который омметр использует для измерения нулевого сопротивления, а другой – эксперимент, чтобы найти значение. Оба метода работают.

Текущий метод

Измерьте ток, генерируемый омметром, последовательно подключив цифровой миллиамперметр (см. , рисунок 6, ).Ток, измеренный амперметром, – это ток, который омметр называет нулевым сопротивлением.

РИСУНОК 6. Установка для измерения тока омметра.


Моему измерителю требуется примерно 3 миллиампера для индикации нулевого сопротивления. Формула закона Ома (E / I = R) представляет собой 36-вольтовые батареи, разделенные на 0,003 ампер (3 мА), генерируемые омметром, что равняется 12000 Ом для ограничивающего резистора.

Вы можете убедиться, что с помощью этого метода было найдено правильное значение ограничивающего резистора, временно вставив резистор в цепь измерителя, как показано на рисунках 7 и 8 .Если измеритель не может быть обнулен с помощью регулировки сопротивления на измерителе, сопротивление ограничительного резистора, возможно, придется отрегулировать экспериментальным методом.

РИСУНОК 7. Измеритель, батарейки, зажимы батарей и закороченные измерительные провода.


РИСУНОК 8. Электромеханическое расположение всех компонентов тестера изоляции.


Экспериментальный метод

Отцентрируйте ручку регулировки сопротивления на измерителе.Это позволит отрегулировать ручку в любую сторону позже. Начните с ограничительного резистора 20 000 Ом и вставьте резистор в схему (снова обратитесь к , рисунки 7, и , 8, ). Стрелка, вероятно, не покажет ноль сопротивления, поэтому попробуйте резистор с немного другим значением. Помните, что меньшее значение сопротивления переместит стрелку вправо.

Еще раз посмотрите на омметр. Продолжайте изменять значение ограничивающего резистора, пока стрелка не приблизится к нулю.Он станет ограничивающим резистором. Регулировку сопротивления на измерителе можно использовать для прикосновения стрелки к нулю сопротивления.

Обрезка отрицательного тестового провода

Используйте черный провод датчика, который идет в комплекте с измерителем; в нем уже есть разъемы. Отрежьте его примерно на семь дюймов от конца, который входит в счетчик, и зачистите свободные концы (см. Рисунок 5 ). Семи дюймов должно быть достаточно, чтобы прикрепить припаянный конец к батареям и при этом подключить к измерителю.

РИСУНОК 5. Припаянный измерительный провод, зажимы аккумулятора и резистор.


Припаяйте этот короткий провод к одному концу ограничительного резистора, а другой конец резистора к положительному выводу зажима аккумулятора. Заклеивайте или термоусаживайте соединения.

Припаяйте зачищенный конец длинного провода щупа к отрицательному зажиму аккумуляторной батареи (см. Рисунок 5 ). Заклейте это соединение изолентой или термоусадите.

Окончательная сборка

Приклейте ограничительный резистор и оба конца паяных черных измерительных проводов к гибкому кабелю, чтобы обеспечить механическую прочность всех паяных соединений.Этот измеритель будет дребезжать с другими инструментами в ящике для инструментов, и паяные соединения должны быть защищены, чтобы они не двигались и не ломались.

Эта сборка батарей и пигтейла может быть помещена в пластиковую коробку шасси и затем прикреплена к измерителю. Лично я никогда не находил коммерческую коробку, которая была бы достаточно большой, чтобы вместить всю батарею в сборе, и достаточно маленькой, чтобы поместиться на задней панели счетчика, поэтому я просто использовал обильное количество изоленты, чтобы прикрепить блок к задней части счетчика. .

Омметр

Омметры

используют закон Ома (сопротивление = напряжение ¸ сила тока) для определения сопротивления измеряемого устройства. Напряжение обеспечивается внутренней батареей измерителя и остается относительно постоянным. Сила тока – это сила тока через проверяемое устройство; в этом случае изоляция на проводе.

На аналоговом измерителе (измерителе с механическим движением измерителя) стрелка фактически показывает количество тока, протекающего через устройство. Он перемещается вправо, когда сопротивление падает, а ток растет.Когда сопротивление достигает нуля Ом (провода закорочены), ток через измеритель достигает максимума, а стрелка находится полностью вправо. Цифры на лицевой стороне счетчика составляют таблицу преобразования или таблицу перекрестных ссылок. Он преобразует ток, протекающий через измеряемое устройство, в сопротивление этого устройства. Затем числа на лицевой стороне измерителя умножаются на положение переключателя RX1, RX10 или RX100 для расчета общего измеряемого сопротивления. Цифровой омметр автоматически делает эту перекрестную ссылку; он преобразует испытательный ток в сопротивление, чтобы отображать прямое показание на дисплее.

Создание таблицы перекрестных ссылок

С добавленными батареями и ограничивающим резистором цифры на лицевой стороне измерителя больше не калибруются на заводе. Например, резистор, тестируемый моим омметром, может показывать 25 по шкале Ом. Обычно это число умножается на 100 (RX100), чтобы получить 2500 Ом. Мой измеритель был изменен, поэтому, используя таблицу перекрестных ссылок, я вижу, что этот резистор является резистором 47000 Ом.

Вопрос: «Как мне получить эту таблицу перекрестных ссылок?» Ответ: «Сделай это.«Каждый счетчик отличается, поэтому для каждого счетчика требуется своя диаграмма.

РИСУНОК 9. Таблица перекрестных ссылок.


Чтобы составить диаграмму, выберите значения резисторов, показанные на Рисунок 9 . Затем измеряйте резисторы по одному, не забывая обнулять счетчик между каждым измерением. Запишите показания счетчика для каждого резистора рядом с его значением. Когда таблица будет заполнена, ее можно будет использовать в качестве перекрестной справочной таблицы.

Просто не забудьте использовать настройку RX100 на измерителе для всех измерений сопротивления.Кроме того, имейте в виду, что измеритель теперь подает более 36 вольт на все, что тестируется, поэтому убедитесь, что в измеряемой цепи нет какой-либо хрупкой электроники.

Заключение

Этот модифицированный измеритель больше не является обычным омметром; это «тестер изоляции». С помощью такого измерителя я обнаружил провода с частично стертой изоляцией; Я нашел негерметичный грозовой разрядник; Я нашел провод к разломам внутри стен; и я нашел много случаев повреждения водой.Любую неисправность или проводимость, которую панель пожарной сигнализации обнаруживает с помощью цепи обнаружения замыкания на землю, я теперь могу найти с помощью этого тестера изоляции.

Мой старый недорогой аналоговый измеритель снова нашел применение, и я легко могу найти неисправности в проводке в здании, которые нельзя найти с помощью обычного омметра. NV


ПЕРЕЧЕНЬ ДЕТАЛЕЙ

Комплект резисторов
КОЛ-ВО ОПИСАНИЕ
1 Meter * – мультитестер Sperry Instruments HSP10 от Home Depot или аналог
1 ** – Digi-Key RS125-ND – 1 / 4W (.25 Вт), 5%, углеродная пленка, осевой вывод, 365 шт. (5 шт. 1,0 ~ 1,0 МОм)
4 Девятивольтовые батареи
4 Зажимы с выводами для аккумуляторов – Digi-Key
377-1549-ND или эквивалент
Изолента
Припой и паяльник
Диаграммная бумага для создания таблицы перекрестных ссылок
Стоимость:
метр – около 18 долларов
Комплект смешанных резисторов – около 15 долларов
Батарейки, зажимы для батарей и прочее – около 10 долларов
плюс доставка
* Если у вас есть старый аналоговый измеритель, который больше ни для чего не используется, вы можете использовать его вместо покупки нового.Все, что требуется измерителю, – это внутренняя батарея и измерительные провода.
** Большинство резисторов в комплекте не будут использоваться, кроме как для калибровки измерителя, и резисторы могут быть повторно использованы в будущих проектах. Если у вас уже есть несколько резисторов, комплект резисторов не нужен.

КАЛИБРОВКА СТАНДАРТНОГО ОММЕТРА

(ВОМ, ИЛИ ВОЛЬТ-ОМ-МИЛЛИАМПОМЕР)

Метод калибровки аналогового омметра.


При калибровке аналогового омметра следует помнить только о двух концах шкалы.Стрелка указывает влево, показывая бесконечное сопротивление (измеритель в состоянии покоя), когда датчики ничего не касаются, или полностью вправо, показывая нулевое сопротивление (максимальный измерительный ток), когда датчики закорочены вместе. Когда два конца откалиброваны, числа между ними позаботятся о себе сами. Взгляните на цифру .

Шаг первый: Установите измеритель «в состояние покоя», разделив зонды. Поверните механический регулировочный винт в любую сторону, чтобы стрелка показывала бесконечное сопротивление.

Шаг второй: Установите переключатель выбора на желаемую шкалу сопротивления: RX1 (время сопротивления 1), RX10 (умноженное на 10) или RX100 (умноженное на 100). В случае тестера изоляции всегда используйте шкалу RX100. Теперь замкните тестовые провода вместе. Поверните ручку регулировки сопротивления в одну или другую сторону до тех пор, пока стрелка не окажется точно над нулевым сопротивлением на лицевой панели измерителя.

Теперь счетчик откалиброван. Эту калибровочную настройку следует выполнять каждый раз, когда измеритель используется для измерения сопротивления, или каждый раз, когда переключатель выбора устанавливается в другое положение RX.


Худшее замыкание на землю

Пробовали штатным омметром найти замыкание на землю. Я смотрел на них. Сразу после захода солнца, когда было достаточно света, чтобы разглядеть городской пейзаж и зажженные уличные фонари, я стоял на вершине холма с видом на Дулут, штат Миннесота. Они были линейными специалистами энергокомпании, и они только что подъехали к трехфазной опоре на 13 800 вольт через дорогу от телестанции, которая была отключена из-за отключения электроэнергии. Линейщик в сборщике вишен использовал свой омметр, чтобы проверить, нет ли коротких замыканий на линии метро.С батареей на девять вольт не будет большой проблемы с линией электропередачи на 13 800 вольт, и вот что было обнаружено – не большая проблема. Что ж, они вставили новый предохранитель в верхнюю часть столба, включили выключатель, и со звуком дробовика и 15-футовым ливнем искр, предохранитель сгорел. Весь город Дулут почернел. Действительно было короткое время. Правильный тестер изоляции, использующий источник питания 15000 вольт, обнаружил бы проблему.


ИДЕИ НА БУДУЩЕЕ

Контакты переключателя загрязняются, и один из способов убедиться, что грязные контакты не вызывают проблем, – это припаять контакты переключателя.Конечно, это выделит счетчик и предотвратит его использование для чего-либо еще.

Замена внутренних батарей, когда корпус склеен, может быть настоящей головной болью. Одна из идей – вынуть аккумулятор и заменить его впаянной перемычкой. Тогда нет внутренней батареи, которую нужно заменить.

Для тех, у кого есть реальная энергия, счетчик может быть спроектирован в обратном порядке, а внутренние резисторы пересчитаны, чтобы счетчик можно было использовать во всех масштабах (RX1, RX10, RX100). Шкала сопротивления на лицевой стороне измерителя по-прежнему будет отключена, поэтому потребуется таблица перекрестных ссылок, но измеритель будет немного более универсальным.


Попробуйте дома

РИСУНОК A. Проверка устойчивости лужи с водой. Зонды здесь примерно на 1/2 дюйма друг от друга, и оба они находятся в воде.


Обнаружит ли тестер изоляции проблемы, которых не обнаружит обычный цифровой омметр? Выяснить! Попробуйте это на одном типе проблемы изоляции: вода на проводке.

Налейте немного воды из-под крана на чистый прилавок. Лужа должна быть примерно одного или двух дюймов в диаметре.Только не добавляйте в воду соль или другие загрязнения. Измерьте сопротивление воды с помощью обычного цифрового омметра, удерживая концы зондов на расстоянии не менее 1/2 дюйма, как показано на Рисунок A . Запишите сопротивление, указанное на омметре. Некоторые цифровые омметры измеряют бесконечное сопротивление, и если оно измеряется, это то, что следует записать. В качестве контроля найдите резистор примерно такого же номинала и измерьте его сопротивление. Запишите это измерение.

Используйте тестер изоляции, чтобы измерить ту же воду. Найдите фактическое сопротивление в таблице перекрестных ссылок и запишите это сопротивление. Сопротивление, измеренное цифровым омметром, и сопротивление, измеренное тестером изоляции, будут совершенно разными.

Для проверки точности тестера изоляции используйте его для измерения сопротивления управляющего резистора. (Обязательно держите пальцы подальше от проводов, потому что они могут испортить показания.) Найдите истинное сопротивление резистора в таблице перекрестных ссылок.

Измеренное сопротивление управляющего резистора должно быть примерно одинаковым, независимо от того, используется ли цифровой омметр или тестер изоляции. С другой стороны, вода имеет нелинейное сопротивление, зависящее от напряжения. Это помогает объяснить, почему тестер изоляции – с его высоковольтной батареей – обнаруживает определенную проблему – воду на изоляции, в то время как цифровой омметр – с его низковольтной батареей – показывает неточные показания.

Если вы действительно хотите получить удовольствие от этого эксперимента, попробуйте встряхнуть пучок соли в лужу с водой и снова измерить сопротивление воды обоими измерителями.


ССЫЛКИ

EC&M: Проверка сопротивления изоляции: как и почему ?; Джон А. ДеДад
https://www.ecmweb.com/cee-news-magazine-archive/article/20895083/insulation-resistance-testing-how-and-why

Megger: Руководство по диагностическому тестированию изоляции напряжением выше 1 кВ
www.biddlemegger.com/biddle/5kV-DiagnosticTesting.pdf

Megger: Stitch In Time
www.biddlemegger.com/biddle/A Stitch In Time.pdf

Hyperphysics: Moving Coil Meters
http: // hyperphysics.phy-astr.gsu.edu/hbase/mintage/movcoil.html


Электрическое испытательное оборудование | электростанция к розетке

Испытание якоря с помощью Baker DX и PP85 Power Pack

Baker Power Pack PP85 разработан для испытания якоря больших двигателей. В сочетании с анализатором Baker DX и испытательным датчиком якоря ATF5000 испытание на импульсные перенапряжения якоря выполняется легко и эффективно. Узнайте, как это сделать, в этом видео.

Испытание якоря с помощью Baker DX и PP85 Power Pack

Статический мотор-анализатор Baker AWA-IV: испытание якоря

Используя испытательные принадлежности ZTX и ATF5000, AWA-IV делает испытание якоря эффективным и простым.Применяя импульсное испытание к каждому стержню коммутатора и сравнивая реакцию с эталонным стержнем (обычно это первый стержень, который вы проверяете), AWA-IV обнаружит любые катушки, которые могут иметь слабую изоляцию или другие проблемы.

Статический мотор-анализатор Baker AWA-IV: испытание якоря

Статический моторный анализатор Baker AWA-IV: данные и отчетность

Автоматический анализатор электродвигателя Baker AWA-IV обеспечивает исчерпывающие результаты, характеризующие состояние двигателя, генератора или обмотки.В этом видео рассматриваются отчетные данные, объясняется, что вы увидите после запуска тестов, и как создать файл отчета.

Статический моторный анализатор Baker AWA-IV: данные и отчетность

Статический моторный анализатор Baker AWA-IV: обзор оборудования

Статический анализатор двигателей Baker AWA-IV включает в себя автоматизацию, которая делает тестирование двигателей, генераторов и катушек простым и повторяемым. В этом видео наш инженер по приложениям знакомит нас с внешними аппаратными функциями AWA-IV.

Статический моторный анализатор Baker AWA-IV: обзор оборудования

Статический анализатор двигателей Baker AWA-IV: испытания на постоянном токе высокого напряжения

Испытания высоковольтным постоянным током проверяют старение изоляции и другие слабые места, наблюдая за токами утечки. Механизм автоматизации Baker AWA-IV позволяет легко запускать набор тестов с минимальным вмешательством. В этом видео показано, как это делается.

Статический анализатор двигателей Baker AWA-IV: испытания на постоянном токе высокого напряжения

Статический анализатор электродвигателей Baker DX: испытание импульсных перенапряжений с частичным разрядом (ЧР)

Испытание на импульсные перенапряжения – это безопасный, неразрушающий, основанный на стандартах тест, который выявляет слабые места межвитковой и межвитковой изоляции.Добавление к Baker DX дополнительной функции частичного разряда обеспечивает дополнительное понимание состояния изоляции путем обнаружения и количественной оценки частичных электрических разрядов задолго до того, как при нормальной работе может возникнуть настоящая дуга.

Статический анализатор электродвигателей Baker DX: испытание импульсных перенапряжений с частичным разрядом (ЧР)

Статический мотор-анализатор Baker DX: испытание якоря

Статический анализатор электродвигателей Baker DX можно использовать для эффективного и быстрого тестирования изоляции якоря двигателя.Используя аксессуар ZTX для тестирования катушек с низким импедансом и ручной зонд Кельвина ATF5000, специально разработанный для тестирования коммутаторов, наш инженер по приложениям показывает, как использовать Baker DX для проведения импульсных испытаний якоря.

Статический мотор-анализатор Baker DX: испытание якоря

Статический анализатор двигателя Baker DX: обзор оборудования

Наш инженер по приложениям расскажет об аппаратных функциях статического анализатора двигателей Baker DX.

Статический анализатор двигателя Baker DX: обзор оборудования

Статический анализатор двигателей Baker DX: испытания на постоянном токе высокого напряжения

Помимо испытаний на низкое напряжение, набор испытаний высоковольтным постоянным током Baker DX может выявить признаки старения изоляции по таким параметрам, как индекс поляризации и ток утечки. Это позволяет специалистам по техническому обслуживанию судить о том, подходит ли к концу срок службы системы изоляции двигателя, даже если двигатель может работать правильно в нормальных условиях эксплуатации.Подобная информация полезна для планирования и составления графиков технического обслуживания.

Статический анализатор двигателей Baker DX: испытания на постоянном токе высокого напряжения

Пользовательский интерфейс Baker DX

Статический анализатор двигателей Baker DX – это универсальный инструмент для оценки изоляции и состояния цепей двигателей, генераторов и катушек. В этом видео наш инженер по приложениям знакомит с пользовательским интерфейсом DX.

Двойное заземление

Описание

Тестирование HiPot и импульсных перенапряжений с помощью Baker DX и PP85 Power Pack

Узнайте, как использовать статический анализатор электродвигателей Baker DX с Power Pack 85 для выполнения испытаний на постоянном токе HiPot и импульсных перенапряжений трехфазного электродвигателя.Power Pack расширяет диапазон напряжений DX для тестирования больших двигателей и генераторов.

Тестирование HiPot и импульсных перенапряжений с помощью Baker DX и PP85 Power Pack

Анимация переносного портативного тестера бытовой техники PAT120

Анимация переносного портативного тестера бытовой техники PAT120

MIT515, MIT525 и MIT1025 Введение и демонстрация

MIT515, MIT525 и MIT1025 Введение и демонстрация

Руководство пользователя Megger MFT1800 Series

Руководство пользователя Megger MFT1800 Series

TDL

% PDF-1.4 % 10 0 obj > эндобдж xref 10 53 0000000016 00000 н. 0000001423 00000 п. 0000001556 00000 н. 0000001707 00000 н. 0000002062 00000 н. 0000002282 00000 н. 0000002571 00000 н. 0000003090 00000 н. 0000003377 00000 н. 0000004167 00000 н. 0000004971 00000 н. 0000005759 00000 п. 0000006122 00000 н. 0000006451 00000 п. 0000006567 00000 н. 0000006747 00000 н. 0000007594 00000 н. 0000007648 00000 н. 0000007721 00000 н. 0000008009 00000 н. 0000008031 00000 н. 0000009607 00000 п. 0000009865 00000 н. 0000010969 00000 п. 0000010991 00000 п. 0000013456 00000 п. 0000013478 00000 п. 0000016328 00000 п. 0000016350 00000 п. 0000019288 00000 п. 0000019310 00000 п. 0000021553 00000 п. 0000021663 00000 п. 0000021949 00000 п. 0000022017 00000 н. 0000022039 00000 п. 0000024392 00000 п. 0000024496 00000 п. 0000025287 00000 п. 0000025309 00000 п. 0000027468 00000 н. 0000027490 00000 н. 0000029535 00000 п. 0000036000 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *