Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схема простого зарядного устройства для АКБ

Привет всем, я за свою практику делал множество схем зарядных устройств для самых разных аккумуляторов, но в последнее время заметил, что несмотря на огромную базу схем в интернете, люди хотят видеть простую схему зарядного устройства для

автомобильных аккумуляторов из очень доступных компонентов, поэтому я решил воплотить эту идею в жизнь.

Эта схема была снята из радиожурнала, которая стала очень популярной в последнее время, по сути это тиристорный регулятор напряжения, многие наверное будут осуждать мое решение об использовании именно этой схемы, ведь она не имеет узла контроля тока, защиты и многих других плюшек, которыми снабжены современные зарядные устройства.

Вы конечно правы, но именно эта схема была повторена радиолюбителями, в том числе и мною множество раз и зарекомендовала себя с лучшей стороны.

Итак, о схеме; она отличается от обычных линейных схем, обратите внимание на транзисторы Q1 и Q2, на их базе собран генератор импульсов, то есть аккумулятор по сути заряжается импульсами тока, в этом можно убедиться подключив осциллограф, такой режим работы имеет множество плюсов.

Первый из них заключается в том, что силовой элемент схемы работает не в линейном, а в ключевом режиме, следовательно, нагреваться будет меньше, и ещё импульсная зарядка может быть полезной для десульфатации аккумулятора, а значит такая зарядка в теории может восстанавливать АКБ.

Генератор импульсов собран на маломощной комплементарной паре, можно использовать буквально любые маломощные транзисторы, например наши КТ 361 и КТ 315. Выходной ток может доходить до 10 ампер, следовательно с ее помощью можно эффективно заряжать аккумуляторы с ёмкостью до 100 ампер\часов.

Диодный мост нужен с запасом, советую использовать диоды ампер на 15-20, я ставил готовую сборку на 30 ампер. Сетевой понижающий трансформатор должен обеспечивать выходное напряжение не менее 15 или 16 вольт и соответствующий ток.

Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора,  например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и т. д.

В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант. Мне повезло и обмотки трансформатора оказались медными, а не алюминиевыми как это бывает с бюджетными бесперебойниками.

Порывшись в старом хламе мне удалось найти только один тиристор, но к сожалению и тот оказался нерабочим, по идее можно собрать аналог тиристора, но я решил использовать обычный транзистор типа империи MJE13009 и всё прекрасно заработало.

переделал на транзистор

Печатная плата получилась довольно компактной, кстати исходный файл платы доступен для скачивания в конце статьи. Транзисторы и диодный мост устанавливают на радиатор, конструкцию также желательно дополнить кулером.  Индикаторы поставил стрелочные, амперметр на 1 ампер, но после замены шунта он стал отображать ток до 10 ампер, вольтметр на 15 вольт.

Хотел всё это дело собрать в корпусе от блока питания компьютера но на данный момент работаю над несколькими проектами и времени попросту нет, но в дальнейшем обязательно займусь изготовлением корпуса.

Введите электронную почту и получайте письма с новыми поделками.

Выходное напряжение регулируется от чистого ноля. Процесс зарядки автомобильных аккумуляторов происходит следующим образом, включаем зарядное устройство в сеть и вращением переменного резистора добиваемся на выходе 14 и 14.4 вольт выходного напряжения.

Это напряжение полностью заряженного автомобильного аккумулятора, дальше подключаем зарядку к аккумулятору не забывая соблюдать полярность, то есть плюс к плюсу, а минус к минусу.

По мере заряда аккумуляторной батареи ток будет снижаться и в конце процесса значение будет близким к нулю, этим заряд можно считать завершенным.

Плохо то, что схема лишена защиты от коротких замыканий, может спасти только предохранитель, также отсутствует функция защиты от переполюсовки питания, но все это можно дополнить и позже, было бы желание))).

Плата в формате .lay; скачать…

Автор; АКА КАСЬЯН

схемы на самодельное зарядное устройство для АКБ

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:
  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ

можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей
    кислоты.
    Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке.
    Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с
    зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом
    зарядки,
    чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В.  Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий.

На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если

аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания  на 12 вольт — 10 ампер.

1 схема промышленного ЗУ


Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20:  «C» обозначает ёмкость установленного аккумулятора. После этого

процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

1 схема мощного ЗУ


Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ

Простая схема

Топ 4 схем импульсных ЗУ

Импульсные ЗУ

1 схема на тиристорное ЗУ

Схема

1 упрощенная схема с сайта Паяльник

Схема

1 схема на интеллектуальное ЗУ

Интеллектуальное ЗУ

4 подробные схемы защиты для ЗУ

Защита

Новые схемы 2017 и 2018 года

Новые схемы

1 схема на китайское ЗУ

Схема

1 простая схема — как собрать ЗУ

Схема

Схемы простых мощных зарядных устройств для аккумуляторов

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением – не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт – это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 – Uакб)(В) ≈ Pламп(Вт) / 220(В).
Параллельное соединение двух ламп – удваивает зарядный ток, трёх – утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.


Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор – это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому – большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича “Зарядные устройства”, многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.


Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI…VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 – К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж – KT50IK, а КТ315Л – на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 – СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 – любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 – плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1… VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г – КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24… 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора – симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.


Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока – практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде – через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.


Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом – обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Рис.6

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель – инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16… 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Рис.7

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.


В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их “ассиметричным” током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Рис.8

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22…25 В.
Измерительный прибор РА1 подойдет со шкалой 0…5 А (0…3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

 

Обзор схем зарядных устройств

Соблюдение режима эксплуатации аккумуляторных батарей, и в частности режима зарядки, гарантирует их безотказную работу в течение всего срока службы. Зарядку аккумуляторных батарей производят током, значение которого можно определить по формуле

I=0,1Q

где I – средний зарядный ток, А., а Q – паспортная электрическая емкость аккумуляторной батареи, А-ч.

Зарядный ток, рекомендуемый в инструкции по эксплуатации аккумуляторной батареи, обеспечивает оптимальное протекание электрохимических процессов в ней и нормальную работу в течение длительного времени.

Классическая схема зарядного устройства для автомобильного аккумулятора состоит из понижающего трансформатора, выпрямителя и регулятора тока зарядки. В качестве регуляторов тока применяют проволочные реостаты (см. Рис. 1) и транзисторные стабилизаторы тока.

В обоих случаях на этих элементах выделяется значительная тепловая мощность, что снижает КПД зарядного устройства и увеличивает вероятность выхода его из строя.

Для регулировки зарядного тока можно использовать магазин конденсаторов, включаемых последовательно с первичной (сетевой) обмоткой трансформатора и выполняющих функцию реактивных сопротивлений, гасящих избыточное напряжение сети. Упрощенная схема такого устройства приведена на рис. 2.

В этой схеме тепловая (активная) мощность выделяется лишь на диодах VD1-VD4 выпрямительного моста и трансформаторе, поэтому нагрев устройства незначителен.

Недостатком схемы на Рис. 2 является необходимость обеспечить напряжение на вторичной обмотке трансформатора в полтора раза большее, чем номинальное напряжение нагрузки (~ 18÷20В).

Схема зарядного устройства, обеспечивающее зарядку 12-вольтовых аккумуляторных батарей током до 15 А, причем ток зарядки можно изменять от 1 до 15 А ступенями через 1 А, приведена на Рис. 3.

Предусмотрена возможность автоматического выключения устройства, когда батарея полностью зарядится. Оно не боится кратковременных коротких замыканий в цепи нагрузки и обрывов в ней.

Выключателями Q1 – Q4 можно подключать различные комбинации конденсаторов и тем самым регулировать ток зарядки.

Переменным резистором R4 устанавливают порог срабатывания реле К2, которое должно срабатывать при напряжении на зажимах аккумулятора, равном напряжению полностью заряженной батареи.

На Рис. 4 представлена схема еще одного зарядного устройства, в котором ток зарядки плавно регулируется от нуля до максимального значения.

Изменение тока в нагрузке достигается регулированием угла открывания тринистора VS1. Узел регулирования выполнен на однопереходном транзисторе VT1. Значение этого тока определяется положением движка переменного резистора R5. Максимальный ток заряда аккумулятора 10А , устанавливается амперметром. Защита устройства обеспечена со стороны сети и нагрузки предохранителями F1 и F2.

Вариант печатной платы зарядного устройства (см. рис. 4), размером 60х75 мм приведен на следующем рисунке:

В схеме на рис. 4 вторичная обмотка трансформатора должна быть рассчитана на ток, втрое больший зарядного тока, и соответственно мощность трансформатора также должна быть втрое больше мощности, потребляемой аккумулятором.

Названное обстоятельство является существенным недостатком зарядных устройств с регулятором тока тринистором (тиристором).

Примечание:

Диоды выпрямительного мостика VD1-VD4 и тиристор VS1 необходимо установить на радиаторы.

Значительно снизить потери мощности в тринисторе, а следовательно, повысить КПД зарядного устройства можно, если регулирующий элемент перенести из цепи вторичной обмотки трансформатора в цепь первичной обмотки. Схема такого устройства показана на рис. 5.

В схеме на Рис. 5 регулирующий узел аналогичен примененному в предыдущем варианте устройства. Тринистор VS1 включен в диагональ выпрямительного моста VD1 – VD4. Поскольку ток первичной обмотки трансформатора примерно в 10 раз меньше тока заряда, на диодах VD1-VD4 и тринисторе VS1 выделяется относительно небольшая тепловая мощность и они не требуют установки на радиаторы. Кроме того, применение тринистора в цепи первичной обмотки трансформатора позволило несколько улучшить форму кривой зарядного тока и снизить значение коэффициента формы кривой тока (что также приводит к повышению КПД зарядного устройства). К недостатку этого зарядного устройства следует отнести гальваническую связь с сетью элементов узла регулирования, что необходимо учитывать при разработке конструктивного исполнения (например, использовать переменный резистор с пластмассовой осью).

Вариант печатной платы зарядного устройства на рисенке 5, размером 60х75 мм приведен на рисунке ниже:

Примечание:

Диоды выпрямительного мостика VD5-VD8 необходимо установить на радиаторы.

В зарядном устройстве на рисунке 5 диодный мостик VD1-VD4 типа КЦ402 или КЦ405 с буквами А, Б, В. Стабилитрон VD3 типа КС518, КС522, КС524, или составленный из двух одинаковых стабилитронов с суммарным напряжением стабилизации 16÷24 вольта (КС482, Д808, КС510 и др.). Транзистор VT1 однопереходной, типа КТ117А, Б, В, Г. Диодный мостик VD5-VD8 составлен из диодов, с рабочим током не менее 10 ампер (Д242÷Д247 и др.). Диоды устанавливаются на радиаторы площадью не менее 200 кв.см, а если радиаторы будут сильно нагреваться, в корпус зарядного устройства можно установить вентилятор для обдува.

КАК СДЕЛАТЬ – Простая схема зарядного устройства

     Десульфатацию автомобильных аккумуляторов, а также зарядно-восстановительную тренировку автомобильных аккумуляторов можно производить при помощи простого зарядно-восстановительного устройства, которое восстанавливает засульфатированные аккумуляторы «асиметричным» током.

 

     Кроме методики десульфатации аккумулятора в ручном режиме при помощи простейшего зарядного устройства, как описано в Десульфатация аккумулятора, известен еще один способ тренировки авотомобильного аккумулятора «асиметричным» током, когда в один полупериод аккумулятор заряжается, а следующий разряжается токами 10:1. Такой метод тренировки хорошо зарекомендовал себя не только при десульфатации аккумулятора, но и для профилактики исправных. Картинкаа кликабельна.

     Устройство обеспечивает возможность ускоренного заряда током до 10А, но рекомендуется зарядный ток 5А  и соответственно ток разряда 0.5А.

     Трансформатор можно взять любой, мощностью не менее 200Вт и выходным напряжением 22-25В. Например, можно использовать телевизионный трансформатор ТС-200. Сразу после трансформатора включено реле типаРПУ-0 с напряжением на обмотке 24В или любое другое. Если использовать реле на меньшее напряжения, то потребуется подобрать и последовательно с обмоткой реле включить добавочный резистор. Реле своими контактами подключает зарядно-восстановительное устройство к аккумулятору и предохряняет аккумулятор от разряда в случае пропадания напряжения в электросети.

    Заряд аккумулятора происходит во время одного полупериода через диоды VD1 , VD2. Во время второго полупериода, когда диоды закрыты, аккумулятор разряжается через резистор R4. Ток разряда составляет 0.5А.

    Зарядный ток устанавливается пременным резистором R2 и контролируется по амперметру. Учитывая, что в полупериод заряда часть тока заряда (10%) протекает через разрядный резистор, то показания амперметра необходимо устанавливать 1.8А – амперметр показывает усредненное значение тока, а заряд производится в течение половины периода.

Немного об используемых деталях:

Трансформатор на напряжение 22-25В, можно телевизионный ТС-200.

Реле в принципе любое с напряжением обмотки 24В. Важно, чтобы контакты реле выдерживали ток не менее 10А. При использовании реле с обмоткой на 12В, его включаем через ограничивающее сопротивление.

Измерительный амперметр типа М42100 или любой на ток 3-5А

R2 может бітьот 3.3 до 15Ком.

Стабилитроны любые на напряжение от 7.5 до 12В.

Транзистор КТ827 модно заменить на КТ825, но при этом необходимо заменить полярность элементов, как показано на втором варианте схемы. Какртинка кликабельна.

     Транзистор должен быть установлен на радиатор площадью не менее 200кв.см. В качестве радиатора можно использовать металлическую стенку корпуса.

      В отличие от схемы полного автомата, описанной в  Десульфатация аккуумулятора схема ,   эта схема отличается простотой и достаточно высокой эффективностью. Ее можно собрать из любых подручных радиоэлементов. При этом требуется соблюсти необходимые напряжения и токи.

Возможно, вас заинтересуют статья Как построить гараж недорого и сопутствующие.

 

Читайте также:

Оставьте комментарий

Добавить комментарий

Схемы зарядных устройств


     Классическая зарядка литиевых аккумуляторов, на основе популярной, и одной из самой доступной микросхемы.

13.12.2014 Читали: 71604


     Простое самодельное устройство, предназначенное для недопускания глубокого разряда аккумуляторных батарей различного напряжения и ёмкости.

06.12.2014 Читали: 36859


     Электрическая схема несложной зарядки для 12 В свинцово-кислотных аккумуляторов. Имеется автоматический режим – светодиод мигает, когда батарея заряжена.

03.11.2014 Читали: 38123


     Обзор зарядного устройства BL-12SL. Небольшая китайская зарядка, предназначенная для работы с гелевыми свинцовыми аккумуляторами ёмкостью до 15 ампер.

 

03.04.2014 Читали: 21033


     Схема устройства для подзарядки маленьких дисковых часовых батареек формата AG0 – AG13.
 

26.03.2014 Читали: 33556


     Очередное самодельное зарядное устройство для 12-вольтового аккумулятора авто, собранное на отечественных радиодеталях.

04.03.2014 Читали: 62796


     Мощное самодельное пуско-зарядное на тиристорах, для 24-х вольтовых аккумуляторов.

13.02.2014 Читали: 65827



Лабораторный БП 0-30 вольт

Драгметаллы в микросхемах

Металлоискатель с дискримом

Ремонт фонарика с АКБ

Восстановление БП ПК ATX

Кодировка SMD деталей

Справочник по диодам

Аналоги стабилитронов

▶▷▶ простая схема зарядного устройства для автомобильной

▶▷▶ простая схема зарядного устройства для автомобильной
mount and blade скачать торрент механики 2015medal of honor warfighter 2012 скачать торрент от механиковdragon age 3 скачать торрент на pc от механиков на русскомигра бордерлендс 2 скачать торрент от механиковmass effect andromeda 1.05 скачать торрентом механикиrisen 2 скачать с торрента механикиbatmen скачать торрент pc механикиfar cry 4 repack от механиков скачать торрентскачать сириус сэм 3 механики через торрентmirror’s edge скачать торрентом механики

простая схема зарядного устройства для автомобильной – Yahoo Search Results Yahoo Web Search Sign in Mail Go to Mail” data-nosubject=”[No Subject]” data-timestamp=’short’ Help Account Info Yahoo Home Settings Home News Mail Finance Tumblr Weather Sports Messenger Settings Want more to discover? Make Yahoo Your Home Page See breaking news more every time you open your browser Add it now No Thanks Yahoo Search query Web Images Video News Local Answers Shopping Recipes Sports Finance Dictionary More Anytime Past day Past week Past month Anytime Get beautiful photos on every new browser window Download Схемы простого зарядного устройства для автомобильного voditeliautoru/poleznaya-informaciya/avtoustrojstva/akb/ Cached Этого вполне достаточно для немощного зарядного устройства Видео — пошаговая инструкция по изготовлению и схема простого зарядного устройства для автомобильного аккумулятора из Схемы зарядных устройств для аккумуляторов – Зарядные serp1ru/схемы-зарядных Cached Зарядные устройства , аккумуляторы, батареи Сборник принципиальных электрических схем зарядных устройств для аккумуляторов, статьи по электричеству Простая Схема Зарядного Устройства Для Автомобильной – Image Results More Простая Схема Зарядного Устройства Для Автомобильной images Зарядные устройства » Автосхемы, схемы для авто, своими руками avtosxemacom/zaryadnye-ustroystva Cached Недавно в интернете попалась схема мощного зарядного устройство для автомобильных аккумуляторов с током до 20А Зарядное устройство для автомобильного аккумулятора: как autotoday/bok/1403-zaryadnoe-ustroystvo-dlya-av Cached Простая схема по изготовлению зарядки Суть работы зарядного устройства для СХЕМА АВТОМОБИЛЬНОГО ЗАРЯДНОГО УСТРОЙСТВА radioskotru/publ/zu/skhema_avtomobilnogo_zarjadnogo Cached Обсудить статью СХЕМА АВТОМОБИЛЬНОГО ЗАРЯДНОГО УСТРОЙСТВА АККУМУЛЯТОРЫ ДЛЯ КИТАЙСКИХ ТЕЛЕФОНОВ Описание пошаговой технологии замены редких и нестандартных акумуляторов к некоторым Устройства для зарядки и – dinistorinfo dinistorinfo/ustrojstva-elektricheskogo Cached Зарядные устройства для ( простая схема на 2-х транзисторах) Автомат для зарядного Схема зарядного устройства для автомобильного аккумулятора mashintopru/articlesphp?id=2460 Cached Правда, для этого понадобится ещё и обогреватель, но обычно он есть в каждом гараже Схема включения столь примитивного зарядного устройства довольно проста Схемы зарядных устройств для аккумуляторов и батарей radiostoragenet/73-zaryadnye-ustrojstva Cached Приведена принципиальная схема зарядного устройства ,именно для аккумулятора, а не для сотового телефона, оно построено на микросхеме-стабилизаторе lm317 Самое простое зарядное устройство для АКБ – YouTube wwwyoutubecom/watch?v=W3Lfgsjb8Dk Cached Описание конструкции самого простого зарядного устройства для автомобильных аккумуляторов Автомобильное зарядное устройство – схема и конструкция для ydomainfo/avtomobil/avtomobil-zaryadnoe Cached При кажущейся сложности, схема самодельного зарядного устройства простая и состоит всего из нескольких законченных функциональных узлов Promotional Results For You Free Download | Mozilla Firefox ® Web Browser wwwmozillaorg Download Firefox – the faster, smarter, easier way to browse the web and all of Yahoo 1 2 3 4 5 Next 3,960 results Settings Help Suggestions Privacy (Updated) Terms (Updated) Advertise About ads About this page Powered by Bing™

  • Автоэлектрика Схема простого зарядного устройства для АКБ 15122016 admin 132 532 Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора
  • как 5 копеек – базовая емкость батареи
  • но стоит оно немало

сб-вс 12:00-18:00 Магазин на Маркете м Дубровка (Люблинско-Дмитровская) Автомобильное зарядное – Дешево + Доставка! TV-товары оптом Z29 Заказ от 7 000 руб Гарантия 6 мес Скидки до 21% z29ru › Товары-TV-SHOP-оптом Не подходит по запросу Спам или мошенничество Мешает видеть результаты Информация о сайте реклама Выгода от 18%! Удивительные товары оптом! Оригинал 100%! Доставка по РФ! Контактная информация 8 (800) 555-49-44 круглосуточно Вместе с « простая схема зарядного устройства для автомобильной » ищут: простая схема зарядного устройства для автомобильного аккумулятора простая схема зарядного устройства с регулировкой тока и напряжения простая схема зарядного устройства на тиристоре простая схема зарядного устройства простая схема зарядного устройства 12 вольт простая схема зарядного устройства для шуруповерта 18 вольт простая схема зарядного устройства для автомобильных аккумуляторов простая схема зарядного для авто простая схема зарядного устройства 1976 года простая схема зарядного устройства для телефона 1 2 3 4 5 дальше Bing Google Mailru Простая схема зарядного устройства для автомобильной — смотрите картинки ЯндексКартинки › простая схема зарядного устройства для Пожаловаться Информация о сайте Смотреть все картинки Нашлось 116 млн результатов Дать объявление Показать все Регистрация Войти Войдите через соцcеть Спасибо

1 В на выходе зарядного устройства Скрыть Зарядное устройство для автомобильного voditeliautoru › …avtoustrojstva…zaryadnogo-dlya… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Видео — простое зарядное устройство для автомобильного аккумулятора с использованием трансформатора: Самая простая схема трансформаторного зарядного устройства для автомобильного аккумулятора содержит Читать ещё Видео — простое зарядное устройство для автомобильного аккумулятора с использованием трансформатора: Самая простая схема трансформаторного зарядного устройства для автомобильного аккумулятора содержит: сетевой трансформатор; выпрямительный мост Через ограничительную нагрузку протекает большой ток

  • батареи Сборник принципиальных электрических схем зарядных устройств для аккумуляторов
  • оно построено на микросхеме-стабилизаторе lm317 Самое простое зарядное устройство для АКБ – YouTube wwwyoutubecom/watch?v=W3Lfgsjb8Dk Cached Описание конструкции самого простого зарядного устройства для автомобильных аккумуляторов Автомобильное зарядное устройство – схема и конструкция для ydomainfo/avtomobil/avtomobil-zaryadnoe Cached При кажущейся сложности
  • именно для аккумулятора
скачать игры через торрент assassin s creed 3 механикискачать ведьмак 3 на пк через торрент от механиковмедаль оф хонор варфайтер скачать торрент от механиковbattlefield 3 скачать торрент pc механикаскачать сталкер зона поражения 3 через торрент механикиzoo tycoon 3 скачать торрент на pc механикиsniper игры механики скачать торрентскачать с торрент фильм механик воскрешение 2016fear 3 механики торрентдальнобойщики 2 скачать торрент механики русская версия

Яндекс Яндекс Найти Поиск Поиск Картинки Видео Карты Маркет Новости ТВ онлайн Знатоки Коллекции Музыка Переводчик Диск Почта Все Ещё Дополнительная информация о запросе Показаны результаты для Нижнего Новгорода Москва 1 11 примеров: схемы на самодельное зарядное elektro220vru › akkumulyatory/11-primerov-shemy-na… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Самое простое зарядное устройство для АКБ Схема 100% рабочего ЗУ на 12 вольт Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора Читать ещё Самое простое зарядное устройство для АКБ Схема 100% рабочего ЗУ на 12 вольт ЗУ на 12 вольт Посмотрите на картинке на схему ЗУ на 12 В Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора Приспособление применяется для кислотных АКБ, имеющих высокую емкость Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А Выходное напряжение устройство регулируется самостоятельно Оно составляет от 0 до 24 вольт Скрыть 2 Схема простого зарядного устройства для АКБ 100-советоврф › sxema…zaryadnogo-ustrojstva-dlya… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Авто своими руками, Автоэлектрика Схема простого зарядного устройства для АКБ Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора, например аккумулятор на 60 ампер\часов эффективный ток Читать ещё Авто своими руками, Автоэлектрика Схема простого зарядного устройства для АКБ 15122016 admin 132 532 Тут важно запомнить — эффективный ток заряда для автомобильных свинцово-кислотных аккумуляторов составляет десятую часть от ёмкости аккумулятора, например аккумулятор на 60 ампер\часов эффективный ток заряда должен быть в районе 6 ампер и тд В моем варианте был использован готовый трансформатор от источника бесперебойного питания, по мне это хороший вариант Скрыть 3 Простое зарядное устройство — Сообщество «Кулибин» drive2ru › c/2014662/ Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Подробнее о сайте Однако, при длительном простое автомобиля , на морозе или при наличии И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора Принципиальная схема устройства показана на фото ниже Читать ещё Однако, при длительном простое автомобиля , на морозе или при наличии неисправностей батарея может разрядиться до такой степени, что становится не способной обеспечить ток, необходимый для запуска двигателя И здесь на помощь приходит зарядное устройство для автомобильного аккумулятора Однако стоимость зарядного устройства сильно “бьёт” по карману, и поэтому я решил сам собрать зарядное устройство Принципиальная схема устройства показана на фото ниже Принципиальная схема устройства Скрыть 4 Схемы зарядных устройств для автомобильного pochiniguru › tehnika/zaryadnoe-ustroystvo Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Схемы простых зарядных устройств для аккумулятора своими руками Зарядное устройство ( ЗУ ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход Обслуживание батареи в СТО требует времени и денег Читать ещё Схемы простых зарядных устройств для аккумулятора своими руками Переделка блока питания компьютера в зарядник Зарядное устройство ( ЗУ ) для аккумулятора необходимо каждому автолюбителю, но стоит оно немало, а регулярные профилактические поездки в автосервис не выход Обслуживание батареи в СТО требует времени и денег Кроме того, на разряженном аккумуляторе до сервиса ещё нужно доехать Собрать своими руками работоспособное зарядное устройство для автомобильного аккумулятора своими руками сможет каждый, кто умеет пользоваться паяльником Немного теории об аккумуляторах Любой аккумулятор (АКБ) — накопитель электрической энергии Скрыть 5 Зарядное устройство для автомобильного elektroznatokru › oborudovanie…dlya-avtomobilnogo… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Как сделать зарядное устройство для автомобильного аккумулятора своими руками: принципы, схемы От самых простых зарядников до регулируемых Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда Ток заряда изменяется переменным Читать ещё Как сделать зарядное устройство для автомобильного аккумулятора своими руками: принципы, схемы От самых простых зарядников до регулируемых Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда Ток заряда изменяется переменным резистором Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой Скрыть 6 Автомобильное зарядное устройство своими руками chebopro › avto/avtomobilnoe-zaryadnoe-ustrojstvo… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Зарядные устройства различного типа для автомобильных батарей своими руками Автомобильное зарядное устройство своими руками: простые схемы Для того чтобы автомобиль завёлся, ему необходима энергия Читать ещё Зарядные устройства различного типа для автомобильных батарей своими руками Устройство аккумулятора Переделка источников бесперебойного питания и блоков АТ в зарядные устройства Автомобильное зарядное устройство своими руками: простые схемы Для того чтобы автомобиль завёлся, ему необходима энергия Такая энергия берётся из аккумулятора Как правило, его подзарядка происходит от генератора во время работы двигателя Когда автомобиль долго не используется или батарея неисправна, она разряжается до такого состояния, что машина уже не может завестись В этом случае требуется внешняя зарядка Скрыть 7 Простая схема зарядного устройства для автомобильной — смотрите картинки ЯндексКартинки › простая схема зарядного устройства для Пожаловаться Информация о сайте Смотреть все результаты поиска на сервисе ЯндексКартинки 8 Схема зарядного устройства для автомобильного autootru › zaryadnoe-ustroystvo-avtomobilnogo… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Схема простого зарядного устройства для автомобильного аккумулятора Рис1 Перед тем как сделать зарядное устройство для автомобильного аккумулятора, следует оценить свой опыт электромонтажных работ, знания по электротехнике, на основании этого приступить к выбору схемы Читать ещё Схема простого зарядного устройства для автомобильного аккумулятора Рис1 Заряд от бытовой сети Перед тем как сделать зарядное устройство для автомобильного аккумулятора, следует оценить свой опыт электромонтажных работ, знания по электротехнике, на основании этого приступить к выбору схемы зарядного устройства для автомобильного аккумулятора Можно посмотреть в гараже, возможно, есть старые устройства или блоки Скрыть 9 Видео по запросу простая схема зарядного устройства ЯндексВидео › простая схема зарядного устройства для Пожаловаться Информация о сайте 3:26 HD 3:26 HD Делаем Простое Зарядное Устройство youtubecom 4:15 HD 4:15 HD Cхема зарядного устройства для youtubecom 6:55 HD 6:55 HD Провереная схема зарядного устройства youtubecom 13:11 HD 13:11 HD Простое автомобильное зарядное устройство youtubecom 14:15 HD 14:15 HD Самое простое зарядное устройство для АКБ okru 5:18 HD 5:18 HD Простое зарядное устройство для youtubecom 5:18 HD 5:18 HD Простое зарядное устройство для okru 7:18 HD 7:18 HD Простое зарядное устройство своими youtubecom 5:18 HD 5:18 HD Простое зарядное устройство для okru 23:36 HD 23:36 HD Автоматическое Тиристорное Простое okru Ещё видео 10 Видео: Самое простое зарядное устройство для АКБ avtocity365ru › …i…avtomobilya…ustrojstva-dlya… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа По своей сути – это двухполупериодный выпрямитель, отсюда и требования к Читать ещё Схема этого зарядного устройства из трансформатора примитивна, но работоспособна и собирается из доступных деталей – таким же образом сконструированы и заводские зарядные устройства простейшего типа По своей сути – это двухполупериодный выпрямитель, отсюда и требования к трансформатору: так как на выходе таких выпрямителей напряжение равно номинальному напряжению переменного тока, помноженному на корень из двух, то при 10В на обмотке трансформатора мы получим 14,1 В на выходе зарядного устройства Скрыть Зарядное устройство для автомобильного voditeliautoru › …avtoustrojstva…zaryadnogo-dlya… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Видео — простое зарядное устройство для автомобильного аккумулятора с использованием трансформатора: Самая простая схема трансформаторного зарядного устройства для автомобильного аккумулятора содержит Читать ещё Видео — простое зарядное устройство для автомобильного аккумулятора с использованием трансформатора: Самая простая схема трансформаторного зарядного устройства для автомобильного аккумулятора содержит: сетевой трансформатор; выпрямительный мост Через ограничительную нагрузку протекает большой ток, она сильно нагревается, поэтому для ограничения тока зарядки часто используют конденсаторы в первичной цепи трансформатора В принципе, в такой схеме можно обойтись и без трансформатора, если грамотно подобрать конденсатор Но без гальванической развязки с сетью переменного тока такая схема будет опасна с точки зрения поражения электрическим током Скрыть Схема зарядного устройства для автомобильного obinstrumenteru › …zaryadnogo-ustrojstva-dlya… Сохранённая копия Показать ещё с сайта Пожаловаться Информация о сайте Схема простого зарядного устройства для автомобильного аккумулятора Формула нормального заряда простая , как 5 копеек – базовая емкость батареи, деленная на 10 Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт) Читать ещё Схема простого зарядного устройства для автомобильного аккумулятора Формула нормального заряда простая , как 5 копеек – базовая емкость батареи, деленная на 10 Напряжение заряда должно быть немногим более 14 вольт (речь идет о стандартной стартерной батарее 12 вольт) Простая принципиальная электрическая схема зарядного устройства для автомобиля состоит из трех компонентов: блок питания, регулятор, индикатор Классика — резисторный зарядник Блок питания изготавливается из двух обмоточного «транса» и диодной сборки Выходное напряжение подбирается вторичной обмоткой Скрыть Зарядные устройства для авто – От производителя! Кедр- Авто 4А Кедр- Авто 10А Кедр- Авто 6/12 Volt Доставка shopniippru › зарядные-устройства Не подходит по запросу Спам или мошенничество Мешает видеть результаты Информация о сайте реклама Кедр- авто для заряда и восстановления АКБ автомобилей От 1600 р! Покупайте онлайн! Контактная информация +7 (3822) 56-26-63 пн-пт 9:00-18:00 Купить зарядное устройство Квазар / sibirservisnskru Главная страница Каталог товаров Зарядные устройства sibirservisnskru Не подходит по запросу Спам или мошенничество Мешает видеть результаты Информация о сайте реклама Купить зарядное устройство «Квазар 02» за 1300 руб в Новосибирске Магазин на Маркете Автомобильные зарядные устройства – от 840 до 4190 ₽ Доставка по РФ Курьер Пункты выдачи Оплата при получении kremlinstoreru › доставка-из-Москвы Не подходит по запросу Спам или мошенничество Мешает видеть результаты Информация о сайте реклама В наличии 26 видов, цена от 840 до 4190 ₽ Контактная информация +7 (499) 500-96-27 пн-пт 10:00-20:00, сб-вс 12:00-18:00 Магазин на Маркете м Дубровка (Люблинско-Дмитровская) Автомобильное зарядное – Дешево + Доставка! TV-товары оптом Z29 Заказ от 7 000 руб Гарантия 6 мес Скидки до 21% z29ru › Товары-TV-SHOP-оптом Не подходит по запросу Спам или мошенничество Мешает видеть результаты Информация о сайте реклама Выгода от 18%! Удивительные товары оптом! Оригинал 100%! Доставка по РФ! Контактная информация 8 (800) 555-49-44 круглосуточно Вместе с « простая схема зарядного устройства для автомобильной » ищут: простая схема зарядного устройства для автомобильного аккумулятора простая схема зарядного устройства с регулировкой тока и напряжения простая схема зарядного устройства на тиристоре простая схема зарядного устройства простая схема зарядного устройства 12 вольт простая схема зарядного устройства для шуруповерта 18 вольт простая схема зарядного устройства для автомобильных аккумуляторов простая схема зарядного для авто простая схема зарядного устройства 1976 года простая схема зарядного устройства для телефона 1 2 3 4 5 дальше Bing Google Mailru Простая схема зарядного устройства для автомобильной — смотрите картинки ЯндексКартинки › простая схема зарядного устройства для Пожаловаться Информация о сайте Смотреть все картинки Нашлось 116 млн результатов Дать объявление Показать все Регистрация Войти Войдите через соцcеть Спасибо, что помогаете делать Яндекс лучше! Эта реклама отправилась на дополнительную проверку ОК ЯндексДирект Попробовать ещё раз Москва Настройки Клавиатура Помощь Обратная связь Для бизнеса Директ Метрика Касса Телефония Для души Музыка Погода ТВ онлайн Коллекции Яндекс О компании Вакансии Блог Контакты Мобильный поиск © 1997–2019 ООО «Яндекс» Лицензия на поиск Статистика Поиск защищён технологией Protect Алиса в ЯндексБраузере Помогает искать в интернете и поддерживает беседы 0+ Установить Будьте в Плюсе

ИнтерфейсРусский/Английский
Тип лицензияFree
Кол-во просмотров257
Кол-во загрузок132 раз
Обновление:03-12-2018
Оценка:1-109

Схема простого зарядного устройства на 12 В

Схема простого зарядного устройства на 12 В

Простая электрическая схема зарядного устройства на 12 В, разработанная с использованием нескольких легко доступных компонентов, и эта схема подходит для различных типов аккумуляторов, требующих 12 В. Вы можете использовать эту схему для зарядки батареи 12 В SLA или гелевой батареи 12 В и так далее. Эта схема предназначена для обеспечения зарядного тока до 3 ампер, и в этой схеме нет защиты от обратной полярности или защиты от перегрузки по току, поэтому, пожалуйста, проверьте эту схему перед тем, как приступить к зарядке аккумулятора.

Эта простая принципиальная схема зарядного устройства на 12 В дает вам общее представление о стандартном зарядном устройстве, и вы можете добавить в эту схему дополнительные функции, такие как защита от обратной полярности, установив диод на выходе. (Диодный анод для вывода положительного источника питания и диодный катод как выходной положительный вывод) и установка защиты от перегрузки по току с использованием транзисторов. Следующая схема зарядного устройства представляет собой необработанный прототип, обеспечивающий выходное напряжение аккумулятора 12 В.

Принципиальная схема

Необходимые компоненты


  1. Понижающий трансформатор (0–14 В переменного тока / 3 А) – выбор зависит от ваших требований.
  2. Мостовой выпрямительный модуль BR1010
  3. Конденсаторы 0,01 мкФ, 100 мкФ / 25 В каждый
  4. Резистор 1 кОм (используйте 0,25 Вт для обычных светодиодов)
  5. Светодиод

Строительство и работа

Используйте понижающий трансформатор необходимого тока для вашей целевой батареи, здесь мы использовали понижающий трансформатор 0–14 В переменного тока / 3 А, а для выпрямления переменного тока в постоянный мы использовали модуль мостового выпрямителя BR1010, который обеспечивает высокоэффективный источник постоянного тока с высоким номинальным током.

BR1010

Этот модуль мостового выпрямителя будет иметь четыре клеммы, две для входа питания переменного тока, отмеченные знаком, и две клеммы для выхода постоянного тока, отмеченные положительным и отрицательным знаком.

Конденсаторы

C1 и C2 работают как фильтры в этой цепи, тогда светодиод указывает на наличие источника постоянного тока на выходе. Подключите целевой аккумулятор к выходу для зарядки.

Простое автомобильное зарядное устройство и схема индикатора

Автомобильный аккумулятор – это типичный свинцово-кислотный аккумулятор, состоящий примерно из 6 ячеек, каждый по 2 В, так что общее напряжение аккумулятора составляет около 12 В. Типичные значения номинальных значений батареи находятся в диапазоне от 20 Ач до 100 Ач. Здесь мы рассматриваем автомобильный аккумулятор номиналом 40 Ач, поэтому требуемый зарядный ток будет около 4 А.В этой статье описывается принцип действия, конструкция и работа простого автомобильного зарядного устройства от сети переменного тока и секция управления с обратной связью для управления зарядкой аккумулятора.

Принцип работы автомобильного зарядного устройства:

Это простое автомобильное зарядное устройство с индикацией. Аккумулятор заряжается от сети переменного тока 230 В, 50 Гц. Это переменное напряжение выпрямляется и фильтруется, чтобы получить нерегулируемое постоянное напряжение, используемое для зарядки аккумулятора через реле.Это напряжение батареи постоянно контролируется схемой обратной связи, состоящей из делителя потенциала, диода и транзистора. Реле и цепь обратной связи питаются от регулируемого постоянного напряжения (полученного с помощью регулятора напряжения). Когда напряжение аккумулятора превышает максимальное значение, схема обратной связи рассчитывается таким образом, что реле выключается и заряд аккумулятора прекращается.

Также получите представление о том, как работает схема зарядного устройства свинцово-кислотной батареи?

Схема автомобильного зарядного устройства: Схема автомобильного зарядного устройства
Конструкция автомобильного зарядного устройства:

Чтобы спроектировать всю схему, мы сначала спроектируем три различных модуля – блок питания, обратная связь и раздел нагрузки.

Этапы проектирования источника питания:

  1. Здесь желаемой нагрузкой является автомобильный аккумулятор с номинальной мощностью около 40 Ач. Поскольку зарядный ток батареи должен составлять 10% от номинала батареи, требуемый зарядный ток будет около 4А.
  2. Теперь требуемый вторичный ток трансформатора будет около 1,8 * 4, т. Е. Ток около 8 А. Поскольку требуемое напряжение нагрузки составляет 12 В, мы можем остановиться на трансформаторе с номиналом 12 В / 8 А. Теперь необходимое среднеквадратичное значение переменного напряжения составляет около 12 В, пиковое напряжение будет около 14.4 В, то есть 15 В.
  3. Поскольку здесь мы используем мостовой выпрямитель, PIV для каждого диода должен более чем в четыре раза превышать пиковое напряжение переменного тока, то есть более 90 В. Здесь мы выбираем диоды 1N4001 с рейтингом PIV около 100 В.
  4. Поскольку здесь мы также разрабатываем регулируемый источник питания, максимально допустимая пульсация будет равна пиковому напряжению конденсатора за вычетом необходимого минимального входного напряжения для регулятора. Здесь мы используем стабилизатор напряжения LM7812, чтобы обеспечить регулируемое напряжение 5 В для реле и таймера 555.Таким образом, пульсация будет около 4 В (пиковое напряжение около 15 В и входное напряжение регулятора около 8 В). Таким образом, расчетная емкость конденсатора фильтра составляет около 10 мФ.

Проектирование секции обратной связи и нагрузки:

Проектирование секции обратной связи и нагрузки предполагает выбор резисторов для секции делителя напряжения. Поскольку диод будет проводить только тогда, когда напряжение батареи достигнет 14,4 В, номиналы резисторов должны быть такими, чтобы положительное напряжение, подаваемое на диод, было не менее 3 В, когда напряжение батареи примерно равно максимальному.

Имея это в виду и сделав необходимые вычисления, мы выбираем потенциометр 100 Ом и другие резисторы на 100 Ом и 820 Ом каждый.

Также прочтите пост – Работа схемы зарядного устройства солнечной батареи и ее применение

Работа цепи зарядного устройства автомобильного аккумулятора:

Работа схемы начинается после подачи питания. Мощность переменного тока 230 В RMS понижается до 15 В RMS с помощью понижающего трансформатора.Это низковольтное переменное напряжение затем выпрямляется мостовым выпрямителем для создания нерегулируемого постоянного напряжения с пульсациями переменного тока. Конденсатор фильтра пропускает через него пульсации переменного тока, создавая на нем нерегулируемое и фильтрованное постоянное напряжение. Здесь выполняются две операции: – 1. Это нерегулируемое напряжение постоянного тока подается непосредственно на нагрузку постоянного тока (в данном случае аккумулятор) через реле. 2. Это нерегулируемое напряжение постоянного тока также подается на регулятор напряжения для создания регулируемого источника постоянного тока 12 В.

Здесь реле представляет собой реле 1С, и общая точка подключена к нормально замкнутому положению, так что ток течет через реле к батарее, и она заряжается.Когда через светодиод проходит ток, он начинает проводиться, указывая на то, что батарея заряжается. Часть тока также протекает через последовательные резисторы, так что напряжение батареи разделяется с помощью устройства делителя потенциала. Первоначально падение напряжения на делителе потенциала недостаточно для смещения диода. Это напряжение равно напряжению батареи и, таким образом, определяет зарядку и разрядку батареи. Первоначально потенциометр настраивается до середины.Поскольку напряжение батареи постепенно увеличивается, оно достигает точки, когда напряжения на делителе потенциала достаточно для прямого смещения диода. Когда диод начинает проводить, переход база-эмиттер транзистора Q2 приводится в состояние насыщения, и транзистор включается.

Поскольку коллектор транзистора подключен к одному концу обмотки реле, на последний подается напряжение, и точка общего контакта перемещается в нормально разомкнутое положение. Таким образом, источник питания отключается от батареи, и зарядка батареи прекращается.По прошествии некоторого времени, когда батарея начинает разряжаться и напряжение на делителе потенциала снова достигает положения, при котором диод смещен в обратном направлении или находится в выключенном состоянии, транзистор вынужден отключаться, и таймер теперь находится в выключенном положении, так что нет выхода. Общая точка реле возвращается в исходное положение, то есть в нормально замкнутое положение. Аккумулятор снова начинает заряжаться, и весь процесс повторяется.

Применение цепи зарядного устройства автомобильного аккумулятора:
  1. Эта схема является портативной и может использоваться в местах, где имеется источник переменного напряжения.
  2. Может использоваться для зарядки аккумуляторов игрушечных автомобилей.
Ограничения этой схемы:
  1. Это теоретическая схема и может потребовать некоторых практических изменений.
  2. Зарядка и разрядка аккумулятора может занять больше времени.
Принципиальная схема зарядного устройства для свинцово-кислотных аккумуляторов

и его работа

В этом проекте «Сделай сам» я покажу вам, как построить простую схему зарядного устройства для свинцово-кислотных аккумуляторов, используя легко доступные компоненты.Эта схема может использоваться для зарядки аккумуляторных свинцово-кислотных аккумуляторов на 12 В с номиналом от 1 Ач до 7 Ач.

Введение

Свинцово-кислотные батареи – одни из самых старых аккумуляторных батарей, доступных сегодня. Из-за их низкой стоимости (по емкости) по сравнению с новыми технологиями аккумуляторов и способности обеспечивать высокие импульсные токи (важный фактор в автомобилях) свинцово-кислотные аккумуляторы по-прежнему являются предпочтительным выбором аккумуляторов почти для всех транспортных средств.

Основная проблема, связанная с любой батареей, заключается в том, что она со временем разряжается и требует подзарядки, чтобы обеспечить необходимое напряжение и ток.

У разных аккумуляторов разные стратегии зарядки, и в этом проекте я покажу вам, как заряжать свинцово-кислотные аккумуляторы с помощью простой схемы зарядного устройства для свинцово-кислотных аккумуляторов.

Предупреждение: Прежде чем продолжить, я хочу, чтобы вы знали, что эта схема тестируется в определенных условиях тестирования, и мы не гарантируем, что она будет успешной на 100%. Попробуйте эту схему на свой страх и риск. Примите все необходимые меры предосторожности, поскольку вы можете иметь дело с сетевым напряжением и высоким потенциалом постоянного тока.

Как зарядить свинцово-кислотный аккумулятор?

Для зарядки аккумулятора от сети переменного тока нам понадобится понижающий трансформатор, выпрямитель, схема фильтрации, регулятор для поддержания постоянного напряжения. Затем мы можем подать стабилизированное напряжение на аккумулятор, чтобы зарядить его. Подумайте, если у вас есть только постоянное напряжение и заряжаете свинцово-кислотную батарею, мы можем сделать это, подав это постоянное напряжение на регулятор напряжения постоянного и постоянного тока и некоторые дополнительные схемы перед подачей на свинцово-кислотную батарею. Автомобильный аккумулятор также является свинцово-кислотным аккумулятором.

Как видно на приведенной выше блок-схеме, на регулятор напряжения постоянного тока подается постоянное напряжение. Здесь используется стабилизатор напряжения 7815, который представляет собой стабилизатор на 15 В. На аккумулятор подается регулируемое выходное напряжение постоянного тока. Существует также схема режима непрерывной зарядки, которая помогает снизить ток, когда аккумулятор полностью заряжен.

Связанная публикация – Схема портативного зарядного устройства 12 В с использованием LM317

Принципиальная схема

Принципиальная схема зарядного устройства для свинцово-кислотных аккумуляторов приведена ниже.

Компоненты цепи зарядного устройства свинцово-кислотной батареи
  • 7815
  • Мостовой выпрямитель
  • Резисторы – 1 Ом (5 Вт), 1 кОм x 2, 1,2 кОм, 1,5 кОм x 2, 10 кОм
  • Диоды – 1N4007, x 3, 1N4732A (стабилитрон)
  • 2SD882 Транзистор NPN
  • светодиодов x 4
  • Потенциометр 50 кОм
  • Реле 12 В
Описание компонентов

7815

7815 является частью линейных регуляторов напряжения серии 78XX.Вы могли использовать 7805 и 7812, которые производят регулируемое напряжение 5 В и 12 В соответственно. Точно так же регулятор напряжения 7815 выдает постоянное регулируемое напряжение 15 В.

Свинцово-кислотная батарея

Свинцово-кислотная батарея – это перезаряжаемая батарея, разработанная в 1859 году Гастоном Планте. Основное преимущество свинцовой батареи заключается в том, что она рассеивает очень мало энергии (если рассеиваемая энергия меньше, она может работать долгое время с высокой эффективностью), она может обеспечивать высокие импульсные токи и доступна по очень низкой цене.

Калибровка схемы

Прежде чем увидеть работу, позвольте мне показать вам, как откалибровать схему. Для калибровки схемы вам понадобится регулируемый источник питания постоянного тока (настольный источник питания). Установите напряжение в вашем настольном источнике питания на 14,5 В и подключите его к CB + и CB- схемы.

Сначала установите перемычку между положениями 2 и 3 для калибровки. Теперь медленно поворачивайте потенциометр 50 кОм, пока не загорится светодиод «Заряжено». Теперь отключите питание и подключите перемычку между 1 и 2.Ваша схема готова, так как все, что вам нужно, это источник постоянного (или переменного) напряжения 18 В.

ПРИМЕЧАНИЕ

  • 14,5 В, установленное нами при калибровке, называется точкой срабатывания. Если для точки срабатывания установлено значение 14,5 В, аккумулятор будет заряжаться примерно на 75% своей емкости.
  • Если вы хотите зарядить на 100%, установите точку срабатывания ≈16 В, сняв регулятор 7815 и напрямую подавая 18 В постоянного тока, но это не рекомендуется.

Описание схемы

  • Схема в основном состоит из мостового выпрямителя (если вы используете источник переменного тока с пониженным напряжением до 18 В), регулятора 7815, стабилитрона, реле 12 В и нескольких резисторов и диодов.
  • Напряжение постоянного тока подается на Vin 7815 и начинает заряжать аккумулятор через реле и резистор 1 Ом (5 Вт).
  • Когда напряжение зарядки аккумулятора достигает точки срабатывания, то есть 14,5 В, стабилитрон начинает проводить и обеспечивает достаточное базовое напряжение для транзистора.
  • В результате транзистор активен, и его выход становится ВЫСОКИМ. Этот высокий сигнал активирует реле, и аккумулятор отключается от источника питания.

ПРИМЕЧАНИЕ:

  • Аккумулятор следует заряжать током зарядки 1/10 th .поэтому регулятор напряжения должен генерировать 1/10 -го зарядного тока, производимого аккумулятором.
  • Радиатор должен быть подключен к регулятору 7815 для повышения эффективности.

Связанные сообщения:

Простая схема зарядного устройства для гелевых аккумуляторов

Это схема зарядного устройства для гелевых аккумуляторов с использованием LM317. Он может заряжать гелевые батареи любого размера с током зарядки 300 мА, 650 мА и 1,3 А.

Может продлить срок службы гелевой батареи.Потому что это более низкое напряжение зарядки ( отрегулируйте напряжение 13,4 В). Таким образом, никаких перегревов.

Пока цепь работает, светодиод показывает зарядку. И напряжение батареи повышается и полный ток по мере настройки. Затем ток уменьшается до нуля. При этом светодиод погаснет.

Что такое гелевый аккумулятор?

Некоторые из вас могут еще не знать их. Давайте познакомимся с этим немного.

Это также свинцово-кислотные батареи. Но есть группа необслуживаемых батарей.Внутри есть пластина положительного элемента и пластина отрицательного элемента со свинцовым кальцием или свинцовым серебром (дорого).

Нам не нужно заглядывать внутрь. Просто используйте это достаточно.

Батарея этого типа. Кислота внутри батареи была загущена, чтобы уменьшить проблему утечки кислоты из батареи.

Cr: Фото с Amazon Mighty Max Battery

Схема зарядного устройства гелевых аккумуляторов работает

В приведенной выше схеме мы используем LM317 в качестве регулируемого регулятора положительного напряжения 1,5 А.Он преобразует входное постоянное напряжение в стабильное напряжение для зарядки аккумулятора. Мы настраиваем потенциометр 5K-VR1 на выход 13,4 В.

Мы устанавливаем выходной ток с помощью резистора измерения тока (R3) на земле или (-) клемме.

R3 ограничивает ток. Вы можете выбрать его, чтобы установить ток зарядки.

  • 300 мА = 2,2 Ом, 1 Вт
  • 500 мА = 1 Ом, 1 Вт
  • 1300 мА = 0,47 Ом, 1 Вт

Когда ток течет через R3.Это приводит к появлению напряжения на базе и эмиттере транзистора Q1. Он смещен вперед. Таким образом, Q1 проводит ток к LED1 и регулятору IC1.

Красный светодиод 1 показывает, что аккумулятор заряжается. Когда напряжение батареи достигнет, ток упадет до нескольких миллиампер. И это снижает напряжение на Q1 и LED1. Когда ток падает примерно на 5%, светодиод гаснет, и ток падает почти до нуля.

См .: Схема автоматического зарядного устройства

Адаптер переменного тока

Мы используем адаптер переменного тока в качестве источника питания.Как и в схеме выше, комплект разъемов 500 мА постоянного тока для зарядного тока 300 мА. Но мой сын ошибочно рисует схему. Мы сожалеем. Сила тока адаптера переменного тока должна превышать 1500 мА при напряжении от 15 до 18 В.

  • Для выхода 300 мА требуется блок разъемов на 500 мА.
  • Для выхода 500 мА требуется блок розеток на 650 мА.
  • Для выхода 1300 мА требуется блок штекеров на 1500 мА.

Что такое адаптер переменного тока?

Если вы новичок, то можете запутать схему внутри нее.
Если вы не можете купить адаптер переменного тока, используйте нерегулируемый источник питания из имеющихся у вас деталей. Это спасает чем то.

Детали, которые вам понадобятся
IC1 = IC1 = LM317_1.5A Регулируемый стабилизатор положительного напряжения
C1, C2 = 0,1 мкФ 50 В_ Керамические конденсаторы
R1 = 470 Ом _ 0,25 Вт Резистор
R2 = 2,2 кОм _ 0,25 Вт Резистор
VR1 = 5K _ потенциометр
R3 = 1 Ом 1 Вт Резистор

Мало того, что мне нравится сохранять старые идеи схем. Это может быть полезно для вашего.См. Ниже:

Цепь зарядного устройства сухой батареи

Это цепь зарядного устройства сухой батареи. Для этого можно использовать зарядное устройство, чтобы проработать около 12 часов. При подаче на блок питания 9 вольт оборудования, фиксирующего в цепи, используется аккумулятор типоразмера АА.

Если используется размер C или D, сопротивление резистора RX должно снизиться до 68 Ом и не должно приводить к тому, что батарея перейдет в последовательное соединение, в то время как напряжение в элементарной батарее ниже 1,6 В.

Схема компаратора с (IC741) управляет выходом затвора из импульсного генератора.Мы используем интегральную схему CMOS 4011, которая подает ток смещения на транзистор, который находится в переднем зарядном устройстве, пока напряжение не достигнет 1,6 В.

Схема компаратора сигнализирует о том, что светодиодный индикатор мигает, для защиты заряженного аккумулятора от полного заряда.

В следующий раз, если у друзей есть сухие батареи, которые уже должны быть готовы, не отказывайтесь, попробуйте снова применить новую.

Продолжайте читать:
5 Цепи зарядки свинцово-кислотных аккумуляторов

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Схема зарядного устройства для сотового телефона

Мобильные телефоны обычно заряжаются от источника постоянного тока с регулируемым напряжением 5 В , поэтому в основном мы собираемся создать источник постоянного тока с регулируемым напряжением 5 В от 220 переменного тока. Этот источник постоянного тока может использоваться для зарядки мобильных устройств, а также в качестве источника питания для цифровых схем, макетных схем, микросхем, микроконтроллеров и т. Д.

Вы также можете построить 6 В постоянного тока, 9 В, 12 В, 15 В и т. Д., Используя соответствующий трансформатор, конденсатор и регулятор напряжения. Основная концепция остается прежней, вам просто нужно установить радиатор для более высокого напряжения и тока.

Эта схема в основном состоит из понижающего трансформатора, двухполупериодного мостового выпрямителя и микросхемы стабилизатора напряжения 5 В (7805). Мы можем разделить эту схему на четыре части: (1) понижающее напряжение переменного тока (2) выпрямление (3) фильтрация (4) регулирование напряжения.

1. Понижающее напряжение переменного тока

Поскольку мы преобразуем 220 В переменного тока в 5 В постоянного тока, сначала нам понадобится понижающий трансформатор для снижения такого высокого напряжения. Здесь мы использовали понижающий трансформатор 9-0-9 1А, который преобразует 220В переменного тока в 9В переменного тока.В трансформаторе есть первичная и вторичная катушки, которые повышают или понижают напряжение в зависимости от количества витков в катушках.

Выбор подходящего трансформатора очень важен. Номинальный ток зависит от требований по току Цепь нагрузки (цепь, которая будет использовать генерирующий постоянный ток). Номинальное напряжение должно быть больше требуемого напряжения. Означает, что если нам нужно 5 В постоянного тока, трансформатор должен иметь номинальное значение не менее 7 В, потому что стабилизатору напряжения IC 7805 нужно как минимум на 2 В больше i.е. 7 В для обеспечения напряжения 5 В.

2. Исправление

Выпрямление – это процесс удаления отрицательной части переменного тока (AC) и, следовательно, создания частичного постоянного тока. Этого можно добиться, используя 4 диода. Диоды позволяют току течь только в одном направлении. В первом полупериоде переменного тока диоды D2 и D3 смещены в прямом направлении, а D1 и D4 смещены в обратном направлении, а во втором полупериоде (отрицательная половина) диоды D1 и D4 смещены в прямом направлении, а D2 и D3 смещены в обратном направлении.Эта комбинация преобразует отрицательный полупериод в положительный.

На рынке доступен двухполупериодный мостовой выпрямитель, который состоит из 4 внутренних диодов. Здесь мы использовали этот компонент.

3. Фильтрация

Выход после выпрямления не является правильным постоянным током, это колебательный выход с очень высоким коэффициентом пульсаций. Нам не нужен этот пульсирующий выход, для этого мы используем конденсатор.Конденсатор заряжается до тех пор, пока форма волны не достигнет своего пика, и разряжается в цепи нагрузки, когда форма волны становится низкой. Таким образом, когда выходной сигнал становится низким, конденсатор поддерживает надлежащее напряжение в цепи нагрузки, тем самым создавая постоянный ток. Теперь, как следует рассчитать значение этого конденсатора фильтра. Вот формулы:

C = I * т / В

C = рассчитываемая емкость

I = максимальный выходной ток (допустим, 500 мА)

t = 10 мс,

Мы получим волну частотой 100 Гц после преобразования переменного тока 50 Гц в постоянный через двухполупериодный мостовой выпрямитель.Поскольку отрицательная часть импульса преобразуется в положительную, один импульс будет считаться двумя. Таким образом, период времени будет 1/100 = 0,01 секунды = 10 мс

.

В = Пиковое напряжение – напряжение, подаваемое на микросхему регулятора напряжения (+2 больше номинального значения означает 5 + 2 = 7)

9-0-9 – это среднеквадратичное значение преобразований, поэтому пиковое напряжение составляет Vrms * 1,414 = 9 * 1,414 = 12,73 В

Теперь 1,4 В будет падать на 2 диода (0,7 на диод), поскольку 2 будут смещены вперед для полуволны.

Итак, 12,73 – 1,4 = 11,33 В

Когда конденсатор разряжается в цепи нагрузки, он должен обеспечивать 7805 IC для работы 7805 В, поэтому в итоге V будет:

В = 11.33-7 = 4,33в

Итак, теперь C = I * t / V

C = 500 мА * 10 мс / 4,33 = 0,5 * 0,01 / 4,33 = 1154 мкФ ~ 1000 мкФ

4. Регулирование напряжения

Стабилизатор напряжения IC 7805 используется для обеспечения регулируемого напряжения 5 В постоянного тока. Входное напряжение должно быть на 2 В больше, чем номинальное выходное напряжение для правильной работы ИС, это означает, что требуется не менее 7 В, хотя он может работать в диапазоне входного напряжения 7-20 В. Внутри регуляторов напряжения есть все схемы, обеспечивающие должный регулируемый постоянный ток.К выходу 7805 следует подключить конденсатор емкостью 0,01 мкФ, чтобы устранить шум, возникающий при переходных изменениях напряжения.

Вот полная принципиальная схема для цепи зарядного устройства сотового телефона :

Вы должны быть очень осторожны при построении этой схемы, так как здесь задействована сеть переменного тока 220 В.

Простые микросхемы зарядного устройства для любой химии

Предпосылки

Для многих устройств с батарейным питанием обычно требуются самые разные источники заряда, химический состав батарей, напряжения и токи.Например, промышленные, высокопроизводительные, многофункциональные потребительские, медицинские и автомобильные зарядные устройства требуют более высоких напряжений и токов, поскольку появляются новые аккумуляторные блоки большой емкости для всех типов батарей. Кроме того, солнечные панели с широким диапазоном уровней мощности используются для питания множества инновационных систем, содержащих перезаряжаемые герметичные свинцово-кислотные (SLA) и литиевые батареи. Примеры включают габаритные огни пешеходного перехода, портативные акустические системы, уплотнители мусора и даже огни морских буев.Более того, некоторые свинцово-кислотные (LA) батареи, используемые в солнечных батареях, представляют собой батареи глубокого цикла, способные выдерживать длительные повторяющиеся циклы зарядки в дополнение к глубоким разрядам. Хороший пример этого – глубоководные морские буи, обязательным условием которых является 10-летний срок эксплуатации. Другой пример – внесетевые (то есть отключенные от электроэнергетической компании) системы возобновляемых источников энергии, такие как солнечная или ветровая энергия, где время безотказной работы имеет первостепенное значение из-за трудностей с близким доступом.

Даже в несолнечных приложениях последние рыночные тенденции означают возобновление интереса к аккумуляторным элементам SLA большой емкости. Автомобильные или пусковые элементы SLA недороги с точки зрения соотношения цена / мощность и могут обеспечивать высокие импульсные токи в течение коротких промежутков времени, что делает их отличным выбором для автомобильных и других пусковых устройств транспортных средств. Встраиваемые автомобильные приложения имеют входное напряжение> 30 В, а в некоторых даже выше. Рассмотрим систему определения местоположения GPS, используемую в качестве средства защиты от кражи; линейное зарядное устройство с типичным входом 12 В с понижением до двух последовательно соединенных литий-ионных аккумуляторов (7.4 В) и нуждающиеся в защите от гораздо более высоких напряжений, могут быть полезны для этого приложения. Аккумуляторы глубокого разряда LA – еще одна технология, популярная в промышленных приложениях. У них более толстые пластины, чем у автомобильных аккумуляторов, и они рассчитаны на разряд до 20% от их общей емкости. Обычно они используются там, где мощность требуется в течение длительного времени, например, в вилочных погрузчиках и тележках для гольфа. Тем не менее, как и их литий-ионные аналоги, аккумуляторы LA чувствительны к перезарядке, поэтому осторожное обращение во время цикла зарядки очень важно.

Решения на основе интегральных схем (IC)

покрывают лишь небольшую часть множества возможных комбинаций входного напряжения, напряжения заряда и тока заряда. Громоздкая комбинация микросхем и дискретных компонентов обычно использовалась для покрытия большинства оставшихся, более сложных комбинаций и топологий. Так было только в 2011 году, когда компания Analog Devices обратилась к этому рыночному пространству приложений и упростила его с помощью популярного решения для зарядки с двумя микросхемами, состоящего из микросхемы контроллера зарядки аккумулятора LTC4000 и совместимого преобразователя постоянного тока с внешней компенсацией.

Коммутационные и линейные зарядные устройства

ИС для зарядных устройств с традиционной линейной топологией часто ценились за их компактность, простоту и низкую стоимость. Однако к недостаткам этих линейных зарядных устройств относятся ограниченный диапазон входного напряжения и напряжения батареи, более высокое относительное потребление тока, чрезмерное рассеивание мощности, ограниченные алгоритмы прекращения заряда и более низкая относительная эффективность (эффективность ~ [VOUT / VIN] × 100%). С другой стороны, импульсные зарядные устройства для аккумуляторов также являются популярным выбором из-за их гибкой топологии, мультихимической зарядки, высокой эффективности зарядки (которая минимизирует нагрев для обеспечения быстрой зарядки) и широких диапазонов рабочего напряжения.Тем не менее, некоторые из недостатков переключаемых зарядных устройств включают относительно высокую стоимость, более сложную конструкцию на основе индукторов, потенциальное шумообразование и решения, занимающие большую площадь. Современный Лос-Анджелес, беспроводное энергоснабжение, сбор энергии, солнечная зарядка, удаленный датчик и встроенные автомобильные приложения обычно питаются от высоковольтных линейных зарядных устройств по причинам, указанным выше. Однако существует возможность для более современного зарядного устройства с переключаемым режимом, которое устраняет связанные с этим недостатки.

Простое зарядное устройство Buck Battery

Некоторые из более сложных проблем, с которыми сталкивается разработчик на начальном этапе разработки зарядного устройства, – это широкий диапазон источников входного сигнала в сочетании с широким диапазоном возможных аккумуляторов, высокая емкость аккумуляторов, которые необходимо заряжать, и высокое входное напряжение.

Источники входного сигнала столь же широки, сколь и разнообразны, но некоторые из наиболее сложных из них, которые имеют дело с системами зарядки аккумуляторов: мощные настенные адаптеры с напряжением от 5 до 19 В и выше, выпрямленные системы 24 В переменного тока, высокое сопротивление солнечные батареи, аккумуляторы для автомобилей и тяжелых грузовиков / Humvee.Следовательно, комбинация химического состава батарей, возможная в этих системах – на основе лития (Li-Ion, Li-Polymer, фосфат лития-железа (LiFePO4)) и на основе LA – еще больше увеличивает перестановки, что делает конструкцию еще более устрашающе.

Из-за сложности конструкции ИС существующие ИС для зарядки аккумуляторов в основном ограничены понижающей (или понижающей) или более сложной топологией SEPIC. Добавьте сюда возможность солнечной зарядки, и вы откроете множество других сложностей. Наконец, некоторые существующие решения заряжают аккумуляторные батареи с несколькими химическими соединениями, некоторые – со встроенной заделкой на плате.Однако до сих пор ни одно зарядное устройство для ИС не обеспечивало всех необходимых характеристик производительности для решения этих проблем.

Новые многофункциональные компактные зарядные устройства

Понижающее устройство для зарядки ИС, которое решает проблемы, описанные выше, должно обладать большинством из следующих атрибутов:

  • Широкий диапазон входного напряжения
  • Широкий диапазон выходного напряжения для работы с несколькими батареями
  • Гибкость – возможность заряжать несколько батарей химического состава
  • Простая и автономная работа с бортовыми алгоритмами прекращения заряда (микропроцессор не требуется)
  • Большой ток заряда для быстрой зарядки, большие элементы большой емкости
  • Возможность солнечной зарядки
  • Усовершенствованная упаковка для улучшения тепловых характеристик и экономии места

Когда несколько лет назад компания ADI разработала популярную микросхему контроллера зарядки аккумулятора LTC4000 (которая работает вместе с преобразователем постоянного тока с внешней компенсацией, образуя мощное и гибкое решение для зарядки двухчиповых аккумуляторов) несколько лет назад, она значительно упростила существующий решение, которое было довольно запутанным и громоздким.Чтобы включить управление PowerPath TM , функции повышения / понижения и ограничение входного тока, решения состояли из импульсного стабилизатора постоянного тока или контроллера зарядного устройства с понижающим переключением в паре с входным повышающим контроллером. , а также микропроцессор, а также несколько микросхем и дискретных компонентов. К основным недостаткам относятся ограниченный диапазон рабочего напряжения, отсутствие возможности подключения солнечной панели, невозможность заряжать аккумулятор любого химического состава и отсутствие прекращения заряда на борту. Перенесемся в настоящее, и теперь доступны более простые и гораздо более компактные монолитные решения для решения этих проблем.Понижающие зарядные устройства LTC4162 и LTC4015 от Analog Devices предоставляют однокристальные решения для понижающей зарядки с различными уровнями тока заряда и полным набором функций.

Зарядное устройство LTC4162

LTC4162 – это высокоинтегрированное синхронное монолитное понижающее зарядное устройство с мультихимическим режимом высокого напряжения и диспетчером PowerPath со встроенными функциями телеметрии и дополнительным отслеживанием точки максимальной мощности (MPPT). Он эффективно передает питание от различных входных источников, таких как настенные адаптеры, объединительные платы и солнечные панели, для зарядки литий-ионных / полимерных, LiFePO4 или батарейных блоков LA, при этом обеспечивая питание нагрузки системы до 35 В.Устройство обеспечивает расширенный системный мониторинг и управление PowerPath, а также мониторинг состояния батареи. Хотя для доступа к наиболее продвинутым функциям LTC4162 требуется главный микроконтроллер, использование порта C I 2 необязательно. Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы. Устройство обеспечивает точность регулирования тока заряда ± 5% до 3,2 А, регулировку напряжения заряда ± 0,75% и работает в диапазоне входного напряжения от 4,5 В до 35 В.Приложения включают портативные медицинские инструменты, устройства USB-питания (USB-C), военное оборудование, промышленные портативные компьютеры и защищенные ноутбуки / планшетные компьютеры.

Рисунок 1. Типовая схема применения LTC4162-L.

LTC4162 (см. Рисунок 1) содержит точный 16-разрядный аналого-цифровой преобразователь (АЦП), который непрерывно отслеживает многочисленные параметры системы по команде, включая входное напряжение, входной ток, напряжение батареи, ток батареи, выходное напряжение, температуру батареи. , температура кристалла и последовательное сопротивление батареи (BSR).Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание. Алгоритм отслеживания активной точки максимальной мощности устройства глобально просматривает входной контур управления пониженным напряжением и выбирает рабочую точку для максимального извлечения энергии из солнечных панелей и других резистивных источников. Кроме того, его встроенная топология PowerPath отделяет выходное напряжение от батареи, тем самым позволяя портативному изделию запускаться мгновенно, когда источник зарядки применяется в условиях очень низкого напряжения батареи.Встроенные профили зарядки LTC4162 оптимизированы для аккумуляторов различного химического состава, включая литий-ионные / полимерные, LiFePO4 и LA. Как напряжение заряда, так и ток заряда могут автоматически регулироваться в зависимости от температуры аккумулятора в соответствии с рекомендациями JEITA или настраиваться индивидуально. Для LA непрерывная температурная кривая автоматически регулирует напряжение батареи в зависимости от температуры окружающей среды. Для любого химического состава может быть задействована дополнительная система регулирования температуры стыка фильеры, предотвращающая чрезмерный нагрев в условиях ограниченного пространства или в условиях высоких температур.См. Рисунок 2 для получения информации об эффективности зарядки литий-ионных аккумуляторов.

Наконец, LTC4162 размещен в 28-выводном корпусе QFN размером 4 мм × 5 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик. Устройства класса E и I гарантированно работают от –40 ° C до + 125 ° C.

Рисунок 2. Зависимость эффективности зарядки литий-ионных аккумуляторов от входного напряжения по количеству ячеек.

Что делать, если требуется более высокий ток?

LTC4015 также является высокоинтегрированным, многохимическим синхронным понижающим зарядным устройством высокого напряжения со встроенными функциями телеметрии.Тем не менее, он имеет архитектуру контроллера с внешними силовыми полевыми транзисторами для более высокого тока заряда (до 20 А или более в зависимости от выбранных внешних компонентов). Устройство эффективно подает питание от входного источника (сетевой адаптер, солнечная панель и т. Д.) На литий-ионный / полимерный аккумулятор, LiFePO4 или батарею LA. Он обеспечивает расширенные функции системного мониторинга и управления, включая подсчет кулонов батареи и мониторинг состояния. Хотя для доступа к наиболее продвинутым функциям LTC4015 требуется хост-микроконтроллер, использование его порта I 2 C не является обязательным.Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы.

Рис. 3. Схема зарядного устройства для 2-элементной литий-ионной аккумуляторной батареи 12 В IN на 8 А.

LTC4015 обеспечивает точность регулирования тока заряда ± 2% до 20 А, регулировку напряжения заряда ± 1,25% и работу в диапазоне входного напряжения от 4,5 В до 35 В. Приложения включают портативные медицинские инструменты, военное оборудование, приложения для резервного питания от батарей, промышленные портативные устройства, промышленное освещение, защищенные ноутбуки / планшетные компьютеры, а также системы связи и телеметрии с дистанционным питанием.

LTC4015 также содержит точный 14-битный аналого-цифровой преобразователь (АЦП), а также высокоточный счетчик кулонов. АЦП непрерывно отслеживает многочисленные параметры системы, включая входное напряжение, входной ток, напряжение батареи, ток батареи, и по команде сообщает о температуре батареи и последовательном сопротивлении батареи (BSR). Контролируя эти параметры, LTC4015 может сообщать о состоянии аккумулятора, а также о состоянии его заряда. Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание.Профили зарядки на плате LTC4015 оптимизированы для различных типов аккумуляторов, включая литий-ионные / полимерные, LiFePO4 и LA. Конфигурационные штыри позволяют пользователю выбирать между несколькими предопределенными алгоритмами заряда для каждого химического состава батареи, а также несколькими алгоритмами, параметры которых можно регулировать с помощью I 2 C. Как напряжение заряда, так и ток заряда могут быть автоматически отрегулированы в зависимости от температуры батареи в соответствии с требованиями. с рекомендациями JEITA или даже с индивидуальными настройками.См. Рисунок 4 для получения информации об эффективности заряда свинцово-кислотной батареи. LTC4015 размещен в корпусе QFN размером 5 мм × 7 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик.

Рис. 4. Эффективность зарядки свинцово-кислотной батареи с LTC4015.

Экономия места, гибкость и более высокие уровни мощности

При равных уровнях мощности (например, 3 А), поскольку это монолитное устройство со встроенными силовыми полевыми МОП-транзисторами, LTC4162 может сэкономить до 50% площади печатной платы по сравнению с LTC4015.Поскольку их наборы функций аналогичны, LTC4015 следует использовать при выходных токах от> 3,2 А до 20 А или более. Ни одно из конкурирующих в отрасли решений для зарядных устройств IC не предлагает такой же высокий уровень интеграции и не может генерировать такие же уровни мощности. Те, которые приближаются к зарядному току (от 2 до 3 А), ограничены только одним химическим составом аккумулятора (литий-ионный) или ограничены по напряжению заряда аккумулятора (максимум 13 В), и поэтому не предлагают уровни мощности или гибкость из LTC4162 или LTC4015.Кроме того, если учесть количество внешних компонентов, необходимых для ближайшего конкурирующего решения для монолитного зарядного устройства, LTC4162 предлагает до 40% экономии площади печатной платы, что делает его еще более привлекательным выбором для разработки.

Солнечная зарядка

Есть много способов использовать солнечную панель на максимальной мощности (MPP). Один из самых простых способов – подключить аккумулятор к солнечной панели через диод. Этот метод основан на согласовании максимального выходного напряжения панели с относительно узким диапазоном напряжения батареи.Когда доступные уровни мощности очень низкие (примерно менее нескольких десятков милливатт), это может быть лучшим подходом. Однако уровни мощности не всегда низкие. Поэтому в LTC4162 и LTC4015 используется метод MPPT, который определяет максимальное напряжение питания (MPV) солнечной панели при изменении количества падающего света. Это напряжение может резко меняться от 12 В до 18 В, когда ток панели изменяется в течение 2 или более десятилетий динамического диапазона. Алгоритм схемы MPPT находит и отслеживает значение напряжения панели, которое обеспечивает максимальный ток заряда для аккумулятора.Функция MPPT не только непрерывно отслеживает точку максимальной мощности, но также может выбрать правильный максимум на кривой мощности для увеличения мощности, получаемой от панели в условиях частичной тени, когда на кривой мощности возникают несколько пиков. В периоды низкой освещенности режим низкого энергопотребления позволяет зарядному устройству подавать небольшой зарядный ток, даже если света недостаточно для работы функции MPPT.

Заключение

Новейшие мощные и полнофункциональные микросхемы для зарядки аккумуляторов и PowerPath Manager от компании

, LTC4162 и LTC4015, упрощают очень сложную систему зарядки с высоким напряжением и током.Эти устройства эффективно управляют распределением мощности между входными источниками, такими как настенные адаптеры, объединительные платы, солнечные панели и т. Д., А также зарядкой батарей различного химического состава, включая литий-ионные / полимерные, LiFePO4 и SLA. Их простое решение и компактные размеры позволяют им достигать высокой производительности в передовых приложениях, где когда-то единственным вариантом были только более сложные, устаревшие топологии на основе импульсных стабилизаторов, такие как SEPIC. Это значительно упрощает задачу разработчика, когда речь идет о схемах зарядного устройства для аккумуляторов средней и высокой мощности.

Simple USB Charging Circuits – Electronics Projects Circuits

MP4, MP3-плеер, мобильные телефоны, различные устройства можно заряжать от адаптера зарядного устройства USB-порта компьютера, также эти устройства обычно разрабатываются в соответствии со стандартным USB-кабелем и ПК с одним USB-соединением кабель от зарядки … Проекты электроники, Простая схема зарядки USB «Схема зарядного устройства, проекты силовой электроники, проекты простых схем», Дата 22.06.2014

MP4, MP3-плеер, мобильные телефоны, различные устройства могут заряжаться от адаптера зарядного устройства USB-порта компьютера также в этих устройствах, обычно разработанных в соответствии со стандартным USB-кабелем, и ПК с одним соединительным USB-кабелем от зарядного адаптера можно сделать.Сделано в Китае. Плеер mp4, который я изучал для использования в очень простом зарядном устройстве, имеет схему зарядки.

Адаптер зарядного устройства представляет собой довольно простой выход на 5 В, который примерно состоит из двух частей: секции SMPS и секции управления зарядкой.

Сделано в Китае. Схема литий-ионного зарядного устройства.

Цепь секции SMPS. Выход 5 В является вторичным. секция управления простая однотранзисторная (S9015) схема с 3,7-вольтовой схемой зарядки литий-ионного аккумулятора красный светодиод горит постоянным зеленым светодиодом подключение аккумулятора установлено, когда аккумулятор полностью заряжен после мигания нескольких моделей я изучил Раздел управления одинаковым количеством разницы в токе перезаряжаемой аккумуляторной батареи по мощности SMPS и сопротивлению R1 составляет 180.Литий-ионный аккумулятор 250 мА для 5,6 Ом Аккумулятор 480 0,680 мА для 1,5 Ом Используется пила 2,7 Ом Часть SMPS, которая является неисправной частью управления адаптером зарядного устройства за пределами 5-вольтового источника, и тестируемая мной схема зарядки работает нормально, имеет проигрыватель mp4

Если аккумуляторная батарея плеера или другое устройство в процессе зарядки Если это так, прямое подключение батареи происходит во второй цепи D1 и элементы C1 добавить причину плеера во вход адаптера цепи + секция этих элементов не является зарядным устройством, подключенным напрямую + аккумулятор не доходит до плеера в цепи этих элементов по прошествии зарядки идет процесс.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *