Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

простая схема симисторного и тиристорного устройства

Регулятор мощности 12 вольт своими руками Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов.

В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

  • Хема регулятора мощности на симистореметаллическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2.  регулятор мощности на тиристореТиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

 регулятор мощности для паяльника своими руками Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Регулятор мощности на симисторе

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

 регулятор напряжения  фазовыйСам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

 регулятор напряжения 220в своими рукамиСхема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Регулятор мощности своими рукамиСиловые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Схемы регуляторов мощности (диммеров) на симисторах

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью "анодного" напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой - в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.
Симисторный регулятор мощности Симисторный регулятор мощности
Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь - как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора - тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3...5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов - самое то.

Симисторный регулятор мощности

Рис.4

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как - оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество - простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),

Симисторный регулятор мощности
Рис.5

так и управлять более мощными симисторами (Рис.6).

Симисторный регулятор мощности
Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение - это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

 

Симисторный регулятор мощности | Мастер Винтик. Всё своими руками!

Простой регулятор мощности для паяльника (лампы) на MAC97A

Простой регулятор мощности до 100Вт можно сделать всего из нескольких деталей. Его можно приспособить для регулирования температуры жала паяльника, яркости настольной лампы, скорости вентилятора и т.п. Регулятор на тиристоре получается по размерам сильно большой и конструктивно имеет недочеты и большую схему. Регулятор мощности на импортном малогабаритном симисторе mac97a (600В; 0,6А) можно коммутировать и более мощные нагрузки, простая схема, плавная регулировка, маленькие габариты.

Немного о принципе работы симистора

Если у тиристора есть анод и катод, то электроды у симистора так охарактеризовать нельзя, потому что каждый электрод является и анодом и катодом одновременно. В отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Как раз простой схемой, характеризующей принцип работы симистора служит наш электронный регулятор мощности.

 

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса.

В данном случае изменяя управляющее напряжение мы можем регулировать яркость электрической лампочки или температуру жала паяльника, а также скорость вентилятора.

Принципиальная схема регулятора на симисторе MAC97A6

Описание работы регулятора мощности на симисторе

При каждой полуволне сетевого напряжения конденсатор С заряжается через цепочку сопротивлений R1, R2, когда напряжение на С становится равным напряжению открывания динистора VD1 происходит пробой и разрядка конденсатора через управляющий электрод VS1 .

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики (ВАХ) динистора DB3 изображена на рисунке:

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет разницы, как его подключать.

Характеристики динистора DB3

Кому нужно регулировать нагрузку более 100Вт, ниже представлена похожая схема более мощного регулятора на симисторе ВТ136-600.

Принципиальная схема регулятора на симисторе BT136-600

Приведенная схема регулятора мощности на симисторе рассчитана на достаточно большой ток нагрузки.

Если у Вас нет необходимых деталей и платы для сборки регулятора мощности на симисторе MAC97A6, Вы можете купить полный набор для его сборки в нашем магазине.



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ



П О П У Л Я Р Н О Е:


Популярность: 91 575 просм.

Мощный регулятор мощности | AUDIO-CXEM.RU

Здравствуй мой дорогой читатель. Сегодня я хочу рассказать про нюансы мощных симисторных регуляторов мощности, которые заполонили наш рынок. Теперь так называемые диммеры продают даже в отделах продажи дистилляторов, для регулировки температуры нагрева материала в перегонных аппаратах.

Схема мощного симисторного регулятора мощности

Внесу немного ясности о схеме. Схема симисторного регулятора мощности является типичной и в нее может быть включен любой, подходящий вам по параметрам симистор серии BTA, например BTA06-600, BTA16-600 и так далее. Номиналы элементов при этом пересчитывать не нужно. Работу схемы я описывал в статье «Диммер своими руками», и сейчас немного поговорим о другом.

В качестве полупроводника я применил BTA41-600 и мог бы заявить вам, что регулятор мощности рассчитан на 8.5кВт, как это делают большинство продавцов. Да, симистор BTA41-600 рассчитан на максимальный средний ток 40А. Но, во-первых, должен быть запас по току, а во-вторых не только от параметров симистора зависит мощность собранного устройства. От чего же еще может зависеть мощность диммера?

В первую очередь от запаса тока симистора. Для меня это примерно 30% запас. Разница по цене будет несущественной.

Вот пример симисторного регулятора из Китая. Продавец утверждает, что его мощность достигает 4кВт.

Сфотографировано так близко, чтобы выполнить обман зрения и внушить большие размеры теплоотвода. Если вы представляете, что такое 4000Вт, то подумайте, какое сечение провода нам необходимо для пропускания через себя тока 18А. Нет, конечно, если такой диммер включить на 30 секунд, то он может и выдержит, но обычно нагрузкой служат мощные лампы или ТЭН, которые работают часами. Теперь посмотрите ширину дорожек печатной платы этого самого китайского диммера.

Да не выдержат они 4кВт долговременно, будут до ужаса греться даже на 3кВт, а потом перегорят. Поэтому вторым критерием является сечение проводов и дорожек печатной платы. Чем шире и толще, тем лучше.  И чем короче они, тем также лучше. В обязательном порядке необходимо их лудить оловом или паять вдоль дорог медную жилу.

Для сведения, медный провод сечением 2.5мм2 рассчитан на максимальный долговременный ток 27А. Из своего опыта скажу, что при использовании такого провода на нагрузке 3000Вт (ток 14А) в течение 1 часа, он хорошо нагревается. Но это нормально. А уже при 27А изоляция такого провода будет плавиться.

Еще, при такой мощности (3000Вт и более) я отказываюсь от всяких разъемов, зажимных клемм и стараюсь все провода паять сразу к печатной плате. Так как все эти клеммы и разъемы являются уязвимым местом, чуть контакт ослаб и происходит нагрев, а дальше обгорание проводов.

Третий критерий мощного регулятора это теплоотвод. Однажды я выполнял измерение температуры теплоотвода площадью 200см2 при эксплуатации диммера на нагрузку 1кВт в течение 5 часов. Температура достигла 900С. Для отвода тепла при эксплуатации на мощности 3кВт понадобится радиатор с внушительной площадью поверхности, если мы говорим про долговременную работу. Иначе получим настоящую печь.

Рекомендую в качестве теплоотвода использовать радиатор с вентилятором от ПК, даже небольшой такой теплоотвод с принудительным охлаждением дает отличный результат на мощности 4кВт.

Китайский радиатор, на мощности 4000Вт позволит лишь регулятору не выйти из строя за ближайшие минуты.

Также и наши продавцы, закупая диммеры в Китае, заявляют мощность, которую они долговременно регулировать не могут.

Множество видео роликов про регуляторы мощности имеется на одном из известных видео порталов. Практически все блоггеры демонстрируют их тест на лампах накаливания. Лампа накаливания 60-80Вт может работать через наше устройство без радиатора, это и я проверял. А вот на мощности 1000Вт и выше рисуется совсем другая картина.

Существуют вентиляторы на разное питающее напряжение, в продаже есть вентиляторы и с напряжением питания 220В переменного тока. У меня же напряжение питания 12В постоянного тока. И в качестве источника я применил небольшой импульсный блок питания 12В 1А.

О стеклянном предохранителе. Не советую. На заднюю панель регулятора мощности вывел держатель предохранителя с колпачком. Предохранитель установил на 15А, нагрузка составляла 3000Вт.

Это было что-то. Грелся весь узел, не притронуться рукой. Поэтому, вместо стеклянных предохранителей устанавливайте автоматический выключатель. Например, если нагрузка 3кВт, то выключатель на 16А.

В своем регуляторе мощности я использовал тумблер на 25 Ампер, у которого были две группы контактов. Чтобы повысить надежность я соединил их параллельно медным проводом, сечением 2.5мм2.

Корпус диммера я использовал из пластмассы. Для удобства я установил на корпус розетку с керамической вставкой на 16 Ампер.

Также я добавил еще один переменный резистор на 50кОм для более точной (плавной) подстройки.

Вентилятор, розетку и импульсный блок питания я прикрепил к корпусу винтами М3 и гайками, не забыв и про шайбы. В теплоотводе я выполнил отверстия и нарезал резьбу для крепления к нему симистора BTA41-600, а также отверстия с резьбой для крепления самого теплоотвода к корпусу. Как нарезать резьбу в радиаторе я описывал в статье «Нарезаем резьбу в радиаторе усилителя НЧ».

Вилка регулятора рассчитана на ток 16 Ампер. Ее провода припаяны напрямую к печатной плате, миную разъемы и клеммы.

Выводы симистора, при его монтаже, рекомендуется делать как можно короче.

Вывод.

Чтобы собрать мощный симисторный регулятор мощности, помимо выбора параметров симистора необходимо учесть такие конструктивные особенности, как ширина и толщина дорожек печатной платы, сечение соединительных проводов, замена разъемов и клемм пайкой, площадь поверхности теплоотвода, номинальная мощность вилок и розеток. Ведь для регулятора мощности 6кВт (27А) нужны совсем другие розетки, вилки, провода и так далее…

Печатная плата регулятора мощности СКАЧАТЬ

 


Похожие статьи

описание принципа работы и сборки устройства

Симисторами называют полупроводниковый прибор, на котором присутствуют 5 р-н переходов. Важнейшее его качество, это способность пропускать сигнал, как в прямом, так и обратном направлениях.

Краткое содержимое статьи:

Принцип работы симисторного регулятора мощности

Их применяют только в небольших электроприборах из-за того, что они крайне чувствительны к электромагнитным волнам, выделяют много тепла и неспособны работать на высоких частотах переменного тока. Их не используют в крупных промышленных агрегатах.

Прибор прост в изготовлении, не требует больших денежных затрат и обладает долгим сроком эксплуатации. Его можно легко применять в сферах и приборах, где описанные выше недостатки не играют большой роли.

Многие не знают, для чего нужны симисторные регуляторы мощности. Но они присутствуют в большинстве домашних бытовых приборах, таких как: фен, пылесос, электроинструменты и нагревательные приборы.

Регулятор мощности позволяет пропускать электрический сигнал, с частотой заданной пользователем.

Инструкция, как сделать симисторный регулятор своими руками

На сегодняшний день не так легко найти подходящий регулятор мощности, несмотря на невысокую цену крайне проблематично достать полностью подходящий по параметрам симистор.


Поэтому не остается другого выбора, кроме как сделать его самостоятельно. Для этого нужно рассмотреть несколько простых основных схем регуляторов, чем они отличаются друг от друга и разберем элементарную базу каждой.

Устройство и схемы простых регуляторов

Простейшая схема, которая может работать под любой нагрузкой. Комплектующие простейшие электронные компоненты, а управление осуществляется по фазово-импульсному принципу.

Основные элементы схемы:

  • симистор VD4 10 А, 400 В
  • динистор VD3 32 В
  • потенциометр R2

По R2 и R3 протекает ток, который накапливает заряд на конденсаторе С1. После того, как на заряд достигнет значения 32 В, откроется динистор VD3 и конденсатор С1 начнет разряжаться через R4 и VD3. Энергия пойдет на симистор VD4, он откроется и даст току протекать через нагрузку.

Регулировка мощности происходит при помощи симистора VD3 и нагрузки R2. Значения воздействия симистора постоянное и изменяться не может, регулировка мощности осуществляется путем изменения сопротивления нагрузки R2.

Элементы VD1, VD2, R1 являются не обязательными в данной схеме, но они позволяют обеспечивать плавность и точность изменения выходной мощности.

Для того, чтобы правильно рассчитать симисторный регулятор мощности нужно отталкиваться от используемой нагрузки, симистор подбирается по соотношению 1А=200 Вт.

Какие элементы понадобятся

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600, 4-12А.
  • Диоды VD1, VD2 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Данная схема наиболее распространена и универсальна, существует множество ее вариаций.

Сборка

Используя данный план по сборке, вы сэкономите свое время. Вам нужны точные параметры устройства, для которого будет изготавливаться прибор.


Нужно знать:

Обратите внимание!
  • Количество фаз. Их может быть одна или три;
  • Наличие необходимости точной регулировки выходной мощности;
  • Входное напряжение и ток потребляемый нагрузкой. Значения должны быть в Вольтах и Амперах.

Необходимо выбрать тип устройства, либо аналоговый либо цифровой. Подобрать комплектующие по мощности прибора. В сети можно найти различный софт, который поможет с расчетами.

Выполнить расчет тепловыделений. Это делается довольно просто: Падение напряжения на симисторе умножается на номинальный ток. Необходимые данные должны быть указаны в характеристике симистора.

Приобрести необходимые элементы, печатную плату и радиатор. Произвести разводку дорожек на печатной плате при помощи растворителя. Нельзя забывать о креплении симистора и радиатора. Припаять все элементы так, как показано на схеме. Уделить особое внимание полярности подключения диодов и симистора.

Осуществить проверку готового прибора при помощи мультиметра в режиме сопротивления. Характеристика должна быть идентична изначальному проекту.

Установить симистор почти вплотную к радиатору, но нужно обеспечить тепловую изоляцию между ними. Винт, которым будет произведено закрепления нужно качественно заизолировать. Изготовить пластиковый корпус для прибора.

Обратите внимание!

Поместить полученную установку в защитный корпус. Поставить значения потенциометра на минимальные значения и осуществить пробный запуск. Мультиметром измеряем напряжения на выходе, при этом плавно поворачиваем ручку регулятора;


Если полученный результат не соответствует требуемым производим регулировку мощности. Если прибор работает как надо, можно подключать нагрузку к выходу регулятора.

Заключение

Правильно изготовленный симисторный регулятор мощности будет надежно служить и потребует небольших денежных вложений. Долговечность порадует самых скептически настроенных специалистов. Можно ознакомиться с фото самодельных симисторных регуляторов мощности в сети и убедиться в целесообразности изготовления данного прибора.

Фото симисторного регулятора мощности

Обратите внимание!

Также рекомендуем просмотреть:

Помогите проекту, поделитесь в соцсетях 😉  

симисторный и тиристорный, системы индикации и схемы

Принцип действия регулятораПрактически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, - это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания. Один из его недостатков - это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

Схема регулятора мощности на симисторе

  • Пр. 1 - предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 - токоограничительный резистор - служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 - потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 - основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 - динистор, открытие которого управляет симистором.
  • VD4 - симистор - главный элемент, производящий коммутацию и, соответственно, регулировку.

Как работает регуляторОсновная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Как регулируется выходная мощность в регуляторах

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор - 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор - только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Схемное обозначение тиристора, симистора и динистора

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья - с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Простейшая схема регулятора мощности на тиристоре

Единственное её отличие от схемы на симисторе - это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Как регулируется выходная мощность в регуляторах

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Регулятор мощности на тиристоре с мягкой регулировкой

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Осциллограмма при наличии выпрямительного моста

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных - положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

Регулятор мощности с генератором на КТ117

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 - диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 - лампа накаливания - представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 - предохранитель, в этом случае стоит на 10 А.
  • R3, R4 - токоограничительные резисторы - нужны, чтобы не сжечь схему управления.
  • VD5, VD6 - стабилитроны - выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 - транзистор КТ117 - установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 - подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 - тиристор - элемент, обеспечивающий коммутацию.
  • С2 - времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

Симисторные регуляторы мощности своими руками

Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.

Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах. Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.

Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.

Регулятор мощности

Принцип работы

Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.

Делаем своими руками

На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.

Схема прибора

Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.

Основные компоненты:

  • симистор VD4, 10 А, 400 В;
  • динистор VD3, порог открывания 32 В;
  • потенциометр R2.

Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.

Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.

Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.

Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.

Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.

Используемые элементы:

  • Динистор DB3;
  • Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
  • Диоды VD1, VD2 типа 1N4007;
  • Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
  • Конденсатор С1 0,47 мкФ (рабочее напряжение от 250 В).

Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.

Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.

Схема

Схема симисторного регулятора мощности

Сборка

Сборку регулятора мощности необходимо производить в следующей последовательности:

  1. Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
  2. Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
  3. Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
  4. Закупить необходимые электронные компоненты, радиатор и печатную плату.
  5. Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
  6. Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то прозвонить их при помощи цифрового мультиметра или «аркашки».
  7. Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
  8. Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
  9. Поместить собранную схему в пластиковый корпус.
  10. Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
  11. Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
  12. Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.
Регулятор мощности

Симисторный радиатор мощности

Регулировка мощности

За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.

Блиц-советы

  • продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
  • выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
  • тщательно проработайте схемные решения.
  • будьте внимательны при сборке схемы, соблюдайте полярность полупроводниковых компонентов.
  • не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.

Статья была полезна?

4,00 (оценок: 1)

Цепи регулятора напряжения

- линейный регулятор напряжения, стабилитрон и импульсный регулятор напряжения

Регулятор напряжения

, как следует из названия, представляет собой схему, которая используется для регулирования напряжения. Регулируемое напряжение - это плавная подача напряжения без каких-либо шумов или помех. Выход регулятора напряжения не зависит от тока нагрузки, температуры и изменения линии переменного тока. Стабилизаторы напряжения присутствуют почти в каждой электронике или бытовой технике, такой как телевизор, холодильник, компьютер и т.д., для стабилизации напряжения питания.

В основном, регулятор напряжения минимизирует колебания напряжения для защиты устройства. В системе распределения электроэнергии регуляторы напряжения находятся либо в фидерных линиях, либо на подстанции. В этой линейке используются два типа регуляторов, один - ступенчатый, в котором переключатели регулируют подачу тока. Другой - индукционный регулятор, представляющий собой переменную электрическую машину, подобную асинхронному двигателю, которая подает энергию в качестве вторичного источника. Он сводит к минимуму колебания напряжения и обеспечивает стабильный выход.

Существуют различные типы регуляторов напряжения, которые описаны ниже.

Типы схем регулятора напряжения

Схема линейного регулятора напряжения

    Регулятор напряжения серии
  • Шунтирующий регулятор напряжения

Цепь стабилизатора напряжения Зенера

Цепь импульсного регулятора напряжения

  • Бак типа
  • Тип наддува
  • Buck / Boost тип

Цепь линейного регулятора напряжения

Это наиболее распространенные регуляторы, используемые в электронике для поддержания постоянного выходного напряжения.Линейные регуляторы напряжения действуют как цепь делителя напряжения, в этом регуляторе сопротивление изменяется в зависимости от изменения нагрузки и дает постоянное выходное напряжение. Некоторые преимущества и недостатки линейного регулятора напряжения приведены ниже:

Преимущества

  • Низкое напряжение пульсации на выходе
  • Ответ быстрый
  • Меньше шума

Недостатки

  • Низкий КПД
  • Требуется большое пространство
  • Выходное напряжение всегда будет меньше входного напряжения

1.Регулятор напряжения серии

Регулятор напряжения серии

является частью линейного регулятора напряжения и также называется последовательным регулятором напряжения. Последовательно включенный регулируемый элемент, используемый для поддержания постоянного выходного напряжения. По мере изменения сопротивления падения напряжения на последовательном элементе его можно изменять, чтобы напряжение на выходе оставалось постоянным.

Series Voltage Regulator Block diagram

Как вы можете увидеть схему для серии стабилизатора напряжения, NPN-транзистор Т1 является элементом серии и стабилитрон используется для обеспечения опорного напряжения.

Series Voltage Regulator Circuit

Когда выходное напряжение увеличивается, напряжение база-эмиттер уменьшается, из-за этого транзистор T1 проводит меньше. Поскольку T1 проводит меньше, выходное напряжение уменьшается, следовательно, выходное напряжение остается постоянным.

Когда выходное напряжение уменьшается, напряжение база-эмиттер увеличивается, из-за чего транзистор T1 проводит больше. По мере того, как T1 проводит больше, выходное напряжение увеличивается, следовательно, выходное напряжение остается постоянным.

Выходное напряжение определяется как:

  V  O  = V  Z  - V  BE  
Куда,
V  O  - выходное напряжение
V  Z  - напряжение пробоя стабилитрона
V  BE  - напряжение база-эмиттер 

2.Шунтирующий регулятор напряжения

Shunt Voltage Regulator Circuit

Нерегулируемое напряжение прямо пропорционально падению напряжения на последовательно соединенных сопротивлениях, и это падение напряжения зависит от тока, потребляемого нагрузкой. Если ток, потребляемый нагрузкой, увеличивается, базовый ток также будет уменьшаться, и из-за этого меньший ток коллектора будет течь через вывод эмиттера коллектора, и, следовательно, ток через нагрузку будет увеличиваться, и наоборот.

Регулируемое выходное напряжение шунтирующего регулятора напряжения определяется как:

  В  ВЫХ  = V  Z  + V  BE   

Стабилитрон

Zener Voltage Regulator

Стабилитроны

дешевле и подходят только для цепей малой мощности.Его можно использовать в приложениях, где количество энергии, потраченное впустую во время регулирования, не имеет большого значения.

Сопротивление

А, последовательно подключено к стабилитрону для ограничения количества тока, протекающего через диод, и входного напряжения Vin (которое должно быть больше, чем напряжение стабилитрона). подключается, как показано на изображении, и на выходе напряжение Vout снимается на стабилитроне с Vout = Vz (напряжение стабилитрона). Как мы знаем, стабилитрон начинает проводить в обратном направлении, когда приложенное напряжение выше, чем напряжение пробоя стабилитрона.Таким образом, когда он начинает проводить, он поддерживает то же напряжение на нем и возвращает дополнительный ток, обеспечивая тем самым стабильное выходное напряжение.

Узнайте больше о работе стабилитрона здесь.

Импульсный регулятор напряжения

Существует три типа импульсных регуляторов напряжения:

  • Понижающий или понижающий импульсный регулятор напряжения
  • Повышающий или повышающий импульсный регулятор напряжения
  • Понижающий / повышающий импульсный регулятор напряжения

Понижающий или понижающий импульсный регулятор напряжения

Понижающий регулятор используется для понижения напряжения на выходе, мы даже можем использовать схему делителя напряжения для уменьшения выходного напряжения, но эффективность схемы делителя напряжения низкая, потому что резисторы рассеивают энергию в виде тепла.Мы используем в схеме конденсатор, диод, индуктор и переключатель. Принципиальная схема понижающего импульсного регулятора напряжения приведена ниже:

Buck Voltage Regulator

Когда переключатель находится в положении ON, диод остается смещенным в обратном направлении, и к индуктору подключается питание. Когда переключатель разомкнут, полярность катушки индуктивности меняется на обратную, диод смещается в прямом направлении и подключает катушку индуктивности к земле. Затем ток через дроссель уменьшается с крутизной:

  d I  L  / dt = (0-V  OUT ) / L  

Конденсатор используется для предотвращения падения напряжения на нагрузке до нуля.Если мы продолжаем открывать и закрывать переключатель, среднее напряжение на нагрузке будет меньше подаваемого входного напряжения. Вы можете контролировать выходное напряжение, изменяя рабочий цикл переключающего устройства.

  Выходное напряжение = (Входное напряжение) * (процент времени, в течение которого переключатель находится в положении ВКЛ)  

Если вы хотите узнать больше о Buck Converter, перейдите по ссылке.

Повышающий или повышающий импульсный регулятор напряжения

Повышающий регулятор используется для повышения напряжения на нагрузке.Принципиальная схема регулятора наддува приведена ниже:

Boost Voltage Regulator

Когда переключатель замкнут, диод ведет себя как смещенный в обратном направлении, и ток через катушку индуктивности продолжает расти. Теперь, когда переключатель разомкнут, индуктор создаст силу, заставляющую ток продолжать течь, и конденсатор начинает заряжаться. Постоянно поворачивая переключатель в положение ВКЛ и ВЫКЛ, мы получим напряжение на нагрузке выше входного. Мы можем контролировать выходное напряжение, контролируя время включения (Ton) переключателя.

  Выходное напряжение = Входное напряжение / процент времени, в течение которого переключатель разомкнут  

Если вы хотите узнать больше о Boost Converter, то перейдите по ссылке.

Импульсный стабилизатор напряжения

Понижающий-повышающий импульсный регулятор представляет собой комбинацию понижающего и повышающего регуляторов, он дает инвертированный выходной сигнал, который может быть больше или меньше подаваемого входного напряжения.

Buck Boost Voltage Regulator

Когда переключатель находится в положении ON, диод ведет себя как смещенный в обратном направлении, и индуктор накапливает энергию, а когда переключатель находится в положении OFF, индуктор начинает выделять энергию с обратной полярностью, которая заряжает конденсатор.Когда энергия, запасенная в катушке индуктивности, становится равной нулю, конденсатор начинает разряжаться в нагрузку с обратной полярностью. Из-за этого понижающий-повышающий регулятор также называется инвертирующим регулятором .

Выходное напряжение определяется как

  Vout = Vin (D / 1-D) 
  Где, D - рабочий цикл  

Следовательно, если рабочий цикл низкий, регулятор ведет себя как понижающий регулятор, а когда рабочий цикл высокий, регулятор ведет себя как повышающий регулятор.

Практический пример схем регулятора

Цепь регулятора положительного линейного напряжения

Positive Linear Voltage Regulator Circuit Diagram

Мы разработали схему положительного линейного стабилизатора напряжения с использованием 7805 IC . Эта ИС имеет все схемы для обеспечения 5-вольтного стабилизированного питания. Входное напряжение должно быть как минимум более чем на 2 В от номинального значения, как для LM7805, мы должны обеспечить как минимум 7 В.

На микросхему подается нерегулируемое входное напряжение, и мы получаем стабилизированное напряжение на выходе.Название ИС определяет ее функцию, 78 представляет собой положительный знак, а 05 представляет значение регулируемого выходного напряжения. Как вы видите на принципиальной схеме, мы подаем 9 В на 7805IC и получаем стабилизированное + 5 В на выходе. Конденсаторы C1 и C2 используются для фильтрации.

Positive Linear Voltage Regulator Circuit Hardware

Цепь стабилитрона

Zener Diode Voltage Regulator Circuit Diagram

Здесь мы разработали стабилизатор напряжения на стабилитроне с напряжением 5,1 В.Стабилитрон работает как чувствительный элемент. Когда напряжение питания превышает напряжение пробоя, он начинает проводить в обратном направлении и поддерживает то же напряжение на нем, а дополнительный ток течет обратно, обеспечивая стабильное выходное напряжение. В этой схеме мы даем 9 В входного напряжения и получаем почти 5,1 напряжения регулируемого выхода.

Zener Diode Voltage Regulator Circuit Hardware

,

Строительные, рабочие и проектные типы

Так же, как ситуации, в которых нам нужно регулировать напряжение в наших конструкциях, существуют сценарии, в которых нам нужно регулировать ток, который подается в определенную часть нашей цепи. В отличие от преобразования (переход от одного уровня напряжения к другому), которое обычно является одной из основных причин регулирования напряжения, регулирование тока обычно заключается в поддержании постоянного тока, который подается, независимо от изменений сопротивления нагрузки или входного напряжения.Цепи (встроенные или нет), которые используются для обеспечения постоянного тока , называются (постоянными) регуляторами тока , и они очень часто используются в силовой электронике.

Хотя регуляторы тока использовались в нескольких приложениях на протяжении многих лет, возможно, до недавнего времени они не были одной из самых популярных тем в обсуждениях проектирования электроники. Текущие регуляторы теперь достигли своего рода повсеместного статуса благодаря их важным приложениям в светодиодном освещении среди других приложений.

В сегодняшней статье мы рассмотрим эти регуляторы тока и исследуем лежащие в их основе принципы работы, их конструкцию, типы и области применения, среди прочего .

Принцип действия регулятора тока

Работа регулятора тока аналогична работе регулятора напряжения с основным отличием в параметре, который они регулируют, и величине, которую они изменяют для обеспечения своего выхода. В регуляторах напряжения ток варьируется для достижения необходимого уровня напряжения, в то время как регуляторы тока обычно включают изменения напряжения / сопротивления для достижения требуемого выходного тока.Таким образом, хотя это возможно, обычно трудно одновременно регулировать напряжение и ток в цепи.

Чтобы понять, как работают регуляторы тока, необходимо быстро взглянуть на закон Ома;

  В = ИК или I = В / П  

Это означает, что для поддержания постоянного тока на выходе эти два свойства (напряжение и сопротивление) должны поддерживаться постоянными в цепи или настраиваться таким образом, чтобы при изменении одного значения другого соответственно регулировалось для сохранения такой же выходной ток.Таким образом, регулирование тока включает в себя регулировку напряжения или сопротивления в цепи или обеспечение неизменности значений сопротивления и напряжения независимо от требований / воздействий подключенной нагрузки.

Рабочий регулятор тока

Чтобы правильно описать, как работает регулятор тока, рассмотрим приведенную ниже принципиальную схему.

Current Regulator Working

Переменный резистор в приведенной выше схеме используется для обозначения действия регулятора тока.Предположим, что переменный резистор автоматизирован и может автоматически регулировать собственное сопротивление. Когда на схему подается питание, переменный резистор регулирует свое сопротивление, чтобы компенсировать изменения тока из-за изменения сопротивления нагрузки или напряжения питания. Относительно базового класса электричества вы должны помнить, что при увеличении нагрузки, которая по сути является сопротивлением (+ емкость / индуктивность), происходит эффективное падение тока и наоборот. Таким образом, когда нагрузка в цепи увеличивается (увеличение сопротивления), а не падение тока, переменный резистор уменьшает свое собственное сопротивление, чтобы компенсировать повышенное сопротивление и обеспечить одинаковые токи.Таким же образом, когда сопротивление нагрузки уменьшается, переменное сопротивление увеличивает свое собственное сопротивление, чтобы компенсировать уменьшение, таким образом поддерживая значение выходного тока.

Другой подход к регулированию тока состоит в том, чтобы подключить достаточно высокий резистор параллельно нагрузке так, чтобы в соответствии с законами основного электричества ток протекал по пути с наименьшим сопротивлением, который в этом случае будет проходить через нагрузку, с только «незначительное» количество тока, протекающего через резистор высокого номинала.

Эти изменения также влияют на напряжение, так как некоторые регуляторы тока поддерживают ток на выходе, изменяя напряжение. Таким образом, практически невозможно регулировать напряжение на том же выходе, на котором регулируется ток.

Конструкция регуляторов тока

Регуляторы тока

обычно реализуются с использованием стабилизаторов напряжения на основе микросхем, таких как MAX1818 и LM317, или с использованием пассивных и активных компонентов, таких как транзисторы и стабилитроны.

Проектирование регуляторов тока с использованием регуляторов напряжения

Для проектирования регуляторов тока с использованием регулятора напряжения на основе микросхемы, метод обычно включает настройку регуляторов напряжения с постоянным сопротивлением нагрузки, и обычно используются линейные регуляторы напряжения, поскольку напряжение между выходом линейных регуляторов и их землей обычно составляет Таким образом, жестко регулируемый, фиксированный резистор может быть вставлен между выводами, так что фиксированный ток течет к нагрузке.Хороший пример дизайна, основанного на этом, был опубликован Budge Ing в одной из публикаций EDN в 2016 году.

Designing Current Regulators using Voltage Regulators

Используемая схема использует линейный стабилизатор LDO MAX1818 для создания стабилизированного источника постоянного тока на стороне высокого напряжения. Источник питания (показанный на изображении выше) был разработан таким образом, что он питает RLOAD постоянным током, который равен I = 1,5 В / ROUT. Где 1,5 В - предустановленное выходное напряжение MAX1818 , но его можно изменить с помощью внешнего резистивного делителя.

Для обеспечения оптимальной производительности конструкции напряжение на входной клемме MAX1818 должно быть до 2,5 В, а не выше 5,5 В, поскольку это рабочий диапазон, указанный в техническом паспорте. Чтобы удовлетворить это условие, выберите значение ROUT, которое позволяет от 2,5 В до 5,5 В между IN и GND. Например, при нагрузке, скажем, 100 Ом с 5 В VCC, устройство правильно работает с ROUT выше 60 Ом, поскольку это значение допускает максимальный программируемый ток 1,5 В / 60 Ом = 25 мА. Тогда напряжение на устройстве будет равно минимально допустимому: 5 В - (25 мА × 100 Ом) = 2.5V.

Другие линейные регуляторы, такие как LM317, также могут использоваться в аналогичном процессе проектирования, но одно из основных преимуществ , которые имеют микросхемы типа MAX1818 по сравнению с другими, заключается в том, что они включают тепловое отключение, которое может быть очень важным в текущем регламенте , поскольку температура микросхемы имеет тенденцию к нагреванию при подключении нагрузок с высокими требованиями к току.

Для регулятора тока на базе LM317 рассмотрите схему ниже;

LM317 based Current Regulator

LM317 сконструированы таким образом, что регулятор продолжает регулировать свое напряжение до тех пор, пока напряжение между его выходным контактом и его регулировочным контактом не станет равным 1.25 В и как таковой делитель обычно используется при реализации в ситуации регулятора напряжения. Но для нашего случая использования в качестве регулятора тока это на самом деле очень упрощает нам задачу, потому что, поскольку напряжение постоянно, все, что нам нужно сделать, чтобы сделать ток постоянным, - это просто вставить резистор последовательно между выводами Vout и ADJ. как показано на схеме выше. Таким образом, мы можем установить выходной ток на фиксированное значение, которое задается:

  I = 1,25 / R 
 

Значение R является определяющим фактором значения выходного тока.

Чтобы создать регулятор переменного тока, нам нужно только добавить переменный резистор в схему вместе с другим резистором, чтобы создать делитель на регулируемом выводе, как показано на изображении ниже.

Variable Current Regulator

Работа схемы такая же, как и в предыдущей, с той разницей, что ток можно регулировать в цепи, поворачивая ручку потенциометра для изменения сопротивления. Напряжение на R составляет:

  В = (1 + R1 / R2) x 1.25  

Это означает, что ток через R равен;

  I  R  = (1,25 / R) x (1+ R1 / R2). 
 

Это дает цепи диапазон тока I = 1,25 / R и (1,25 / R) x (1 + R1 / R2)

Зависит от установленного тока; убедитесь, что номинальная мощность резистора R может выдерживать ток, протекающий через него.

Преимущества и недостатки использования LDO в качестве регулятора тока

Ниже приведены некоторые преимущества для выбора подхода линейного регулятора напряжения.

    ИС регулятора
  1. включают защиту от перегрева, которая может пригодиться при подключении нагрузок с повышенными требованиями к току.
  2. ИС регулятора
  3. имеют больший допуск для больших входных напряжений и в значительной степени поддерживают высокое рассеивание мощности.
  4. Подход ИС регулятора предполагает использование меньшего количества компонентов с добавлением лишь нескольких резисторов в большинстве случаев, за исключением случаев, когда требуются более высокие токи и подключены силовые транзисторы.Это означает, что вы можете использовать одну и ту же ИС для регулирования напряжения и тока.
  5. Уменьшение количества компонентов может означать снижение стоимости внедрения и времени разработки.

Недостатки:

С другой стороны, конфигурации, описанные в рамках подхода ИС регулятора, позволяют пропускать тока покоя от регулятора к нагрузке в дополнение к регулируемому выходному напряжению. Это приводит к ошибке, которая может быть недопустимой в некоторых приложениях.Однако это можно уменьшить, выбрав регулятор с очень низким током покоя.

Еще одним недостатком подхода ИС к регулятору является отсутствие гибкости в конструкции.

Помимо использования микросхем регуляторов напряжения, регуляторы тока также могут быть спроектированы с использованием желейных частей, включая транзисторы, операционные усилители и стабилитроны с необходимыми резисторами. Стабилитрон используется в схеме, вероятно, просто, как будто вы помните, что стабилитрон используется для регулирования напряжения.Конструкция регулятора тока с использованием этих частей является наиболее гибкой, поскольку их обычно легко интегрировать в существующие схемы.

Регулятор тока на транзисторах

В этом разделе мы рассмотрим два дизайна. В первом будут использованы только транзисторы, а во втором - операционный усилитель и силовой транзистор .

Для модели с транзисторами рассмотрим схему ниже.

Current Regulator using Transistors

Регулятор тока, описанный на схеме выше, является одной из простейших конструкций регулятора тока. Это регулятор тока низкой стороны ; Подключал после нагрузки до земли. Он состоит из трех основных компонентов; управляющий транзистор (2N5551), силовой транзистор (TIP41) и шунтирующий резистор (R). Шунт, который по сути представляет собой резистор малой мощности, используется для измерения тока, протекающего через нагрузку.При включении цепи на шунте отмечается падение напряжения. Чем выше значение сопротивления нагрузки RL, тем больше падение напряжения на шунте. Падение напряжения на шунте действует как триггер для управляющего транзистора, так что чем выше падение напряжения на шунте, тем больше транзистор проводит и регулирует напряжение смещения, приложенное к базе силового транзистора, чтобы увеличить или уменьшить проводимость с резистор R1, действующий как резистор смещения.

Как и в других схемах, переменный резистор может быть добавлен параллельно шунтирующему резистору для изменения уровня тока путем изменения величины напряжения, приложенного к базе управляющего транзистора.

Регулятор тока с операционным усилителем

Для второго варианта проектирования рассмотрим схему ниже;

Current Regulator using Op-Amp

Эта схема основана на операционном усилителе , и, как и в примере с транзистором, также использует шунтирующий резистор для измерения тока. Падение напряжения на шунте подается в операционный усилитель, который затем сравнивает его с опорным напряжением, установленным стабилитроном ZD1.Операционный усилитель компенсирует любые расхождения (высокие или низкие) в двух входных напряжениях, регулируя свое выходное напряжение. Выходное напряжение операционного усилителя подключается к мощному полевому транзистору, и проводимость зависит от приложенного напряжения.

Основное различие между этой конструкцией и первым из них является источник опорного напряжения осуществляется диодом Зенера. Обе эти конструкции являются линейными, и при высоких нагрузках будет выделяться большое количество тепла, поэтому к ним должны быть присоединены радиаторы для отвода тепла.

Преимущества и недостатки

Основным преимуществом этого подхода к проектированию является гибкость, которую он предоставляет проектировщику. Детали могут быть выбраны, а конструкция сконфигурирована по вкусу без каких-либо ограничений, связанных с внутренней схемой, которая характерна для подхода, основанного на регуляторе на основе ИС.

С другой стороны, этот подход имеет тенденцию быть более утомительным, трудоемким, требует большего количества деталей, громоздких, подверженных сбоям и более дорогих по сравнению с подходом на основе регуляторов.

Применение регуляторов тока

Регуляторы постоянного тока находят применение во всех видах устройств, от цепей питания до цепей зарядки аккумуляторов, драйверов светодиодов и других приложений, где необходимо регулировать фиксированный ток независимо от приложенной нагрузки.

Вот и все! Надеюсь, вы узнали одну или две вещи.

До следующего раза!

,

LM317 Принципиальная схема регулятора переменного напряжения

Когда нам требуется постоянное и конкретное значение напряжения без колебаний, мы используем регулятор напряжения IC. Они обеспечивают фиксированное регулируемое питание. У нас есть регуляторы напряжения серии 78XX (7805, 7806, 7812 и т. Д.) Для положительного источника питания и 79XX для отрицательного источника питания. Но что, если необходимо изменить напряжение источника питания, так что здесь у нас есть микросхема регулятора переменного напряжения LM317. В этом руководстве мы покажем вам, как получить регулируемое напряжение от микросхемы LM317.С помощью небольшой схемы, присоединенной к LM317, мы можем получить переменное напряжение до 37 В с максимальным током 1,5 А. Выходное напряжение изменяется путем изменения резистора, подключенного к регулируемому выводу LM317.

Необходимые компоненты

  • LM317 регулятор напряжения IC
  • Резистор (240 Ом)
  • Конденсатор (1 мкФ и 0,1 мкФ)
  • Потенциометр (10к)
  • Аккумулятор (9 В)

Схема подключения

LM317 Variable Voltage Regulator Circuit Diagram

Hardware implementation of LM317 variable voltage regulator circuit

LM317 Регулятор напряжения IC

Это регулируемый трехконтактный стабилизатор напряжения IC с высоким значением выходного тока, равным 1.5A. Микросхема LM317 помогает в ограничении тока, защите от тепловой перегрузки и безопасной рабочей зоне. Он также может обеспечивать работу в плавающем режиме для приложений высокого напряжения. Если мы отключим регулируемую клемму, LM317 все равно будет полезен в защите от перегрузки. У него типичная линия и регулировка нагрузки 0,1%. Это также бессвинцовый прибор.

Его рабочая температура и температура хранения находится в диапазоне от -55 до 150 ° C, а максимальный выходной ток составляет 2,2 А. Мы можем обеспечить входное напряжение в диапазоне от 3 до 40 В постоянного тока, а i т может дать выходное напряжение 1.От 25 В до 37 В , которые мы можем варьировать в зависимости от потребности, используя два внешних резистора на регулируемом контакте LM317. Эти два резистора работают как схема делителя напряжения, используемая для увеличения или уменьшения выходного напряжения. Проверьте здесь схему зарядного устройства 12 В, используя LM317

.

Схема контактов LM317

Pinout of LM317 voltage regulator IC

Конфигурация контактов

ПИН.

PIN Имя

PIN Описание

1

Настроить

Мы можем отрегулировать Vout через этот вывод, подключившись к цепи резисторного делителя.

2

Выход

Вывод выходного напряжения (Vout)

3

Вход

Вывод входного напряжения (Vin)

Расчет напряжения для LM317

Во-первых, вы должны решить, какой результат вы хотите. Как у LM317, имеющего выходное напряжение , диапазон составляет 1.От 25 В до 37 В постоянного тока. Мы можем регулировать выходное напряжение с помощью двух внешних резисторов, подключенных через регулируемый вывод IC. Если мы говорим о входном напряжении , оно может находиться в диапазоне от 3 до 40 В постоянного тока.

«Выходное напряжение будет зависеть только от внешнего резистора, но входное напряжение всегда должно быть больше (минимум 3 В) необходимого выходного напряжения». Обычно рекомендуемое значение резистора R1 составляет 240 Ом (но не фиксировано, вы также можете изменить его в соответствии с вашими требованиями), мы можем изменить резистор R2.

Вы можете напрямую найти значение выходного напряжения или резистора R2, используя формулу ниже:

  Vout = 1,25 {1 + (R  2  / R  1 )} 
  R  2  = R  1  {(Vout / 1,25) - 1} 
 

Вы можете напрямую использовать калькулятор LM317 для быстрого расчета резистора R2 и выходного напряжения.

Давайте возьмем пример, значение R1 будет рекомендуемым значением 240 Ом, а R2, которое мы принимаем, равным 300 Ом, поэтому какое будет выходное напряжение:

Vout = 1.25 * {1+ (300/240)} = 2,8125v 

Вы можете посмотреть живое демонстрационное видео ниже.

Работа цепи регулятора напряжения LM317

Working of LM317 variable voltage regulator circuit

Схема регулятора напряжения очень проста. Конденсатор C1 используется для фильтрации входного постоянного напряжения и далее подается на вывод Vin микросхемы стабилизатора напряжения LM317. Регулируемый вывод соединен с двумя внешними резисторами и соединен с выводом Vout IC. Конденсатор C2 используется для фильтрации выходного напряжения, полученного с вывода Vout.А затем выходное напряжение поступает на конденсатор C2. Посмотрите полное рабочее видео ниже.

,

Сильноточная схема стабилизатора с низким падением напряжения с использованием MIC29302

Будь то ваш ноутбук, телевизор, смартфон или любое другое электронное устройство, все они работают при разных напряжениях. Эти устройства содержат чувствительные компоненты, такие как микропроцессоры, ИС и т. Д., Которые работают при очень низком напряжении, и даже малейшее изменение напряжения может повредить эти компоненты. Эти чувствительные компоненты требуют постоянного и стабильного напряжения для оптимальной работы. Таким образом, для обеспечения стабилизированного выходного питания и защиты схемы от колебаний напряжения используются регуляторы напряжения .

Стабилизатор напряжения - это экономичное устройство для получения стабилизированного выходного напряжения от более высокого или нестабильного источника входного напряжения. Он принимает переменное входное напряжение и обеспечивает стабильное выходное напряжение постоянного тока с низким уровнем шума. Регулятор напряжения выпускается в фиксированном и регулируемом вариантах. Регулируемое выходное напряжение регулятора напряжения можно изменить с помощью контакта ADJ в пределах его диапазона. Здесь мы объяснили различные типы схем регулятора напряжения и построим одну с использованием регулятора напряжения LM317.

В этом проекте мы будем использовать MIC29302 для создания стабилизатора LDO или цепи регулятора с малым падением напряжения . Выходное напряжение может быть изменено с помощью резисторов высокого или низкого номинала на регулировочном штифте.

Необходимые компоненты

  • MIC29302 Регулятор напряжения
  • Резистор (1 кОм)
  • Потенциометр (10 К)
  • Конденсатор (10 мкФ и 0,1 мкФ)
  • Источник питания (12 В)

Принципиальная схема

Для этой схемы регулятора с малым падением напряжения требуется всего несколько компонентов.В этой схеме мы используем только два резистора и два конденсатора. Конденсатор C1 подключен к выводу Vin микросхемы стабилизатора напряжения MIC29302 и используется для фильтрации входного постоянного напряжения. Два внешних резистора R1 и RV1 подключены к регулировочному выводу и выводу Vout микросхемы. Резисторы R1 и RV1 определяют выходное напряжение Vout регулятора. Конденсатор 10 мкФ на выходе используется для стабильности и минимального шума на выходе.

MIC29302 Регулятор напряжения IC

MIC29302 - это регулируемый пятиконтактный стабилизатор напряжения IC с высоким выходным током 3 А и падением напряжения 450 мВ при полной нагрузке.Регулятор MIC29302 оснащен выводом включения логики TTL для отключения регулятора, когда он не используется; это делает его пригодным для оборудования с батарейным питанием и источников линейного напряжения. MIC29302 имеет вывод Adjust, с помощью которого выходное напряжение может быть установлено в пределах от 1,24 В до 15 В с помощью двух внешних резисторов.

MIC29302 полностью защищен от обратной полярности входа, перегрузок по току, неправильного подключения проводов и работы при перегреве. Его температура эксплуатации и хранения находится в диапазоне от -40 до 125 ° C, он доступен в корпусах TO-263 и TO-252.

MIC29302 имеют диапазон выходного напряжения от 1,24 В до 15 В постоянного тока, а диапазон входного напряжения - от 3 до 16 В. Вы можете отрегулировать выходное напряжение в соответствии с вашими требованиями, используя два внешних резистора, подключенных через контакт ADJ регулятора. Мы можем рассчитать выходное напряжение по следующей формуле:

V  из  = 1,25 (R  1  / R  2  + 1) 

Например, мы даем 12 В на входе и хотим 5 В на выходе, поэтому, если R1 составляет 1 кОм, R2 можно рассчитать по формуле:

R1 / R2 = {(Vout / 1.25) - 1}
1000 / R2 = {(5 / 1,25) - 1}
R2 = 1000/3
R2 = 333,33 

Итак, для выходного напряжения 5 В нам понадобится резистор 333 Ом на R2.

Конфигурация контактов

MIC29302 Pinout

Номер контакта Имя контакта Описание
1 Включить Логический вывод TTL для включения / выключения регулятора
2 В Входное напряжение, которое необходимо регулировать
3 Земля Подключено к заземлению системы
4 из Регулируемое выходное напряжение
5 Настроить Устанавливает выходное напряжение с помощью двух резисторных делителей цепи

Работа регулятора с малым падением напряжения

Регулятор напряжения состоит из трех основных компонентов:е., прохода элемент, усилитель ошибки, и источник опорного напряжения. Обычно проходным элементом является N-канальный или P-канальный полевой транзистор, но в регуляторе напряжения MIC29302 это транзистор PNP. Входное напряжение подается на транзистор PNP, который подключен к усилителю ошибки. Этот транзистор работает в линейной / активной области, чтобы снизить входное напряжение до требуемого выходного напряжения. Усилитель ошибки измеряет результирующее выходное напряжение и сравнивает его с опорным напряжением.Усилитель ошибки переключает транзистор на соответствующую рабочую точку, чтобы на выходе было правильное напряжение. При изменении входного напряжения усилитель ошибки модулирует транзистор для поддержания постоянного выходного напряжения.

Структурная схема микросхемы стабилизатора напряжения MIC29302 представлена ​​ниже.

Block diagram of MIC29302 voltage regulator IC

Так работает регулятор LDO или схема регулятора с малым падением напряжения.

Посмотрите демонстрационное видео , приведенное ниже.

,

Отправить ответ

avatar
  Подписаться  
Уведомление о