Универсальный внешний накопитель для всех iOS-устройств, совместим с PC/Mac, Android
Header Banner
8 800 100 5771 | +7 495 540 4266
c 9:00 до 24:00 пн-пт | c 10:00 до 18:00 сб
0 Comments

Содержание

Схема тиристорного регулятора мощности без помех

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2. 2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.

Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры другие паяльники. Как это ни удивительно, но ток, потребляемый схемой управления регулятора температуры, не превышает 2 мА. Это меньше, чем потребляет светодиод в схеме подсветки выключателей освещения. Поэтому принятия специальных мер по обеспечению температурного режима устройства не требуется.

Микросхемы DD1 и DD2 любые 176 или 561 серии. Советский тиристор КУ103В можно заменить, например, современным тиристором MCR100-6 или MCR100-8, рассчитанные на ток коммутации до 0,8 А. В таком случае можно будет управлять нагревом паяльника мощностью до 150 Вт. Диоды VD1-VD4 любые, рассчитанные на обратное напряжение не менее 300 В и ток не менее 0,5 А. Отлично подойдет IN4007 (Uоб=1000 В, I=1 А). Диоды VD5 и VD7 любые импульсные. Стабилитрон VD6 любой маломощный на напряжение стабилизации около 9 В. Конденсаторы любого типа. Резисторы любые, R1 мощностью 0,5 Вт.

Регулятор мощности настраивать не требуется. При исправных деталях и без ошибок монтажа заработает сразу.

Схема разработана много лет назад, когда компьютеров и тем более лазерных принтеров не было в природе и поэтому чертеж печатной платы я делал по дедовской технологии на диаграммной бумаге с шагом сетки 2,5 мм. Затем чертеж приклеивал клеем «Момент» на плотную бумагу, а саму бумагу к фольгированному стеклотекстолиту. Далее сверлились отверстия на самодельном сверлильном станке и руками вычерчивались дорожки будущих проводников и контактные площадки для пайки деталей.

Чертеж тиристорного регулятора температуры сохранился. Вот его фотография. Изначально выпрямительный диодный мост VD1-VD4 был выполнен на микросборке КЦ407, но после того, как два раза микросборку разорвало, заменил ее четырьмя диодами КД209.

Как снизить уровень помех от тиристорных регуляторов

Для уменьшения помех излучаемых тиристорными регуляторами мощности в электрическую сеть применяют ферритовые фильтры, представляющие собой ферритовое кольцо с намотанными витками провода. Такие ферритовые фильтры можно встретить во всех импульсных блоках питания компьютеров, телевизоров и в других изделиях. Эффективным, подавляющим помехи ферритовым фильтром можно дооснастить любой тиристорный регулятор. Достаточно пропустить провод подключения к электрической сети через ферритовое кольцо.

Устанавливать ферритовый фильтр нужно как можно ближе к источнику помехи, то есть к месту установки тиристора. Ферритовый фильтр можно размещать как внутри корпуса прибора, так и с внешней его стороны. Чем больше витков, тем лучше ферритовый фильтр будет подавлять помехи, но достаточно и просто продеть сетевой провод через кольцо.

Ферритовое кольцо можно взять с интерфейсных проводов компьютерной техники, мониторов, принтеров, сканеров. Если Вы обратите внимание на провод, соединяющий системный блок компьютера с монитором или принтером, то заметите на проводе цилиндрическое утолщение изоляции. В этом месте находится ферритовый фильтр высокочастотных помех.

Достаточно ножиком разрезать пластиковую изоляцию и извлечь ферритовое кольцо. Наверняка у Вас или Ваших знакомых найдется не нужный интерфейсный кабель от струйного принтера или старого кинескопного монитора.


Виталий Александрович 15.12.2016

Александр Николаевич, добрый вечер.
Сегодня собрал по Вашей схеме регулятор под заглавием в статье "Простейшая тиристорная схема регулятора". Но он у меня не работает, точнее, сильно греется конденсатор, два просто взорвались, если можно подскажите в чём причина.

Александр

Здравствуйте, Виталий Александрович!
Электролитический конденсатор может греться или взорваться если не соблюдена полярность его подключения или от превышения величины, поданного напряжения. В данной схеме величина напряжения на конденсаторе определяется величиной сопротивления нагрузки, R2 и от положения движка резистора R1. Расчетная его величина не должна превышать 25 В.

Поэтому и установлен конденсатор, рассчитанный на напряжение 25 В. Конденсатор выйдет из строя в случае пробоя диода VD1.
Любые бестрансформаторные схемы, работающие непосредственно от сети 220 В нужно очень аккуратно собирать, так как при ошибках элементы могут мгновенно выйти из строя.

Виталий Александрович

Оказалось, что напряжение конденсатора действительно ниже 25 В и второй вопрос. На сколько можно увеличить или уменьшить его ёмкость.

Александр

Емкость конденсатора не очень влияет на работу устройства и только определяет диапазон регулировки. Обычно емкость электролитических конденсаторов имеет разброс до 50%, так что его величину лучше определять экспериментально, включив в место паяльника электрическую лампочку. По ее яркости легко подобрать нужную емкость конденсатора и, в случае необходимости номиналы резисторов.

Регулятор мощности тиристорный, схемы регуляторов напряжения на тиристорах

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

  1. Катод.
  2. Анод.
  3. Управляемый электрод.

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

Принцип работы тиристорного регулятора напряжения

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте – оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Область применения тиристорных регуляторов

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод – катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться – ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Можно ли регулировать обороты двигателя?

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют "болгарками", и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Схема тиристорного регулятора мощности на одном и двух тиристорах

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Оговорим заранее, что вместо слов "положительная" и "отрицательная" будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 – для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

(PDF) Тиристорный регулятор мощности переменного тока на микроконтроллере

Тиристор и симистор управляются подобно триггеру. При подаче

управляющего импульса в цепь управления (напряжение между управляющим

электродом и катодом) тиристор резко переходит в открытое состояние и

остается в таком состоянии до тех пор, пока через него проходит прямой ток,

даже если управляющий сигнал прекратился. Поэтому тиристоры можно

открывать короткими импульсами. Закрываются они сами при снижении тока до

нуля. На переменном токе каждый тиристор можно открывать в полуволне

напряжения одного знака, поскольку тиристор проводит силовой ток в одном

направлении, как диод. Симистор может проводить ток в обоих направлениях и

открывается в любой полуволне напряжения.

Если открывающий импульс сместить относительно начала полуволны

напряжения на время

t, то на нагрузке выделится только ее часть. Изменяя с

помощью напряжения регулировки

V временное смещение

t можно

регулировать ширину части полуволны напряжения

V, которое

прикладывается к нагрузке. Такой способ регулирования называют фазовым.

Система управления

Микроконтроллер в системе управления выполняет функции фазового

регулятора. Назначение выводов микроконтроллера в данной схеме следующее:

Аналоговые входы 0-5 В

GP0 – напряжение регулировки угла

или временного смещения

t

открывания вентиля,

GP1 – задатчик времени нарастания и спада угла регулировки от 0 до

максимума в пределах 20 мс-10 с,

GP2 – задатчик времени реакции на провалы напряжения сети 20 мс-2,56 с,

Дискретные порты

GP3 – вход синхроимпульсов,

GP4 – выход индикатора задаваемого угла проводимости вентиля,

GP5 – выход открывающих импульсов.

Система управления работает следующим образом. В нормальном режиме

на выводе GP3 микроконтроллера должны быть синхроимпульсы с частотой

100 Гц ±5%, поступающие через оптрон синхронизации. Тогда на выходе GP4

будут индикаторные импульсы и на выходе GP5 – серии открывающих

импульсов с частотой синхроимпульсов. Выходные импульсы разрешены при

напряжении регулировки

V>0,1 В. Изменение напряжения регулировки

V от примерно 0,1 В до 5 В вызовет изменение временного смещения

t

открывающих импульсов от 10мс до нуля, как видно на диаграмме напряжений

регулятора. Возможна регулировка потенциометром и внешним сигналом в виде

постоянного либо импульсного напряжения с частотой более 500 Гц.

Программный алгоритм микроконтроллера имеет функции временной

фильтрации импульсных помех сигнала синхронизации, что позволяет сохранять

устойчивую работу системы управления в условиях промышленной сети.

Тиристорный регулятор: схемы, управление, быстродействие

Тиристорный регулятор – устройство для подстройки мощности передаваемой электрической энергии, использующее в конструкции тиристорный силовой ключ. Применяется для изменения скорости вращения двигателей, силы светимости приборов иллюминации и прочих целей.

Общие сведения

Все современные технические решения образованы в начале второй половины XX века. Глупо считать учебники того времени устаревшими. Нельзя обойти благодарностью Шубенко В.А., Браславского И.Я. и остальной коллектив авторов, приготовивших для читателей столь замечательный материал.

Тиристоры так часто используются в регуляторах, что давно уже вытеснили транзисторы. Это объясняется высокими эксплуатационными и энергетическими характеристиками в роли управляемых вентилей. Основным преимуществом считается плавность настройки параметров. Хотя в ранних моделях и современных это реализуется принципиально иными путями. В результате привод характеризуется рядом положительных качеств:

  1. Повышенный КПД;
  2. Быстродействие;
  3. Резко очерченная форма управляющего сигнала;
  4. Дешевизна;
  5. Простота;
  6. Небольшие размеры.

Тиристорные регуляторы сегодня найдутся везде. В стиральных машинах изменяют плавно скорость вращения вала путём отсечки тока, в кухонных комбайнах по величине искрения подстраивают потребляемую мощность для стабилизации оборотов. Ранее тиристорные регуляторы применялись исключительно для асинхронных двигателей, преимущественно в паре с короткозамкнутым ротором. Сегодня принципиально новые технические решения намного раздвинули границы указанной отрасли. Уже в 60-е годы схемы применялись по двум направлениям:

  • Настройка амплитуды питающего напряжения.
  • Преобразование частоты питающего напряжения.

Первая методика считается универсальной и годится для абсолютного большинства двигателей. Вторая демонстрирует ограничения, на современном этапе в бытовых приборах встречается крайне редко, отвоевав сегмент среди промышленных применений. В домашнем оборудовании нынче применяется иная методика – отсечка тока (фазовый метод). Часть периода ключ пропускает переменное напряжение, в остальное время закрывается. Такой режим характеризуется минимальными затратами энергии при приемлемых характеристиках.

Типичная схема использования

В большинстве случаев схема применения тиристорного регулятора остаётся прежней, мало меняющейся с годами:

  1. Программные установки (ПУ) в виде кода закладываются в память арифметического устройства (АУ) электронного блока. В стиральной машине это самая дорогая часть. Настолько, что замена часто нецелесообразна.
  2. Тиристорный регулятор служит вводным устройством (ВУ), куда поступает управляющий сигнал.
  3. Изменённое напряжение воздействует на сервисный привод (СП), обмотки двигателя, коллектор и пр. Линия обратной связи показывает, что малая нестабильность компенсируется непосредственно без участия центрального процессора. Выше уже говорилось про величину искрения.
  4. Механизм (М) отрабатывает команды. На валу стоит централизованный датчик положения (ЦДП), по которому процессор понимает, что происходит в результате подачи команд. При необходимости алгоритм корректируется.

До тиристорных регуляторов использовались генераторы с непосредственным управлением либо ртутные выпрямители, с легко изменяемыми характеристиками. Но указанные устройства работали лишь в паре с коллекторными двигателями. Следовательно, простота, дешевизна, неприхотливость асинхронных оказывались не востребованы до появления тиристорных регуляторов.

Схема фазного управления двигателем

На рисунке представлена простейшая тиристорная схема для управления движением вала. Через ветки проходят импульсы обеих полярностей. При необходимости тиристор возможно запереть. В зависимости от совокупности управляющих сигналов изменяется порядок чередования фаз, что обеспечивает возможность реверсирования вала. Первая схема решает указанную задачу, вторая одновременно задаёт угол отсечки.

Безусловным плюсом такого технического решения считается возможность безболезненного отключения двигателя от сети на период торможения. Этим блокируется возврат энергии в сеть. Становится возможным режим противовключения. При открытых тиристорах 1 и 7 на одну обмотку приложены все напряжения. Как результат, образуется ощутимая постоянная составляющая. Продуцируемое ею магнитное поле служит интенсивному динамическому торможению вала, обусловленному потокосцеплением. Эта схема по-другому называется в литературе двухпульсным питанием в сети с изолированной нейтралью.

Интенсивность тормозящего магнитного поля регулируется введением в фазу А дополнительного резистора, не участвующего в работе, но только в останове. Одновременно тиристоры 9 и 10 полностью закрыты, току не остаётся другого пути. Это нужно, чтобы избежать перегрева и отдачи большого пика реактивной мощности в цепь. Управляющие цепи для упрощения на рисунке не показаны.

Тиристоры характеризуются конечным временем переключения, остаётся возможность создания ситуации, когда один ключ ещё работает, а второй уже включился. Что приведёт немедленно к межфазному короткому замыканию. В результате оба тиристора выйдут из строя из-за перегрева, ведь полупроводниковый p-n-переход теряет свойства необратимо в последнем случае. Кремниевые приборы предпочтительнее, выдерживают нагрев почти до 150 градусов Цельсия. Разумеется, силовые ключи снабжаются мощными радиаторами.

В этом плане режим отсечки тока, применяемый в современных схемах, смотрится намного более привлекательным, значительную часть периода ключ отдыхает. Если брать в рассмотрение компьютерные импульсные блоки питания, охлаждением занимается небольшой вентилятор. Без него размеры радиатора тиристорного ключа пришлось бы увеличить. В современных схемах повсеместно применяется широтно-импульсная модуляция, одним из методов реализации становится отсечка тока.

Чтобы тиристоры не срабатывали одновременно, полагается управляющие сигналы подавать с задержкой. Корректировка скорости на представленной схеме выполняется чередованием режимов питания и динамического торможения. Для коллекторных двигателей это излишне. Гораздо эффективнее менять угол отсечки для корректировки подаваемой мощности. Это одновременно сберегает потребляемую энергию, увеличивая КПД установки.

Непрерывный режим питания двигателя обеспечивается выработкой управляющих импульсов согласованно с переходом напряжения через нуль. Одна из возможных схем реализации упомянутой концепции представлена на рисунке. Её вариант показан для управления встречно включёнными тиристорами, чтобы избежать одновременного открытия ключей.

Фазовое управление тиристорами

Регуляция скорости вращения при помощи тиристоров с внедрением цепи обратной связи обнаруживает ряд преимуществ. До введения подобных технических решений указанные задачи решали дроссели с работой в режиме насыщения, отличаясь рядом недостатков:

  • Повышенный нижний порог срабатывания.
  • Большие потери.
  • Низкое быстродействие.

 

Схема управления напоминает показанную выше для обеспечения динамического торможения. Единственная разница в отсутствии резистора. Впрочем, выше уже делался намёк, что представленное техническое решение годится для создания нужных углов отсечки, что аналогично по смыслу. Исходя из опытных данных, определены требования к управляющим импульсам:

  1. Крутой фронт.
  2. Ширина не менее 60-ти градусов.
  3. Начальный момент включения в районе 20 градусов по фазе.

В схемах с глухозаземлённой нейтралью допустимо рассматривать каждую фазу по отдельности, словно работает обычный двигатель стиральной машины в сети 220 В. В цепях с изолированной нейтралью для правильной коммутации приходится учитывать фазовый угол каждой питающей линии и включать тиристоры попарно. С изменением задержки относительно времени прохождения напряжения через нуль варьируется передаваемая мощность. При угле сдвига фаз в 135 градусов вал переходит на минимальный режим, соответствующий холостому ходу (без нагрузки). Это верхний предел для систем фазной регулировки посредством тиристоров.

На схожем принципе действуют современные системы управления: пылесос, стиральная машина, кухонный комбайн и т.д. Минимальным углом отсечки для асинхронных двигателей считается 20 градусов. Согласно очевидным соображениям, сдвиг фаз схемы управления не должен зависеть от колебаний входного напряжения, реализуется за счёт вертикального принципа. Примеры конструкций на рисунке.

Конденсатор С1 служит для создания пилообразного напряжения. Начало импульсов синхронизировано с точкой перехода потенциала питания через нуль. Длина зуба достигает 160 градусов (почти половина периода), что и требуется, поскольку верхний порог регулирования составляет 135. Измерение текущего состояния системы производится по мостовой схеме. В нужный момент открывается ключ, формируя импульс, запускающий блокинг-генератор.

Трансформатор Тр1 питается от линии трёхфазной сети. Когда на обмотке минус, отпирается диод Д1, и питание идёт мимо конденсатора. Пилообразный импульс спадает. Заряд происходит при запертом диоде Д1. Момент открывания и, как следствие, форма зубца, регулируются подтягиванием напряжения Uy до нужного значения. Этим занимается схема управления, оценивающая одновременно скорость вращения вала. Блокинг-генератор формирует импульс заданной длины в требуемый момент времени, реализуя управление тиристорной схемой регулирования оборотов.

Оптимальное быстродействие

В системах регулирования скорости промышленного назначения не отмечается трудностей с разгоном, который легко реализуется при помощи системы реле и многоступенчатых реостатов. Когда начинается торможение, требуется вычислить момент начала подачи управляющих сигналов для снижения негативных эффектов.

Указанную задачу решает специальный блок, занимающийся оценкой текущего состояния системы. Опытным путём рассчитывается схема торможения, в управляющее устройство закладывается готовый алгоритм. При помощи датчиков определяется рассогласование между текущим состоянием и моментом начала торможения. Среди данных появляются величины – угловой путь вала до останова и прочие.

Обратная связь по скорости нелинейна и, как правило, не может быть рассчитана, данные об этой зависимости вводятся в память вычислителя. Как результат, согласно имеющейся нагрузке и динамическим показателям системы вырабатывается команда останова в нужный момент времени. Учитываются факторы:

  1. Отсутствие перегрева обмоток импульсом тока останова.
  2. Минимизация отдачи в сеть реактивной мощности.
  3. Продление срока эксплуатации установки.
  4. Отсутствие условий для создания аварий и механических перегрузок.

В ходе разработки системы управления тиристорным регулятором учитывается факт невосприимчивости асинхронного двигателя к воздействующим факторам на низких оборотах. В этом случае требуется минимальное рассогласование по скорости между полями ротора и статора, обеспечивающими возникновение токов Фуко и, как следствие, наличие потокосцепления. Это существенное ограничение асинхронных двигателей, из-за которого их применение в быту сводится к минимуму.

Тиристорный регулятор мощности. Схема | Уголок радиолюбителя

Данный тиристорный регулятор мощности возможно использовать для регулировании мощности активной нагрузки: лампа, плита, утюг, паяльник, различные бытовые обогреватели. Описываемая схема тиристорного регулятора выделяется надежностью и простотой.

HILDA - электрическая дрель

Многофункциональный электрический инструмент способн...

Помимо этого, регулятор не излучает помехи, поскольку переключение тиристора осуществляется в момент перехода напряжения сети через ноль.

Принцип работы тиристорного регулятора основывается на том, что на активную нагрузку идет полупериод напряжения сети через определенное количество пропущенных полупериодов. Электросхема тиристорного регулятора мощности показана на рис. 1.42.

Описание работы тиристорного регулятора мощности

Диодный мостик VD1 выпрямляет сетевое напряжение. Сопротивление R1 и стабилитрон VD2, вместе с емкостью фильтра С2, создают источник  Uпит.  Напряжением 9…10 В для DD1 и транзистора VT1.

Выпрямленные положительные полупериоды  напряж. идут  сквозь  емкость С1 и стабилизируются стабилитроном VD3 на уровне 10 В. Следовательно на счетный ввод С DD1 идут  сигналы с частотой следования 100 Гц. Если переключатель SA1 подсоединен к контакту 2 микросхемы, то на базе транзистора VT1 будет стабильно находиться сигнал лог. 1.

Это происходит потому, что сигнал обнуления DD1 настолько короткий, что микросхема успевает перезапуститься от того же сигнала. На контакте 3 появится сигнал лог. 1. Тиристор VS1 будет открыт и на нагрузке выделяется вся мощь. Во всех следующих положениях переключателя SA1 на контакте 3 микросхемы будет идти  один сигнал сквозь 2 — 9 импульсов.

При дальнейших переключениях перезапуск микросхемы от того же сигнала происходит не у всех экземпляров микросхем. Хотя в большинстве случаев это есть. Если учесть, что К561ИЕ8 является десятичным счетчиком с позиционным дешифратором на выходе, то  сигнал лог. 1 будет раз за разом возникать на всех выходах от 0 до 9. Тем не менее если переключатель установлен на 5 выходе (выв. 1), то отсчет будет происходить только до 5.

При прохождении сигналом выхода 5 счетчик сбросится. Начнется  отсчет с нуля, а на выводе 3  окажется  сигнал лог. 1 на  момент одного полупериода. На данный период отпирается транзистор и тиристор — один полупериод проходит в нагрузку. Подобное хорошо видно из диаграммы, показанной на рис. 1.43.

Если следует иметь еще меньшую мощность нагрузки, достаточно поставить еще одну микросхему счетчика, соединив контакт 12 предыдущей микросхемы с выводом 14 последующей. Поставив еще один переключатель, можно регулировать мощность до 99 пропущенных сигналов.

То есть, возможно получить приблизительно сотую часть общей мощности. Следует помнить, что мощность диодного моста обязана соответствовать мощности нагрузки.

ВНИМАНИЕ! При работе с регулятором помните о технике безопасности. Все элементы электросхемы находятся под напряжением сети!

Паяльный фен YIHUA 8858

Обновленная версия, мощность: 600 Вт, расход воздуха: 240 л/час...

Схемы на тиристоре ку202н. Регулятор мощности для паяльника своими руками — схемы и варианты монтажа. Принцип работы тиристора

Тиристорные регуляторы напряжения представляют собой устройства, предназначенные для регулирования частоты вращения и момента электродвигателей. Регулирование частоты вращения и момента производится за счет изменения напряжения, подводимого к статору двигателя, и осуществляется изменением угла открытия тиристоров. Такой способ управления электродвигателем получил название фазового управления. Этот способ является разновидностью параметрического (амплитудного) управления.

Могут выполняться как с замкнутой, так и с разомкнутой системой регулирования. Регуляторы с разомкнутой системой не обеспечивают удовлетворительного качества процесса регулирования частоты вращения. Основное их назначение- регулирование момента для получения нужного режима работы привода в динамических процессах.


В силовую часть однофазного тиристорного регулятора напряжения включены два управляемых тиристора, которые обеспечивают протекание электрического тока на на1рузке в двух направлениях при синусоидальном напряжении на входе.

Тиристорные регуляторы с замкнутой системой регулирования используются, как правило, с отрицательной обратной связью по скорости, что позволяет иметь достаточно жесткие механические характеристики привода в зоне малых частот вращения.

Наиболее эффективно использование тиристорных регуляторов для регулирования частоты вращения и момента .

Силовые цепи тиристорных регуляторов

На рис. 1, а-д показаны возможные схемы включения выпрямительных элементов регулятора в одной фазе. Наиболее распространенной из них является схема на рис1,а. Она может быть использована при любой схеме соединения обмоток статора. Допустимый ток через нагрузку (действующее значение) в этой схеме в режиме непрерывного тока равен:

где I т - допустимое среднее значение тока через тиристор.

Максимальное прямое и обратное напряжения тиристора

где k зап - коэффициент запаса, выбираемый с учетом возможных коммутационных перенапряжений в схеме; - действующее значение линейного напряжения сети.

Рис. 1. Схемы силовых цепей тиристорных регуляторов напряжения.

В схеме на рис. 1,б имеется только один тиристор, включенный в диагональ моста из неуправляемых диодов. Соотношение между токами нагрузки и тиристора для этой схемы имеет вид:

Неуправляемые диоды выбираются на ток вдвое меньший, чем для тиристора. Максимальное прямое напряжение на тиристоре

Обратное напряжение на тиристоре близко к нулю.

Схема на рис. 1,б имеет некоторые отличия от схемы на рис. 1,а по построению системы управления. В схеме на рис. 1, а управляющие импульсы на каждый из тиристоров должны следовать с частотой питающей сети. В схеме на рис. 1,б частота импульсов управления вдвое больше.

Схема на рис. 1, в, состоящая из двух тиристоров и двух диодов, по возможности управления, загрузке, по току и максимальному прямому напряжению тиристоров аналогична схеме на рис. 1, а.

Обратное напряжение в этой схеме из-за шунтирующего действия диода близко к нулю.

Схема на рис. 1, г по току и максимальному прямому и обратному напряжению тиристоров аналогична схеме на рис. 1, а. Схема на рис. 1, г отличается от рассмотренных требованиями к системе управления по обеспечению необходимого диапазона изменения угла регулирования тиристоров. Если угол отсчитывать от нуля фазного напряжения, то для схем на рис. 1, а-в справедливо соотношение

где φ - фазовый угол нагрузки.

Для схемы на рис. 1, г аналогичное соотношение приобретает вид:

Необходимость увеличения диапазона изменения угла усложняет . Схема на рис. 1, г может быть применена при включении обмоток статора в звезду без нулевого провода и в треугольник с включением выпрямительных элементов в линейные провода. Область применения указанной схемы ограничена нереверсивными, а также реверсивными электроприводами с контактным реверсом.

Схема на рис. 4-1, д по своим свойствам аналогична схеме на рис. 1, а. Ток симистора здесь равен току нагрузки, а частота импульсов управления равна двойной частоте питающего напряжения. Недостаток схемы на симисторах - значительно меньше, чем у обычных тиристоров, допустимые значения du/dt и di/dt .

Для тиристорных регуляторов наиболее рациональна схема на рис. 1, а с двумя встречно-параллельно включенными тиристорами.

Силовые схемы регуляторов выполняются с встречно-параллельно включенными тиристорами во всех трех фазах (симметричная трехфазная схема), в двух и одной фазах двигателя, как показано на рис. 1, е, ж и з соответственно.

В регуляторах, применяемых в крановых электроприводах, наибольшее распространение получила симметричная схема включения, показанная на рис. 1, е, которая характеризуется наименьшими потерями от высших гармонических токов. Более высокие значения потерь в схемах с четырьмя и двумя тиристорами определяются несимметрией напряжения в фазах двигателя.

Основные технические данные тиристорных регуляторов серии РСТ

Тиристорные регуляторы серии РСТ представляют собой устройства для изменения (по заданному закону) напряжения, подводимого к статору асинхронного двигателя с фазным ротором. Тиристорные регуляторы серии РСТ выполняются по симметричной трехфазной схеме включения (рис. 1, е). Применение регуляторов указанной серии в крановых электроприводах позволяет осуществлять регулирование частоты вращения в диапазоне 10:1 и регулирование момента двигателя в динамических режимах при пуске и торможении.

Тиристорные регуляторы серии РСТ выполняются на длительные токи 100, 160 и 320 А (максимальные токи соответственно 200, 320 и 640 А) и напряжение 220 и 380 В переменного тока. Регулятор представляет собой собранные на общей раме три силовых блока (по числу фаз встречно-параллельно включенных тиристоров), блок датчиков тока и блок автоматики. В силовых блоках используются таблеточные тиристоры с охладителями из тянутого алюминиевого профиля. Охлаждение воздушное - естественное. Блок автоматики - единый для всех исполнений регуляторов.

Тиристорные регуляторы выполнены со степенью защиты IP00 и предназначены для установки на стандартные рамы магнитных контроллеров типа ТТЗ, которые по конструкции аналогичны контроллерам серий ТА и ТСА. Габаритные размеры и масса регуляторов серии РСТ указаны в табл. 1.

Таблица 1 Габаритные размеры и масса регуляторов напряжения серии РСТ


В магнитных контроллерах ТТЗ установлены контакторы направления для реверсирования двигателя, контакторы роторной цепи и другие релейно-контактные элементы электропривода, осуществляющие связь командоконтроллера с тиристорным регулятором. Структура построения системы управления регулятора видна из функциональной схемы электропривода, показанной на рис. 2.

Трехфазный симметричный тиристорный блок Т управляется системой фазового управления СФУ. С помощью командоконтроллера КК в регуляторе производится изменение задания скорости БЗС, Через блок БЗС в функции времени осуществляется управление контактором ускорения КУ2 в цепи ротора. Разность сигналов задания и тахогенератора ТГ усиливается усилителями У1 и УЗ. К выходу усилителя УЗ подключено логическое релейное устройство, имеющее два устойчивых состояния: одно соответствует включению контактора направления вперед KB, второе - включению контактора направления назад КН.

Одновременно с изменением состояния логического устройства реверсируется сигнал в цепи управления РУ. Сигнал с согласующего усилителя У2 суммируется с сигналом задержанной обратной связи по току статора двигателя, который поступает с блока токоограничения ТО и подается на вход СФУ.

На блок логики БЛ воздействует также сигнал с блока датчиков тока ДТ и блока наличия тока НТ, запрещающий переключение контакторов направления под током. Блоком БЛ осуществляется также нелинейная коррекция системы стабилизации частоты вращения для обеспечения устойчивости работы привода. Регуляторы могут быть использованы в электроприводах механизмов подъема и передвижения.

Регуляторы серии РСТ выполнены с системой ограничения тока. Уровень токоограничения для защиты тиристоров от перегрузок и для ограничения момента двигателя в динамических режимах плавно изменяется от 0,65 до 1,5 номинального тока регулятора, уровень токоограничения для максимально-токовой защиты- от 0,9 до. 2,0 номинального тока регулятора. Широкий диапазон изменения уставок защиты обеспечивает работу регулятора одного типоразмера с двигателями, отличающимися по мощности примерно в 2 раза.

Рис. 2. Функциональная схема электропривода с тиристорным регулятором типа РСТ: КК - командоконтроллер; ТГ - тахогенератор; КН, KB - контакторы направления; БЗС - блок задания скорости; БЛ - блок логики; У1, У2. УЗ - усилители; СФУ- система фазового управления; ДТ - датчик тока; ИТ - блок наличия тока; ТО - блок токоограничения; МТ - блок защиты; КУ1, КУ2 - контакторы ускорения; КЛ - линейный контактор: Р - рубильник.

Рис. 3. Тиристорный регулятор напряжения РСТ

Чувствительность системы наличия тока составляет 5-10 А действующего значения тока в фазе. В регуляторе предусмотрены также защиты: нулевая, от коммутационных перенапряжений, от исчезновения тока хотя бы в одной из фаз (блоки ИТ и МТ), от помех радиоприему. Быстродействующими плавкими предохранителями типа ПНБ 5М осуществляется защита от токов короткого замыкания.

Содержание:

В современных радиолюбительских схемах широкое распространение получили различные виды деталей, в том числе и тиристорный регулятор мощности. Чаще всего эта деталь используется в паяльниках на 25-40 ватт, которые в обычных условиях легко перегреваются и становятся непригодными к работе. Эта проблема легко решается с помощью регулятора мощности, позволяющего выставлять точную температуру.

Применение тиристорных регуляторов

Как правило, тиристорные регуляторы мощности применяются для улучшения рабочих свойств обычных паяльников. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет неэффективным при небольших объемах . Поэтому, более целесообразным будет оборудование обычного паяльника тиристорным регулятором.

Регулятор мощности на тиристоре широко применяется в системах светильников. На практике они представляют собой обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие приспособления способны нормально работать лишь с обычными лампами накаливания. Они совершенно не воспринимаются современными компактными люминесцентными лампами, из-за расположенного внутри них выпрямительного моста с электролитическим конденсатором. Тиристор просто не будет работать во взаимодействии с этой схемой.

Такие же непредсказуемые результаты получаются и при попытках отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.

Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и прочего инструмента.

Принцип работы тиристора

Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока. Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода. До подачи управляющего импульса, тиристор будет закрытым в любом направлении.

Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт. Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора. В результате, тиристор открывается и светодиод начинает излучать свет.

При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться. В случае повторного или неоднократного нажатия кнопки ничего не изменится - светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности. Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.

В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки - он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше. Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.

Схема простейшего регулятора мощности

Тиристор участвует в выпрямлении переменного напряжения так же, как и обыкновенный диод. Это приводит к однополупериодному выпрямлению в незначительных пределах с участием одного тиристора. Для достижения желаемого результата, с помощью регуляторов мощности осуществляется управление двумя полупериодами напряжения сети. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут включаться в цепь диагонали выпрямительного моста.

Простейшую схему тиристорного регулятора мощности лучше всего рассматривать на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим регулировать можно только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод, без каких-либо изменений, непосредственно к паяльнику, обеспечивая его половинную мощность.

Прохождение положительного полупериода происходит через тиристор, за счет чего и выполняется регулировка. В цепи управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.

Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. Когда на конденсаторе напряжение возрастает до значения, позволяющего включать тиристор, происходит его открытие. В результате, в нагрузку пропускается какая-то часть положительного полупериода напряжения. Одновременно наступает разрядка конденсатора и подготовка к следующему циклу.

Для регулировки скорости заряда конденсатора используется переменный резистор. Чем быстрее произойдет зарядка конденсатора до значения напряжения, при котором открывается тиристор, тем раньше наступит открытие тиристора. Следовательно, в нагрузку поступит большее количество положительного полупериода напряжения. Данная схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, применяющихся в различных областях.

Тиристорный регулятор мощности своими руками

Тиристорные регуляторы мощности являются одной из самых распространенных радиолюбительских конструкций, и в этом нет ничего удивительного. Ведь всем, кто когда-нибудь пользовался обычным 25 - 40 ваттным паяльником, способность его к перегреванию даже очень известна. Паяльник начинает дымить и шипеть, потом, достаточно скоро, облуженное жало выгорает, становится черным. Паять таким паяльником уже совсем невозможно.

И вот тут на помощь и приходит регулятор мощности, с помощью которого можно достаточно точно выставить температуру для пайки. Ориентироваться следует на то, чтобы при касании паяльником куска канифоли она дымила ну, так, средне, без шипения и брызг, не очень энергично. Ориентироваться следует на то, чтобы пайка получалась контурной, блестящей.

Чтобы не усложнять рассказ, не будем рассматривать тиристор в виде его четырехслойной p-n-p-n структуры, рисовать вольтамперную характеристику, а просто на словах опишем, как же он, тиристор, работает. Для начала в цепи постоянного тока, хотя в этих цепях тиристоры почти не применяются. Ведь выключить тиристор, работающий на постоянном токе достаточно сложно. Все равно, что коня на скаку остановить.

И все же большие токи и высокие напряжения тиристоров привлекают разработчиков различной, как правило, достаточно мощной аппаратуры постоянного тока. Для выключения тиристоров приходится идти на различные усложнения схем, ухищрения, но в целом результаты получаются положительными.

Обозначение тиристора на принципиальных схемах показано на рисунке 1.

Рисунок 1. Тиристор

Нетрудно заметить, что по своему обозначению на схемах, тиристор очень похож на . Если разобраться, то он, тиристор, тоже обладает односторонней проводимостью, а следовательно, может выпрямлять переменный ток. Вот только делать это он будет лишь в том случае, когда на управляющий электрод подано относительно катода положительное напряжение, как показано на рисунке 2. По старой терминологии тиристор иногда называли управляемым диодом. Покуда не подан управляющий импульс, тиристор закрыт в любом направлении.

Рисунок 2.

Как включить светодиод

Здесь все очень просто. К источнику постоянного напряжения 9В (можно использовать батарейку «Крона») через тиристор Vsx подключен светодиод HL1 с ограничительным резистором R3. С помощью кнопки SB1 напряжение с делителя R1, R2 может быть подано на управляющий электрод тиристора, и тогда тиристор откроется, светодиод начинает светиться.

Если теперь отпустить кнопку, перестать ее удерживать в нажатом состоянии, то светодиод должен продолжать светиться. Такое кратковременное нажатие на кнопку можно назвать импульсным. Повторное и даже многократное нажатие этой кнопки ничего не изменит: светодиод не погаснет, но и не станет светить ярче или тусклее.

Нажали - отпустили, а тиристор остался в открытом состоянии. Причем, это состояние является устойчивым: тиристор будет открыт до тех пор, пока из этого состояния его не выведут внешние воздействия. Такое поведение схемы говорит об исправном состоянии тиристора, его пригодности для работы в разрабатываемом или ремонтируемом устройстве.

Маленькое замечание

Но из этого правила часто случаются исключения: кнопку нажали, светодиод зажегся, а когда кнопку отпустили, то погас, как, ни в чем не бывало. И в чем же тут подвох, что сделали не так? Может кнопку нажимали недостаточно долго или не очень фанатично? Нет, все было сделано достаточно добросовестно. Просто ток через светодиод оказался меньше, чем ток удержания тиристора.

Чтобы описанный опыт прошел удачно, надо просто заменить светодиод лампой накаливания, тогда ток станет больше, либо подобрать тиристор с меньшим током удержания. Этот параметр у тиристоров имеет значительный разброс, иногда даже приходится тиристор для конкретной схемы подбирать. Причем одной марки, с одной буквой и из одной коробки. Несколько лучше с этим током у импортных тиристоров, которым в последнее время отдается предпочтение: и купить проще, и параметры лучше.

Как закрыть тиристор

Никакие сигналы, поданные на управляющий электрод, закрыть тиристор и погасить светодиод не смогут: управляющий электрод может только включить тиристор. Существуют, конечно, запираемые тиристоры, но их назначение несколько иное, чем банальные регуляторы мощности или простые выключатели. Обычный тиристор можно выключить лишь только прервав ток через участок анод - катод.

Сделать это можно, как минимум, тремя способами. Во-первых, тупо отключить всю схему от батарейки. Вспоминаем рисунок 2. Естественно, что светодиод погаснет. Но при повторном подключении он сам по себе не включится, поскольку тиристор остался в закрытом состоянии. Это состояние также является устойчивым. И вывести его из этого состояния, Зажечь свет, поможет только нажатие кнопки SB1.

Второй способ прервать ток через тиристор это просто взять и замкнуть выводы катода и анода проволочной перемычкой. При этом весь ток нагрузки, в нашем случае это всего - лишь светодиод, потечет через перемычку, а ток через тиристор будет равен нулю. После того, как перемычка будет убрана, тиристор закроется, и светодиод погаснет. При опытах с подобными схемами в качестве перемычки чаще всего используется пинцет.

Предположим, что вместо светодиода в этой схеме будет достаточно мощная нагревательная спираль с большой тепловой инерцией. Тогда получается практически готовый регулятор мощности. Если коммутировать тиристор таким образом, что на 5 секунд спираль включена и столько же времени выключена, то в спирали выделяется 50-ти процентная мощность. Если же за время этого десятисекундного цикла включение производится лишь на 1 секунду, то совершенно очевидно, что спираль выделит только 10% тепла от своей мощности.

Примерно с такими временными циклами, измеряемыми в секундах, работает регулировка мощности в микроволновой печи. Просто с помощью реле включается и выключается ВЧ излучение. Тиристорные регуляторы работают на частоте питающей сети, где время измеряется уже миллисекундами.

Третий способ выключения тиристора

Состоит в том, чтобы до нуля уменьшить напряжение питания нагрузки, а то и вовсе изменить полярность питающего напряжения на противоположную. Именно такая ситуация получается при питании тиристорных схем переменным синусоидальным током.

При переходе синусоиды через нуль, она меняет знак на противоположный, поэтому ток через тиристор становится меньше тока удержания, а затем и вовсе равным нулю. Таким образом, проблема выключения тиристора решается как бы сама собой.

Тиристорные регуляторы мощности. Фазовое регулирование

Итак, дело осталось за малым. Чтобы получилось фазовое регулирование, надо просто в определенное время подать управляющий импульс. Другими словами импульс должен иметь определенную фазу: чем ближе он будет расположен к концу полупериода переменного напряжения, тем меньшая амплитуда напряжения окажется на нагрузке. Фазовый способ регулирования показан на рисунке 3.

Рисунок 3. Фазовое регулирование

В верхнем фрагменте картинки управляющий импульс подается почти в самом начале полупериода синусоиды, фаза управляющего сигнала близка к нулю. На рисунке это время t1, поэтому тиристор открывается почти в начале полупериода, а в нагрузке выделяется мощность близкая к максимальной (если бы в цепи не было тиристоров, мощность была бы максимальной).

Сами управляющие сигналы на этом рисунке не показаны. В идеальном варианте они представляют собой короткие положительные относительно катода импульсы, поданные в определенной фазе на управляющий электрод. В простейших схемах это может быть линейно нарастающее напряжение, получаемое при заряде конденсатора. Об этом будет рассказано несколько ниже.

На среднем графике управляющий импульс подается в средине полупериода, что соответствует фазовому углу Π/2 или моменту времени t2, поэтому в нагрузке выделяется лишь половина максимальной мощности.

На нижнем графике открывающие импульсы подаются очень близко к окончанию полупериода, тиристор открывается почти перед тем, как ему предстоит закрыться, по графику это время обозначено как t3, соответственно мощность в нагрузке выделяется незначительная.

Схемы включения тиристоров

После краткого рассмотрения принципа работы тиристоров, наверное, можно привести несколько схем регуляторов мощности . Нового здесь ничего не изобретено, все можно найти в сети Интернет или в старых радиотехнических журналах. Просто в статье приводится краткий обзор и описание работы схем тиристорных регуляторов . При описании работы схем будет обращаться внимание на то, каким образом используются тиристоры, какие существуют схемы включения тиристоров.

Как было сказано в самом начале статьи, тиристор выпрямляет переменное напряжение как обычный диод. Получается однополупериодное выпрямление. Когда-то именно так, через диод, включались лампы накаливания на лестничных клетках: света совсем чуть, в глазах рябит, но зато лампы перегорают очень редко. То же самое получится, если светорегулятор выполнить на одном тиристоре, только появляется еще возможность регулирования уже и так незначительной яркости.

Поэтому регуляторы мощности управляют обоими полупериодами сетевого напряжения. Для этого применяется встречно - параллельное включение тиристоров, или включение тиристора в диагональ выпрямительного моста.

Для наглядности этого утверждения далее будут рассмотрены несколько схем тиристорных регуляторов мощности. Иногда их называют регуляторами напряжения, и какое название вернее, решить трудно, ведь вместе с регулированием напряжения регулируется и мощность.

Простейший тиристорный регулятор

Он предназначен для регулирования мощности паяльника. Его схема показана на рисунке 4.

Рисунок 4. Схема простейшего тиристорного регулятора мощности

Регулировать мощность паяльника, начиная от нуля, нет никакого смысла. Поэтому можно ограничиться регулированием только одного полупериода сетевого напряжения, в данном случае положительного. Отрицательный полупериод проходит без изменений через диод VD1 сразу на паяльник, что обеспечивает его половинную мощность.

Положительный полупериод проходит через тиристор VS1, позволяющий осуществлять регулирование. Цепь управления тиристором предельно проста. Это резисторы R1, R2 и конденсатор C1. Конденсатор заряжается по цепи: верхний провод схемы, R1, R2 и конденсатор C1, нагрузка, нижний провод схемы.

К плюсовому выводу конденсатора подключен управляющий электрод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, последний открывается, пропуская в нагрузку положительный полупериод напряжения, вернее его часть. Конденсатор C1 при этом, естественно, разряжается, тем самым подготавливаясь к следующему циклу.

Скорость заряда конденсатора регулируется с помощью переменного резистора R1. Чем быстрее конденсатор зарядится до напряжения открывания тиристора, тем раньше тиристор откроется, тем большая часть положительного полупериода напряжения поступит в нагрузку.

Схема простая, надежная, для паяльника вполне подходит, хотя регулирует лишь один полупериод сетевого напряжения. Очень похожая схема показана на рисунке 5.

Рисунок 5. Тиристорный регулятор мощности

Она несколько сложней предыдущей, но позволяет осуществлять регулировку более плавно и точно, благодаря тому, что схема формирования управляющих импульсов собрана на двухбазовом транзисторе КТ117. Этот транзистор предназначен для создания генераторов импульсов. Больше, кажется, ни на что другое не способен. Подобная схема используется во многих регуляторах мощности, а также в импульсных блоках питания в качестве формирователя запускающего импульса.

Как только напряжение на конденсаторе C1 достигает порога срабатывания транзистора, последний открывается и на выводе Б1 появляется положительный импульс, открывающий тиристор VS1. Резистором R1 можно регулировать скорость заряда конденсатора.

Чем быстрее зарядится конденсатор, тем раньше появится открывающий импульс, тем большее напряжение поступит в нагрузку. Вторая полуволна сетевого напряжения проходит в нагрузку через диод VD3 без изменений. Для питания схемы формирователя управляющих импульсов используется выпрямитель VD2, R5, стабилитрон VD1.

Тут можно спросить, а когда же откроется транзистор, каков же порог срабатывания? Открывание транзистора происходит в тот момент, когда напряжение на его эмиттере Э превысит напряжение на базе Б1. Базы Б1 и Б2 не равноценны, если их поменять местами, то генератор не заработает.

На рисунке 6 показана схема, позволяющая регулировать оба полупериода напряжения.

Рисунок 6.

Подборка схем и описание работы регулятора мощности на симисторах и не только. Схемы симисторных регуляторов мощности хорошо подходят для продление срока эксплуатации ламп накаливания и для регулировки их яркости свечения. Или для запитки нестандартной аппаратуры например на 110 вольт.

На рисунке представлена схема симисторного регулятора мощности, которую можно менять за счет изменения общего количества сетевых полупериодов, пропускаемых симистором за определенный интервал времени. На элементах микросхемы DD1.1.DD1.3 сделан , период колебания которого около 15-25 сетевых полупериодов.

Скважность импульсов регулируется резистором R3. Транзистор VT1 совместно с диодами VD5-VD8 предназначен для привязки момента включения симистора во время перехода сетевого напряжения через нуль. В основном этот транзистор открыт, соответственно, на вход DD1.4 поступает "1" и транзистор VT2 с симистором VS1 закрыты. В момент перехода через нуль транзистор VT1 закрывается и почти сразу открывается. При этом, если на выходе DD1.3 была 1, то состояние элементов DD1.1.DD1.6 не изменится, а если на выходе DD1.3 был "ноль", то элементы DD1.4.DD1.6 сгенерируют короткий импульс, который усилится транзистором VT2 и откроет симистор.

До тех пор пока на выходе генератора будет логический ноль, процесс будет идти цикличиски после каждого перехода сетевого напряжения через точку нуля.

Основа схемы зарубежный симистор mac97a8, который позваляет коммутировать большие мощности подключенные нагрузки, а для ее регулировки использовал старый советский переменный резистор, а в качестве индикации использовал обычный светодиод.

В симисторном регуляторе мощности применен принцип фазового управления. Работа схемы регулятора мощности основана на изменении момента включения симистора относительно перехода сетевого напряжения через ноль. В первоначальный момент положительного полупериода симистор находится в закрытом состояние. С возрастанием сетевого напряжения, конденсатор С1 заряжается через делитель.

Возрастающее напряжения на конденсаторе сдвигается по фазе от сетевого на величину, зависящую от суммарного сопротивления обоих резисторов и емкости конденсатора. Заряд конденсатора происходит до тех пор, пока напряжение на нем не дойдет до уровня «пробоя» динистора, приблизительно 32 В.

В момент открытия динистора, откроется и симистор, через подключенную к выходу нагрузку потечет ток, зависящий от суммарного сопротивлением открытого симистора и нагрузки. Симистор будет открыт до конца полупериода. Резистором VR1 задаем напряжение открывания динистора и симистора, тем самым регулируя мощность. В момент действия отрицательного полупериода алгоритм работы схемы аналогичен.

Вариант схемы с небольшими доработками на 3,5 кВт

Схема регулятора несложная, мощность нагрузки на выходе устройства составляет 3,5 кВт. С помощью этой радиолюбительской самоделки вы можите регулировать освещение, нагревательные тэны и многое другое. Единственный существенный недостаток данной схемы, это то что подсоединить к ней индукционную нагрузку нельзя ни в коем случае, т.к симистор сгорит!


Используемые в конструкции радиокомпоненты: Симистор Т1 - BTB16-600BW или аналогичный (КУ 208 ил ВТА, ВТ). Динистор Т - типа DB3 или DB4. Конденсатор 0,1мкФ керамический.

Сопротивление R2 510Ом ограничивает максимальные вольты на конденсаторе 0,1 мкФ, если поставить движок регулятора в положение 0 Ом, то сопротивление цепи составит порядка 510 Ом. Заряжается емкость, через резисторы R2 510Ом и переменное сопротивление R1 420кОм, после того, как U на конденсаторе достигнет уровня открывания динистора DB3, последний сформирует импульс, отпирающий симистор, после чего, при дальнейшем проходе синусоиды, симистор запирается. Частота открывания-закрывания Т1 зависит от уровня U на конденсаторе 0.1мкФ, которое,зависит от сопротивления переменного резистора. Т.е, прерывая ток (с большой частотой) схема, тем самым регулирует мощность на выходе.

При каждой положительной полуволне входного переменного напряжения емкость С1 заряжается через цепочку резисторов R3, R4, когда напряжение на конденсаторе С1 станет равным напряжению открытия динистора VD7 произойдет его пробой и разрядка емкости через диодный мост VD1-VD4 , а также сопротивление R1 и управляющий электрод VS1 . Для открытия симистора используется электрическая цепочка из диодов VD5, VD6 конденсатора С2 и сопротивления R5.

Требуется подобрать номинал резистора R2 так, чтобы при обоих полуволнах сетевого напряжения, симистор регулятора надежно срабатывал, а также требуется подобрать номиналы сопротивлений R3 и R4 так, чтобы при вращении ручки переменного сопротивления R4 напряжение на нагрузке плавно изменялось от минимальных до максимальных значений. Вместо симистора ТС 2-80 можно использовать ТС2-50 или ТС2-25, хотя будет небольшой проигрыш по допустимой мощности в нагрузке.

В качестве симистора был использован КУ208Г, ТС106-10-4, ТС 112-10-4 и их аналоги. В тот момент времени когда симистор закрыт, осуществляется заряд конденсатора С1 через подключенную нагрузку и резисторы R1 и R2. Скорость заряда изменяется резистором R2, резистор R1 предназначен для ограничения максимальной величины тока заряда

При достижении на обкладках конденсатора порогового значения напряжения происходит открытие ключа, конденсатор С1 быстро разряжается на управляющий электрод и перключает симистор из закрытого состояния в открытое, в открытом состоянии симистор шунтирует цепь R1, R2, С1. В момент перехода сетевого напряжения через ноль происходит закрытие симистора, затем снова заряд конденсатора C1, но уже отрицательным напряжением.

Конденсатор С1 от 0,1...1,0 мкФ. Резистор R2 1,0...0,1 МОм. Симистор включается положительным импульсом тока на управляющий электрод при положительном напряжении на выводе условном аноде и отрицательным импульсом тока на управляющий электрод при отрицательном напряжении условного катода. Таким образом, ключевой элемент для регулятоpa должен быть двунаправленным. Можно в качестве ключа использовать двунаправленный динистор.

Диоды Д5-Д6 используются для защиты тиристора от возможного пробоя обратным напряжением. Транзистор работает в режиме лавинного пробоя. Его напряжение пробоя около 18-25 вольт. Если вы не найдете П416Б, то можно попытаться найти ему замену .

Импульсный трансформатор наматывается на ферритовом кольце диаметром 15 мм, марки Н2000.Тиристор можно заменить на КУ201

Схема этого регулятора мощности похожа на вышеописанные схемы, только введена помехоподавляющая цепь С2, R3, а ыыключатель SW дает возможность разрывать цепь зарядки управляющего конденсатора, что приводит к моментальному запиранию симистора и отключению нагрузки.

С1, С2 - 0,1 МКФ, R1-4k7, R2-2 мОм, R3-220 Ом, VR1-500 кОм, DB3 - динистор, BTA26-600B - симистор, 1N4148/16 В - диод, светодиод любой.

Регулятор используется для регулировки мощности нагрузки в цепях до 2000 Вт, ламп накаливания, нагревательных приборов, паяльника, асинхронных двигателей, зарядного устройство для авто, и если заменить симистор на более мощный можно применить в цепи регупировки тока в сварочных трансформаторах.

Принцип работы этой схемы регулятора мощности заключается в том, что на нагрузку поступает полупериод сетевого напряжения через выбранное число пропущенных полупериодов.


Диодный мост выпрямляет переменное напряжение. Резистор R1 и стабилитрон VD2, вместе с конденсатором фильтра образуют источник питания 10 В для питания микросхемы К561ИЕ8 и транзистора КТ315. Выпрямленные положительные полупериоды напряжения проходя через конденсатор С1 стабилизируются стабилитроном VD3 на уровне 10 В. Таким образом, на счетный вход С счетчика К561ИЕ8 следуют импульсы с частотой 100 Гц. Если переключатель SA1 подсоединен к выходу 2, то на базе транзистора будет постоянно присутствовать уровень логической единицы. Т.к импульс обнуления микросхемы очень короткий и счетчик успевает перезапуститься от того же импульса.

На выводе 3 установится уровень логической единицы. Тиристор будет открыт. На нагрузке будет выделяться вся мощность. Во всех последующих положениях SA1 на выводе 3 счетчика будет проходить один импульс через 2-9 импульсов.

Микросхема К561ИЕ8 это десятичный счетчик с позиционным дешифратором на выходе, поэтому уровень логической единицы будет периодически на всех выходах. Однако, если переключатель установлен на 5 выходе (выв.1), то счет будет происходить только до 5. При прохождении импульсом выхода 5 микросхема обнулится. Начнется счет с ноля, а на выводе 3 появится уровень логической единицы на время одного полупериода. На это время открывается транзистор и тиристор, один полупериод проходит в нагрузку. Для того чтобы было понятней привожу векторные диаграммы работы схемы.

Если требуется уменьшить мощность нагрузки, можно добавить еще одну микросхему счетчика, соединив вывод 12 предыдущей микросхемы с выводом 14 последующей. Установив еще один переключатель, можно будет регулировать мощность до 99 пропущенных импульсов. Т.е. можно получить примерно сотую часть общей мощности.

Микросхема КР1182ПМ1 имеет в своем внутреннем составе два тиристора и узел управления ими. Максимальное входное напряжение микросхемы КР1182ПМ1 около 270 Вольт, а максимум в нагрузке может достигать 150 Ватт без использования внешнего симистора и до 2000 Вт с использованием, а также с учетом того, что симистор будет установлен на радиаторе.


Для снижения уровня внешних помех используется конденсатор С1 и дроссель L1, а емкость С4 требуется для плавного включения нагрузки. Регулировка осуществляется с помощью сопротивления R3.

Подборка довольно простых схем регуляторов для паяльника упростит жизнь радиолюбителю

Комбинированность заключается в совмещении удобства применения цифрового регулятора и гибкости регулировки простого.


Рассмотренная схема регулятора мощности работает по принципу изменения числа периодов входного переменного напряжения, идущих на нагрузку. Это значит, что устройство нельзя использовать для настройки яркости ламп накаливания из-за заметного для глаза мигания. Схема дает возможность регулировать мощность в пределах восьми предустановленных значений.

Существует огромной количество классических тиристорных и симисторных схем регуляторов, но этот регулятор выполнен на современной элементной базе и кроме того являлся фазовым, т.е. пропускает не всю полуволну сетевого напряжения, а только некоторую её часть, тем самым и осуществляется ограничение мощности, т.к открытие симистора происходит только при нужном фазовом угле.

В быту очень часто появляется необходимость в регулировке мощности различных электрических приборов: газовых плит, чайника, паяльника, кипятильника, различных ТЭНов и т. п. В автомобиле может понадобиться регулировка оборотов двигателя. Для этого можно использовать простую конструкцию - регулятор напряжения на тиристоре. Своими руками к тому же его сделать несложно.

Некоторые нюансы выбора

Сделать тиристорный регулятор напряжения своими руками несложно. Это может быть первой поделкой начинающего радиолюбителя, которая сможет обеспечить регулировку температуры жала паяльника. К тому же паяльники с возможностью регулировки температуры заводского производства стоят дороже простых моделей без такой возможности. Поэтому можно ознакомиться с основами пайки и радиоконструирования, а также сэкономить немалую сумму. С помощью небольшого количества комплектующих можно собрать простой тиристор с навесным монтажом.

Навесной тип монтажа осуществляется без необходимости использования специальной печатной платы. С хорошими умениями в этой области можно таким способом собрать простые схемы достаточно быстро.

Можно сэкономить время и установить на паяльник готовый тиристор. Но если есть желание разобраться в схеме полностью, то тиристорный регулятор мощности придётся сделать своими руками.

Важно! Такое устройство, как тиристор, является регулятором общей мощности. Кроме этого, применяется для регулировки числа оборотов различного оборудования.

Но в первую очередь требуется понять общий принцип работы устройства, разобраться с его схемой. Это даст возможность правильно рассчитать необходимую мощность для оптимальной работы оборудования, на котором оно будет выполнять свои прямые обязанности.

Конструктивные особенности

Тиристор - это полупроводниковый элемент, которым можно управлять. Он может очень быстро при необходимости провести ток в одном направлении. В отличие от классических диодов с помощью тиристора выполняется регулировка момента подачи напряжения.

Он имеет сразу три элемента для вывода тока:

  • катод;
  • анод;
  • управляемый электрод.

Работать такой элемент будет только при соблюдении определённых условий. Во-первых, он должен размещаться в схеме под общим напряжением. Во-вторых, на управляющую часть электрода должен быть подан необходимый кратковременный импульс. Это позволит регулировать мощность прибора в нужном направлении. Можно будет выключать устройство, включать его и изменять режимы работы. В отличие от транзистора тиристор не требует удержания управляющего сигнала.

Применять тиристор в целях обеспечения постоянного тока является нецелесообразным, поскольку тиристор легко закрыть, если перекрыть поступление в него тока по цепи. А для переменного тока в таких устройствах, как тиристорный регулятор, применение тиристора обязательно, поскольку схема выполнена таким методом, чтобы полностью обеспечивать необходимое закрывание полупроводникового элемента. Любая полуволна способна полностью закрыть отдел тиристора в случае такой потребности.

Схему начинающим довольно сложно понять, но воспользовавшись инструкциями от специалистов, они значительно упростят себе процесс создания.

Области и цели использования

Для начала нужно понять, в каких целях используется такое устройство как тиристорный регулятор мощности. Применяются регуляторы мощности практически во всех строительных и столярных электрических инструментах. Кроме этого, в кухонной технике без них тоже никак. Они позволяют, к примеру, регулировать режимы скорости кухонного комбайна или блендера, скорость нагнетания воздуха феном, а также функционируют для обеспечения выполнения других не менее важных задач. Полупроводниковый элемент позволяет более эффективно регулировать мощность нагревательных приборов, то есть их основной части.

Если использовать тиристоры в схеме с высокоиндуктивной нагрузкой, то они могут просто не закрыться в нужный момент, что приведёт к выходу из строя оборудования. Многие пользователи видели или даже самостоятельно пользовались такими устройствами, как болгарки, шлифовальные машины или дрели. Можно заметить, что главным образом регулировка мощности осуществляется при помощи нажатия кнопки. Эта кнопка и находится в общем блоке с тиристорным регулятором мощности, который изменяет обороты двигателя.

Важно! Тиристорный регулятор не может менять обороты автоматически в асинхронных двигателях. А вот в коллекторном двигателе, оборудованном специальным щелочным узлом, работать регулировка будет корректно и полноценно.

Принцип действия

Особенность работы заключается в том, что в любом приборе напряжение будет регулироваться мощностью и перебоями в электросети согласно синусоидальным законам.

Любой тиристор общей мощности может пропускать ток только в одном направлении. Если тиристор не отключить, то он будет продолжать работать и отключится только после совершения определённых действий.

При самостоятельном изготовлении необходимо спроектировать конструкцию таким образом, чтобы внутри было достаточно свободного места для установки регулирующего рычага или кнопки. В том случае когда устройство устанавливается по классической схеме, целесообразно подключение через особый выключатель, который будет изменять цвет при разном уровне мощности.

Кроме этого, такое дополнение позволяет частично предотвратить возникновение ситуаций с поражением человека током. Не нужно будет искать подходящий корпус, а также прибор будет иметь привлекательный внешний вид.

Существует множество способов закрывания тиристоров. Но в первую очередь необходимо помнить, что подача любых сигналов на электрод не сможет закрыть его и погасить действие. Электрод способен только запустить устройство. Существуют и аналоги - запираемые тиристоры. Но их прямое предназначение немного шире, чем у обычных выключателей. Классическую схему тиристорного регулятора напряжения можно выключить только прерыванием подачи тока на уровне анод-катод.

Закрыть регулятор мощности на тиристоре ку202н можно минимум 3 способами. Можно просто отключить всю схему от батарейки. Таким образом диод выключится. Но если повторно включить устройство, то оно не включится, поскольку тиристор остаётся в закрытом состоянии. Он будет находиться в таком положении, пока не будет нажата соответствующая кнопка.

Вторым способом закрытия тиристора является прерывание подачи тока. Это можно сделать, просто замкнув соединение катода анода с помощью обычной проволоки. Проверить можно на схеме с простым светодиодом вместо прибора. Если перемычку из проволоки подсоединить, как указано выше, то всё напряжение пойдёт через проволоку, а уровень тока, которой пойдёт в тиристор, будет нулевым. После того как забрать проволоку обратно, тиристор закроется и прибор выключится. В этом случае прибор - это светодиод, и он погаснет. Если экспериментировать с подобными схемами, то в качестве перемычки можно использовать пинцет.

Если вместо светодиода установить нагревательную спираль большой мощности, то можно получить законченный тиристорный регулятор.

Третий способ заключается в том, чтобы уменьшить напряжение питания до минимального, после чего изменить полярность на противоположную. Такая ситуация приведёт к выключению устройства.

Простой регулятор напряжения

Для производства простейшей системы, работающей на 12 вольтах, понадобятся такие ключевые элементы, как выпрямитель, генератор и аккумулятор. Генератор является одним из главных компонентов. Для изготовления понадобятся вышеупомянутые радиодетали, а также схема простейшего регулятора мощности. Стоит отметить, что в ней нет стабилизаторов.

Для изготовления необходимо подготовить такие элементы:

  • 2 резистора;
  • 1 транзистор;
  • 2 конденсатора;
  • 4 диода.

Специально для транзистора лучше устанавливать систему охлаждения. Это позволит избежать перегрузок системы. Устройство лучше устанавливать с хорошим запасом мощности, чтобы заряжать в последующем аккумуляторы с небольшой ёмкостью.

Тиристорный пререгулятор

- Circuit Cellar

Было время, когда производители испытательного оборудования публиковали руководства по обслуживанию, которые включали схемы и подробные описания принципов работы приборов. Их изучение по-прежнему является отличным способом получить мастер-класс по точному проектированию или подобрать несколько действительно интересных схемных идей. В конце концов, подражание - это самая искренняя форма лести.

Вот один из последних из классической серии настольных блоков питания 60 Вт Agilent (бывшая HP, теперь Keysight) E361xA.Сейчас они устарели, но имели впечатляющие характеристики: E3616A (35 В при 1,7 А) имел шум лучше, чем 200 мкВ среднеквадратичного значения в диапазоне от 20 Гц до 20 МГц, а также регулирование линии и нагрузки 0,01%. Он также имеет пассивное охлаждение, что означает отсутствие слышимого шума.

Способ минимизировать рассеиваемую мощность в последовательном регуляторе состоит в использовании какого-либо предварительного регулятора для ограничения падения напряжения на последовательном элементе. Это часто делается с помощью предварительного регулятора режима переключения, но это приводит к появлению электрических помех.Разработчики блоков питания E361xA использовали совершенно другой подход для достижения впечатляющих показателей шума этого блока.

Блок-схема в Рис. 1 показывает блок «Preregulator фильтра выпрямителя», подключенный к силовому трансформатору в верхнем левом углу. Это умело переключает несколько ответвлений на основной вторичной обмотке трансформатора, чтобы обеспечить четыре различных напряжения постоянного тока, которые затем подаются на последовательный регулятор. Это переключение осуществляется тиристорами (называемыми в руководстве тиристорами).

РИСУНОК 1. Это блок-схема, извлеченная из сервис-мануала. Блок «Rectifier Filter Preregulator» подключен к трансформатору в верхнем левом углу. Это изобретательно обеспечивает четыре различных уровня напряжения для последовательного регулятора, чтобы минимизировать рассеивание мощности в проходном элементе.
(Нажмите для увеличения)

Напомним, тиристор - это четырехслойный полупроводниковый прибор (ПНПН). Вы можете думать о тиристоре как о диоде, который вы можете включить с положительным выводом затвора относительно катода.После включения тиристор будет оставаться в проводящем состоянии (даже при отсутствии стробирующего сигнала) до тех пор, пока прямой ток не упадет до нуля. Он всегда блокирует ток при обратном смещении.

Рисунок 2 - упрощенная версия схемы. Трансформатор имеет три вторичные обмотки с маркировкой W1, W2 и W3. Если все тиристоры выключены, D1 - D4 образуют стандартный мостовой выпрямитель, и выпрямленное напряжение будет определяться исключительно W. Если тиристоры Th2 и Th3 включены, D1 и D2 никогда не будут смещены в прямом направлении, а выходное напряжение будет пропорциональным. в W1 + W2.

РИСУНОК 2. Упрощенная версия пререгулятора. При отсутствии активных тиристоров выпрямляется W1, при Th2 и Th3 выпрямляются W1 + W2. Когда Th4 и Th5 активны, W1 + W3 выпрямляются. Когда все четыре тиристора активны, W1 + W2 + W3 выпрямляются.

Аналогично, если Th4 и Th5 находятся на D3, D4 будет вне поля зрения, а выходное напряжение будет пропорционально W1 + W3. Вы можете видеть, к чему это ведет. Если все четыре тиристора включены, ни один из диодов не будет проводить, и выходное напряжение будет пропорционально W1 + W2 + W3.Выбирая равные напряжения W1 и W2 и вдвое больше W3, мы получаем равномерно распределенные напряжения постоянного тока. Хороший.

РИСУНОК 3. Тиристоры запускаются триаком с оптической связью, изолирующим цепь управления от плавающих затворов тиристора. Подобно тиристору, TRIAC будет проводить при срабатывании триггера, а затем отключиться в конце полупериода сети.

Тиристоры приводятся в действие триаками с оптической связью (по крайней мере, в более поздних моделях), как показано на рис. 3 . TRIAC похожи на тиристоры, но проводят в обоих направлениях (функция, которая не используется в этой схеме, учитывая последовательный диод).Они запускаются оптически для изоляции и прекращают проводить ток одновременно с тиристором, когда ток падает до нуля в конце полупериода сети.

Схема управления контролирует нерегулируемое напряжение и выходное напряжение и переключает ответвления, чтобы обеспечить достаточный запас для последовательного регулятора, но нерегулируемое напряжение не превышает необходимого, что сводит к минимуму рассеивание мощности в последовательно проходных МОП-транзисторах. . Это решение с низким уровнем шума, поскольку переключение происходит только при фактическом изменении ответвления.Рассеивание в самих тиристорах немного выше, чем у эквивалентного диода, но, очевидно, управляемо в этом приложении.

Вы можете добиться того же результата с реле, но вам придется мириться с щелчками реле при изменении напряжения. Я думаю, что это изящное решение, и в нем используется устройство, которое в наши дни не часто используется, за исключением очень мощных приложений.

Ссылки

Agilent Technologies. «Руководство по эксплуатации и обслуживанию настольных источников питания постоянного тока Agilent E361xA 60 Вт.Технологии Agilent, апрель 2000 г. https://www.manualslib.com/manual/2875/Agilent-Technologies-E3614a.html.

Keysight. «Настольный блок питания Agilent E3616 60 Вт». Keysight. По состоянию на 15 марта 2021 г. https://www.keysight.com/au/en/product/E3616A/60w-power-supply-35v-17a.html. Agilent Technologies. «Непрограммируемые источники питания постоянного тока E3620A и E3630A»,

«Тиристор». В Википедии, 31 декабря 2020 г. https://en.wikipedia.org/w/index.php?title=Thyristor&oldid=997500487.

«ТРИАК.”В Википедии, 11 января 2021 г. https://en.wikipedia.org/w/index.php?title=TRIAC&oldid=999740245.

Спонсор этой статьи

Эндрю Левидо ([электронная почта защищена]) получил степень бакалавра электротехники в Сиднее, Австралия, в 1986 году. Прежде чем перейти на руководящие должности, он несколько лет работал в сфере НИОКР для компаний силовой электроники и телекоммуникаций. В свободное время Эндрю проявлял непосредственный интерес к электронике, особенно к встроенным системам, силовой электронике и теории управления.За эти годы он написал ряд статей для различных изданий по электронике и время от времени предоставляет консультационные услуги.

Купить регулятор напряжения SCR 3000 Вт по лучшей цене онлайн в Индии | Robu.in

Описание

Это тиристорный регулятор напряжения SCR мощностью 3000 Вт для регулировки скорости / света (220 В переменного тока). Тиристорный регулятор напряжения SCR 3000 Вт - это диммер SCR, который можно использовать для управления приборами 220 В. Его можно использовать как диммер, регулятор скорости вентилятора, регулятор температуры печи.Он прост и удобен в использовании и может управлять приборами мощностью до 3000 Вт!

Просто подключите этот модуль последовательно к вашему устройству и используйте встроенную ручку потенциометра для регулировки и установки требуемой выходной мощности вашего устройства 220 В.

Приборы:
  1. Электропечь, водонагреватель, лампы, моторчик, утюг и т. Д.
  2. можно подать заявку на использование нового двухходового тиристора большой мощности; Поскольку ток до 40А, хорошее решение для сопротивления нагревательного провода в случае охлаждения слишком мало, чтобы вызвать проблемы с перегрузкой по току; легко регулирует электричество.
  3. Выходное напряжение от 0 до 220 вольт, любое регулирование для использования с электроприборами.
  4. Такие как печь, водонагреватели, теплопередача, затемнение света, скорость небольшого двигателя, термостат электрического утюга и так далее.
  5. Для диммирования, термостатов, давления. Для крупномасштабного производства электроэнергии было использовано менее 3000 ватт электроэнергии; Так что бытовой техники в целом достаточно, либо фабрики небольшие. (Индуктивная или емкостная мощность нагрузки должна быть уменьшена, регулятор напряжения оснащен двусторонним тиристором большой мощности, потенциометры с гайками, не добавляют никаких компонентов для использования, очень удобно и практично.)
Как использовать:

Подключите это устройство к лампе или бытовому прибору в последовательном соединении, затем поверните ручку для регулировки яркости, скорости, напряжения, температуры.


В коплект входит:

Тиристорный регулятор напряжения SCR, 1 x 3000 Вт.

Гарантия 15 дней

На этот товар распространяется стандартная гарантия сроком 15 дней с момента доставки только в отношении производственных дефектов. Эта гарантия предоставляется клиентам Robu в отношении любых производственных дефектов.Возмещение или замена производятся в случае производственных дефектов.


Что аннулирует гарантию:

Если продукт подвергся неправильному использованию, вскрытию, статическому разряду, аварии, повреждению водой или огнем, использованию химикатов, пайке или каким-либо изменениям.

Тиристорные регуляторы напряжения (TVR) - Kitashiba Electric Co., Ltd.

Тиристорные регуляторы напряжения (TVR)

Благодаря высокой скорости отклика и возможности частого переключения, TVR быстро реагируют на обратные потоки тока и колебания напряжения, которые происходят в распределенных источниках питания, способствуя стабильному электроснабжению.

Характеристики

  • Подходит для распределенных источников питания

    Тиристорные регуляторы напряжения рассчитывают изменения первичного и вторичного напряжений из-за каждой операции переключения, чтобы определить направление потока мощности и обеспечить соответствующее управление в случае обратного потока мощности в солнечных фотоэлектрических и других системах выработки электроэнергии.

  • Быстрая реакция на частые колебания напряжения

    Минимальная скорость отклика 140 мс (без переключения ответвлений, отклонение напряжения 500 В)

  • Тиристорные регуляторы напряжения снижают колебания напряжения за счет переключения ответвлений.

    Функция переключения ответвлений мгновенно устраняет отклонения напряжения.

  • Возможность переключения ответвлений, поддерживающая частые управляющие воздействия

    Нет ограничений на количество сделанных переключений.

  • Не требует обслуживания

    Благодаря использованию бесконтактных переключателей для тиристоров, тиристорные регуляторы напряжения не требуют проверки устройства РПН.

TVR Характеристики

Производительность линии 3000 кВА
Номинальная частота 50 или 60 Гц
Количество фаз 3
Номинальное напряжение цепи 6600В
Диапазон номинального регулируемого напряжения +300 до -300В
Номинальный ток 262A
Производительность линии 4000 кВА
Номинальная частота 60 Гц
Количество фаз 3
Номинальное напряжение цепи 6600В
Диапазон номинального регулируемого напряжения от +500 до -300В
Номинальный ток 350A

Простая схема регулятора яркости лампы / регулятора вентилятора с использованием симистора

Схема регулятора освещенности или схема регулятора вентилятора (оба случая, схема и конструкция одинаковы, единственная разница заключается в изменении выходной нагрузки, то есть вентилятора или света) используется для управления яркостью света или скорость вентилятора по нашему желанию.Задача схемы - изменять интенсивность, яркость лампочки или скорость вращения вентилятора с помощью фиксированного источника. Для этого нет необходимости заменять лампу на лампу большей мощности. Простой симистор может сделать всю работу за вас. Симисторы используются в этой схеме в качестве диммера, поскольку они просты в проектировании и управлении, а также очень экономичны из-за их высокой эффективности и низких затрат на покупку.

T his - это принципиальная схема простейшего диммера лампы или регулятора вентилятора.Схема основана на принципе управления мощностью с помощью симистора. Схема работает за счет изменения угла включения симистора. С этим связаны резисторы R1, R2 и конденсатор C2. Угол открытия можно изменять, изменяя значение любого из этих компонентов. Здесь R1 выбран как переменный элемент. Изменяя значение R1, изменяется угол открытия симистора (простыми словами, сколько времени должен проводить симистор). Это напрямую изменяет мощность нагрузки, так как нагрузка приводится в действие симистором.Импульсы запуска подаются на затвор симистора T1 с помощью Diac D1.

Симистор

Вы получите лучшее представление о схеме светорегулятора, узнав больше о симисторе.

Банкноты

Соберите схему на печатной плате хорошего качества или на обычной плате. Нагрузка, будь то лампа, вентилятор или что-либо еще, должна быть менее 200 Вт. Для подключения более высоких нагрузок замените Triac BT 136 на Triac большей мощности. Все части цепи активны, что может привести к поражению электрическим током.Так что будь осторожен.

Я советую проверить схему с источником низкого напряжения (скажем, 12 В или 24 В переменного тока) и небольшой нагрузкой (такая же лампочка вольт) перед подключением цепи к сети.

Список деталей

R1 1o K Резистор 1 Вт

R2 1o0 K Потенциометр (переменное сопротивление)

C1 0,1 мкФ (500 В или выше) Полиэфирный конденсатор

T1 BT 136 симистор

D1 DB2 Diac

Схема регулятора вентилятора

BT 136 Triac Необходимые данные. BT 136 Технические характеристики

Схема регулятора освещенности, описанная выше, была изменена с добавлением демпфирующей схемы для улучшения характеристик симистора.

Разработка и стратегия управления тиристорным регулятором напряжения для регулирования напряжения в распределительной линии для расширения распределенного источника питания

Авторы
Чае, Хонг-Мун, Университет Чунгбук, Республика Корея
LEE, Чжун-Хун, Национальный университет Чунгбук, Республика Корея
Рю, Дже-Чанг, Национальный университет Чунгбук, Республика Корея
LEE, Хонг-Вон, Национальный университет Чунгбук, Республика Корея
JEON, Сунг-Гю, Национальный университет Чунгбук, Республика Корея
KIM, Донг-Гю, Национальный университет Чунгбук, Республика Корея
Ким, Чжэ Еон, Национальный университет Чунгбук, Республика Корея

Abstract
Энергосистема предназначена для работы в диапазоне напряжений, который учитывает полное сопротивление линии от напряжения передачи подстанции до распределительных и распределительных нагрузок.Однако, когда распределенный источник энергии, такой как солнечная или ветровая энергия, подключен к существующей системе, прерывистые выходные характеристики возобновляемого источника энергии могут вызвать нестабильность напряжения в распределительной линии. SVR может быть установлен для работы системы в стабильном диапазоне напряжений с помощью управления LDC. Однако, поскольку подключены распределенные источники питания, такие как фотоэлектрическая система, частая смена выхода может привести к частому переключению ответвлений SVR за пределы допустимого диапазона напряжений, что может вызвать повреждение и сократить срок службы устройства.В последнее время активно ведутся исследования проблемы нестабильности напряжения в распределительной линии, связанной с фотоэлектрической системой. В данной статье мы представляем тиристорный регулятор напряжения (TVR), использующий быстродействующее полупроводниковое переключающее устройство для компенсации недостатков обычных SVR. . В этой статье предлагается метод управления стабилизацией напряжения в линиях распределения электроэнергии путем измерения значения напряжения на выходном каскаде подстанции, области сосредоточенного источника питания и напряжения на клеммах линии.Предлагаемый метод управления преодолевает предел управления напряжением, вызванный методом управления напряжением LDC существующего SVR. Мы моделируем предлагаемую TVR с помощью PSCAD / EMTDC, а также моделируем и проверяем предложенную схему управления.

Издатель
AIM

Дата
2019-06-03

Постоянная ссылка на эту запись
https://cired-repository.org/handle/20.500.12455/611
http://dx.doi.org/10.34890/836

ISSN
2032-9644

ISBN
978-2-9602415-0-1

-SCR.СИЛОВОЙ РЕГУЛЯТОР

РЕГУЛЯТОР СИЛЫ SCR

● Характеристики продукта

● С выбором различных входных сигналов управления

(4 ~ 20 мА / 0 ~ 20 мА / 0-5 В / 0 ~ 10 В / 1 ~ 5 В / 2 ~ 10 В) переключаемый выбор

● С внутренней ручной регулировкой выходной мощности и внешним выходом

мощность ручная регулировка + автоматическая регулировка

● Имеется индикатор срабатывания предохранителя / индикатор короткого замыкания нагрузки (опция) / SCR

индикаторы перегрева (85 ℃) и контакт аварийной сигнализации

● При выходной мощности нагрузки 0 ~ 100% показывает процент от

● С регулировкой времени нагрева буфера загрузки (1 ~ 25 сек)

● Мгновенно, когда вы запускаете мощность, что дает мгновенный

Цепь максимальной токовой защиты (предохранитель SCR не перегорел)

● Перегрев SCR или плавкий предохранитель немедленно останавливает выход, когда

устранение неполадок в ожидании восстановления, затем выводится буферизация

● Встроенный предохранитель FAST 、 защита SCR без повреждений (предохранители и простой демонтаж)

● Радиаторы со сверхвысокой эффективностью, термический тип, быстрый 、 хороший отвод тепла

● Самоопределение промышленной частоты, 50 ~ 60 Гц, может использоваться без

выбор или переключатель

● Основное питание принимает единую стандартную конструкцию 200 В ~ 480 В в пределах

объем использования либо

● Клеммная колодка управляющего сигнала 、 съемный терминал для горнодобывающей промышленности Европы

Блок

, замена контура управления позволяет избежать повторного подключения

Тиристорный регулятор напряжения постоянного тока

(57) Реферат:

Изобретение относится к преобразовательной технике и предназначено для питания активно-индуктивной нагрузки регулируемым постоянным напряжением.Целью изобретения является повышение надежности регулятора за счет исключения прохождения зарядного тока через его основной тиристор без использования дополнительного источника для перезарядки переключающего конденсатора и обеспечение изоляции основного тиристора при его включении на длительное время. короткое замыкание в нагрузке. Задача достигается путем формирования последовательной цепочки из первого разделения тиристора, катушки индуктивности, переключающего конденсатора и второго делительного тиристора, включенных параллельно с постоянным напряжением, и параллельно катушке индуктивности и переключающему конденсатору, подключенным к перезарядке тиристора.Последовательная цепь от первого разделения тиристора, катушки индуктивности и переключающего конденсатора подключена параллельно основному тиристору. 2 ил. Изобретение относится к преобразовательной технике и предназначено для питания активно-индуктивной нагрузки регулируемым постоянным напряжением.

Ия, где использование других полупроводниковых устройств (например, транзисторов) затруднено по техническим или экономическим причинам.

В качестве аналогов выбрана схема [1], предназначенная для коммутации групп управляемых вентилей, и схема [2] тиристорный нереверсивный широтно-импульсный преобразователь (ШИМ) постоянного напряжения.Схема включает в себя цепь из последовательно соединенных коммутирующих конденсаторов и двух управляемых переключателей (один полностью управляемый) для подключения к положительному и отрицательному полюсам основной силовой токоведущей цепи. Коммутирующий конденсатор подключен с одной стороны к источнику заряда и через диод ко вторичной обмотке катушки индуктивности (относящейся к первичной обмотке катушки индуктивности, подключенной к цепи силового проводника), с другой стороны, через вспомогательные клапаны. (тиристоры) к основным тиристорам.К недостаткам приведенных схем является использование полностью управляемого ключа: после выключения основного тиристора он вынужден отключать ток нагрузки, что приводит к перенапряжению на дросселе и, как следствие, к необходимости принудительной зарядки дополнительных (и заряд апериодический) представляет собой практически пустой коммутирующий конденсатор, что приводит к значительному снижению КПД всей установки. Схема прототипа [2] содержит основной тиристорный прибор, активируемый обратным диодом, параллельно к которому подключена цепочка тиристора, катушки индуктивности и переключающего конденсатора и тиристорной цепи образует дополнительную тиристорную гирляндную цепь, подключенную параллельно источнику постоянного напряжения.Недостатком схемы является пропускание коммутирующего конденсатора импульсного зарядного тока через главный тиристор, что снижает его надежность или накладывает дополнительные требования. Кроме того, невозможно выключить главный тиристор при его включении из-за короткого замыкания в нагрузке. Целью изобретения является повышение надежности регулятора за счет исключения зарядного тока через главный тиристорный регулятор. без использования дополнительного источника для перезарядки переключающего конденсатора и обеспечения изоляции основного тиристора при его включении на короткое замыкание в нагрузке.Поставленная цель достигается за счет формирования последовательной цепочки из первого разделительного тиристора, индуктора, реле, конденсаторного базового ома параллельно катушке индуктивности и коммутирующего конденсатора, подключенного к тиристору избыточного заряда. Последовательная цепочка от первого разделения тиристора, катушки индуктивности и переключающего конденсатора подключена параллельно основному тиристору. Использование изобретения позволяет получить следующие преимущества: исключение коммутации импульсного тока заряда конденсатора через основной тиристор, возможность отключать главный тиристор при включении К.В нагрузке снижение коммутационных потерь за счет колебательного характера процесса перезарядки коммутирующего конденсатора, отсутствие специального (дополнительного) источника заряда коммутирующего конденсатора, отсутствие накопления энергии в коммутирующем конденсаторе, компенсация потери в цепи коммутации осуществляется источником постоянного напряжения. На фиг. 1 представлена ​​схема тиристорного регулятора постоянного напряжения; На рис.2 показан вариант тиристорных регуляторов с групповым управлением. Основной токопроводящий тракт ползуна образован от положительного постоянного напряжения до анода главного тиристора 1, который через нагрузку 3 активируется обратным диодом 2, Устройство активируется обратным диодом к отрицательному выводу напряжения постоянного тока, соединенным делительным тиристором 4, подключенным анодом к положительному источнику постоянного напряжения, индуктором 5, коммутирующим конденсатором 6 и другим разделяющим тиристором 7, подключенным катодом к источнику постоянного напряжения. отрицательный полюс источника постоянного напряжения.Параллельно катоду индуктивности 5 и переключающему конденсатору 6 подключен тиристор перезарядки 8, анод соединен с катодом разделения тиристора 4. Последовательная цепочка разделения тиристора 4, индуктора 5 и переключающего конденсатора 6 соединена в параллельно основному тиристору 1. На рис. 2 последовательно соединить цепь 4-5-6 с главными тиристорами через тиристоры, количество которых соответствует количеству главных тиристоров. Принцип работы схемы следующий. .Исходное напряжение (обозначено на фиг. 1 знаками плюс и минус без скобок) для переключения конденсатора 6 формируется в момент разделения тиристоров 4 и 7 и определяется величиной напряжения источника постоянного напряжения. После этого включить перезаряд тиристора 8. Происходит колебательная перезарядка коммутирующего конденсатора 6 в цепи перезаряда: 6-5-8-6. По окончании процесса перезарядки коммутирующего конденсатора 6 происходит перезарядка тиристора в цепи: 6-1 (2) -4-5-6 до полярности, указанной без скобок.В процессе перезарядки коммутирующего конденсатора 6 отключается главный тиристор 1. Как только напряжение на коммутирующем конденсаторе 6 превысит напряжение источника постоянного напряжения, делительный тиристор 4 замыкается и процесс переключения над. Таким образом, начальное напряжение на коммутирующем конденсаторе 6 восстанавливается за счет постоянного напряжения источника, а ускорить восстановление начального напряжения на коммутирующем конденсаторе можно после выключения основного тиристора 1, чтобы разрешить разделение тиристора 7.По окончании процесса переключение включает перезаряд тиристора 8, напряжение на коммутирующем конденсаторе 6 устанавливается на символы, указанные на рис. 1 в скобках. Тиристорный регулятор постоянного напряжения, содержащий основное тиристорное устройство, активируется обратным диодом, включенным между первым источником напряжения фиксации и нагрузкой, который подключен к свободному выходу со вторым источником напряжения фиксации, цепочкой последовательно соединенных первого разделения тиристор, катушка индуктивности и переключающий конденсатор, подключенные параллельно к основному тиролу, разделяющие тиристор, подключенный между общей точкой основного тиристора и нагрузки, и второй источник напряжения фиксации, и перезаряд тиристора, включенный в параллельную цепь катушки индуктивности и коммутирующий конденсатор, все тиристоры включены в соответствии с напряжением источника питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *